@article {1153, title = {Association of novel genetic Loci with circulating fibrinogen levels: a genome-wide association study in 6 population-based cohorts.}, journal = {Circ Cardiovasc Genet}, volume = {2}, year = {2009}, month = {2009 Apr}, pages = {125-33}, abstract = {

BACKGROUND: Fibrinogen is both central to blood coagulation and an acute-phase reactant. We aimed to identify common variants influencing circulation fibrinogen levels.

METHODS AND RESULTS: We conducted a genome-wide association analysis on 6 population-based studies, the Rotterdam Study, the Framingham Heart Study, the Cardiovascular Health Study, the Atherosclerosis Risk in Communities Study, the Monitoring of Trends and Determinants in Cardiovascular Disease/KORA Augsburg Study, and the British 1958 Birth Cohort Study, including 22 096 participants of European ancestry. Four loci were marked by 1 or more single-nucleotide polymorphisms that demonstrated genome-wide significance (P<5.0 x 10(-8)). These included a single-nucleotide polymorphism located in the fibrinogen beta chain (FGB) gene and 3 single-nucleotide polymorphisms representing newly identified loci. The high-signal single-nucleotide polymorphisms were rs1800789 in exon 7 of FGB (P=1.8 x 10(-30)), rs2522056 downstream from the interferon regulatory factor 1 (IRF1) gene (P=1.3 x 10(-15)), rs511154 within intron 1 of the propionyl coenzyme A carboxylase (PCCB) gene (P=5.9 x 10(-10)), and rs1539019 on the NLR family pyrin domain containing 3 isoforms (NLRP3) gene (P=1.04 x 10(-8)).

CONCLUSIONS: Our findings highlight biological pathways that may be important in regulation of inflammation underlying cardiovascular disease.

}, keywords = {Adult, Aged, Aged, 80 and over, Cardiovascular Diseases, Cohort Studies, European Continental Ancestry Group, Female, Fibrinogen, Genetic Loci, Genome-Wide Association Study, Humans, Male, Middle Aged, Pedigree, Polymorphism, Single Nucleotide, Young Adult}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.108.825224}, author = {Dehghan, Abbas and Yang, Qiong and Peters, Annette and Basu, Saonli and Bis, Joshua C and Rudnicka, Alicja R and Kavousi, Maryam and Chen, Ming-Huei and Baumert, Jens and Lowe, Gordon D O and McKnight, Barbara and Tang, Weihong and de Maat, Moniek and Larson, Martin G and Eyhermendy, Susana and McArdle, Wendy L and Lumley, Thomas and Pankow, James S and Hofman, Albert and Massaro, Joseph M and Rivadeneira, Fernando and Kolz, Melanie and Taylor, Kent D and van Duijn, Cornelia M and Kathiresan, Sekar and Illig, Thomas and Aulchenko, Yurii S and Volcik, Kelly A and Johnson, Andrew D and Uitterlinden, Andr{\'e} G and Tofler, Geoffrey H and Gieger, Christian and Psaty, Bruce M and Couper, David J and Boerwinkle, Eric and Koenig, Wolfgang and O{\textquoteright}Donnell, Christopher J and Witteman, Jacqueline C and Strachan, David P and Smith, Nicholas L and Folsom, Aaron R} } @article {1271, title = {CUBN is a gene locus for albuminuria.}, journal = {J Am Soc Nephrol}, volume = {22}, year = {2011}, month = {2011 Mar}, pages = {555-70}, abstract = {

Identification of genetic risk factors for albuminuria may alter strategies for early prevention of CKD progression, particularly among patients with diabetes. Little is known about the influence of common genetic variants on albuminuria in both general and diabetic populations. We performed a meta-analysis of data from 63,153 individuals of European ancestry with genotype information from genome-wide association studies (CKDGen Consortium) and from a large candidate gene study (CARe Consortium) to identify susceptibility loci for the quantitative trait urinary albumin-to-creatinine ratio (UACR) and the clinical diagnosis microalbuminuria. We identified an association between a missense variant (I2984V) in the CUBN gene, which encodes cubilin, and both UACR (P = 1.1 {\texttimes} 10(-11)) and microalbuminuria (P = 0.001). We observed similar associations among 6981 African Americans in the CARe Consortium. The associations between this variant and both UACR and microalbuminuria were significant in individuals of European ancestry regardless of diabetes status. Finally, this variant associated with a 41\% increased risk for the development of persistent microalbuminuria during 20 years of follow-up among 1304 participants with type 1 diabetes in the prospective DCCT/EDIC Study. In summary, we identified a missense CUBN variant that associates with levels of albuminuria in both the general population and in individuals with diabetes.

}, keywords = {African Continental Ancestry Group, Albuminuria, European Continental Ancestry Group, Genetic Loci, Genetic Predisposition to Disease, Humans, Mutation, Missense, Receptors, Cell Surface}, issn = {1533-3450}, doi = {10.1681/ASN.2010060598}, author = {B{\"o}ger, Carsten A and Chen, Ming-Huei and Tin, Adrienne and Olden, Matthias and K{\"o}ttgen, Anna and de Boer, Ian H and Fuchsberger, Christian and O{\textquoteright}Seaghdha, Conall M and Pattaro, Cristian and Teumer, Alexander and Liu, Ching-Ti and Glazer, Nicole L and Li, Man and O{\textquoteright}Connell, Jeffrey R and Tanaka, Toshiko and Peralta, Carmen A and Kutalik, Zolt{\'a}n and Luan, Jian{\textquoteright}an and Zhao, Jing Hua and Hwang, Shih-Jen and Akylbekova, Ermeg and Kramer, Holly and van der Harst, Pim and Smith, Albert V and Lohman, Kurt and de Andrade, Mariza and Hayward, Caroline and Kollerits, Barbara and T{\"o}njes, Anke and Aspelund, Thor and Ingelsson, Erik and Eiriksdottir, Gudny and Launer, Lenore J and Harris, Tamara B and Shuldiner, Alan R and Mitchell, Braxton D and Arking, Dan E and Franceschini, Nora and Boerwinkle, Eric and Egan, Josephine and Hernandez, Dena and Reilly, Muredach and Townsend, Raymond R and Lumley, Thomas and Siscovick, David S and Psaty, Bruce M and Kestenbaum, Bryan and Haritunians, Talin and Bergmann, Sven and Vollenweider, Peter and Waeber, G{\'e}rard and Mooser, Vincent and Waterworth, Dawn and Johnson, Andrew D and Florez, Jose C and Meigs, James B and Lu, Xiaoning and Turner, Stephen T and Atkinson, Elizabeth J and Leak, Tennille S and Aasar{\o}d, Knut and Skorpen, Frank and Syv{\"a}nen, Ann-Christine and Illig, Thomas and Baumert, Jens and Koenig, Wolfgang and Kr{\"a}mer, Bernhard K and Devuyst, Olivier and Mychaleckyj, Josyf C and Minelli, Cosetta and Bakker, Stephan J L and Kedenko, Lyudmyla and Paulweber, Bernhard and Coassin, Stefan and Endlich, Karlhans and Kroemer, Heyo K and Biffar, Reiner and Stracke, Sylvia and V{\"o}lzke, Henry and Stumvoll, Michael and M{\"a}gi, Reedik and Campbell, Harry and Vitart, Veronique and Hastie, Nicholas D and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Polasek, Ozren and Curhan, Gary and Kronenberg, Florian and Prokopenko, Inga and Rudan, Igor and Arnl{\"o}v, Johan and Hallan, Stein and Navis, Gerjan and Parsa, Afshin and Ferrucci, Luigi and Coresh, Josef and Shlipak, Michael G and Bull, Shelley B and Paterson, Nicholas J and Wichmann, H-Erich and Wareham, Nicholas J and Loos, Ruth J F and Rotter, Jerome I and Pramstaller, Peter P and Cupples, L Adrienne and Beckmann, Jacques S and Yang, Qiong and Heid, Iris M and Rettig, Rainer and Dreisbach, Albert W and Bochud, Murielle and Fox, Caroline S and Kao, W H L} } @article {1284, title = {Genetic predictors of fibrin D-dimer levels in healthy adults.}, journal = {Circulation}, volume = {123}, year = {2011}, month = {2011 May 03}, pages = {1864-72}, abstract = {

BACKGROUND: Fibrin fragment D-dimer, one of several peptides produced when crosslinked fibrin is degraded by plasmin, is the most widely used clinical marker of activated blood coagulation. To identity genetic loci influencing D-dimer levels, we performed the first large-scale, genome-wide association search.

