@article {1107, title = {NRXN3 is a novel locus for waist circumference: a genome-wide association study from the CHARGE Consortium.}, journal = {PLoS Genet}, volume = {5}, year = {2009}, month = {2009 Jun}, pages = {e1000539}, abstract = {

Central abdominal fat is a strong risk factor for diabetes and cardiovascular disease. To identify common variants influencing central abdominal fat, we conducted a two-stage genome-wide association analysis for waist circumference (WC). In total, three loci reached genome-wide significance. In stage 1, 31,373 individuals of Caucasian descent from eight cohort studies confirmed the role of FTO and MC4R and identified one novel locus associated with WC in the neurexin 3 gene [NRXN3 (rs10146997, p = 6.4x10(-7))]. The association with NRXN3 was confirmed in stage 2 by combining stage 1 results with those from 38,641 participants in the GIANT consortium (p = 0.009 in GIANT only, p = 5.3x10(-8) for combined analysis, n = 70,014). Mean WC increase per copy of the G allele was 0.0498 z-score units (0.65 cm). This SNP was also associated with body mass index (BMI) [p = 7.4x10(-6), 0.024 z-score units (0.10 kg/m(2)) per copy of the G allele] and the risk of obesity (odds ratio 1.13, 95\% CI 1.07-1.19; p = 3.2x10(-5) per copy of the G allele). The NRXN3 gene has been previously implicated in addiction and reward behavior, lending further evidence that common forms of obesity may be a central nervous system-mediated disorder. Our findings establish that common variants in NRXN3 are associated with WC, BMI, and obesity.

}, keywords = {Aged, Body Mass Index, Cohort Studies, European Continental Ancestry Group, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Middle Aged, Nerve Tissue Proteins, Obesity, Polymorphism, Single Nucleotide, Waist Circumference}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1000539}, author = {Heard-Costa, Nancy L and Zillikens, M Carola and Monda, Keri L and Johansson, Asa and Harris, Tamara B and Fu, Mao and Haritunians, Talin and Feitosa, Mary F and Aspelund, Thor and Eiriksdottir, Gudny and Garcia, Melissa and Launer, Lenore J and Smith, Albert V and Mitchell, Braxton D and McArdle, Patrick F and Shuldiner, Alan R and Bielinski, Suzette J and Boerwinkle, Eric and Brancati, Fred and Demerath, Ellen W and Pankow, James S and Arnold, Alice M and Chen, Yii-Der Ida and Glazer, Nicole L and McKnight, Barbara and Psaty, Bruce M and Rotter, Jerome I and Amin, Najaf and Campbell, Harry and Gyllensten, Ulf and Pattaro, Cristian and Pramstaller, Peter P and Rudan, Igor and Struchalin, Maksim and Vitart, Veronique and Gao, Xiaoyi and Kraja, Aldi and Province, Michael A and Zhang, Qunyuan and Atwood, Larry D and Dupuis, Jos{\'e}e and Hirschhorn, Joel N and Jaquish, Cashell E and O{\textquoteright}Donnell, Christopher J and Vasan, Ramachandran S and White, Charles C and Aulchenko, Yurii S and Estrada, Karol and Hofman, Albert and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Witteman, Jacqueline C M and Oostra, Ben A and Kaplan, Robert C and Gudnason, Vilmundur and O{\textquoteright}Connell, Jeffrey R and Borecki, Ingrid B and van Duijn, Cornelia M and Cupples, L Adrienne and Fox, Caroline S and North, Kari E} } @article {1192, title = {Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology.}, journal = {Proc Natl Acad Sci U S A}, volume = {107}, year = {2010}, month = {2010 May 18}, pages = {9293-8}, abstract = {

Telomeres are engaged in a host of cellular functions, and their length is regulated by multiple genes. Telomere shortening, in the course of somatic cell replication, ultimately leads to replicative senescence. In humans, rare mutations in genes that regulate telomere length have been identified in monogenic diseases such as dyskeratosis congenita and idiopathic pulmonary fibrosis, which are associated with shortened leukocyte telomere length (LTL) and increased risk for aplastic anemia. Shortened LTL is observed in a host of aging-related complex genetic diseases and is associated with diminished survival in the elderly. We report results of a genome-wide association study of LTL in a consortium of four observational studies (n = 3,417 participants with LTL and genome-wide genotyping). SNPs in the regions of the oligonucleotide/oligosaccharide-binding folds containing one gene (OBFC1; rs4387287; P = 3.9 x 10(-9)) and chemokine (C-X-C motif) receptor 4 gene (CXCR4; rs4452212; P = 2.9 x 10(-8)) were associated with LTL at a genome-wide significance level (P < 5 x 10(-8)). We attempted replication of the top SNPs at these loci through de novo genotyping of 1,893 additional individuals and in silico lookup in another observational study (n = 2,876), and we confirmed the association findings for OBFC1 but not CXCR4. In addition, we confirmed the telomerase RNA component (TERC) as a gene associated with LTL (P = 1.1 x 10(-5)). The identification of OBFC1 through genome-wide association as a locus for interindividual variation in LTL in the general population advances the understanding of telomere biology in humans and may provide insights into aging-related disorders linked to altered LTL dynamics.

}, keywords = {Cohort Studies, Genome-Wide Association Study, Genotype, Humans, Leukocytes, Polymorphism, Single Nucleotide, Receptors, CXCR4, Telomere, Telomere-Binding Proteins}, issn = {1091-6490}, doi = {10.1073/pnas.0911494107}, author = {Levy, Daniel and Neuhausen, Susan L and Hunt, Steven C and Kimura, Masayuki and Hwang, Shih-Jen and Chen, Wei and Bis, Joshua C and Fitzpatrick, Annette L and Smith, Erin and Johnson, Andrew D and Gardner, Jeffrey P and Srinivasan, Sathanur R and Schork, Nicholas and Rotter, Jerome I and Herbig, Utz and Psaty, Bruce M and Sastrasinh, Malinee and Murray, Sarah S and Vasan, Ramachandran S and Province, Michael A and Glazer, Nicole L and Lu, Xiaobin and Cao, Xiaojian and Kronmal, Richard and Mangino, Massimo and Soranzo, Nicole and Spector, Tim D and Berenson, Gerald S and Aviv, Abraham} } @article {1234, title = {Hundreds of variants clustered in genomic loci and biological pathways affect human height.}, journal = {Nature}, volume = {467}, year = {2010}, month = {2010 Oct 14}, pages = {832-8}, abstract = {

Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10\% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16\% of phenotypic variation (approximately 20\% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

}, keywords = {Body Height, Chromosomes, Human, Pair 3, Genetic Loci, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Metabolic Networks and Pathways, Multifactorial Inheritance, Phenotype, Polymorphism, Single Nucleotide}, issn = {1476-4687}, doi = {10.1038/nature09410}, author = {Lango Allen, Hana and Estrada, Karol and Lettre, Guillaume and Berndt, Sonja I and Weedon, Michael N and Rivadeneira, Fernando and Willer, Cristen J and Jackson, Anne U and Vedantam, Sailaja and Raychaudhuri, Soumya and Ferreira, Teresa and Wood, Andrew R and Weyant, Robert J and Segr{\`e}, Ayellet V and Speliotes, Elizabeth K and Wheeler, Eleanor and Soranzo, Nicole and Park, Ju-Hyun and Yang, Jian and Gudbjartsson, Daniel and Heard-Costa, Nancy L and Randall, Joshua C and Qi, Lu and Vernon Smith, Albert and M{\"a}gi, Reedik and Pastinen, Tomi and Liang, Liming and Heid, Iris M and Luan, Jian{\textquoteright}an and Thorleifsson, Gudmar and Winkler, Thomas W and Goddard, Michael E and Sin Lo, Ken and Palmer, Cameron and Workalemahu, Tsegaselassie and Aulchenko, Yurii S and Johansson, Asa and Zillikens, M Carola and Feitosa, Mary F and Esko, T{\~o}nu and Johnson, Toby and Ketkar, Shamika and Kraft, Peter and Mangino, Massimo and Prokopenko, Inga and Absher, Devin and Albrecht, Eva and Ernst, Florian and Glazer, Nicole L and Hayward, Caroline and Hottenga, Jouke-Jan and Jacobs, Kevin B and Knowles, Joshua W and Kutalik, Zolt{\'a}n and Monda, Keri L and Polasek, Ozren and Preuss, Michael and Rayner, Nigel W and Robertson, Neil R and Steinthorsdottir, Valgerdur and Tyrer, Jonathan P and Voight, Benjamin F and Wiklund, Fredrik and Xu, Jianfeng and Zhao, Jing Hua and Nyholt, Dale R and Pellikka, Niina and Perola, Markus and Perry, John R B and Surakka, Ida and Tammesoo, Mari-Liis and Altmaier, Elizabeth L and Amin, Najaf and Aspelund, Thor and Bhangale, Tushar and Boucher, Gabrielle and Chasman, Daniel I and Chen, Constance and Coin, Lachlan and Cooper, Matthew N and Dixon, Anna L and Gibson, Quince and Grundberg, Elin and Hao, Ke and Juhani Junttila, M and Kaplan, Lee M and Kettunen, Johannes and K{\"o}nig, Inke R and Kwan, Tony and Lawrence, Robert W and Levinson, Douglas F and Lorentzon, Mattias and McKnight, Barbara and Morris, Andrew P and M{\"u}ller, Martina and Suh Ngwa, Julius and Purcell, Shaun and Rafelt, Suzanne and Salem, Rany M and Salvi, Erika and Sanna, Serena and Shi, Jianxin and Sovio, Ulla and Thompson, John R and Turchin, Michael C and Vandenput, Liesbeth and Verlaan, Dominique J and Vitart, Veronique and White, Charles C and Ziegler, Andreas and Almgren, Peter and Balmforth, Anthony J and Campbell, Harry and Citterio, Lorena and De Grandi, Alessandro and Dominiczak, Anna and Duan, Jubao and Elliott, Paul and Elosua, Roberto and Eriksson, Johan G and Freimer, Nelson B and Geus, Eco J C and Glorioso, Nicola and Haiqing, Shen and Hartikainen, Anna-Liisa and Havulinna, Aki S and Hicks, Andrew A and Hui, Jennie and Igl, Wilmar and Illig, Thomas and Jula, Antti and Kajantie, Eero and Kilpel{\"a}inen, Tuomas O and Koiranen, Markku and Kolcic, Ivana and Koskinen, Seppo and Kovacs, Peter and Laitinen, Jaana and Liu, Jianjun and Lokki, Marja-Liisa and Marusic, Ana and Maschio, Andrea and Meitinger, Thomas and Mulas, Antonella and Par{\'e}, Guillaume and Parker, Alex N and Peden, John F and Petersmann, Astrid and Pichler, Irene and Pietil{\"a}inen, Kirsi H and Pouta, Anneli and Ridderstr{\r a}le, Martin and Rotter, Jerome I and Sambrook, Jennifer G and Sanders, Alan R and Schmidt, Carsten Oliver and Sinisalo, Juha and Smit, Jan H and Stringham, Heather M and Bragi Walters, G and Widen, Elisabeth and Wild, Sarah H and Willemsen, Gonneke and Zagato, Laura and Zgaga, Lina and Zitting, Paavo and Alavere, Helene and Farrall, Martin and McArdle, Wendy L and Nelis, Mari and Peters, Marjolein J and Ripatti, Samuli and van Meurs, Joyce B J and Aben, Katja K and Ardlie, Kristin G and Beckmann, Jacques S and Beilby, John P and Bergman, Richard N and Bergmann, Sven and Collins, Francis S and Cusi, Daniele and den Heijer, Martin and Eiriksdottir, Gudny and Gejman, Pablo V and Hall, Alistair S and Hamsten, Anders and Huikuri, Heikki V and Iribarren, Carlos and K{\"a}h{\"o}nen, Mika and Kaprio, Jaakko and Kathiresan, Sekar and Kiemeney, Lambertus and Kocher, Thomas and Launer, Lenore J and Lehtim{\"a}ki, Terho and Melander, Olle and Mosley, Tom H and Musk, Arthur W and Nieminen, Markku S and O{\textquoteright}Donnell, Christopher J and Ohlsson, Claes and Oostra, Ben and Palmer, Lyle J and Raitakari, Olli and Ridker, Paul M and Rioux, John D and Rissanen, Aila and Rivolta, Carlo and Schunkert, Heribert and Shuldiner, Alan R and Siscovick, David S and Stumvoll, Michael and T{\"o}njes, Anke and Tuomilehto, Jaakko and van Ommen, Gert-Jan and Viikari, Jorma and Heath, Andrew C and Martin, Nicholas G and Montgomery, Grant W and Province, Michael A and Kayser, Manfred and Arnold, Alice M and Atwood, Larry D and Boerwinkle, Eric and Chanock, Stephen J and Deloukas, Panos and Gieger, Christian and Gr{\"o}nberg, Henrik and Hall, Per and Hattersley, Andrew T and Hengstenberg, Christian and Hoffman, Wolfgang and Lathrop, G Mark and Salomaa, Veikko and Schreiber, Stefan and Uda, Manuela and Waterworth, Dawn and Wright, Alan F and Assimes, Themistocles L and Barroso, In{\^e}s and Hofman, Albert and Mohlke, Karen L and Boomsma, Dorret I and Caulfield, Mark J and Cupples, L Adrienne and Erdmann, Jeanette and Fox, Caroline S and Gudnason, Vilmundur and Gyllensten, Ulf and Harris, Tamara B and Hayes, Richard B and Jarvelin, Marjo-Riitta and Mooser, Vincent and Munroe, Patricia B and Ouwehand, Willem H and Penninx, Brenda W and Pramstaller, Peter P and Quertermous, Thomas and Rudan, Igor and Samani, Nilesh J and Spector, Timothy D and V{\"o}lzke, Henry and Watkins, Hugh and Wilson, James F and Groop, Leif C and Haritunians, Talin and Hu, Frank B and Kaplan, Robert C and Metspalu, Andres and North, Kari E and Schlessinger, David and Wareham, Nicholas J and Hunter, David J and O{\textquoteright}Connell, Jeffrey R and Strachan, David P and Wichmann, H-Erich and Borecki, Ingrid B and van Duijn, Cornelia M and Schadt, Eric E and Thorsteinsdottir, Unnur and Peltonen, Leena and Uitterlinden, Andr{\'e} G and Visscher, Peter M and Chatterjee, Nilanjan and Loos, Ruth J F and Boehnke, Michael and McCarthy, Mark I and Ingelsson, Erik and Lindgren, Cecilia M and Abecasis, Goncalo R and Stefansson, Kari and Frayling, Timothy M and Hirschhorn, Joel N} } @article {1160, title = {New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Feb}, pages = {105-16}, abstract = {

Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.

