@article {1156, title = {Genome-wide association studies of MRI-defined brain infarcts: meta-analysis from the CHARGE Consortium.}, journal = {Stroke}, volume = {41}, year = {2010}, month = {2010 Feb}, pages = {210-7}, abstract = {

BACKGROUND AND PURPOSE: Previous studies examining genetic associations with MRI-defined brain infarct have yielded inconsistent findings. We investigated genetic variation underlying covert MRI infarct in persons without histories of transient ischemic attack or stroke. We performed meta-analysis of genome-wide association studies of white participants in 6 studies comprising the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium.

METHODS: Using 2.2 million genotyped and imputed single nucleotide polymorphisms, each study performed cross-sectional genome-wide association analysis of MRI infarct using age- and sex-adjusted logistic regression models. Study-specific findings were combined in an inverse-variance-weighted meta-analysis, including 9401 participants with mean age 69.7 (19.4\% of whom had >or=1 MRI infarct).

RESULTS: The most significant association was found with rs2208454 (minor allele frequency, 20\%), located in intron 3 of MACRO domain containing 2 gene and in the downstream region of fibronectin leucine-rich transmembrane protein 3 gene. Each copy of the minor allele was associated with lower risk of MRI infarcts (odds ratio, 0.76; 95\% confidence interval, 0.68-0.84; P=4.64x10(-7)). Highly suggestive associations (P<1.0x10(-5)) were also found for 22 other single nucleotide polymorphisms in linkage disequilibrium (r(2)>0.64) with rs2208454. The association with rs2208454 did not replicate in independent samples of 1822 white and 644 black participants, although 4 single nucleotide polymorphisms within 200 kb from rs2208454 were associated with MRI infarcts in the black population sample.

CONCLUSIONS: This first community-based, genome-wide association study on covert MRI infarcts uncovered novel associations. Although replication of the association with top single nucleotide polymorphisms failed, possibly because of insufficient power, results in the black population sample are encouraging, and further efforts at replication are needed.

}, keywords = {African Americans, Aged, Brain, Brain Infarction, Cohort Studies, DNA Mutational Analysis, Female, Gene Frequency, Genetic Markers, Genetic Predisposition to Disease, Genetic Testing, Genetic Variation, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Magnetic Resonance Imaging, Male, Middle Aged, Polymorphism, Single Nucleotide, Prospective Studies}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.109.569194}, author = {Debette, Stephanie and Bis, Joshua C and Fornage, Myriam and Schmidt, Helena and Ikram, M Arfan and Sigurdsson, Sigurdur and Heiss, Gerardo and Struchalin, Maksim and Smith, Albert V and van der Lugt, Aad and DeCarli, Charles and Lumley, Thomas and Knopman, David S and Enzinger, Christian and Eiriksdottir, Gudny and Koudstaal, Peter J and DeStefano, Anita L and Psaty, Bruce M and Dufouil, Carole and Catellier, Diane J and Fazekas, Franz and Aspelund, Thor and Aulchenko, Yurii S and Beiser, Alexa and Rotter, Jerome I and Tzourio, Christophe and Shibata, Dean K and Tscherner, Maria and Harris, Tamara B and Rivadeneira, Fernando and Atwood, Larry D and Rice, Kenneth and Gottesman, Rebecca F and van Buchem, Mark A and Uitterlinden, Andr{\'e} G and Kelly-Hayes, Margaret and Cushman, Mary and Zhu, Yicheng and Boerwinkle, Eric and Gudnason, Vilmundur and Hofman, Albert and Romero, Jose R and Lopez, Oscar and van Duijn, Cornelia M and Au, Rhoda and Heckbert, Susan R and Wolf, Philip A and Mosley, Thomas H and Seshadri, Sudha and Breteler, Monique M B and Schmidt, Reinhold and Launer, Lenore J and Longstreth, W T} }