METHODS AND RESULTS: A genome-wide investigation of the genomic correlates of plasma D-dimer levels was conducted among 21 052 European-ancestry adults. Plasma levels of D-dimer were measured independently in each of 13 cohorts. Each study analyzed the association between ≈2.6 million genotyped and imputed variants across the 22 autosomal chromosomes and natural-log{\textendash}transformed D-dimer levels using linear regression in additive genetic models adjusted for age and sex. Among all variants, 74 exceeded the genome-wide significance threshold and marked 3 regions. At 1p22, rs12029080 (P=6.4{\texttimes}10(-52)) was 46.0 kb upstream from F3, coagulation factor III (tissue factor). At 1q24, rs6687813 (P=2.4{\texttimes}10(-14)) was 79.7 kb downstream of F5, coagulation factor V. At 4q32, rs13109457 (P=2.9{\texttimes}10(-18)) was located between 2 fibrinogen genes: 10.4 kb downstream from FGG and 3.0 kb upstream from FGA. Variants were associated with a 0.099-, 0.096-, and 0.061-unit difference, respectively, in natural-log{\textendash}transformed D-dimer and together accounted for 1.8\% of the total variance. When adjusted for nonsynonymous substitutions in F5 and FGA loci known to be associated with D-dimer levels, there was no evidence of an additional association at either locus.

CONCLUSIONS: Three genes were associated with fibrin D-dimer levels. Of these 3, the F3 association was the strongest, and has not been previously reported.

}, keywords = {Adult, Aged, Blood Coagulation, European Continental Ancestry Group, Factor V, Female, Fibrin Fibrinogen Degradation Products, Fibrinogen, Genetic Testing, Genome-Wide Association Study, Humans, Male, Middle Aged, Reference Values, Thromboplastin}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.110.009480}, author = {Smith, Nicholas L and Huffman, Jennifer E and Strachan, David P and Huang, Jie and Dehghan, Abbas and Trompet, Stella and Lopez, Lorna M and Shin, So-Youn and Baumert, Jens and Vitart, Veronique and Bis, Joshua C and Wild, Sarah H and Rumley, Ann and Yang, Qiong and Uitterlinden, Andr{\'e} G and Stott, David J and Davies, Gail and Carter, Angela M and Thorand, Barbara and Polasek, Ozren and McKnight, Barbara and Campbell, Harry and Rudnicka, Alicja R and Chen, Ming-Huei and Buckley, Brendan M and Harris, Sarah E and Peters, Annette and Pulanic, Drazen and Lumley, Thomas and de Craen, Anton J M and Liewald, David C and Gieger, Christian and Campbell, Susan and Ford, Ian and Gow, Alan J and Luciano, Michelle and Porteous, David J and Guo, Xiuqing and Sattar, Naveed and Tenesa, Albert and Cushman, Mary and Slagboom, P Eline and Visscher, Peter M and Spector, Tim D and Illig, Thomas and Rudan, Igor and Bovill, Edwin G and Wright, Alan F and McArdle, Wendy L and Tofler, Geoffrey and Hofman, Albert and Westendorp, Rudi G J and Starr, John M and Grant, Peter J and Karakas, Mahir and Hastie, Nicholas D and Psaty, Bruce M and Wilson, James F and Lowe, Gordon D O and O{\textquoteright}Donnell, Christopher J and Witteman, Jacqueline C M and Jukema, J Wouter and Deary, Ian J and Soranzo, Nicole and Koenig, Wolfgang and Hayward, Caroline} } @article {1323, title = {Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque.}, journal = {Nat Genet}, volume = {43}, year = {2011}, month = {2011 Sep 11}, pages = {940-7}, abstract = {

Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 {\texttimes} 10(-8)). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events.

}, keywords = {Adult, Aged, Aging, Atherosclerosis, Carotid Intima-Media Thickness, Cohort Studies, Coronary Artery Disease, European Continental Ancestry Group, Genetic Loci, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Genotype, Heart, Humans, Middle Aged, Phenotype, Plaque, Atherosclerotic, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1546-1718}, doi = {10.1038/ng.920}, author = {Bis, Joshua C and Kavousi, Maryam and Franceschini, Nora and Isaacs, Aaron and Abecasis, Goncalo R and Schminke, Ulf and Post, Wendy S and Smith, Albert V and Cupples, L Adrienne and Markus, Hugh S and Schmidt, Reinhold and Huffman, Jennifer E and Lehtim{\"a}ki, Terho and Baumert, Jens and M{\"u}nzel, Thomas and Heckbert, Susan R and Dehghan, Abbas and North, Kari and Oostra, Ben and Bevan, Steve and Stoegerer, Eva-Maria and Hayward, Caroline and Raitakari, Olli and Meisinger, Christa and Schillert, Arne and Sanna, Serena and V{\"o}lzke, Henry and Cheng, Yu-Ching and Thorsson, Bolli and Fox, Caroline S and Rice, Kenneth and Rivadeneira, Fernando and Nambi, Vijay and Halperin, Eran and Petrovic, Katja E and Peltonen, Leena and Wichmann, H Erich and Schnabel, Renate B and D{\"o}rr, Marcus and Parsa, Afshin and Aspelund, Thor and Demissie, Serkalem and Kathiresan, Sekar and Reilly, Muredach P and Taylor, Kent and Uitterlinden, Andre and Couper, David J and Sitzer, Matthias and K{\"a}h{\"o}nen, Mika and Illig, Thomas and Wild, Philipp S and Orr{\`u}, Marco and L{\"u}demann, Jan and Shuldiner, Alan R and Eiriksdottir, Gudny and White, Charles C and Rotter, Jerome I and Hofman, Albert and Seissler, Jochen and Zeller, Tanja and Usala, Gianluca and Ernst, Florian and Launer, Lenore J and D{\textquoteright}Agostino, Ralph B and O{\textquoteright}Leary, Daniel H and Ballantyne, Christie and Thiery, Joachim and Ziegler, Andreas and Lakatta, Edward G and Chilukoti, Ravi Kumar and Harris, Tamara B and Wolf, Philip A and Psaty, Bruce M and Polak, Joseph F and Li, Xia and Rathmann, Wolfgang and Uda, Manuela and Boerwinkle, Eric and Klopp, Norman and Schmidt, Helena and Wilson, James F and Viikari, Jorma and Koenig, Wolfgang and Blankenberg, Stefan and Newman, Anne B and Witteman, Jacqueline and Heiss, Gerardo and Duijn, Cornelia van and Scuteri, Angelo and Homuth, Georg and Mitchell, Braxton D and Gudnason, Vilmundur and O{\textquoteright}Donnell, Christopher J} } @article {1267, title = {Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels.}, journal = {Circulation}, volume = {123}, year = {2011}, month = {2011 Feb 22}, pages = {731-8}, abstract = {

BACKGROUND: C-reactive protein (CRP) is a heritable marker of chronic inflammation that is strongly associated with cardiovascular disease. We sought to identify genetic variants that are associated with CRP levels.