}, keywords = {Adolescent, Adult, Alleles, Blood Glucose, Child, Databases, Genetic, Diabetes Mellitus, Type 2, DNA Copy Number Variations, Fasting, Gene Expression Regulation, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Homeostasis, Humans, Meta-Analysis as Topic, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable, Reproducibility of Results}, issn = {1546-1718}, doi = {10.1038/ng.520}, author = {Dupuis, Jos{\'e}e and Langenberg, Claudia and Prokopenko, Inga and Saxena, Richa and Soranzo, Nicole and Jackson, Anne U and Wheeler, Eleanor and Glazer, Nicole L and Bouatia-Naji, Nabila and Gloyn, Anna L and Lindgren, Cecilia M and M{\"a}gi, Reedik and Morris, Andrew P and Randall, Joshua and Johnson, Toby and Elliott, Paul and Rybin, Denis and Thorleifsson, Gudmar and Steinthorsdottir, Valgerdur and Henneman, Peter and Grallert, Harald and Dehghan, Abbas and Hottenga, Jouke Jan and Franklin, Christopher S and Navarro, Pau and Song, Kijoung and Goel, Anuj and Perry, John R B and Egan, Josephine M and Lajunen, Taina and Grarup, Niels and Spars{\o}, Thomas and Doney, Alex and Voight, Benjamin F and Stringham, Heather M and Li, Man and Kanoni, Stavroula and Shrader, Peter and Cavalcanti-Proen{\c c}a, Christine and Kumari, Meena and Qi, Lu and Timpson, Nicholas J and Gieger, Christian and Zabena, Carina and Rocheleau, Ghislain and Ingelsson, Erik and An, Ping and O{\textquoteright}Connell, Jeffrey and Luan, Jian{\textquoteright}an and Elliott, Amanda and McCarroll, Steven A and Payne, Felicity and Roccasecca, Rosa Maria and Pattou, Fran{\c c}ois and Sethupathy, Praveen and Ardlie, Kristin and Ariyurek, Yavuz and Balkau, Beverley and Barter, Philip and Beilby, John P and Ben-Shlomo, Yoav and Benediktsson, Rafn and Bennett, Amanda J and Bergmann, Sven and Bochud, Murielle and Boerwinkle, Eric and Bonnefond, Am{\'e}lie and Bonnycastle, Lori L and Borch-Johnsen, Knut and B{\"o}ttcher, Yvonne and Brunner, Eric and Bumpstead, Suzannah J and Charpentier, Guillaume and Chen, Yii-Der Ida and Chines, Peter and Clarke, Robert and Coin, Lachlan J M and Cooper, Matthew N and Cornelis, Marilyn and Crawford, Gabe and Crisponi, Laura and Day, Ian N M and de Geus, Eco J C and Delplanque, Jerome and Dina, Christian and Erdos, Michael R and Fedson, Annette C and Fischer-Rosinsky, Antje and Forouhi, Nita G and Fox, Caroline S and Frants, Rune and Franzosi, Maria Grazia and Galan, Pilar and Goodarzi, Mark O and Graessler, J{\"u}rgen and Groves, Christopher J and Grundy, Scott and Gwilliam, Rhian and Gyllensten, Ulf and Hadjadj, Samy and Hallmans, G{\"o}ran and Hammond, Naomi and Han, Xijing and Hartikainen, Anna-Liisa and Hassanali, Neelam and Hayward, Caroline and Heath, Simon C and Hercberg, Serge and Herder, Christian and Hicks, Andrew A and Hillman, David R and Hingorani, Aroon D and Hofman, Albert and Hui, Jennie and Hung, Joe and Isomaa, Bo and Johnson, Paul R V and J{\o}rgensen, Torben and Jula, Antti and Kaakinen, Marika and Kaprio, Jaakko and Kesaniemi, Y Antero and Kivimaki, Mika and Knight, Beatrice and Koskinen, Seppo and Kovacs, Peter and Kyvik, Kirsten Ohm and Lathrop, G Mark and Lawlor, Debbie A and Le Bacquer, Olivier and Lecoeur, C{\'e}cile and Li, Yun and Lyssenko, Valeriya and Mahley, Robert and Mangino, Massimo and Manning, Alisa K and Mart{\'\i}nez-Larrad, Mar{\'\i}a Teresa and McAteer, Jarred B and McCulloch, Laura J and McPherson, Ruth and Meisinger, Christa and Melzer, David and Meyre, David and Mitchell, Braxton D and Morken, Mario A and Mukherjee, Sutapa and Naitza, Silvia and Narisu, Narisu and Neville, Matthew J and Oostra, Ben A and Orr{\`u}, Marco and Pakyz, Ruth and Palmer, Colin N A and Paolisso, Giuseppe and Pattaro, Cristian and Pearson, Daniel and Peden, John F and Pedersen, Nancy L and Perola, Markus and Pfeiffer, Andreas F H and Pichler, Irene and Polasek, Ozren and Posthuma, Danielle and Potter, Simon C and Pouta, Anneli and Province, Michael A and Psaty, Bruce M and Rathmann, Wolfgang and Rayner, Nigel W and Rice, Kenneth and Ripatti, Samuli and Rivadeneira, Fernando and Roden, Michael and Rolandsson, Olov and Sandbaek, Annelli and Sandhu, Manjinder and Sanna, Serena and Sayer, Avan Aihie and Scheet, Paul and Scott, Laura J and Seedorf, Udo and Sharp, Stephen J and Shields, Beverley and Sigurethsson, Gunnar and Sijbrands, Eric J G and Silveira, Angela and Simpson, Laila and Singleton, Andrew and Smith, Nicholas L and Sovio, Ulla and Swift, Amy and Syddall, Holly and Syv{\"a}nen, Ann-Christine and Tanaka, Toshiko and Thorand, Barbara and Tichet, Jean and T{\"o}njes, Anke and Tuomi, Tiinamaija and Uitterlinden, Andr{\'e} G and van Dijk, Ko Willems and van Hoek, Mandy and Varma, Dhiraj and Visvikis-Siest, Sophie and Vitart, Veronique and Vogelzangs, Nicole and Waeber, G{\'e}rard and Wagner, Peter J and Walley, Andrew and Walters, G Bragi and Ward, Kim L and Watkins, Hugh and Weedon, Michael N and Wild, Sarah H and Willemsen, Gonneke and Witteman, Jaqueline C M and Yarnell, John W G and Zeggini, Eleftheria and Zelenika, Diana and Zethelius, Bj{\"o}rn and Zhai, Guangju and Zhao, Jing Hua and Zillikens, M Carola and Borecki, Ingrid B and Loos, Ruth J F and Meneton, Pierre and Magnusson, Patrik K E and Nathan, David M and Williams, Gordon H and Hattersley, Andrew T and Silander, Kaisa and Salomaa, Veikko and Smith, George Davey and Bornstein, Stefan R and Schwarz, Peter and Spranger, Joachim and Karpe, Fredrik and Shuldiner, Alan R and Cooper, Cyrus and Dedoussis, George V and Serrano-R{\'\i}os, Manuel and Morris, Andrew D and Lind, Lars and Palmer, Lyle J and Hu, Frank B and Franks, Paul W and Ebrahim, Shah and Marmot, Michael and Kao, W H Linda and Pankow, James S and Sampson, Michael J and Kuusisto, Johanna and Laakso, Markku and Hansen, Torben and Pedersen, Oluf and Pramstaller, Peter Paul and Wichmann, H Erich and Illig, Thomas and Rudan, Igor and Wright, Alan F and Stumvoll, Michael and Campbell, Harry and Wilson, James F and Bergman, Richard N and Buchanan, Thomas A and Collins, Francis S and Mohlke, Karen L and Tuomilehto, Jaakko and Valle, Timo T and Altshuler, David and Rotter, Jerome I and Siscovick, David S and Penninx, Brenda W J H and Boomsma, Dorret I and Deloukas, Panos and Spector, Timothy D and Frayling, Timothy M and Ferrucci, Luigi and Kong, Augustine and Thorsteinsdottir, Unnur and Stefansson, Kari and van Duijn, Cornelia M and Aulchenko, Yurii S and Cao, Antonio and Scuteri, Angelo and Schlessinger, David and Uda, Manuela and Ruokonen, Aimo and Jarvelin, Marjo-Riitta and Waterworth, Dawn M and Vollenweider, Peter and Peltonen, Leena and Mooser, Vincent and Abecasis, Goncalo R and Wareham, Nicholas J and Sladek, Robert and Froguel, Philippe and Watanabe, Richard M and Meigs, James B and Groop, Leif and Boehnke, Michael and McCarthy, Mark I and Florez, Jose C and Barroso, In{\^e}s} } @article {1274, title = {A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium.}, journal = {Diabetes}, volume = {60}, year = {2011}, month = {2011 Apr}, pages = {1329-39}, abstract = {

OBJECTIVE The metabolic syndrome (MetS) is defined as concomitant disorders of lipid and glucose metabolism, central obesity, and high blood pressure, with an increased risk of type 2 diabetes and cardiovascular disease. This study tests whether common genetic variants with pleiotropic effects account for some of the correlated architecture among five metabolic phenotypes that define MetS. RESEARCH DESIGN AND METHODS Seven studies of the STAMPEED consortium, comprising 22,161 participants of European ancestry, underwent genome-wide association analyses of metabolic traits using a panel of \~{}2.5 million imputed single nucleotide polymorphisms (SNPs). Phenotypes were defined by the National Cholesterol Education Program (NCEP) criteria for MetS in pairwise combinations. Individuals exceeding the NCEP thresholds for both traits of a pair were considered affected. RESULTS Twenty-nine common variants were associated with MetS or a pair of traits. Variants in the genes LPL, CETP, APOA5 (and its cluster), GCKR (and its cluster), LIPC, TRIB1, LOC100128354/MTNR1B, ABCB11, and LOC100129150 were further tested for their association with individual qualitative and quantitative traits. None of the 16 top SNPs (one per gene) associated simultaneously with more than two individual traits. Of them 11 variants showed nominal associations with MetS per se. The effects of 16 top SNPs on the quantitative traits were relatively small, together explaining from \~{}9\% of the variance in triglycerides, 5.8\% of high-density lipoprotein cholesterol, 3.6\% of fasting glucose, and 1.4\% of systolic blood pressure. CONCLUSIONS Qualitative and quantitative pleiotropic tests on pairs of traits indicate that a small portion of the covariation in these traits can be explained by the reported common genetic variants.

}, keywords = {Adult, Aged, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Male, Meta-Analysis as Topic, Metabolic Syndrome, Middle Aged, Phenotype, Polymorphism, Single Nucleotide}, issn = {1939-327X}, doi = {10.2337/db10-1011}, author = {Kraja, Aldi T and Vaidya, Dhananjay and Pankow, James S and Goodarzi, Mark O and Assimes, Themistocles L and Kullo, Iftikhar J and Sovio, Ulla and Mathias, Rasika A and Sun, Yan V and Franceschini, Nora and Absher, Devin and Li, Guo and Zhang, Qunyuan and Feitosa, Mary F and Glazer, Nicole L and Haritunians, Talin and Hartikainen, Anna-Liisa and Knowles, Joshua W and North, Kari E and Iribarren, Carlos and Kral, Brian and Yanek, Lisa and O{\textquoteright}Reilly, Paul F and McCarthy, Mark I and Jaquish, Cashell and Couper, David J and Chakravarti, Aravinda and Psaty, Bruce M and Becker, Lewis C and Province, Michael A and Boerwinkle, Eric and Quertermous, Thomas and Palotie, Leena and Jarvelin, Marjo-Riitta and Becker, Diane M and Kardia, Sharon L R and Rotter, Jerome I and Chen, Yii-Der Ida and Borecki, Ingrid B} } @article {1258, title = {Meta-analysis of gene-environment interaction: joint estimation of SNP and SNP {\texttimes} environment regression coefficients.}, journal = {Genet Epidemiol}, volume = {35}, year = {2011}, month = {2011 Jan}, pages = {11-8}, abstract = {

INTRODUCTION: Genetic discoveries are validated through the meta-analysis of genome-wide association scans in large international consortia. Because environmental variables may interact with genetic factors, investigation of differing genetic effects for distinct levels of an environmental exposure in these large consortia may yield additional susceptibility loci undetected by main effects analysis. We describe a method of joint meta-analysis (JMA) of SNP and SNP by Environment (SNP {\texttimes} E) regression coefficients for use in gene-environment interaction studies.

METHODS: In testing SNP {\texttimes} E interactions, one approach uses a two degree of freedom test to identify genetic variants that influence the trait of interest. This approach detects both main and interaction effects between the trait and the SNP. We propose a method to jointly meta-analyze the SNP and SNP {\texttimes} E coefficients using multivariate generalized least squares. This approach provides confidence intervals of the two estimates, a joint significance test for SNP and SNP {\texttimes} E terms, and a test of homogeneity across samples.

RESULTS: We present a simulation study comparing this method to four other methods of meta-analysis and demonstrate that the JMA performs better than the others when both main and interaction effects are present. Additionally, we implemented our methods in a meta-analysis of the association between SNPs from the type 2 diabetes-associated gene PPARG and log-transformed fasting insulin levels and interaction by body mass index in a combined sample of 19,466 individuals from five cohorts.

}, keywords = {Adult, Aged, Body Mass Index, Confidence Intervals, Diabetes Mellitus, Type 2, Environment, Fasting, Female, Genome, Human, Genome-Wide Association Study, Genotype, Humans, Insulin, Least-Squares Analysis, Male, Mathematical Computing, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide, PPAR gamma}, issn = {1098-2272}, doi = {10.1002/gepi.20546}, author = {Manning, Alisa K and LaValley, Michael and Liu, Ching-Ti and Rice, Kenneth and An, Ping and Liu, Yongmei and Miljkovic, Iva and Rasmussen-Torvik, Laura and Harris, Tamara B and Province, Michael A and Borecki, Ingrid B and Florez, Jose C and Meigs, James B and Cupples, L Adrienne and Dupuis, Jos{\'e}e} } @article {6175, title = {FTO genotype is associated with phenotypic variability of body mass index.}, journal = {Nature}, volume = {490}, year = {2012}, month = {2012 Oct 11}, pages = {267-72}, abstract = {

There is evidence across several species for genetic control of phenotypic variation of complex traits, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using \~{}170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7\%, corresponding to a difference of \~{}0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI, possibly mediated by DNA methylation. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.

}, keywords = {Alpha-Ketoglutarate-Dependent Dioxygenase FTO, Body Height, Body Mass Index, Co-Repressor Proteins, Female, Genetic Variation, Genome-Wide Association Study, Humans, Male, Nerve Tissue Proteins, Phenotype, Polymorphism, Single Nucleotide, Proteins, Repressor Proteins}, issn = {1476-4687}, doi = {10.1038/nature11401}, author = {Yang, Jian and Loos, Ruth J F and Powell, Joseph E and Medland, Sarah E and Speliotes, Elizabeth K and Chasman, Daniel I and Rose, Lynda M and Thorleifsson, Gudmar and Steinthorsdottir, Valgerdur and M{\"a}gi, Reedik and Waite, Lindsay and Smith, Albert Vernon and Yerges-Armstrong, Laura M and Monda, Keri L and Hadley, David and Mahajan, Anubha and Li, Guo and Kapur, Karen and Vitart, Veronique and Huffman, Jennifer E and Wang, Sophie R and Palmer, Cameron and Esko, T{\~o}nu and Fischer, Krista and Zhao, Jing Hua and Demirkan, Ayse and Isaacs, Aaron and Feitosa, Mary F and Luan, Jian{\textquoteright}an and Heard-Costa, Nancy L and White, Charles and Jackson, Anne U and Preuss, Michael and Ziegler, Andreas and Eriksson, Joel and Kutalik, Zolt{\'a}n and Frau, Francesca and Nolte, Ilja M and van Vliet-Ostaptchouk, Jana V and Hottenga, Jouke-Jan and Jacobs, Kevin B and Verweij, Niek and Goel, Anuj and Medina-G{\'o}mez, Carolina and Estrada, Karol and Bragg-Gresham, Jennifer Lynn and Sanna, Serena and Sidore, Carlo and Tyrer, Jonathan and Teumer, Alexander and Prokopenko, Inga and Mangino, Massimo and Lindgren, Cecilia M and Assimes, Themistocles L and Shuldiner, Alan R and Hui, Jennie and Beilby, John P and McArdle, Wendy L and Hall, Per and Haritunians, Talin and Zgaga, Lina and Kolcic, Ivana and Polasek, Ozren and Zemunik, Tatijana and Oostra, Ben A and Junttila, M Juhani and Gr{\"o}nberg, Henrik and Schreiber, Stefan and Peters, Annette and Hicks, Andrew A and Stephens, Jonathan and Foad, Nicola S and Laitinen, Jaana and Pouta, Anneli and Kaakinen, Marika and Willemsen, Gonneke and Vink, Jacqueline M and Wild, Sarah H and Navis, Gerjan and Asselbergs, Folkert W and Homuth, Georg and John, Ulrich and Iribarren, Carlos and Harris, Tamara and Launer, Lenore and Gudnason, Vilmundur and O{\textquoteright}Connell, Jeffrey R and Boerwinkle, Eric and Cadby, Gemma and Palmer, Lyle J and James, Alan L and Musk, Arthur W and Ingelsson, Erik and Psaty, Bruce M and Beckmann, Jacques S and Waeber, G{\'e}rard and Vollenweider, Peter and Hayward, Caroline and Wright, Alan F and Rudan, Igor and Groop, Leif C and Metspalu, Andres and Khaw, Kay Tee and van Duijn, Cornelia M and Borecki, Ingrid B and Province, Michael A and Wareham, Nicholas J and Tardif, Jean-Claude and Huikuri, Heikki V and Cupples, L Adrienne and Atwood, Larry D and Fox, Caroline S and Boehnke, Michael and Collins, Francis S and Mohlke, Karen L and Erdmann, Jeanette and Schunkert, Heribert and Hengstenberg, Christian and Stark, Klaus and Lorentzon, Mattias and Ohlsson, Claes and Cusi, Daniele and Staessen, Jan A and van der Klauw, Melanie M and Pramstaller, Peter P and Kathiresan, Sekar and Jolley, Jennifer D and Ripatti, Samuli and Jarvelin, Marjo-Riitta and de Geus, Eco J C and Boomsma, Dorret I and Penninx, Brenda and Wilson, James F and Campbell, Harry and Chanock, Stephen J and van der Harst, Pim and Hamsten, Anders and Watkins, Hugh and Hofman, Albert and Witteman, Jacqueline C and Zillikens, M Carola and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Zillikens, M Carola and Kiemeney, Lambertus A and Vermeulen, Sita H and Abecasis, Goncalo R and Schlessinger, David and Schipf, Sabine and Stumvoll, Michael and T{\"o}njes, Anke and Spector, Tim D and North, Kari E and Lettre, Guillaume and McCarthy, Mark I and Berndt, Sonja I and Heath, Andrew C and Madden, Pamela A F and Nyholt, Dale R and Montgomery, Grant W and Martin, Nicholas G and McKnight, Barbara and Strachan, David P and Hill, William G and Snieder, Harold and Ridker, Paul M and Thorsteinsdottir, Unnur and Stefansson, Kari and Frayling, Timothy M and Hirschhorn, Joel N and Goddard, Michael E and Visscher, Peter M} } @article {6092, title = {Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction.}, journal = {Am J Respir Crit Care Med}, volume = {186}, year = {2012}, month = {2012 Oct 01}, pages = {622-32}, abstract = {

RATIONALE: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known.

OBJECTIVES: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases.

METHODS: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations.

MEASUREMENTS AND MAIN RESULTS: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis.

CONCLUSIONS: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.

}, keywords = {Aged, Female, Forced Expiratory Volume, Genome-Wide Association Study, Humans, Male, Middle Aged, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Pulmonary Disease, Chronic Obstructive, Receptors, Nicotinic, Receptors, Serotonin, 5-HT4, Smoking, Vital Capacity}, issn = {1535-4970}, doi = {10.1164/rccm.201202-0366OC}, author = {Wilk, Jemma B and Shrine, Nick R G and Loehr, Laura R and Zhao, Jing Hua and Manichaikul, Ani and Lopez, Lorna M and Smith, Albert Vernon and Heckbert, Susan R and Smolonska, Joanna and Tang, Wenbo and Loth, Daan W and Curjuric, Ivan and Hui, Jennie and Cho, Michael H and Latourelle, Jeanne C and Henry, Amanda P and Aldrich, Melinda and Bakke, Per and Beaty, Terri H and Bentley, Amy R and Borecki, Ingrid B and Brusselle, Guy G and Burkart, Kristin M and Chen, Ting-Hsu and Couper, David and Crapo, James D and Davies, Gail and Dupuis, Jos{\'e}e and Franceschini, Nora and Gulsvik, Amund and Hancock, Dana B and Harris, Tamara B and Hofman, Albert and Imboden, Medea and James, Alan L and Khaw, Kay-Tee and Lahousse, Lies and Launer, Lenore J and Litonjua, Augusto and Liu, Yongmei and Lohman, Kurt K and Lomas, David A and Lumley, Thomas and Marciante, Kristin D and McArdle, Wendy L and Meibohm, Bernd and Morrison, Alanna C and Musk, Arthur W and Myers, Richard H and North, Kari E and Postma, Dirkje S and Psaty, Bruce M and Rich, Stephen S and Rivadeneira, Fernando and Rochat, Thierry and Rotter, Jerome I and Soler Artigas, Maria and Starr, John M and Uitterlinden, Andr{\'e} G and Wareham, Nicholas J and Wijmenga, Cisca and Zanen, Pieter and Province, Michael A and Silverman, Edwin K and Deary, Ian J and Palmer, Lyle J and Cassano, Patricia A and Gudnason, Vilmundur and Barr, R Graham and Loos, Ruth J F and Strachan, David P and London, Stephanie J and Boezen, H Marike and Probst-Hensch, Nicole and Gharib, Sina A and Hall, Ian P and O{\textquoteright}Connor, George T and Tobin, Martin D and Stricker, Bruno H} } @article {6090, title = {Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans.}, journal = {Hum Mol Genet}, volume = {21}, year = {2012}, month = {2012 Dec 15}, pages = {5385-94}, abstract = {

Leukocyte telomere length (LTL) is associated with a number of common age-related diseases and is a heritable trait. Previous genome-wide association studies (GWASs) identified two loci on chromosomes 3q26.2 (TERC) and 10q24.33 (OBFC1) that are associated with the inter-individual LTL variation. We performed a meta-analysis of 9190 individuals from six independent GWAS and validated our findings in 2226 individuals from four additional studies. We confirmed previously reported associations with OBFC1 (rs9419958 P = 9.1 {\texttimes} 10(-11)) and with the telomerase RNA component TERC (rs1317082, P = 1.1 {\texttimes} 10(-8)). We also identified two novel genomic regions associated with LTL variation that map near a conserved telomere maintenance complex component 1 (CTC1; rs3027234, P = 3.6 {\texttimes} 10(-8)) on chromosome17p13.1 and zinc finger protein 676 (ZNF676; rs412658, P = 3.3 {\texttimes} 10(-8)) on 19p12. The minor allele of rs3027234 was associated with both shorter LTL and lower expression of CTC1. Our findings are consistent with the recent observations that point mutations in CTC1 cause short telomeres in both Arabidopsis and humans affected by a rare Mendelian syndrome. Overall, our results provide novel insights into the genetic architecture of inter-individual LTL variation in the general population.

}, keywords = {Genome-Wide Association Study, Humans, Kruppel-Like Transcription Factors, Telomere, Telomere Homeostasis, Telomere-Binding Proteins}, issn = {1460-2083}, doi = {10.1093/hmg/dds382}, author = {Mangino, Massimo and Hwang, Shih-Jen and Spector, Timothy D and Hunt, Steven C and Kimura, Masayuki and Fitzpatrick, Annette L and Christiansen, Lene and Petersen, Inge and Elbers, Clara C and Harris, Tamara and Chen, Wei and Srinivasan, Sathanur R and Kark, Jeremy D and Benetos, Athanase and El Shamieh, Said and Visvikis-Siest, Sophie and Christensen, Kaare and Berenson, Gerald S and Valdes, Ana M and Vi{\~n}uela, Ana and Garcia, Melissa and Arnett, Donna K and Broeckel, Ulrich and Province, Michael A and Pankow, James S and Kammerer, Candace and Liu, Yongmei and Nalls, Michael and Tishkoff, Sarah and Thomas, Fridtjof and Ziv, Elad and Psaty, Bruce M and Bis, Joshua C and Rotter, Jerome I and Taylor, Kent D and Smith, Erin and Schork, Nicholas J and Levy, Daniel and Aviv, Abraham} } @article {6091, title = {Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.}, journal = {Nat Genet}, volume = {44}, year = {2012}, month = {2012 Sep}, pages = {991-1005}, abstract = {

Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.