METHODS AND RESULTS: We performed a genome-wide association analysis of CRP in 66 185 participants from 15 population-based studies. We sought replication for the genome-wide significant and suggestive loci in a replication panel comprising 16 540 individuals from 10 independent studies. We found 18 genome-wide significant loci, and we provided evidence of replication for 8 of them. Our results confirm 7 previously known loci and introduce 11 novel loci that are implicated in pathways related to the metabolic syndrome (APOC1, HNF1A, LEPR, GCKR, HNF4A, and PTPN2) or the immune system (CRP, IL6R, NLRP3, IL1F10, and IRF1) or that reside in regions previously not known to play a role in chronic inflammation (PPP1R3B, SALL1, PABPC4, ASCL1, RORA, and BCL7B). We found a significant interaction of body mass index with LEPR (P<2.9{\texttimes}10(-6)). A weighted genetic risk score that was developed to summarize the effect of risk alleles was strongly associated with CRP levels and explained ≈5\% of the trait variance; however, there was no evidence for these genetic variants explaining the association of CRP with coronary heart disease.

CONCLUSIONS: We identified 18 loci that were associated with CRP levels. Our study highlights immune response and metabolic regulatory pathways involved in the regulation of chronic inflammation.

}, keywords = {Biomarkers, C-Reactive Protein, Cardiovascular Diseases, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Risk Factors, Vasculitis}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.110.948570}, author = {Dehghan, Abbas and Dupuis, Jos{\'e}e and Barbalic, Maja and Bis, Joshua C and Eiriksdottir, Gudny and Lu, Chen and Pellikka, Niina and Wallaschofski, Henri and Kettunen, Johannes and Henneman, Peter and Baumert, Jens and Strachan, David P and Fuchsberger, Christian and Vitart, Veronique and Wilson, James F and Par{\'e}, Guillaume and Naitza, Silvia and Rudock, Megan E and Surakka, Ida and de Geus, Eco J C and Alizadeh, Behrooz Z and Guralnik, Jack and Shuldiner, Alan and Tanaka, Toshiko and Zee, Robert Y L and Schnabel, Renate B and Nambi, Vijay and Kavousi, Maryam and Ripatti, Samuli and Nauck, Matthias and Smith, Nicholas L and Smith, Albert V and Sundvall, Jouko and Scheet, Paul and Liu, Yongmei and Ruokonen, Aimo and Rose, Lynda M and Larson, Martin G and Hoogeveen, Ron C and Freimer, Nelson B and Teumer, Alexander and Tracy, Russell P and Launer, Lenore J and Buring, Julie E and Yamamoto, Jennifer F and Folsom, Aaron R and Sijbrands, Eric J G and Pankow, James and Elliott, Paul and Keaney, John F and Sun, Wei and Sarin, Antti-Pekka and Fontes, Jo{\~a}o D and Badola, Sunita and Astor, Brad C and Hofman, Albert and Pouta, Anneli and Werdan, Karl and Greiser, Karin H and Kuss, Oliver and Meyer zu Schwabedissen, Henriette E and Thiery, Joachim and Jamshidi, Yalda and Nolte, Ilja M and Soranzo, Nicole and Spector, Timothy D and V{\"o}lzke, Henry and Parker, Alexander N and Aspelund, Thor and Bates, David and Young, Lauren and Tsui, Kim and Siscovick, David S and Guo, Xiuqing and Rotter, Jerome I and Uda, Manuela and Schlessinger, David and Rudan, Igor and Hicks, Andrew A and Penninx, Brenda W and Thorand, Barbara and Gieger, Christian and Coresh, Joe and Willemsen, Gonneke and Harris, Tamara B and Uitterlinden, Andr{\'e} G and Jarvelin, Marjo-Riitta and Rice, Kenneth and Radke, D{\"o}rte and Salomaa, Veikko and Willems van Dijk, Ko and Boerwinkle, Eric and Vasan, Ramachandran S and Ferrucci, Luigi and Gibson, Quince D and Bandinelli, Stefania and Snieder, Harold and Boomsma, Dorret I and Xiao, Xiangjun and Campbell, Harry and Hayward, Caroline and Pramstaller, Peter P and van Duijn, Cornelia M and Peltonen, Leena and Psaty, Bruce M and Gudnason, Vilmundur and Ridker, Paul M and Homuth, Georg and Koenig, Wolfgang and Ballantyne, Christie M and Witteman, Jacqueline C M and Benjamin, Emelia J and Perola, Markus and Chasman, Daniel I} } @article {1341, title = {Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease: meta-analysis of genome-wide association studies from five community-based studies.}, journal = {Eur Heart J}, volume = {33}, year = {2012}, month = {2012 Jan}, pages = {238-51}, abstract = {

AIMS: Lipoprotein-associated phospholipase A2 (Lp-PLA2) generates proinflammatory and proatherogenic compounds in the arterial vascular wall and is a potential therapeutic target in coronary heart disease (CHD). We searched for genetic loci related to Lp-PLA2 mass or activity by a genome-wide association study as part of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.

METHODS AND RESULTS: In meta-analyses of findings from five population-based studies, comprising 13 664 subjects, variants at two loci (PLA2G7, CETP) were associated with Lp-PLA2 mass. The strongest signal was at rs1805017 in PLA2G7 [P = 2.4 {\texttimes} 10(-23), log Lp-PLA2 difference per allele (beta): 0.043]. Variants at six loci were associated with Lp-PLA2 activity (PLA2G7, APOC1, CELSR2, LDL, ZNF259, SCARB1), among which the strongest signals were at rs4420638, near the APOE-APOC1-APOC4-APOC2 cluster [P = 4.9 {\texttimes} 10(-30); log Lp-PLA2 difference per allele (beta): -0.054]. There were no significant gene-environment interactions between these eight polymorphisms associated with Lp-PLA2 mass or activity and age, sex, body mass index, or smoking status. Four of the polymorphisms (in APOC1, CELSR2, SCARB1, ZNF259), but not PLA2G7, were significantly associated with CHD in a second study.

CONCLUSION: Levels of Lp-PLA2 mass and activity were associated with PLA2G7, the gene coding for this protein. Lipoprotein-associated phospholipase A2 activity was also strongly associated with genetic variants related to low-density lipoprotein cholesterol levels.

}, keywords = {1-Alkyl-2-acetylglycerophosphocholine Esterase, Aged, Coronary Artery Disease, Coronary Disease, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Middle Aged, Phospholipases A2, Polymorphism, Single Nucleotide}, issn = {1522-9645}, doi = {10.1093/eurheartj/ehr372}, author = {Grallert, Harald and Dupuis, Jos{\'e}e and Bis, Joshua C and Dehghan, Abbas and Barbalic, Maja and Baumert, Jens and Lu, Chen and Smith, Nicholas L and Uitterlinden, Andr{\'e} G and Roberts, Robert and Khuseyinova, Natalie and Schnabel, Renate B and Rice, Kenneth M and Rivadeneira, Fernando and Hoogeveen, Ron C and Fontes, Jo{\~a}o Daniel and Meisinger, Christa and Keaney, John F and Lemaitre, Rozenn and Aulchenko, Yurii S and Vasan, Ramachandran S and Ellis, Stephen and Hazen, Stanley L and van Duijn, Cornelia M and Nelson, Jeanenne J and M{\"a}rz, Winfried and Schunkert, Heribert and McPherson, Ruth M and Stirnadel-Farrant, Heide A and Psaty, Bruce M and Gieger, Christian and Siscovick, David and Hofman, Albert and Illig, Thomas and Cushman, Mary and Yamamoto, Jennifer F and Rotter, Jerome I and Larson, Martin G and Stewart, Alexandre F R and Boerwinkle, Eric and Witteman, Jacqueline C M and Tracy, Russell P and Koenig, Wolfgang and Benjamin, Emelia J and Ballantyne, Christie M} } @article {6089, title = {Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation.}, journal = {Blood}, volume = {120}, year = {2012}, month = {2012 Dec 06}, pages = {4873-81}, abstract = {

We conducted a genome-wide association study to identify novel associations between genetic variants and circulating plasminogen activator inhibitor-1 (PAI-1) concentration, and examined functional implications of variants and genes that were discovered. A discovery meta-analysis was performed in 19 599 subjects, followed by replication analysis of genome-wide significant (P < 5 {\texttimes} 10(-8)) single nucleotide polymorphisms (SNPs) in 10 796 independent samples. We further examined associations with type 2 diabetes and coronary artery disease, assessed the functional significance of the SNPs for gene expression in human tissues, and conducted RNA-silencing experiments for one novel association. We confirmed the association of the 4G/5G proxy SNP rs2227631 in the promoter region of SERPINE1 (7q22.1) and discovered genome-wide significant associations at 3 additional loci: chromosome 7q22.1 close to SERPINE1 (rs6976053, discovery P = 3.4 {\texttimes} 10(-10)); chromosome 11p15.2 within ARNTL (rs6486122, discovery P = 3.0 {\texttimes} 10(-8)); and chromosome 3p25.2 within PPARG (rs11128603, discovery P = 2.9 {\texttimes} 10(-8)). Replication was achieved for the 7q22.1 and 11p15.2 loci. There was nominal association with type 2 diabetes and coronary artery disease at ARNTL (P < .05). Functional studies identified MUC3 as a candidate gene for the second association signal on 7q22.1. In summary, SNPs in SERPINE1 and ARNTL and an SNP associated with the expression of MUC3 were robustly associated with circulating levels of PAI-1.

}, keywords = {Adaptor Proteins, Signal Transducing, ARNTL Transcription Factors, ATPases Associated with Diverse Cellular Activities, Cell Line, Cell Line, Tumor, Cohort Studies, Coronary Artery Disease, Diabetes Mellitus, Type 2, Gene Expression Profiling, Gene Expression Regulation, Gene Frequency, Genome-Wide Association Study, Genotype, Humans, LIM Domain Proteins, Meta-Analysis as Topic, Monocytes, Mucin-3, Plasminogen Activator Inhibitor 1, Polymorphism, Single Nucleotide, PPAR gamma, Proteasome Endopeptidase Complex, RNA Interference, Transcription Factors}, issn = {1528-0020}, doi = {10.1182/blood-2012-06-436188}, author = {Huang, Jie and Sabater-Lleal, Maria and Asselbergs, Folkert W and Tregouet, David and Shin, So-Youn and Ding, Jingzhong and Baumert, Jens and Oudot-Mellakh, Tiphaine and Folkersen, Lasse and Johnson, Andrew D and Smith, Nicholas L and Williams, Scott M and Ikram, Mohammad A and Kleber, Marcus E and Becker, Diane M and Truong, Vinh and Mychaleckyj, Josyf C and Tang, Weihong and Yang, Qiong and Sennblad, Bengt and Moore, Jason H and Williams, Frances M K and Dehghan, Abbas and Silbernagel, G{\"u}nther and Schrijvers, Elisabeth M C and Smith, Shelly and Karakas, Mahir and Tofler, Geoffrey H and Silveira, Angela and Navis, Gerjan J and Lohman, Kurt and Chen, Ming-Huei and Peters, Annette and Goel, Anuj and Hopewell, Jemma C and Chambers, John C and Saleheen, Danish and Lundmark, Per and Psaty, Bruce M and Strawbridge, Rona J and Boehm, Bernhard O and Carter, Angela M and Meisinger, Christa and Peden, John F and Bis, Joshua C and McKnight, Barbara and Ohrvik, John and Taylor, Kent and Franzosi, Maria Grazia and Seedorf, Udo and Collins, Rory and Franco-Cereceda, Anders and Syv{\"a}nen, Ann-Christine and Goodall, Alison H and Yanek, Lisa R and Cushman, Mary and M{\"u}ller-Nurasyid, Martina and Folsom, Aaron R and Basu, Saonli and Matijevic, Nena and van Gilst, Wiek H and Kooner, Jaspal S and Hofman, Albert and Danesh, John and Clarke, Robert and Meigs, James B and Kathiresan, Sekar and Reilly, Muredach P and Klopp, Norman and Harris, Tamara B and Winkelmann, Bernhard R and Grant, Peter J and Hillege, Hans L and Watkins, Hugh and Spector, Timothy D and Becker, Lewis C and Tracy, Russell P and M{\"a}rz, Winfried and Uitterlinden, Andr{\'e} G and Eriksson, Per and Cambien, Francois and Morange, Pierre-Emmanuel and Koenig, Wolfgang and Soranzo, Nicole and van der Harst, Pim and Liu, Yongmei and O{\textquoteright}Donnell, Christopher J and Hamsten, Anders} } @article {6282, title = {Genome-wide and gene-centric analyses of circulating myeloperoxidase levels in the charge and care consortia.}, journal = {Hum Mol Genet}, volume = {22}, year = {2013}, month = {2013 Aug 15}, pages = {3381-93}, abstract = {

Increased systemic levels of myeloperoxidase (MPO) are associated with the risk of coronary artery disease (CAD). To identify the genetic factors that are associated with circulating MPO levels, we carried out a genome-wide association study (GWAS) and a gene-centric analysis in subjects of European ancestry and African Americans (AAs). A locus on chromosome 1q31.1 containing the complement factor H (CFH) gene was strongly associated with serum MPO levels in 9305 subjects of European ancestry (lead SNP rs800292; P = 4.89 {\texttimes} 10(-41)) and in 1690 AA subjects (rs505102; P = 1.05 {\texttimes} 10(-8)). Gene-centric analyses in 8335 subjects of European ancestry additionally identified two rare MPO coding sequence variants that were associated with serum MPO levels (rs28730837, P = 5.21 {\texttimes} 10(-12); rs35897051, P = 3.32 {\texttimes} 10(-8)). A GWAS for plasma MPO levels in 9260 European ancestry subjects identified a chromosome 17q22 region near MPO that was significantly associated (lead SNP rs6503905; P = 2.94 {\texttimes} 10(-12)), but the CFH locus did not exhibit evidence of association with plasma MPO levels. Functional analyses revealed that rs800292 was associated with levels of complement proteins in serum. Variants at chromosome 17q22 also had pleiotropic cis effects on gene expression. In a case-control analysis of \~{}80 000 subjects from CARDIoGRAM, none of the identified single-nucleotide polymorphisms (SNPs) were associated with CAD. These results suggest that distinct genetic factors regulate serum and plasma MPO levels, which may have relevance for various acute and chronic inflammatory disorders. The clinical implications for CAD and a better understanding of the functional basis for the association of CFH and MPO variants with circulating MPO levels require further study.