}, keywords = {Adult, Animals, Blood Glucose, Fasting, Female, Gene Frequency, Genome-Wide Association Study, Humans, Insulin, Male, Metabolic Networks and Pathways, Mice, Osmolar Concentration, Quantitative Trait Loci}, issn = {1546-1718}, doi = {10.1038/ng.2385}, author = {Scott, Robert A and Lagou, Vasiliki and Welch, Ryan P and Wheeler, Eleanor and Montasser, May E and Luan, Jian{\textquoteright}an and M{\"a}gi, Reedik and Strawbridge, Rona J and Rehnberg, Emil and Gustafsson, Stefan and Kanoni, Stavroula and Rasmussen-Torvik, Laura J and Yengo, Loic and Lecoeur, C{\'e}cile and Shungin, Dmitry and Sanna, Serena and Sidore, Carlo and Johnson, Paul C D and Jukema, J Wouter and Johnson, Toby and Mahajan, Anubha and Verweij, Niek and Thorleifsson, Gudmar and Hottenga, Jouke-Jan and Shah, Sonia and Smith, Albert V and Sennblad, Bengt and Gieger, Christian and Salo, Perttu and Perola, Markus and Timpson, Nicholas J and Evans, David M and Pourcain, Beate St and Wu, Ying and Andrews, Jeanette S and Hui, Jennie and Bielak, Lawrence F and Zhao, Wei and Horikoshi, Momoko and Navarro, Pau and Isaacs, Aaron and O{\textquoteright}Connell, Jeffrey R and Stirrups, Kathleen and Vitart, Veronique and Hayward, Caroline and Esko, T{\~o}nu and Mihailov, Evelin and Fraser, Ross M and Fall, Tove and Voight, Benjamin F and Raychaudhuri, Soumya and Chen, Han and Lindgren, Cecilia M and Morris, Andrew P and Rayner, Nigel W and Robertson, Neil and Rybin, Denis and Liu, Ching-Ti and Beckmann, Jacques S and Willems, Sara M and Chines, Peter S and Jackson, Anne U and Kang, Hyun Min and Stringham, Heather M and Song, Kijoung and Tanaka, Toshiko and Peden, John F and Goel, Anuj and Hicks, Andrew A and An, Ping and M{\"u}ller-Nurasyid, Martina and Franco-Cereceda, Anders and Folkersen, Lasse and Marullo, Letizia and Jansen, Hanneke and Oldehinkel, Albertine J and Bruinenberg, Marcel and Pankow, James S and North, Kari E and Forouhi, Nita G and Loos, Ruth J F and Edkins, Sarah and Varga, Tibor V and Hallmans, G{\"o}ran and Oksa, Heikki and Antonella, Mulas and Nagaraja, Ramaiah and Trompet, Stella and Ford, Ian and Bakker, Stephan J L and Kong, Augustine and Kumari, Meena and Gigante, Bruna and Herder, Christian and Munroe, Patricia B and Caulfield, Mark and Antti, Jula and Mangino, Massimo and Small, Kerrin and Miljkovic, Iva and Liu, Yongmei and Atalay, Mustafa and Kiess, Wieland and James, Alan L and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Palmer, Colin N A and Doney, Alex S F and Willemsen, Gonneke and Smit, Johannes H and Campbell, Susan and Polasek, Ozren and Bonnycastle, Lori L and Hercberg, Serge and Dimitriou, Maria and Bolton, Jennifer L and Fowkes, Gerard R and Kovacs, Peter and Lindstr{\"o}m, Jaana and Zemunik, Tatijana and Bandinelli, Stefania and Wild, Sarah H and Basart, Hanneke V and Rathmann, Wolfgang and Grallert, Harald and Maerz, Winfried and Kleber, Marcus E and Boehm, Bernhard O and Peters, Annette and Pramstaller, Peter P and Province, Michael A and Borecki, Ingrid B and Hastie, Nicholas D and Rudan, Igor and Campbell, Harry and Watkins, Hugh and Farrall, Martin and Stumvoll, Michael and Ferrucci, Luigi and Waterworth, Dawn M and Bergman, Richard N and Collins, Francis S and Tuomilehto, Jaakko and Watanabe, Richard M and de Geus, Eco J C and Penninx, Brenda W and Hofman, Albert and Oostra, Ben A and Psaty, Bruce M and Vollenweider, Peter and Wilson, James F and Wright, Alan F and Hovingh, G Kees and Metspalu, Andres and Uusitupa, Matti and Magnusson, Patrik K E and Kyvik, Kirsten O and Kaprio, Jaakko and Price, Jackie F and Dedoussis, George V and Deloukas, Panos and Meneton, Pierre and Lind, Lars and Boehnke, Michael and Shuldiner, Alan R and van Duijn, Cornelia M and Morris, Andrew D and Toenjes, Anke and Peyser, Patricia A and Beilby, John P and K{\"o}rner, Antje and Kuusisto, Johanna and Laakso, Markku and Bornstein, Stefan R and Schwarz, Peter E H and Lakka, Timo A and Rauramaa, Rainer and Adair, Linda S and Smith, George Davey and Spector, Tim D and Illig, Thomas and de Faire, Ulf and Hamsten, Anders and Gudnason, Vilmundur and Kivimaki, Mika and Hingorani, Aroon and Keinanen-Kiukaanniemi, Sirkka M and Saaristo, Timo E and Boomsma, Dorret I and Stefansson, Kari and van der Harst, Pim and Dupuis, Jos{\'e}e and Pedersen, Nancy L and Sattar, Naveed and Harris, Tamara B and Cucca, Francesco and Ripatti, Samuli and Salomaa, Veikko and Mohlke, Karen L and Balkau, Beverley and Froguel, Philippe and Pouta, Anneli and Jarvelin, Marjo-Riitta and Wareham, Nicholas J and Bouatia-Naji, Nabila and McCarthy, Mark I and Franks, Paul W and Meigs, James B and Teslovich, Tanya M and Florez, Jose C and Langenberg, Claudia and Ingelsson, Erik and Prokopenko, Inga and Barroso, In{\^e}s} } @article {1378, title = {Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1002607}, abstract = {

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5{\texttimes}10(-8)-1.2{\texttimes}10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3{\texttimes}10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3{\texttimes}10(-3), n = 22,044), increased triglycerides (p = 2.6{\texttimes}10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8{\texttimes}10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4{\texttimes}10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5{\texttimes}10(-13), n = 96,748) and decreased BMI (p = 1.4{\texttimes}10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

}, keywords = {Adiponectin, African Americans, Asian Continental Ancestry Group, Cholesterol, HDL, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Female, Gene Expression, Genetic Predisposition to Disease, Genome-Wide Association Study, Glucose Tolerance Test, Humans, Insulin Resistance, Male, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide, Waist-Hip Ratio}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002607}, author = {Dastani, Zari and Hivert, Marie-France and Timpson, Nicholas and Perry, John R B and Yuan, Xin and Scott, Robert A and Henneman, Peter and Heid, Iris M and Kizer, Jorge R and Lyytik{\"a}inen, Leo-Pekka and Fuchsberger, Christian and Tanaka, Toshiko and Morris, Andrew P and Small, Kerrin and Isaacs, Aaron and Beekman, Marian and Coassin, Stefan and Lohman, Kurt and Qi, Lu and Kanoni, Stavroula and Pankow, James S and Uh, Hae-Won and Wu, Ying and Bidulescu, Aurelian and Rasmussen-Torvik, Laura J and Greenwood, Celia M T and Ladouceur, Martin and Grimsby, Jonna and Manning, Alisa K and Liu, Ching-Ti and Kooner, Jaspal and Mooser, Vincent E and Vollenweider, Peter and Kapur, Karen A and Chambers, John and Wareham, Nicholas J and Langenberg, Claudia and Frants, Rune and Willems-Vandijk, Ko and Oostra, Ben A and Willems, Sara M and Lamina, Claudia and Winkler, Thomas W and Psaty, Bruce M and Tracy, Russell P and Brody, Jennifer and Chen, Ida and Viikari, Jorma and K{\"a}h{\"o}nen, Mika and Pramstaller, Peter P and Evans, David M and St Pourcain, Beate and Sattar, Naveed and Wood, Andrew R and Bandinelli, Stefania and Carlson, Olga D and Egan, Josephine M and B{\"o}hringer, Stefan and van Heemst, Diana and Kedenko, Lyudmyla and Kristiansson, Kati and Nuotio, Marja-Liisa and Loo, Britt-Marie and Harris, Tamara and Garcia, Melissa and Kanaya, Alka and Haun, Margot and Klopp, Norman and Wichmann, H-Erich and Deloukas, Panos and Katsareli, Efi and Couper, David J and Duncan, Bruce B and Kloppenburg, Margreet and Adair, Linda S and Borja, Judith B and Wilson, James G and Musani, Solomon and Guo, Xiuqing and Johnson, Toby and Semple, Robert and Teslovich, Tanya M and Allison, Matthew A and Redline, Susan and Buxbaum, Sarah G and Mohlke, Karen L and Meulenbelt, Ingrid and Ballantyne, Christie M and Dedoussis, George V and Hu, Frank B and Liu, Yongmei and Paulweber, Bernhard and Spector, Timothy D and Slagboom, P Eline and Ferrucci, Luigi and Jula, Antti and Perola, Markus and Raitakari, Olli and Florez, Jose C and Salomaa, Veikko and Eriksson, Johan G and Frayling, Timothy M and Hicks, Andrew A and Lehtim{\"a}ki, Terho and Smith, George Davey and Siscovick, David S and Kronenberg, Florian and van Duijn, Cornelia and Loos, Ruth J F and Waterworth, Dawn M and Meigs, James B and Dupuis, Jos{\'e}e and Richards, J Brent and Voight, Benjamin F and Scott, Laura J and Steinthorsdottir, Valgerdur and Dina, Christian and Welch, Ryan P and Zeggini, Eleftheria and Huth, Cornelia and Aulchenko, Yurii S and Thorleifsson, Gudmar and McCulloch, Laura J and Ferreira, Teresa and Grallert, Harald and Amin, Najaf and Wu, Guanming and Willer, Cristen J and Raychaudhuri, Soumya and McCarroll, Steve A and Hofmann, Oliver M and Segr{\`e}, Ayellet V and van Hoek, Mandy and Navarro, Pau and Ardlie, Kristin and Balkau, Beverley and Benediktsson, Rafn and Bennett, Amanda J and Blagieva, Roza and Boerwinkle, Eric and Bonnycastle, Lori L and Bostr{\"o}m, Kristina Bengtsson and Bravenboer, Bert and Bumpstead, Suzannah and Burtt, Noel P and Charpentier, Guillaume and Chines, Peter S and Cornelis, Marilyn and Crawford, Gabe and Doney, Alex S F and Elliott, Katherine S and Elliott, Amanda L and Erdos, Michael R and Fox, Caroline S and Franklin, Christopher S and Ganser, Martha and Gieger, Christian and Grarup, Niels and Green, Todd and Griffin, Simon and Groves, Christopher J and Guiducci, Candace and Hadjadj, Samy and Hassanali, Neelam and Herder, Christian and Isomaa, Bo and Jackson, Anne U and Johnson, Paul R V and J{\o}rgensen, Torben and Kao, Wen H L and Kong, Augustine and Kraft, Peter and Kuusisto, Johanna and Lauritzen, Torsten and Li, Man and Lieverse, Aloysius and Lindgren, Cecilia M and Lyssenko, Valeriya and Marre, Michel and Meitinger, Thomas and Midthjell, Kristian and Morken, Mario A and Narisu, Narisu and Nilsson, Peter and Owen, Katharine R and Payne, Felicity and Petersen, Ann-Kristin and Platou, Carl and Proen{\c c}a, Christine and Prokopenko, Inga and Rathmann, Wolfgang and Rayner, N William and Robertson, Neil R and Rocheleau, Ghislain and Roden, Michael and Sampson, Michael J and Saxena, Richa and Shields, Beverley M and Shrader, Peter and Sigurdsson, Gunnar and Spars{\o}, Thomas and Strassburger, Klaus and Stringham, Heather M and Sun, Qi and Swift, Amy J and Thorand, Barbara and Tichet, Jean and Tuomi, Tiinamaija and van Dam, Rob M and van Haeften, Timon W and van Herpt, Thijs and van Vliet-Ostaptchouk, Jana V and Walters, G Bragi and Weedon, Michael N and Wijmenga, Cisca and Witteman, Jacqueline and Bergman, Richard N and Cauchi, Stephane and Collins, Francis S and Gloyn, Anna L and Gyllensten, Ulf and Hansen, Torben and Hide, Winston A and Hitman, Graham A and Hofman, Albert and Hunter, David J and Hveem, Kristian and Laakso, Markku and Morris, Andrew D and Palmer, Colin N A and Rudan, Igor and Sijbrands, Eric and Stein, Lincoln D and Tuomilehto, Jaakko and Uitterlinden, Andre and Walker, Mark and Watanabe, Richard M and Abecasis, Goncalo R and Boehm, Bernhard O and Campbell, Harry and Daly, Mark J and Hattersley, Andrew T and Pedersen, Oluf and Barroso, In{\^e}s and Groop, Leif and Sladek, Rob and Thorsteinsdottir, Unnur and Wilson, James F and Illig, Thomas and Froguel, Philippe and van Duijn, Cornelia M and Stefansson, Kari and Altshuler, David and Boehnke, Michael and McCarthy, Mark I and Soranzo, Nicole and Wheeler, Eleanor and Glazer, Nicole L and Bouatia-Naji, Nabila and M{\"a}gi, Reedik and Randall, Joshua and Elliott, Paul and Rybin, Denis and Dehghan, Abbas and Hottenga, Jouke Jan and Song, Kijoung and Goel, Anuj and Lajunen, Taina and Doney, Alex and Cavalcanti-Proen{\c c}a, Christine and Kumari, Meena and Timpson, Nicholas J and Zabena, Carina and Ingelsson, Erik and An, Ping and O{\textquoteright}Connell, Jeffrey and Luan, Jian{\textquoteright}an and Elliott, Amanda and McCarroll, Steven A and Roccasecca, Rosa Maria and Pattou, Fran{\c c}ois and Sethupathy, Praveen and Ariyurek, Yavuz and Barter, Philip and Beilby, John P and Ben-Shlomo, Yoav and Bergmann, Sven and Bochud, Murielle and Bonnefond, Am{\'e}lie and Borch-Johnsen, Knut and B{\"o}ttcher, Yvonne and Brunner, Eric and Bumpstead, Suzannah J and Chen, Yii-Der Ida and Chines, Peter and Clarke, Robert and Coin, Lachlan J M and Cooper, Matthew N and Crisponi, Laura and Day, Ian N M and de Geus, Eco J C and Delplanque, Jerome and Fedson, Annette C and Fischer-Rosinsky, Antje and Forouhi, Nita G and Franzosi, Maria Grazia and Galan, Pilar and Goodarzi, Mark O and Graessler, J{\"u}rgen and Grundy, Scott and Gwilliam, Rhian and Hallmans, G{\"o}ran and Hammond, Naomi and Han, Xijing and Hartikainen, Anna-Liisa and Hayward, Caroline and Heath, Simon C and Hercberg, Serge and Hillman, David R and Hingorani, Aroon D and Hui, Jennie and Hung, Joe and Kaakinen, Marika and Kaprio, Jaakko and Kesaniemi, Y Antero and Kivimaki, Mika and Knight, Beatrice and Koskinen, Seppo and Kovacs, Peter and Kyvik, Kirsten Ohm and Lathrop, G Mark and Lawlor, Debbie A and Le Bacquer, Olivier and Lecoeur, C{\'e}cile and Li, Yun and Mahley, Robert and Mangino, Massimo and Mart{\'\i}nez-Larrad, Mar{\'\i}a Teresa and McAteer, Jarred B and McPherson, Ruth and Meisinger, Christa and Melzer, David and Meyre, David and Mitchell, Braxton D and Mukherjee, Sutapa and Naitza, Silvia and Neville, Matthew J and Orr{\`u}, Marco and Pakyz, Ruth and Paolisso, Giuseppe and Pattaro, Cristian and Pearson, Daniel and Peden, John F and Pedersen, Nancy L and Pfeiffer, Andreas F H and Pichler, Irene and Polasek, Ozren and Posthuma, Danielle and Potter, Simon C and Pouta, Anneli and Province, Michael A and Rayner, Nigel W and Rice, Kenneth and Ripatti, Samuli and Rivadeneira, Fernando and Rolandsson, Olov and Sandbaek, Annelli and Sandhu, Manjinder and Sanna, Serena and Sayer, Avan Aihie and Scheet, Paul and Seedorf, Udo and Sharp, Stephen J and Shields, Beverley and Sigur{\dh}sson, Gunnar and Sijbrands, Eric J G and Silveira, Angela and Simpson, Laila and Singleton, Andrew and Smith, Nicholas L and Sovio, Ulla and Swift, Amy and Syddall, Holly and Syv{\"a}nen, Ann-Christine and T{\"o}njes, Anke and Uitterlinden, Andr{\'e} G and van Dijk, Ko Willems and Varma, Dhiraj and Visvikis-Siest, Sophie and Vitart, Veronique and Vogelzangs, Nicole and Waeber, G{\'e}rard and Wagner, Peter J and Walley, Andrew and Ward, Kim L and Watkins, Hugh and Wild, Sarah H and Willemsen, Gonneke and Witteman, Jaqueline C M and Yarnell, John W G and Zelenika, Diana and Zethelius, Bj{\"o}rn and Zhai, Guangju and Zhao, Jing Hua and Zillikens, M Carola and Borecki, Ingrid B and Meneton, Pierre and Magnusson, Patrik K E and Nathan, David M and Williams, Gordon H and Silander, Kaisa and Bornstein, Stefan R and Schwarz, Peter and Spranger, Joachim and Karpe, Fredrik and Shuldiner, Alan R and Cooper, Cyrus and Serrano-R{\'\i}os, Manuel and Lind, Lars and Palmer, Lyle J and Hu, Frank B and Franks, Paul W and Ebrahim, Shah and Marmot, Michael and Kao, W H Linda and Pramstaller, Peter Paul and Wright, Alan F and Stumvoll, Michael and Hamsten, Anders and Buchanan, Thomas A and Valle, Timo T and Rotter, Jerome I and Penninx, Brenda W J H and Boomsma, Dorret I and Cao, Antonio and Scuteri, Angelo and Schlessinger, David and Uda, Manuela and Ruokonen, Aimo and Jarvelin, Marjo-Riitta and Peltonen, Leena and Mooser, Vincent and Sladek, Robert and Musunuru, Kiran and Smith, Albert V and Edmondson, Andrew C and Stylianou, Ioannis M and Koseki, Masahiro and Pirruccello, James P and Chasman, Daniel I and Johansen, Christopher T and Fouchier, Sigrid W and Peloso, Gina M and Barbalic, Maja and Ricketts, Sally L and Bis, Joshua C and Feitosa, Mary F and Orho-Melander, Marju and Melander, Olle and Li, Xiaohui and Li, Mingyao and Cho, Yoon Shin and Go, Min Jin and Kim, Young Jin and Lee, Jong-Young and Park, Taesung and Kim, Kyunga and Sim, Xueling and Ong, Rick Twee-Hee and Croteau-Chonka, Damien C and Lange, Leslie A and Smith, Joshua D and Ziegler, Andreas and Zhang, Weihua and Zee, Robert Y L and Whitfield, John B and Thompson, John R and Surakka, Ida and Spector, Tim D and Smit, Johannes H and Sinisalo, Juha and Scott, James and Saharinen, Juha and Sabatti, Chiara and Rose, Lynda M and Roberts, Robert and Rieder, Mark and Parker, Alex N and Par{\'e}, Guillaume and O{\textquoteright}Donnell, Christopher J and Nieminen, Markku S and Nickerson, Deborah A and Montgomery, Grant W and McArdle, Wendy and Masson, David and Martin, Nicholas G and Marroni, Fabio and Lucas, Gavin and Luben, Robert and Lokki, Marja-Liisa and Lettre, Guillaume and Launer, Lenore J and Lakatta, Edward G and Laaksonen, Reijo and Kyvik, Kirsten O and K{\"o}nig, Inke R and Khaw, Kay-Tee and Kaplan, Lee M and Johansson, Asa and Janssens, A Cecile J W and Igl, Wilmar and Hovingh, G Kees and Hengstenberg, Christian and Havulinna, Aki S and Hastie, Nicholas D and Harris, Tamara B and Haritunians, Talin and Hall, Alistair S and Groop, Leif C and Gonzalez, Elena and Freimer, Nelson B and Erdmann, Jeanette and Ejebe, Kenechi G and D{\"o}ring, Angela and Dominiczak, Anna F and Demissie, Serkalem and Deloukas, Panagiotis and de Faire, Ulf and Crawford, Gabriel and Chen, Yii-der I and Caulfield, Mark J and Boekholdt, S Matthijs and Assimes, Themistocles L and Quertermous, Thomas and Seielstad, Mark and Wong, Tien Y and Tai, E-Shyong and Feranil, Alan B and Kuzawa, Christopher W and Taylor, Herman A and Gabriel, Stacey B and Holm, Hilma and Gudnason, Vilmundur and Krauss, Ronald M and Ordovas, Jose M and Munroe, Patricia B and Kooner, Jaspal S and Tall, Alan R and Hegele, Robert A and Kastelein, John J P and Schadt, Eric E and Strachan, David P and Reilly, Muredach P and Samani, Nilesh J and Schunkert, Heribert and Cupples, L Adrienne and Sandhu, Manjinder S and Ridker, Paul M and Rader, Daniel J and Kathiresan, Sekar} } @article {6152, title = {Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 May}, pages = {501-12}, abstract = {

Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.

}, keywords = {Anthropometry, Body Height, Body Mass Index, Case-Control Studies, European Continental Ancestry Group, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Meta-Analysis as Topic, Obesity, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Waist-Hip Ratio}, issn = {1546-1718}, doi = {10.1038/ng.2606}, author = {Berndt, Sonja I and Gustafsson, Stefan and M{\"a}gi, Reedik and Ganna, Andrea and Wheeler, Eleanor and Feitosa, Mary F and Justice, Anne E and Monda, Keri L and Croteau-Chonka, Damien C and Day, Felix R and Esko, T{\~o}nu and Fall, Tove and Ferreira, Teresa and Gentilini, Davide and Jackson, Anne U and Luan, Jian{\textquoteright}an and Randall, Joshua C and Vedantam, Sailaja and Willer, Cristen J and Winkler, Thomas W and Wood, Andrew R and Workalemahu, Tsegaselassie and Hu, Yi-Juan and Lee, Sang Hong and Liang, Liming and Lin, Dan-Yu and Min, Josine L and Neale, Benjamin M and Thorleifsson, Gudmar and Yang, Jian and Albrecht, Eva and Amin, Najaf and Bragg-Gresham, Jennifer L and Cadby, Gemma and den Heijer, Martin and Eklund, Niina and Fischer, Krista and Goel, Anuj and Hottenga, Jouke-Jan and Huffman, Jennifer E and Jarick, Ivonne and Johansson, Asa and Johnson, Toby and Kanoni, Stavroula and Kleber, Marcus E and K{\"o}nig, Inke R and Kristiansson, Kati and Kutalik, Zolt{\'a}n and Lamina, Claudia and Lecoeur, C{\'e}cile and Li, Guo and Mangino, Massimo and McArdle, Wendy L and Medina-G{\'o}mez, Carolina and M{\"u}ller-Nurasyid, Martina and Ngwa, Julius S and Nolte, Ilja M and Paternoster, Lavinia and Pechlivanis, Sonali and Perola, Markus and Peters, Marjolein J and Preuss, Michael and Rose, Lynda M and Shi, Jianxin and Shungin, Dmitry and Smith, Albert Vernon and Strawbridge, Rona J and Surakka, Ida and Teumer, Alexander and Trip, Mieke D and Tyrer, Jonathan and van Vliet-Ostaptchouk, Jana V and Vandenput, Liesbeth and Waite, Lindsay L and Zhao, Jing Hua and Absher, Devin and Asselbergs, Folkert W and Atalay, Mustafa and Attwood, Antony P and Balmforth, Anthony J and Basart, Hanneke and Beilby, John and Bonnycastle, Lori L and Brambilla, Paolo and Bruinenberg, Marcel and Campbell, Harry and Chasman, Daniel I and Chines, Peter S and Collins, Francis S and Connell, John M and Cookson, William O and de Faire, Ulf and de Vegt, Femmie and Dei, Mariano and Dimitriou, Maria and Edkins, Sarah and Estrada, Karol and Evans, David M and Farrall, Martin and Ferrario, Marco M and Ferrieres, Jean and Franke, Lude and Frau, Francesca and Gejman, Pablo V and Grallert, Harald and Gr{\"o}nberg, Henrik and Gudnason, Vilmundur and Hall, Alistair S and Hall, Per and Hartikainen, Anna-Liisa and Hayward, Caroline and Heard-Costa, Nancy L and Heath, Andrew C and Hebebrand, Johannes and Homuth, Georg and Hu, Frank B and Hunt, Sarah E and Hypp{\"o}nen, Elina and Iribarren, Carlos and Jacobs, Kevin B and Jansson, John-Olov and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Kee, Frank and Khaw, Kay-Tee and Kivimaki, Mika and Koenig, Wolfgang and Kraja, Aldi T and Kumari, Meena and Kuulasmaa, Kari and Kuusisto, Johanna and Laitinen, Jaana H and Lakka, Timo A and Langenberg, Claudia and Launer, Lenore J and Lind, Lars and Lindstr{\"o}m, Jaana and Liu, Jianjun and Liuzzi, Antonio and Lokki, Marja-Liisa and Lorentzon, Mattias and Madden, Pamela A and Magnusson, Patrik K and Manunta, Paolo and Marek, Diana and M{\"a}rz, Winfried and Mateo Leach, Irene and McKnight, Barbara and Medland, Sarah E and Mihailov, Evelin and Milani, Lili and Montgomery, Grant W and Mooser, Vincent and M{\"u}hleisen, Thomas W and Munroe, Patricia B and Musk, Arthur W and Narisu, Narisu and Navis, Gerjan and Nicholson, George and Nohr, Ellen A and Ong, Ken K and Oostra, Ben A and Palmer, Colin N A and Palotie, Aarno and Peden, John F and Pedersen, Nancy and Peters, Annette and Polasek, Ozren and Pouta, Anneli and Pramstaller, Peter P and Prokopenko, Inga and P{\"u}tter, Carolin and Radhakrishnan, Aparna and Raitakari, Olli and Rendon, Augusto and Rivadeneira, Fernando and Rudan, Igor and Saaristo, Timo E and Sambrook, Jennifer G and Sanders, Alan R and Sanna, Serena and Saramies, Jouko and Schipf, Sabine and Schreiber, Stefan and Schunkert, Heribert and Shin, So-Youn and Signorini, Stefano and Sinisalo, Juha and Skrobek, Boris and Soranzo, Nicole and Stan{\v c}{\'a}kov{\'a}, Alena and Stark, Klaus and Stephens, Jonathan C and Stirrups, Kathleen and Stolk, Ronald P and Stumvoll, Michael and Swift, Amy J and Theodoraki, Eirini V and Thorand, Barbara and Tr{\'e}gou{\"e}t, David-Alexandre and Tremoli, Elena and van der Klauw, Melanie M and van Meurs, Joyce B J and Vermeulen, Sita H and Viikari, Jorma and Virtamo, Jarmo and Vitart, Veronique and Waeber, G{\'e}rard and Wang, Zhaoming and Widen, Elisabeth and Wild, Sarah H and Willemsen, Gonneke and Winkelmann, Bernhard R and Witteman, Jacqueline C M and Wolffenbuttel, Bruce H R and Wong, Andrew and Wright, Alan F and Zillikens, M Carola and Amouyel, Philippe and Boehm, Bernhard O and Boerwinkle, Eric and Boomsma, Dorret I and Caulfield, Mark J and Chanock, Stephen J and Cupples, L Adrienne and Cusi, Daniele and Dedoussis, George V and Erdmann, Jeanette and Eriksson, Johan G and Franks, Paul W and Froguel, Philippe and Gieger, Christian and Gyllensten, Ulf and Hamsten, Anders and Harris, Tamara B and Hengstenberg, Christian and Hicks, Andrew A and Hingorani, Aroon and Hinney, Anke and Hofman, Albert and Hovingh, Kees G and Hveem, Kristian and Illig, Thomas and Jarvelin, Marjo-Riitta and J{\"o}ckel, Karl-Heinz and Keinanen-Kiukaanniemi, Sirkka M and Kiemeney, Lambertus A and Kuh, Diana and Laakso, Markku and Lehtim{\"a}ki, Terho and Levinson, Douglas F and Martin, Nicholas G and Metspalu, Andres and Morris, Andrew D and Nieminen, Markku S and Nj{\o}lstad, Inger and Ohlsson, Claes and Oldehinkel, Albertine J and Ouwehand, Willem H and Palmer, Lyle J and Penninx, Brenda and Power, Chris and Province, Michael A and Psaty, Bruce M and Qi, Lu and Rauramaa, Rainer and Ridker, Paul M and Ripatti, Samuli and Salomaa, Veikko and Samani, Nilesh J and Snieder, Harold and S{\o}rensen, Thorkild I A and Spector, Timothy D and Stefansson, Kari and T{\"o}njes, Anke and Tuomilehto, Jaakko and Uitterlinden, Andr{\'e} G and Uusitupa, Matti and van der Harst, Pim and Vollenweider, Peter and Wallaschofski, Henri and Wareham, Nicholas J and Watkins, Hugh and Wichmann, H-Erich and Wilson, James F and Abecasis, Goncalo R and Assimes, Themistocles L and Barroso, In{\^e}s and Boehnke, Michael and Borecki, Ingrid B and Deloukas, Panos and Fox, Caroline S and Frayling, Timothy and Groop, Leif C and Haritunian, Talin and Heid, Iris M and Hunter, David and Kaplan, Robert C and Karpe, Fredrik and Moffatt, Miriam F and Mohlke, Karen L and O{\textquoteright}Connell, Jeffrey R and Pawitan, Yudi and Schadt, Eric E and Schlessinger, David and Steinthorsdottir, Valgerdur and Strachan, David P and Thorsteinsdottir, Unnur and van Duijn, Cornelia M and Visscher, Peter M and Di Blasio, Anna Maria and Hirschhorn, Joel N and Lindgren, Cecilia M and Morris, Andrew P and Meyre, David and Scherag, Andre and McCarthy, Mark I and Speliotes, Elizabeth K and North, Kari E and Loos, Ruth J F and Ingelsson, Erik} } @article {6028, title = {Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits.}, journal = {PLoS Genet}, volume = {9}, year = {2013}, month = {2013 Jun}, pages = {e1003500}, abstract = {

Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5\%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5{\texttimes}10(-8)), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.