}, keywords = {Adult, African Americans, Aged, Case-Control Studies, Complement Factor H, Coronary Artery Disease, European Continental Ancestry Group, Female, Gene Expression Regulation, Enzymologic, Genetic Association Studies, Genetic Variation, Genome-Wide Association Study, Genotype, Humans, Male, Middle Aged, Peroxidase, Polymorphism, Single Nucleotide, Young Adult}, issn = {1460-2083}, doi = {10.1093/hmg/ddt189}, author = {Reiner, Alexander P and Hartiala, Jaana and Zeller, Tanja and Bis, Joshua C and Dupuis, Jos{\'e}e and Fornage, Myriam and Baumert, Jens and Kleber, Marcus E and Wild, Philipp S and Baldus, Stephan and Bielinski, Suzette J and Fontes, Jo{\~a}o D and Illig, Thomas and Keating, Brendan J and Lange, Leslie A and Ojeda, Francisco and M{\"u}ller-Nurasyid, Martina and Munzel, Thomas F and Psaty, Bruce M and Rice, Kenneth and Rotter, Jerome I and Schnabel, Renate B and Tang, W H Wilson and Thorand, Barbara and Erdmann, Jeanette and Jacobs, David R and Wilson, James G and Koenig, Wolfgang and Tracy, Russell P and Blankenberg, Stefan and M{\"a}rz, Winfried and Gross, Myron D and Benjamin, Emelia J and Hazen, Stanley L and Allayee, Hooman} } @article {6070, title = {A genome-wide association study of depressive symptoms.}, journal = {Biol Psychiatry}, volume = {73}, year = {2013}, month = {2013 Apr 01}, pages = {667-78}, abstract = {

BACKGROUND: Depression is a heritable trait that exists on a continuum of varying severity and duration. Yet, the search for genetic variants associated with depression has had few successes. We exploit the entire continuum of depression to find common variants for depressive symptoms.

METHODS: In this genome-wide association study, we combined the results of 17 population-based studies assessing depressive symptoms with the Center for Epidemiological Studies Depression Scale. Replication of the independent top hits (p<1{\texttimes}10(-5)) was performed in five studies assessing depressive symptoms with other instruments. In addition, we performed a combined meta-analysis of all 22 discovery and replication studies.

RESULTS: The discovery sample comprised 34,549 individuals (mean age of 66.5) and no loci reached genome-wide significance (lowest p = 1.05{\texttimes}10(-7)). Seven independent single nucleotide polymorphisms were considered for replication. In the replication set (n = 16,709), we found suggestive association of one single nucleotide polymorphism with depressive symptoms (rs161645, 5q21, p = 9.19{\texttimes}10(-3)). This 5q21 region reached genome-wide significance (p = 4.78{\texttimes}10(-8)) in the overall meta-analysis combining discovery and replication studies (n = 51,258).

CONCLUSIONS: The results suggest that only a large sample comprising more than 50,000 subjects may be sufficiently powered to detect genes for depressive symptoms.

}, keywords = {Aged, Aged, 80 and over, Chromosomes, Human, Pair 5, Depression, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1873-2402}, doi = {10.1016/j.biopsych.2012.09.033}, author = {Hek, Karin and Demirkan, Ayse and Lahti, Jari and Terracciano, Antonio and Teumer, Alexander and Cornelis, Marilyn C and Amin, Najaf and Bakshis, Erin and Baumert, Jens and Ding, Jingzhong and Liu, Yongmei and Marciante, Kristin and Meirelles, Osorio and Nalls, Michael A and Sun, Yan V and Vogelzangs, Nicole and Yu, Lei and Bandinelli, Stefania and Benjamin, Emelia J and Bennett, David A and Boomsma, Dorret and Cannas, Alessandra and Coker, Laura H and de Geus, Eco and De Jager, Philip L and Diez-Roux, Ana V and Purcell, Shaun and Hu, Frank B and Rimma, Eric B and Hunter, David J and Jensen, Majken K and Curhan, Gary and Rice, Kenneth and Penman, Alan D and Rotter, Jerome I and Sotoodehnia, Nona and Emeny, Rebecca and Eriksson, Johan G and Evans, Denis A and Ferrucci, Luigi and Fornage, Myriam and Gudnason, Vilmundur and Hofman, Albert and Illig, Thomas and Kardia, Sharon and Kelly-Hayes, Margaret and Koenen, Karestan and Kraft, Peter and Kuningas, Maris and Massaro, Joseph M and Melzer, David and Mulas, Antonella and Mulder, Cornelis L and Murray, Anna and Oostra, Ben A and Palotie, Aarno and Penninx, Brenda and Petersmann, Astrid and Pilling, Luke C and Psaty, Bruce and Rawal, Rajesh and Reiman, Eric M and Schulz, Andrea and Shulman, Joshua M and Singleton, Andrew B and Smith, Albert V and Sutin, Angelina R and Uitterlinden, Andr{\'e} G and V{\"o}lzke, Henry and Widen, Elisabeth and Yaffe, Kristine and Zonderman, Alan B and Cucca, Francesco and Harris, Tamara and Ladwig, Karl-Heinz and Llewellyn, David J and R{\"a}ikk{\"o}nen, Katri and Tanaka, Toshiko and van Duijn, Cornelia M and Grabe, Hans J and Launer, Lenore J and Lunetta, Kathryn L and Mosley, Thomas H and Newman, Anne B and Tiemeier, Henning and Murabito, Joanne} } @article {6155, title = {Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease.}, journal = {Circulation}, volume = {128}, year = {2013}, month = {2013 Sep 17}, pages = {1310-24}, abstract = {

BACKGROUND: Estimates of the heritability of plasma fibrinogen concentration, an established predictor of cardiovascular disease, range from 34\% to 50\%. Genetic variants so far identified by genome-wide association studies explain only a small proportion (<2\%) of its variation.

METHODS AND RESULTS: We conducted a meta-analysis of 28 genome-wide association studies including >90 000 subjects of European ancestry, the first genome-wide association meta-analysis of fibrinogen levels in 7 studies in blacks totaling 8289 samples, and a genome-wide association study in Hispanics totaling 1366 samples. Evaluation for association of single-nucleotide polymorphisms with clinical outcomes included a total of 40 695 cases and 85 582 controls for coronary artery disease, 4752 cases and 24 030 controls for stroke, and 3208 cases and 46 167 controls for venous thromboembolism. Overall, we identified 24 genome-wide significant (P<5{\texttimes}10(-8)) independent signals in 23 loci, including 15 novel associations, together accounting for 3.7\% of plasma fibrinogen variation. Gene-set enrichment analysis highlighted key roles in fibrinogen regulation for the 3 structural fibrinogen genes and pathways related to inflammation, adipocytokines, and thyrotrophin-releasing hormone signaling. Whereas lead single-nucleotide polymorphisms in a few loci were significantly associated with coronary artery disease, the combined effect of all 24 fibrinogen-associated lead single-nucleotide polymorphisms was not significant for coronary artery disease, stroke, or venous thromboembolism.

CONCLUSIONS: We identify 23 robustly associated fibrinogen loci, 15 of which are new. Clinical outcome analysis of these loci does not support a causal relationship between circulating levels of fibrinogen and coronary artery disease, stroke, or venous thromboembolism.