}, keywords = {Anthropometry, Body Height, Body Mass Index, Body Weight, Body Weights and Measures, Female, Genetic Loci, Genome, Human, Genome-Wide Association Study, Humans, Male, Polymorphism, Single Nucleotide, Sex Characteristics, Waist Circumference, Waist-Hip Ratio}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003500}, author = {Randall, Joshua C and Winkler, Thomas W and Kutalik, Zolt{\'a}n and Berndt, Sonja I and Jackson, Anne U and Monda, Keri L and Kilpel{\"a}inen, Tuomas O and Esko, T{\~o}nu and M{\"a}gi, Reedik and Li, Shengxu and Workalemahu, Tsegaselassie and Feitosa, Mary F and Croteau-Chonka, Damien C and Day, Felix R and Fall, Tove and Ferreira, Teresa and Gustafsson, Stefan and Locke, Adam E and Mathieson, Iain and Scherag, Andre and Vedantam, Sailaja and Wood, Andrew R and Liang, Liming and Steinthorsdottir, Valgerdur and Thorleifsson, Gudmar and Dermitzakis, Emmanouil T and Dimas, Antigone S and Karpe, Fredrik and Min, Josine L and Nicholson, George and Clegg, Deborah J and Person, Thomas and Krohn, Jon P and Bauer, Sabrina and Buechler, Christa and Eisinger, Kristina and Bonnefond, Am{\'e}lie and Froguel, Philippe and Hottenga, Jouke-Jan and Prokopenko, Inga and Waite, Lindsay L and Harris, Tamara B and Smith, Albert Vernon and Shuldiner, Alan R and McArdle, Wendy L and Caulfield, Mark J and Munroe, Patricia B and Gr{\"o}nberg, Henrik and Chen, Yii-Der Ida and Li, Guo and Beckmann, Jacques S and Johnson, Toby and Thorsteinsdottir, Unnur and Teder-Laving, Maris and Khaw, Kay-Tee and Wareham, Nicholas J and Zhao, Jing Hua and Amin, Najaf and Oostra, Ben A and Kraja, Aldi T and Province, Michael A and Cupples, L Adrienne and Heard-Costa, Nancy L and Kaprio, Jaakko and Ripatti, Samuli and Surakka, Ida and Collins, Francis S and Saramies, Jouko and Tuomilehto, Jaakko and Jula, Antti and Salomaa, Veikko and Erdmann, Jeanette and Hengstenberg, Christian and Loley, Christina and Schunkert, Heribert and Lamina, Claudia and Wichmann, H Erich and Albrecht, Eva and Gieger, Christian and Hicks, Andrew A and Johansson, Asa and Pramstaller, Peter P and Kathiresan, Sekar and Speliotes, Elizabeth K and Penninx, Brenda and Hartikainen, Anna-Liisa and Jarvelin, Marjo-Riitta and Gyllensten, Ulf and Boomsma, Dorret I and Campbell, Harry and Wilson, James F and Chanock, Stephen J and Farrall, Martin and Goel, Anuj and Medina-G{\'o}mez, Carolina and Rivadeneira, Fernando and Estrada, Karol and Uitterlinden, Andr{\'e} G and Hofman, Albert and Zillikens, M Carola and den Heijer, Martin and Kiemeney, Lambertus A and Maschio, Andrea and Hall, Per and Tyrer, Jonathan and Teumer, Alexander and V{\"o}lzke, Henry and Kovacs, Peter and T{\"o}njes, Anke and Mangino, Massimo and Spector, Tim D and Hayward, Caroline and Rudan, Igor and Hall, Alistair S and Samani, Nilesh J and Attwood, Antony Paul and Sambrook, Jennifer G and Hung, Joseph and Palmer, Lyle J and Lokki, Marja-Liisa and Sinisalo, Juha and Boucher, Gabrielle and Huikuri, Heikki and Lorentzon, Mattias and Ohlsson, Claes and Eklund, Niina and Eriksson, Johan G and Barlassina, Cristina and Rivolta, Carlo and Nolte, Ilja M and Snieder, Harold and van der Klauw, Melanie M and van Vliet-Ostaptchouk, Jana V and Gejman, Pablo V and Shi, Jianxin and Jacobs, Kevin B and Wang, Zhaoming and Bakker, Stephan J L and Mateo Leach, Irene and Navis, Gerjan and van der Harst, Pim and Martin, Nicholas G and Medland, Sarah E and Montgomery, Grant W and Yang, Jian and Chasman, Daniel I and Ridker, Paul M and Rose, Lynda M and Lehtim{\"a}ki, Terho and Raitakari, Olli and Absher, Devin and Iribarren, Carlos and Basart, Hanneke and Hovingh, Kees G and Hypp{\"o}nen, Elina and Power, Chris and Anderson, Denise and Beilby, John P and Hui, Jennie and Jolley, Jennifer and Sager, Hendrik and Bornstein, Stefan R and Schwarz, Peter E H and Kristiansson, Kati and Perola, Markus and Lindstr{\"o}m, Jaana and Swift, Amy J and Uusitupa, Matti and Atalay, Mustafa and Lakka, Timo A and Rauramaa, Rainer and Bolton, Jennifer L and Fowkes, Gerry and Fraser, Ross M and Price, Jackie F and Fischer, Krista and Krjut{\r a} Kov, Kaarel and Metspalu, Andres and Mihailov, Evelin and Langenberg, Claudia and Luan, Jian{\textquoteright}an and Ong, Ken K and Chines, Peter S and Keinanen-Kiukaanniemi, Sirkka M and Saaristo, Timo E and Edkins, Sarah and Franks, Paul W and Hallmans, G{\"o}ran and Shungin, Dmitry and Morris, Andrew David and Palmer, Colin N A and Erbel, Raimund and Moebus, Susanne and N{\"o}then, Markus M and Pechlivanis, Sonali and Hveem, Kristian and Narisu, Narisu and Hamsten, Anders and Humphries, Steve E and Strawbridge, Rona J and Tremoli, Elena and Grallert, Harald and Thorand, Barbara and Illig, Thomas and Koenig, Wolfgang and M{\"u}ller-Nurasyid, Martina and Peters, Annette and Boehm, Bernhard O and Kleber, Marcus E and M{\"a}rz, Winfried and Winkelmann, Bernhard R and Kuusisto, Johanna and Laakso, Markku and Arveiler, Dominique and Cesana, Giancarlo and Kuulasmaa, Kari and Virtamo, Jarmo and Yarnell, John W G and Kuh, Diana and Wong, Andrew and Lind, Lars and de Faire, Ulf and Gigante, Bruna and Magnusson, Patrik K E and Pedersen, Nancy L and Dedoussis, George and Dimitriou, Maria and Kolovou, Genovefa and Kanoni, Stavroula and Stirrups, Kathleen and Bonnycastle, Lori L and Nj{\o}lstad, Inger and Wilsgaard, Tom and Ganna, Andrea and Rehnberg, Emil and Hingorani, Aroon and Kivimaki, Mika and Kumari, Meena and Assimes, Themistocles L and Barroso, In{\^e}s and Boehnke, Michael and Borecki, Ingrid B and Deloukas, Panos and Fox, Caroline S and Frayling, Timothy and Groop, Leif C and Haritunians, Talin and Hunter, David and Ingelsson, Erik and Kaplan, Robert and Mohlke, Karen L and O{\textquoteright}Connell, Jeffrey R and Schlessinger, David and Strachan, David P and Stefansson, Kari and van Duijn, Cornelia M and Abecasis, Goncalo R and McCarthy, Mark I and Hirschhorn, Joel N and Qi, Lu and Loos, Ruth J F and Lindgren, Cecilia M and North, Kari E and Heid, Iris M} } @article {6585, title = {Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes.}, journal = {PLoS Genet}, volume = {10}, year = {2014}, month = {2014 Aug}, pages = {e1004517}, abstract = {

Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 {\texttimes} 10(-94)}, keywords = {African Americans, Diabetes Mellitus, Type 2, Genome-Wide Association Study, HLA-B27 Antigen, HMGA2 Protein, Humans, KCNQ1 Potassium Channel, Mutant Chimeric Proteins, Polymorphism, Single Nucleotide, Transcription Factor 7-Like 2 Protein}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1004517}, author = {Ng, Maggie C Y and Shriner, Daniel and Chen, Brian H and Li, Jiang and Chen, Wei-Min and Guo, Xiuqing and Liu, Jiankang and Bielinski, Suzette J and Yanek, Lisa R and Nalls, Michael A and Comeau, Mary E and Rasmussen-Torvik, Laura J and Jensen, Richard A and Evans, Daniel S and Sun, Yan V and An, Ping and Patel, Sanjay R and Lu, Yingchang and Long, Jirong and Armstrong, Loren L and Wagenknecht, Lynne and Yang, Lingyao and Snively, Beverly M and Palmer, Nicholette D and Mudgal, Poorva and Langefeld, Carl D and Keene, Keith L and Freedman, Barry I and Mychaleckyj, Josyf C and Nayak, Uma and Raffel, Leslie J and Goodarzi, Mark O and Chen, Y-D Ida and Taylor, Herman A and Correa, Adolfo and Sims, Mario and Couper, David and Pankow, James S and Boerwinkle, Eric and Adeyemo, Adebowale and Doumatey, Ayo and Chen, Guanjie and Mathias, Rasika A and Vaidya, Dhananjay and Singleton, Andrew B and Zonderman, Alan B and Igo, Robert P and Sedor, John R and Kabagambe, Edmond K and Siscovick, David S and McKnight, Barbara and Rice, Kenneth and Liu, Yongmei and Hsueh, Wen-Chi and Zhao, Wei and Bielak, Lawrence F and Kraja, Aldi and Province, Michael A and Bottinger, Erwin P and Gottesman, Omri and Cai, Qiuyin and Zheng, Wei and Blot, William J and Lowe, William L and Pacheco, Jennifer A and Crawford, Dana C and Grundberg, Elin and Rich, Stephen S and Hayes, M Geoffrey and Shu, Xiao-Ou and Loos, Ruth J F and Borecki, Ingrid B and Peyser, Patricia A and Cummings, Steven R and Psaty, Bruce M and Fornage, Myriam and Iyengar, Sudha K and Evans, Michele K and Becker, Diane M and Kao, W H Linda and Wilson, James G and Rotter, Jerome I and Sale, Mich{\`e}le M and Liu, Simin and Rotimi, Charles N and Bowden, Donald W} } @article {6844, title = {Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians.}, journal = {Am J Clin Nutr}, volume = {102}, year = {2015}, month = {2015 Nov}, pages = {1266-78}, abstract = {

BACKGROUND: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown.

OBJECTIVE: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus.

DESIGN: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined 1) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations.

RESULTS: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95\% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95\% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-ln-pmol/L (95\% CI: 0.035, 0.063-ln-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance.

CONCLUSION: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms. Six of the participating studies are registered at clinicaltrials.gov as NCT0000513 (Atherosclerosis Risk in Communities), NCT00149435 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetics of Lipid Lowering Drugs and Diet Network), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).

}, keywords = {Blood Glucose, Cohort Studies, Genetic Association Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hyperglycemia, Hyperinsulinism, Insulin, Insulin Resistance, Insulin-Secreting Cells, Meat, Meat Products, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1938-3207}, doi = {10.3945/ajcn.114.101238}, author = {Fretts, Amanda M and Follis, Jack L and Nettleton, Jennifer A and Lemaitre, Rozenn N and Ngwa, Julius S and Wojczynski, Mary K and Kalafati, Ioanna Panagiota and Varga, Tibor V and Frazier-Wood, Alexis C and Houston, Denise K and Lahti, Jari and Ericson, Ulrika and van den Hooven, Edith H and Mikkil{\"a}, Vera and Kiefte-de Jong, Jessica C and Mozaffarian, Dariush and Rice, Kenneth and Renstrom, Frida and North, Kari E and McKeown, Nicola M and Feitosa, Mary F and Kanoni, Stavroula and Smith, Caren E and Garcia, Melissa E and Tiainen, Anna-Maija and Sonestedt, Emily and Manichaikul, Ani and van Rooij, Frank J A and Dimitriou, Maria and Raitakari, Olli and Pankow, James S and Djouss{\'e}, Luc and Province, Michael A and Hu, Frank B and Lai, Chao-Qiang and Keller, Margaux F and Per{\"a}l{\"a}, Mia-Maria and Rotter, Jerome I and Hofman, Albert and Graff, Misa and K{\"a}h{\"o}nen, Mika and Mukamal, Kenneth and Johansson, Ingegerd and Ordovas, Jose M and Liu, Yongmei and M{\"a}nnist{\"o}, Satu and Uitterlinden, Andr{\'e} G and Deloukas, Panos and Sepp{\"a}l{\"a}, Ilkka and Psaty, Bruce M and Cupples, L Adrienne and Borecki, Ingrid B and Franks, Paul W and Arnett, Donna K and Nalls, Mike A and Eriksson, Johan G and Orho-Melander, Marju and Franco, Oscar H and Lehtim{\"a}ki, Terho and Dedoussis, George V and Meigs, James B and Siscovick, David S} } @article {6703, title = {Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index.}, journal = {J Gerontol A Biol Sci Med Sci}, volume = {70}, year = {2015}, month = {2015 Aug}, pages = {1003-8}, abstract = {

BACKGROUND: The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems.

METHODS: We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted for mortality risk in 3,140 individuals selected for familial longevity from the Long Life Family Study. The genome-wide association study used the Long Life Family Study as the discovery cohort and individuals from the Cardiovascular Health Study and the Framingham Heart Study as replication cohorts.

RESULTS: There were no genome-wide significant findings from the genome-wide association study; however, several single-nucleotide polymorphisms near ZNF704 on chromosome 8q21.13 were suggestively associated with the HAI in the Long Life Family Study (p < 10(-) (6)) and nominally replicated in the Cardiovascular Health Study and Framingham Heart Study. Linkage results revealed significant evidence (log-odds score = 3.36) for a quantitative trait locus for mortality-optimized HAI in women on chromosome 9p24-p23. However, results of fine-mapping studies did not implicate any specific candidate genes within this region of interest.

CONCLUSIONS: ZNF704 may be a potential candidate gene for studies of the genetic underpinnings of longevity.

}, keywords = {Aging, Apolipoproteins E, Forkhead Transcription Factors, Genetic Linkage, Genome-Wide Association Study, Humans, Longevity, Polymorphism, Single Nucleotide, Quantitative Trait Loci}, issn = {1758-535X}, doi = {10.1093/gerona/glv006}, author = {Minster, Ryan L and Sanders, Jason L and Singh, Jatinder and Kammerer, Candace M and Barmada, M Michael and Matteini, Amy M and Zhang, Qunyuan and Wojczynski, Mary K and Daw, E Warwick and Brody, Jennifer A and Arnold, Alice M and Lunetta, Kathryn L and Murabito, Joanne M and Christensen, Kaare and Perls, Thomas T and Province, Michael A and Newman, Anne B} } @article {6686, title = {Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility.}, journal = {Nat Commun}, volume = {6}, year = {2015}, month = {2015}, pages = {5897}, abstract = {

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4\%) with lower FG (β=-0.09{\textpm}0.01 mmol l(-1), P=3.4 {\texttimes} 10(-12)), T2D risk (OR[95\%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07{\textpm}0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16{\textpm}0.05 mmol l(-1), P=4.3 {\texttimes} 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 {\texttimes} 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20\%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02{\textpm}0.004 mmol l(-1), P=1.3 {\texttimes} 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.

}, keywords = {African Continental Ancestry Group, Blood Glucose, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Exome, Fasting, Genetic Association Studies, Genetic Loci, Genetic Predisposition to Disease, Genetic Variation, Glucagon-Like Peptide-1 Receptor, Glucose-6-Phosphatase, Humans, Insulin, Mutation Rate, Oligonucleotide Array Sequence Analysis, Polymorphism, Single Nucleotide}, issn = {2041-1723}, doi = {10.1038/ncomms6897}, author = {Wessel, Jennifer and Chu, Audrey Y and Willems, Sara M and Wang, Shuai and Yaghootkar, Hanieh and Brody, Jennifer A and Dauriz, Marco and Hivert, Marie-France and Raghavan, Sridharan and Lipovich, Leonard and Hidalgo, Bertha and Fox, Keolu and Huffman, Jennifer E and An, Ping and Lu, Yingchang and Rasmussen-Torvik, Laura J and Grarup, Niels and Ehm, Margaret G and Li, Li and Baldridge, Abigail S and Stan{\v c}{\'a}kov{\'a}, Alena and Abrol, Ravinder and Besse, C{\'e}line and Boland, Anne and Bork-Jensen, Jette and Fornage, Myriam and Freitag, Daniel F and Garcia, Melissa E and Guo, Xiuqing and Hara, Kazuo and Isaacs, Aaron and Jakobsdottir, Johanna and Lange, Leslie A and Layton, Jill C and Li, Man and Hua Zhao, Jing and Meidtner, Karina and Morrison, Alanna C and Nalls, Mike A and Peters, Marjolein J and Sabater-Lleal, Maria and Schurmann, Claudia and Silveira, Angela and Smith, Albert V and Southam, Lorraine and Stoiber, Marcus H and Strawbridge, Rona J and Taylor, Kent D and Varga, Tibor V and Allin, Kristine H and Amin, Najaf and Aponte, Jennifer L and Aung, Tin and Barbieri, Caterina and Bihlmeyer, Nathan A and Boehnke, Michael and Bombieri, Cristina and Bowden, Donald W and Burns, Sean M and Chen, Yuning and Chen, Yii-DerI and Cheng, Ching-Yu and Correa, Adolfo and Czajkowski, Jacek and Dehghan, Abbas and Ehret, Georg B and Eiriksdottir, Gudny and Escher, Stefan A and Farmaki, Aliki-Eleni and Fr{\r a}nberg, Mattias and Gambaro, Giovanni and Giulianini, Franco and Goddard, William A and Goel, Anuj and Gottesman, Omri and Grove, Megan L and Gustafsson, Stefan and Hai, Yang and Hallmans, G{\"o}ran and Heo, Jiyoung and Hoffmann, Per and Ikram, Mohammad K and Jensen, Richard A and J{\o}rgensen, Marit E and J{\o}rgensen, Torben and Karaleftheri, Maria and Khor, Chiea C and Kirkpatrick, Andrea and Kraja, Aldi T and Kuusisto, Johanna and Lange, Ethan M and Lee, I T and Lee, Wen-Jane and Leong, Aaron and Liao, Jiemin and Liu, Chunyu and Liu, Yongmei and Lindgren, Cecilia M and Linneberg, Allan and Malerba, Giovanni and Mamakou, Vasiliki and Marouli, Eirini and Maruthur, Nisa M and Matchan, Angela and McKean-Cowdin, Roberta and McLeod, Olga and Metcalf, Ginger A and Mohlke, Karen L and Muzny, Donna M and Ntalla, Ioanna and Palmer, Nicholette D and Pasko, Dorota and Peter, Andreas and Rayner, Nigel W and Renstrom, Frida and Rice, Ken and Sala, Cinzia F and Sennblad, Bengt and Serafetinidis, Ioannis and Smith, Jennifer A and Soranzo, Nicole and Speliotes, Elizabeth K and Stahl, Eli A and Stirrups, Kathleen and Tentolouris, Nikos and Thanopoulou, Anastasia and Torres, Mina and Traglia, Michela and Tsafantakis, Emmanouil and Javad, Sundas and Yanek, Lisa R and Zengini, Eleni and Becker, Diane M and Bis, Joshua C and Brown, James B and Cupples, L Adrienne and Hansen, Torben and Ingelsson, Erik and Karter, Andrew J and Lorenzo, Carlos and Mathias, Rasika A and Norris, Jill M and Peloso, Gina M and Sheu, Wayne H-H and Toniolo, Daniela and Vaidya, Dhananjay and Varma, Rohit and Wagenknecht, Lynne E and Boeing, Heiner and Bottinger, Erwin P and Dedoussis, George and Deloukas, Panos and Ferrannini, Ele and Franco, Oscar H and Franks, Paul W and Gibbs, Richard A and Gudnason, Vilmundur and Hamsten, Anders and Harris, Tamara B and Hattersley, Andrew T and Hayward, Caroline and Hofman, Albert and Jansson, Jan-H{\r a}kan and Langenberg, Claudia and Launer, Lenore J and Levy, Daniel and Oostra, Ben A and O{\textquoteright}Donnell, Christopher J and O{\textquoteright}Rahilly, Stephen and Padmanabhan, Sandosh and Pankow, James S and Polasek, Ozren and Province, Michael A and Rich, Stephen S and Ridker, Paul M and Rudan, Igor and Schulze, Matthias B and Smith, Blair H and Uitterlinden, Andr{\'e} G and Walker, Mark and Watkins, Hugh and Wong, Tien Y and Zeggini, Eleftheria and Laakso, Markku and Borecki, Ingrid B and Chasman, Daniel I and Pedersen, Oluf and Psaty, Bruce M and Tai, E Shyong and van Duijn, Cornelia M and Wareham, Nicholas J and Waterworth, Dawn M and Boerwinkle, Eric and Kao, W H Linda and Florez, Jose C and Loos, Ruth J F and Wilson, James G and Frayling, Timothy M and Siscovick, David S and Dupuis, Jos{\'e}e and Rotter, Jerome I and Meigs, James B and Scott, Robert A and Goodarzi, Mark O} } @article {7145, title = {An Empirical Comparison of Joint and Stratified Frameworks for Studying G {\texttimes} E Interactions: Systolic Blood Pressure and Smoking in the CHARGE Gene-Lifestyle Interactions Working Group.}, journal = {Genet Epidemiol}, volume = {40}, year = {2016}, month = {2016 Jul}, pages = {404-15}, abstract = {

Studying gene-environment (G {\texttimes} E) interactions is important, as they extend our knowledge of the genetic architecture of complex traits and may help to identify novel variants not detected via analysis of main effects alone. The main statistical framework for studying G {\texttimes} E interactions uses a single regression model that includes both the genetic main and G {\texttimes} E interaction effects (the "joint" framework). The alternative "stratified" framework combines results from genetic main-effect analyses carried out separately within the exposed and unexposed groups. Although there have been several investigations using theory and simulation, an empirical comparison of the two frameworks is lacking. Here, we compare the two frameworks using results from genome-wide association studies of systolic blood pressure for 3.2 million low frequency and 6.5 million common variants across 20 cohorts of European ancestry, comprising 79,731 individuals. Our cohorts have sample sizes ranging from 456 to 22,983 and include both family-based and population-based samples. In cohort-specific analyses, the two frameworks provided similar inference for population-based cohorts. The agreement was reduced for family-based cohorts. In meta-analyses, agreement between the two frameworks was less than that observed in cohort-specific analyses, despite the increased sample size. In meta-analyses, agreement depended on (1) the minor allele frequency, (2) inclusion of family-based cohorts in meta-analysis, and (3) filtering scheme. The stratified framework appears to approximate the joint framework well only for common variants in population-based cohorts. We conclude that the joint framework is the preferred approach and should be used to control false positives when dealing with low-frequency variants and/or family-based cohorts.

}, issn = {1098-2272}, doi = {10.1002/gepi.21978}, author = {Sung, Yun Ju and Winkler, Thomas W and Manning, Alisa K and Aschard, Hugues and Gudnason, Vilmundur and Harris, Tamara B and Smith, Albert V and Boerwinkle, Eric and Brown, Michael R and Morrison, Alanna C and Fornage, Myriam and Lin, Li-An and Richard, Melissa and Bartz, Traci M and Psaty, Bruce M and Hayward, Caroline and Polasek, Ozren and Marten, Jonathan and Rudan, Igor and Feitosa, Mary F and Kraja, Aldi T and Province, Michael A and Deng, Xuan and Fisher, Virginia A and Zhou, Yanhua and Bielak, Lawrence F and Smith, Jennifer and Huffman, Jennifer E and Padmanabhan, Sandosh and Smith, Blair H and Ding, Jingzhong and Liu, Yongmei and Lohman, Kurt and Bouchard, Claude and Rankinen, Tuomo and Rice, Treva K and Arnett, Donna and Schwander, Karen and Guo, Xiuqing and Palmas, Walter and Rotter, Jerome I and Alfred, Tamuno and Bottinger, Erwin P and Loos, Ruth J F and Amin, Najaf and Franco, Oscar H and van Duijn, Cornelia M and Vojinovic, Dina and Chasman, Daniel I and Ridker, Paul M and Rose, Lynda M and Kardia, Sharon and Zhu, Xiaofeng and Rice, Kenneth and Borecki, Ingrid B and Rao, Dabeeru C and Gauderman, W James and Cupples, L Adrienne} } @article {7136, title = {General Framework for Meta-Analysis of Haplotype Association Tests.}, journal = {Genet Epidemiol}, volume = {40}, year = {2016}, month = {2016 Apr}, pages = {244-52}, abstract = {

For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta-analysis has emerged as the method of choice to combine results from multiple studies. Many meta-analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta-analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two-stage meta-analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta-analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype-specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type-I error rate, and our approach is more powerful than inverse variance weighted meta-analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose-associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates.