}, keywords = {Adolescent, Adult, African Continental Ancestry Group, Aged, Aged, 80 and over, Cardiovascular Diseases, Coronary Artery Disease, European Continental Ancestry Group, Female, Fibrinogen, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Hispanic Americans, Humans, Male, Middle Aged, Myocardial Infarction, Polymorphism, Single Nucleotide, Risk Factors, Stroke, Venous Thromboembolism, Young Adult}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.113.002251}, author = {Sabater-Lleal, Maria and Huang, Jie and Chasman, Daniel and Naitza, Silvia and Dehghan, Abbas and Johnson, Andrew D and Teumer, Alexander and Reiner, Alex P and Folkersen, Lasse and Basu, Saonli and Rudnicka, Alicja R and Trompet, Stella and M{\"a}larstig, Anders and Baumert, Jens and Bis, Joshua C and Guo, Xiuqing and Hottenga, Jouke J and Shin, So-Youn and Lopez, Lorna M and Lahti, Jari and Tanaka, Toshiko and Yanek, Lisa R and Oudot-Mellakh, Tiphaine and Wilson, James F and Navarro, Pau and Huffman, Jennifer E and Zemunik, Tatijana and Redline, Susan and Mehra, Reena and Pulanic, Drazen and Rudan, Igor and Wright, Alan F and Kolcic, Ivana and Polasek, Ozren and Wild, Sarah H and Campbell, Harry and Curb, J David and Wallace, Robert and Liu, Simin and Eaton, Charles B and Becker, Diane M and Becker, Lewis C and Bandinelli, Stefania and R{\"a}ikk{\"o}nen, Katri and Widen, Elisabeth and Palotie, Aarno and Fornage, Myriam and Green, David and Gross, Myron and Davies, Gail and Harris, Sarah E and Liewald, David C and Starr, John M and Williams, Frances M K and Grant, Peter J and Spector, Timothy D and Strawbridge, Rona J and Silveira, Angela and Sennblad, Bengt and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Franco, Oscar H and Hofman, Albert and van Dongen, Jenny and Willemsen, Gonneke and Boomsma, Dorret I and Yao, Jie and Swords Jenny, Nancy and Haritunians, Talin and McKnight, Barbara and Lumley, Thomas and Taylor, Kent D and Rotter, Jerome I and Psaty, Bruce M and Peters, Annette and Gieger, Christian and Illig, Thomas and Grotevendt, Anne and Homuth, Georg and V{\"o}lzke, Henry and Kocher, Thomas and Goel, Anuj and Franzosi, Maria Grazia and Seedorf, Udo and Clarke, Robert and Steri, Maristella and Tarasov, Kirill V and Sanna, Serena and Schlessinger, David and Stott, David J and Sattar, Naveed and Buckley, Brendan M and Rumley, Ann and Lowe, Gordon D and McArdle, Wendy L and Chen, Ming-Huei and Tofler, Geoffrey H and Song, Jaejoon and Boerwinkle, Eric and Folsom, Aaron R and Rose, Lynda M and Franco-Cereceda, Anders and Teichert, Martina and Ikram, M Arfan and Mosley, Thomas H and Bevan, Steve and Dichgans, Martin and Rothwell, Peter M and Sudlow, Cathie L M and Hopewell, Jemma C and Chambers, John C and Saleheen, Danish and Kooner, Jaspal S and Danesh, John and Nelson, Christopher P and Erdmann, Jeanette and Reilly, Muredach P and Kathiresan, Sekar and Schunkert, Heribert and Morange, Pierre-Emmanuel and Ferrucci, Luigi and Eriksson, Johan G and Jacobs, David and Deary, Ian J and Soranzo, Nicole and Witteman, Jacqueline C M and de Geus, Eco J C and Tracy, Russell P and Hayward, Caroline and Koenig, Wolfgang and Cucca, Francesco and Jukema, J Wouter and Eriksson, Per and Seshadri, Sudha and Markus, Hugh S and Watkins, Hugh and Samani, Nilesh J and Wallaschofski, Henri and Smith, Nicholas L and Tregouet, David and Ridker, Paul M and Tang, Weihong and Strachan, David P and Hamsten, Anders and O{\textquoteright}Donnell, Christopher J} } @article {6368, title = {Gene-centric meta-analyses for central adiposity traits in up to 57 412 individuals of European descent confirm known loci and reveal several novel associations.}, journal = {Hum Mol Genet}, volume = {23}, year = {2014}, month = {2014 May 01}, pages = {2498-510}, abstract = {

Waist circumference (WC) and waist-to-hip ratio (WHR) are surrogate measures of central adiposity that are associated with adverse cardiovascular events, type 2 diabetes and cancer independent of body mass index (BMI). WC and WHR are highly heritable with multiple susceptibility loci identified to date. We assessed the association between SNPs and BMI-adjusted WC and WHR and unadjusted WC in up to 57 412 individuals of European descent from 22 cohorts collaborating with the NHLBI{\textquoteright}s Candidate Gene Association Resource (CARe) project. The study population consisted of women and men aged 20-80 years. Study participants were genotyped using the ITMAT/Broad/CARE array, which includes \~{}50 000 cosmopolitan tagged SNPs across \~{}2100 cardiovascular-related genes. Each trait was modeled as a function of age, study site and principal components to control for population stratification, and we conducted a fixed-effects meta-analysis. No new loci for WC were observed. For WHR analyses, three novel loci were significantly associated (P < 2.4 {\texttimes} 10(-6)). Previously unreported rs2811337-G near TMCC1 was associated with increased WHR (β {\textpm} SE, 0.048 {\textpm} 0.008, P = 7.7 {\texttimes} 10(-9)) as was rs7302703-G in HOXC10 (β = 0.044 {\textpm} 0.008, P = 2.9 {\texttimes} 10(-7)) and rs936108-C in PEMT (β = 0.035 {\textpm} 0.007, P = 1.9 {\texttimes} 10(-6)). Sex-stratified analyses revealed two additional novel signals among females only, rs12076073-A in SHC1 (β = 0.10 {\textpm} 0.02, P = 1.9 {\texttimes} 10(-6)) and rs1037575-A in ATBDB4 (β = 0.046 {\textpm} 0.01, P = 2.2 {\texttimes} 10(-6)), supporting an already established sexual dimorphism of central adiposity-related genetic variants. Functional analysis using ENCODE and eQTL databases revealed that several of these loci are in regulatory regions or regions with differential expression in adipose tissue.

}, keywords = {Adiposity, Adult, Aged, Aged, 80 and over, Body Mass Index, European Continental Ancestry Group, Female, Genome-Wide Association Study, Humans, Male, Middle Aged, Waist Circumference, Waist-Hip Ratio, Young Adult}, issn = {1460-2083}, doi = {10.1093/hmg/ddt626}, author = {Yoneyama, Sachiko and Guo, Yiran and Lanktree, Matthew B and Barnes, Michael R and Elbers, Clara C and Karczewski, Konrad J and Padmanabhan, Sandosh and Bauer, Florianne and Baumert, Jens and Beitelshees, Amber and Berenson, Gerald S and Boer, Jolanda M A and Burke, Gregory and Cade, Brian and Chen, Wei and Cooper-Dehoff, Rhonda M and Gaunt, Tom R and Gieger, Christian and Gong, Yan and Gorski, Mathias and Heard-Costa, Nancy and Johnson, Toby and Lamonte, Michael J and McDonough, Caitrin and Monda, Keri L and Onland-Moret, N Charlotte and Nelson, Christopher P and O{\textquoteright}Connell, Jeffrey R and Ordovas, Jose and Peter, Inga and Peters, Annette and Shaffer, Jonathan and Shen, Haiqinq and Smith, Erin and Speilotes, Liz and Thomas, Fridtjof and Thorand, Barbara and Monique Verschuren, W M and Anand, Sonia S and Dominiczak, Anna and Davidson, Karina W and Hegele, Robert A and Heid, Iris and Hofker, Marten H and Huggins, Gordon S and Illig, Thomas and Johnson, Julie A and Kirkland, Susan and K{\"o}nig, Wolfgang and Langaee, Taimour Y and McCaffery, Jeanne and Melander, Olle and Mitchell, Braxton D and Munroe, Patricia and Murray, Sarah S and Papanicolaou, George and Redline, Susan and Reilly, Muredach and Samani, Nilesh J and Schork, Nicholas J and van der Schouw, Yvonne T and Shimbo, Daichi and Shuldiner, Alan R and Tobin, Martin D and Wijmenga, Cisca and Yusuf, Salim and Hakonarson, Hakon and Lange, Leslie A and Demerath, Ellen W and Fox, Caroline S and North, Kari E and Reiner, Alex P and Keating, Brendan and Taylor, Kira C} } @article {6558, title = {Large multiethnic Candidate Gene Study for C-reactive protein levels: identification of a novel association at CD36 in African Americans.}, journal = {Hum Genet}, volume = {133}, year = {2014}, month = {2014 Aug}, pages = {985-95}, abstract = {

C-reactive protein (CRP) is a heritable biomarker of systemic inflammation and a predictor of cardiovascular disease (CVD). Large-scale genetic association studies for CRP have largely focused on individuals of European descent. We sought to uncover novel genetic variants for CRP in a multiethnic sample using the ITMAT Broad-CARe (IBC) array, a custom 50,000 SNP gene-centric array having dense coverage of over 2,000 candidate CVD genes. We performed analyses on 7,570 African Americans (AA) from the Candidate gene Association Resource (CARe) study and race-combined meta-analyses that included 29,939 additional individuals of European descent from CARe, the Women{\textquoteright}s Health Initiative (WHI) and KORA studies. We observed array-wide significance (p < 2.2 {\texttimes} 10(-6)) for four loci in AA, three of which have been reported previously in individuals of European descent (IL6R, p = 2.0 {\texttimes} 10(-6); CRP, p = 4.2 {\texttimes} 10(-71); APOE, p = 1.6 {\texttimes} 10(-6)). The fourth significant locus, CD36 (p = 1.6 {\texttimes} 10(-6)), was observed at a functional variant (rs3211938) that is extremely rare in individuals of European descent. We replicated the CD36 finding (p = 1.8 {\texttimes} 10(-5)) in an independent sample of 8,041 AA women from WHI; a meta-analysis combining the CARe and WHI AA results at rs3211938 reached genome-wide significance (p = 1.5 {\texttimes} 10(-10)). In the race-combined meta-analyses, 13 loci reached significance, including ten (CRP, TOMM40/APOE/APOC1, HNF1A, LEPR, GCKR, IL6R, IL1RN, NLRP3, HNF4A and BAZ1B/BCL7B) previously associated with CRP, and one (ARNTL) previously reported to be nominally associated with CRP. Two novel loci were also detected (RPS6KB1, p = 2.0 {\texttimes} 10(-6); CD36, p = 1.4 {\texttimes} 10(-6)). These results highlight both shared and unique genetic risk factors for CRP in AA compared to populations of European descent.

}, keywords = {Adult, African Americans, Aged, Biomarkers, C-Reactive Protein, Cardiovascular Diseases, CD36 Antigens, Female, Genetic Loci, Genetic Predisposition to Disease, Genetics, Population, Genome-Wide Association Study, Humans, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1432-1203}, doi = {10.1007/s00439-014-1439-z}, author = {Ellis, Jaclyn and Lange, Ethan M and Li, Jin and Dupuis, Jos{\'e}e and Baumert, Jens and Walston, Jeremy D and Keating, Brendan J and Durda, Peter and Fox, Ervin R and Palmer, Cameron D and Meng, Yan A and Young, Taylor and Farlow, Deborah N and Schnabel, Renate B and Marzi, Carola S and Larkin, Emma and Martin, Lisa W and Bis, Joshua C and Auer, Paul and Ramachandran, Vasan S and Gabriel, Stacey B and Willis, Monte S and Pankow, James S and Papanicolaou, George J and Rotter, Jerome I and Ballantyne, Christie M and Gross, Myron D and Lettre, Guillaume and Wilson, James G and Peters, Ulrike and Koenig, Wolfgang and Tracy, Russell P and Redline, Susan and Reiner, Alex P and Benjamin, Emelia J and Lange, Leslie A} } @article {6667, title = {No evidence for genome-wide interactions on plasma fibrinogen by smoking, alcohol consumption and body mass index: results from meta-analyses of 80,607 subjects.}, journal = {PLoS One}, volume = {9}, year = {2014}, month = {2014}, pages = {e111156}, abstract = {

Plasma fibrinogen is an acute phase protein playing an important role in the blood coagulation cascade having strong associations with smoking, alcohol consumption and body mass index (BMI). Genome-wide association studies (GWAS) have identified a variety of gene regions associated with elevated plasma fibrinogen concentrations. However, little is yet known about how associations between environmental factors and fibrinogen might be modified by genetic variation. Therefore, we conducted large-scale meta-analyses of genome-wide interaction studies to identify possible interactions of genetic variants and smoking status, alcohol consumption or BMI on fibrinogen concentration. The present study included 80,607 subjects of European ancestry from 22 studies. Genome-wide interaction analyses were performed separately in each study for about 2.6 million single nucleotide polymorphisms (SNPs) across the 22 autosomal chromosomes. For each SNP and risk factor, we performed a linear regression under an additive genetic model including an interaction term between SNP and risk factor. Interaction estimates were meta-analysed using a fixed-effects model. No genome-wide significant interaction with smoking status, alcohol consumption or BMI was observed in the meta-analyses. The most suggestive interaction was found for smoking and rs10519203, located in the LOC123688 region on chromosome 15, with a p value of 6.2 {\texttimes} 10(-8). This large genome-wide interaction study including 80,607 participants found no strong evidence of interaction between genetic variants and smoking status, alcohol consumption or BMI on fibrinogen concentrations. Further studies are needed to yield deeper insight in the interplay between environmental factors and gene variants on the regulation of fibrinogen concentrations.

}, keywords = {Alcohol Drinking, Body Mass Index, Fibrinogen, Gene-Environment Interaction, Genomics, Humans, Smoking}, issn = {1932-6203}, doi = {10.1371/journal.pone.0111156}, author = {Baumert, Jens and Huang, Jie and McKnight, Barbara and Sabater-Lleal, Maria and Steri, Maristella and Chu, Audrey Y and Trompet, Stella and Lopez, Lorna M and Fornage, Myriam and Teumer, Alexander and Tang, Weihong and Rudnicka, Alicja R and M{\"a}larstig, Anders and Hottenga, Jouke-Jan and Kavousi, Maryam and Lahti, Jari and Tanaka, Toshiko and Hayward, Caroline and Huffman, Jennifer E and Morange, Pierre-Emmanuel and Rose, Lynda M and Basu, Saonli and Rumley, Ann and Stott, David J and Buckley, Brendan M and de Craen, Anton J M and Sanna, Serena and Masala, Marco and Biffar, Reiner and Homuth, Georg and Silveira, Angela and Sennblad, Bengt and Goel, Anuj and Watkins, Hugh and M{\"u}ller-Nurasyid, Martina and R{\"u}ckerl, Regina and Taylor, Kent and Chen, Ming-Huei and de Geus, Eco J C and Hofman, Albert and Witteman, Jacqueline C M and de Maat, Moniek P M and Palotie, Aarno and Davies, Gail and Siscovick, David S and Kolcic, Ivana and Wild, Sarah H and Song, Jaejoon and McArdle, Wendy L and Ford, Ian and Sattar, Naveed and Schlessinger, David and Grotevendt, Anne and Franzosi, Maria Grazia and Illig, Thomas and Waldenberger, Melanie and Lumley, Thomas and Tofler, Geoffrey H and Willemsen, Gonneke and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and R{\"a}ikk{\"o}nen, Katri and Chasman, Daniel I and Folsom, Aaron R and Lowe, Gordon D and Westendorp, Rudi G J and Slagboom, P Eline and Cucca, Francesco and Wallaschofski, Henri and Strawbridge, Rona J and Seedorf, Udo and Koenig, Wolfgang and Bis, Joshua C and Mukamal, Kenneth J and van Dongen, Jenny and Widen, Elisabeth and Franco, Oscar H and Starr, John M and Liu, Kiang and Ferrucci, Luigi and Polasek, Ozren and Wilson, James F and Oudot-Mellakh, Tiphaine and Campbell, Harry and Navarro, Pau and Bandinelli, Stefania and Eriksson, Johan and Boomsma, Dorret I and Dehghan, Abbas and Clarke, Robert and Hamsten, Anders and Boerwinkle, Eric and Jukema, J Wouter and Naitza, Silvia and Ridker, Paul M and V{\"o}lzke, Henry and Deary, Ian J and Reiner, Alexander P and Tr{\'e}gou{\"e}t, David-Alexandre and O{\textquoteright}Donnell, Christopher J and Strachan, David P and Peters, Annette and Smith, Nicholas L} } @article {6568, title = {Mendelian randomization of blood lipids for coronary heart disease.}, journal = {Eur Heart J}, volume = {36}, year = {2015}, month = {2015 Mar 01}, pages = {539-50}, abstract = {

AIMS: To investigate the causal role of high-density lipoprotein cholesterol (HDL-C) and triglycerides in coronary heart disease (CHD) using multiple instrumental variables for Mendelian randomization.

METHODS AND RESULTS: We developed weighted allele scores based on single nucleotide polymorphisms (SNPs) with established associations with HDL-C, triglycerides, and low-density lipoprotein cholesterol (LDL-C). For each trait, we constructed two scores. The first was unrestricted, including all independent SNPs associated with the lipid trait identified from a prior meta-analysis (threshold P < 2 {\texttimes} 10(-6)); and the second a restricted score, filtered to remove any SNPs also associated with either of the other two lipid traits at P <= 0.01. Mendelian randomization meta-analyses were conducted in 17 studies including 62,199 participants and 12,099 CHD events. Both the unrestricted and restricted allele scores for LDL-C (42 and 19 SNPs, respectively) associated with CHD. For HDL-C, the unrestricted allele score (48 SNPs) was associated with CHD (OR: 0.53; 95\% CI: 0.40, 0.70), per 1 mmol/L higher HDL-C, but neither the restricted allele score (19 SNPs; OR: 0.91; 95\% CI: 0.42, 1.98) nor the unrestricted HDL-C allele score adjusted for triglycerides, LDL-C, or statin use (OR: 0.81; 95\% CI: 0.44, 1.46) showed a robust association. For triglycerides, the unrestricted allele score (67 SNPs) and the restricted allele score (27 SNPs) were both associated with CHD (OR: 1.62; 95\% CI: 1.24, 2.11 and 1.61; 95\% CI: 1.00, 2.59, respectively) per 1-log unit increment. However, the unrestricted triglyceride score adjusted for HDL-C, LDL-C, and statin use gave an OR for CHD of 1.01 (95\% CI: 0.59, 1.75).

CONCLUSION: The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible, remains less certain.

}, keywords = {Case-Control Studies, Cholesterol, HDL, Coronary Artery Disease, Female, Gene Frequency, Genotype, Genotyping Techniques, Humans, Male, Mendelian Randomization Analysis, Middle Aged, Polymorphism, Single Nucleotide, Risk Assessment, Triglycerides}, issn = {1522-9645}, doi = {10.1093/eurheartj/eht571}, author = {Holmes, Michael V and Asselbergs, Folkert W and Palmer, Tom M and Drenos, Fotios and Lanktree, Matthew B and Nelson, Christopher P and Dale, Caroline E and Padmanabhan, Sandosh and Finan, Chris and Swerdlow, Daniel I and Tragante, Vinicius and van Iperen, Erik P A and Sivapalaratnam, Suthesh and Shah, Sonia and Elbers, Clara C and Shah, Tina and Engmann, Jorgen and Giambartolomei, Claudia and White, Jon and Zabaneh, Delilah and Sofat, Reecha and McLachlan, Stela and Doevendans, Pieter A and Balmforth, Anthony J and Hall, Alistair S and North, Kari E and Almoguera, Berta and Hoogeveen, Ron C and Cushman, Mary and Fornage, Myriam and Patel, Sanjay R and Redline, Susan and Siscovick, David S and Tsai, Michael Y and Karczewski, Konrad J and Hofker, Marten H and Verschuren, W Monique and Bots, Michiel L and van der Schouw, Yvonne T and Melander, Olle and Dominiczak, Anna F and Morris, Richard and Ben-Shlomo, Yoav and Price, Jackie and Kumari, Meena and Baumert, Jens and Peters, Annette and Thorand, Barbara and Koenig, Wolfgang and Gaunt, Tom R and Humphries, Steve E and Clarke, Robert and Watkins, Hugh and Farrall, Martin and Wilson, James G and Rich, Stephen S and de Bakker, Paul I W and Lange, Leslie A and Davey Smith, George and Reiner, Alex P and Talmud, Philippa J and Kivimaki, Mika and Lawlor, Debbie A and Dudbridge, Frank and Samani, Nilesh J and Keating, Brendan J and Hingorani, Aroon D and Casas, Juan P} } @article {7566, title = {Discovery and replication of SNP-SNP interactions for quantitative lipid traits in over 60,000 individuals.}, journal = {BioData Min}, volume = {10}, year = {2017}, month = {2017}, pages = {25}, abstract = {

BACKGROUND: The genetic etiology of human lipid quantitative traits is not fully elucidated, and interactions between variants may play a role. We performed a gene-centric interaction study for four different lipid traits: low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglycerides (TG).

RESULTS: Our analysis consisted of a discovery phase using a merged dataset of five different cohorts (n~=~12,853 to n~=~16,849 depending on lipid phenotype) and a replication phase with ten independent cohorts totaling up to 36,938 additional samples. Filters are often applied before interaction testing to correct for the burden of testing all pairwise interactions. We used two different filters: 1. A filter that tested only single nucleotide polymorphisms (SNPs) with a main effect of p~<~0.001 in a previous association study. 2. A filter that only tested interactions identified by Biofilter 2.0. Pairwise models that reached an interaction significance level of p~<~0.001 in the discovery dataset were tested for replication. We identified thirteen SNP-SNP models that were significant in more than one replication cohort after accounting for multiple testing.

CONCLUSIONS: These results may reveal novel insights into the genetic etiology of lipid levels. Furthermore, we developed a pipeline to perform a computationally efficient interaction analysis with multi-cohort replication.

}, issn = {1756-0381}, doi = {10.1186/s13040-017-0145-5}, author = {Holzinger, Emily R and Verma, Shefali S and Moore, Carrie B and Hall, Molly and De, Rishika and Gilbert-Diamond, Diane and Lanktree, Matthew B and Pankratz, Nathan and Amuzu, Antoinette and Burt, Amber and Dale, Caroline and Dudek, Scott and Furlong, Clement E and Gaunt, Tom R and Kim, Daniel Seung and Riess, Helene and Sivapalaratnam, Suthesh and Tragante, Vinicius and van Iperen, Erik P A and Brautbar, Ariel and Carrell, David S and Crosslin, David R and Jarvik, Gail P and Kuivaniemi, Helena and Kullo, Iftikhar J and Larson, Eric B and Rasmussen-Torvik, Laura J and Tromp, Gerard and Baumert, Jens and Cruickshanks, Karen J and Farrall, Martin and Hingorani, Aroon D and Hovingh, G K and Kleber, Marcus E and Klein, Barbara E and Klein, Ronald and Koenig, Wolfgang and Lange, Leslie A and Mӓrz, Winfried and North, Kari E and Charlotte Onland-Moret, N and Reiner, Alex P and Talmud, Philippa J and van der Schouw, Yvonne T and Wilson, James G and Kivimaki, Mika and Kumari, Meena and Moore, Jason H and Drenos, Fotios and Asselbergs, Folkert W and Keating, Brendan J and Ritchie, Marylyn D} }