}, issn = {1098-2272}, doi = {10.1002/gepi.21959}, author = {Wang, Shuai and Zhao, Jing Hua and An, Ping and Guo, Xiuqing and Jensen, Richard A and Marten, Jonathan and Huffman, Jennifer E and Meidtner, Karina and Boeing, Heiner and Campbell, Archie and Rice, Kenneth M and Scott, Robert A and Yao, Jie and Schulze, Matthias B and Wareham, Nicholas J and Borecki, Ingrid B and Province, Michael A and Rotter, Jerome I and Hayward, Caroline and Goodarzi, Mark O and Meigs, James B and Dupuis, Jos{\'e}e} } @article {7257, title = {Multiethnic Exome-Wide Association Study of Subclinical Atherosclerosis.}, journal = {Circ Cardiovasc Genet}, year = {2016}, month = {2016 Nov 21}, abstract = {

BACKGROUND: -The burden of subclinical atherosclerosis in asymptomatic individuals is heritable and associated with elevated risk of developing clinical coronary heart disease (CHD). We sought to identify genetic variants in protein-coding regions associated with subclinical atherosclerosis and the risk of subsequent CHD.

METHODS AND RESULTS: -We studied a total of 25,109 European ancestry and African-American participants with coronary artery calcification (CAC) measured by cardiac computed tomography and 52,869 with common carotid intima media thickness (CIMT) measured by ultrasonography within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Participants were genotyped for 247,870 DNA sequence variants (231,539 in exons) across the genome. A meta-analysis of exome-wide association studies was performed across cohorts for CAC and CIMT. APOB p.Arg3527Gln was associated with four-fold excess CAC (P = 3{\texttimes}10(-10)). The APOE ε2 allele (p.Arg176Cys) was associated with both 22.3\% reduced CAC (P = 1{\texttimes}10(-12)) and 1.4\% reduced CIMT (P = 4{\texttimes}10(-14)) in carriers compared with non-carriers. In secondary analyses conditioning on LDL cholesterol concentration, the ε2 protective association with CAC, although attenuated, remained strongly significant. Additionally, the presence of ε2 was associated with reduced risk for CHD (OR 0.77; P = 1{\texttimes}10(-11)).

CONCLUSIONS: -Exome-wide association meta-analysis demonstrates that protein-coding variants in APOB and APOE associate with subclinical atherosclerosis. APOE ε2 represents the first significant association for multiple subclinical atherosclerosis traits across multiple ethnicities as well as clinical CHD.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.116.001572}, author = {Natarajan, Pradeep and Bis, Joshua C and Bielak, Lawrence F and Cox, Amanda J and D{\"o}rr, Marcus and Feitosa, Mary F and Franceschini, Nora and Guo, Xiuqing and Hwang, Shih-Jen and Isaacs, Aaron and Jhun, Min A and Kavousi, Maryam and Li-Gao, Ruifang and Lyytik{\"a}inen, Leo-Pekka and Marioni, Riccardo E and Schminke, Ulf and Stitziel, Nathan O and Tada, Hayato and van Setten, Jessica and Smith, Albert V and Vojinovic, Dina and Yanek, Lisa R and Yao, Jie and Yerges-Armstrong, Laura M and Amin, Najaf and Baber, Usman and Borecki, Ingrid B and Carr, J Jeffrey and Chen, Yii-Der Ida and Cupples, L Adrienne and de Jong, Pim A and de Koning, Harry and de Vos, Bob D and Demirkan, Ayse and Fuster, Valentin and Franco, Oscar H and Goodarzi, Mark O and Harris, Tamara B and Heckbert, Susan R and Heiss, Gerardo and Hoffmann, Udo and Hofman, Albert and I{\v s}gum, Ivana and Jukema, J Wouter and K{\"a}h{\"o}nen, Mika and Kardia, Sharon L R and Kral, Brian G and Launer, Lenore J and Massaro, Joseph and Mehran, Roxana and Mitchell, Braxton D and Mosley, Thomas H and de Mutsert, Ren{\'e}e and Newman, Anne B and Nguyen, Khanh-Dung and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Oudkerk, Matthijs and Pankow, James S and Peloso, Gina M and Post, Wendy and Province, Michael A and Raffield, Laura M and Raitakari, Olli T and Reilly, Dermot F and Rivadeneira, Fernando and Rosendaal, Frits and Sartori, Samantha and Taylor, Kent D and Teumer, Alexander and Trompet, Stella and Turner, Stephen T and Uitterlinden, Andr{\'e} G and Vaidya, Dhananjay and van der Lugt, Aad and V{\"o}lker, Uwe and Wardlaw, Joanna M and Wassel, Christina L and Weiss, Stefan and Wojczynski, Mary K and Becker, Diane M and Becker, Lewis C and Boerwinkle, Eric and Bowden, Donald W and Deary, Ian J and Dehghan, Abbas and Felix, Stephan B and Gudnason, Vilmundur and Lehtim{\"a}ki, Terho and Mathias, Rasika and Mook-Kanamori, Dennis O and Psaty, Bruce M and Rader, Daniel J and Rotter, Jerome I and Wilson, James G and van Duijn, Cornelia M and V{\"o}lzke, Henry and Kathiresan, Sekar and Peyser, Patricia A and O{\textquoteright}Donnell, Christopher J} } @article {7141, title = {Trans-ethnic Meta-analysis and Functional Annotation Illuminates the~Genetic Architecture of Fasting Glucose and Insulin.}, journal = {Am J Hum Genet}, volume = {99}, year = {2016}, month = {2016 Jul 7}, pages = {56-75}, abstract = {

Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2016.05.006}, author = {Liu, Ching-Ti and Raghavan, Sridharan and Maruthur, Nisa and Kabagambe, Edmond Kato and Hong, Jaeyoung and Ng, Maggie C Y and Hivert, Marie-France and Lu, Yingchang and An, Ping and Bentley, Amy R and Drolet, Anne M and Gaulton, Kyle J and Guo, Xiuqing and Armstrong, Loren L and Irvin, Marguerite R and Li, Man and Lipovich, Leonard and Rybin, Denis V and Taylor, Kent D and Agyemang, Charles and Palmer, Nicholette D and Cade, Brian E and Chen, Wei-Min and Dauriz, Marco and Delaney, Joseph A C and Edwards, Todd L and Evans, Daniel S and Evans, Michele K and Lange, Leslie A and Leong, Aaron and Liu, Jingmin and Liu, Yongmei and Nayak, Uma and Patel, Sanjay R and Porneala, Bianca C and Rasmussen-Torvik, Laura J and Snijder, Marieke B and Stallings, Sarah C and Tanaka, Toshiko and Yanek, Lisa R and Zhao, Wei and Becker, Diane M and Bielak, Lawrence F and Biggs, Mary L and Bottinger, Erwin P and Bowden, Donald W and Chen, Guanjie and Correa, Adolfo and Couper, David J and Crawford, Dana C and Cushman, Mary and Eicher, John D and Fornage, Myriam and Franceschini, Nora and Fu, Yi-Ping and Goodarzi, Mark O and Gottesman, Omri and Hara, Kazuo and Harris, Tamara B and Jensen, Richard A and Johnson, Andrew D and Jhun, Min A and Karter, Andrew J and Keller, Margaux F and Kho, Abel N and Kizer, Jorge R and Krauss, Ronald M and Langefeld, Carl D and Li, Xiaohui and Liang, Jingling and Liu, Simin and Lowe, William L and Mosley, Thomas H and North, Kari E and Pacheco, Jennifer A and Peyser, Patricia A and Patrick, Alan L and Rice, Kenneth M and Selvin, Elizabeth and Sims, Mario and Smith, Jennifer A and Tajuddin, Salman M and Vaidya, Dhananjay and Wren, Mary P and Yao, Jie and Zhu, Xiaofeng and Ziegler, Julie T and Zmuda, Joseph M and Zonderman, Alan B and Zwinderman, Aeilko H and Adeyemo, Adebowale and Boerwinkle, Eric and Ferrucci, Luigi and Hayes, M Geoffrey and Kardia, Sharon L R and Miljkovic, Iva and Pankow, James S and Rotimi, Charles N and Sale, Mich{\`e}le M and Wagenknecht, Lynne E and Arnett, Donna K and Chen, Yii-Der Ida and Nalls, Michael A and Province, Michael A and Kao, W H Linda and Siscovick, David S and Psaty, Bruce M and Wilson, James G and Loos, Ruth J F and Dupuis, Jos{\'e}e and Rich, Stephen S and Florez, Jose C and Rotter, Jerome I and Morris, Andrew P and Meigs, James B} } @article {7588, title = {Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent.}, journal = {Mol Nutr Food Res}, year = {2017}, month = {2017 Sep 21}, abstract = {

SCOPE: Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter-individual variability in associations between body weight and dairy consumption.

METHODS AND RESULTS: A genome-wide interaction study to discover genetic variants that account for variation in BMI in the context of low-fat, high-fat and total dairy intake in cross-sectional analysis was conducted. Data from nine discovery studies (up to 25 513 European descent individuals) were meta-analyzed. Twenty-six genetic variants reached the selected significance threshold (p-interaction <10-7) , and six independent variants (LINC01512-rs7751666, PALM2/AKAP2-rs914359, ACTA2-rs1388, PPP1R12A-rs7961195, LINC00333-rs9635058, AC098847.1-rs1791355) were evaluated meta-analytically for replication of interaction in up to 17 675 individuals. Variant rs9635058 (128 kb 3{\textquoteright} of LINC00333) was replicated (p-interaction = 0.004). In the discovery cohorts, rs9635058 interacted with dairy (p-interaction = 7.36 {\texttimes} 10-8) such that each serving of low-fat dairy was associated with 0.225 kg m-2 lower BMI per each additional copy of the effect allele (A). A second genetic variant (ACTA2-rs1388) approached interaction replication significance for low-fat dairy exposure.

CONCLUSION: Body weight responses to dairy intake may be modified by genotype, in that greater dairy intake may protect a genetic subgroup from higher body weight.

}, issn = {1613-4133}, doi = {10.1002/mnfr.201700347}, author = {Smith, Caren E and Follis, Jack L and Dashti, Hassan S and Tanaka, Toshiko and Graff, Mariaelisa and Fretts, Amanda M and Kilpel{\"a}inen, Tuomas O and Wojczynski, Mary K and Richardson, Kris and Nalls, Mike A and Schulz, Christina-Alexandra and Liu, Yongmei and Frazier-Wood, Alexis C and van Eekelen, Esther and Wang, Carol and de Vries, Paul S and Mikkil{\"a}, Vera and Rohde, Rebecca and Psaty, Bruce M and Hansen, Torben and Feitosa, Mary F and Lai, Chao-Qiang and Houston, Denise K and Ferruci, Luigi and Ericson, Ulrika and Wang, Zhe and de Mutsert, Ren{\'e}e and Oddy, Wendy H and de Jonge, Ester A L and Sepp{\"a}l{\"a}, Ilkka and Justice, Anne E and Lemaitre, Rozenn N and S{\o}rensen, Thorkild I A and Province, Michael A and Parnell, Laurence D and Garcia, Melissa E and Bandinelli, Stefania and Orho-Melander, Marju and Rich, Stephen S and Rosendaal, Frits R and Pennell, Craig E and Kiefte-de Jong, Jessica C and K{\"a}h{\"o}nen, Mika and Young, Kristin L and Pedersen, Oluf and Aslibekyan, Stella and Rotter, Jerome I and Mook-Kanamori, Dennis O and Zillikens, M Carola and Raitakari, Olli T and North, Kari E and Overvad, Kim and Arnett, Donna K and Hofman, Albert and Lehtim{\"a}ki, Terho and Tj{\o}nneland, Anne and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Franco, Oscar H and German, J Bruce and Siscovick, David S and Cupples, L Adrienne and Ordovas, Jose M} } @article {7569, title = {New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475 000 Individuals.}, journal = {Circ Cardiovasc Genet}, volume = {10}, year = {2017}, month = {2017 Oct}, abstract = {

BACKGROUND: Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association.

METHODS AND RESULTS: Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (P<5{\texttimes}10-8) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant.

CONCLUSIONS: We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.117.001778}, author = {Kraja, Aldi T and Cook, James P and Warren, Helen R and Surendran, Praveen and Liu, Chunyu and Evangelou, Evangelos and Manning, Alisa K and Grarup, Niels and Drenos, Fotios and Sim, Xueling and Smith, Albert Vernon and Amin, Najaf and Blakemore, Alexandra I F and Bork-Jensen, Jette and Brandslund, Ivan and Farmaki, Aliki-Eleni and Fava, Cristiano and Ferreira, Teresa and Herzig, Karl-Heinz and Giri, Ayush and Giulianini, Franco and Grove, Megan L and Guo, Xiuqing and Harris, Sarah E and Have, Christian T and Havulinna, Aki S and Zhang, He and J{\o}rgensen, Marit E and K{\"a}r{\"a}j{\"a}m{\"a}ki, AnneMari and Kooperberg, Charles and Linneberg, Allan and Little, Louis and Liu, Yongmei and Bonnycastle, Lori L and Lu, Yingchang and M{\"a}gi, Reedik and Mahajan, Anubha and Malerba, Giovanni and Marioni, Riccardo E and Mei, Hao and Menni, Cristina and Morrison, Alanna C and Padmanabhan, Sandosh and Palmas, Walter and Poveda, Alaitz and Rauramaa, Rainer and Rayner, Nigel William and Riaz, Muhammad and Rice, Ken and Richard, Melissa A and Smith, Jennifer A and Southam, Lorraine and Stan{\v c}{\'a}kov{\'a}, Alena and Stirrups, Kathleen E and Tragante, Vinicius and Tuomi, Tiinamaija and Tzoulaki, Ioanna and Varga, Tibor V and Weiss, Stefan and Yiorkas, Andrianos M and Young, Robin and Zhang, Weihua and Barnes, Michael R and Cabrera, Claudia P and Gao, He and Boehnke, Michael and Boerwinkle, Eric and Chambers, John C and Connell, John M and Christensen, Cramer K and de Boer, Rudolf A and Deary, Ian J and Dedoussis, George and Deloukas, Panos and Dominiczak, Anna F and D{\"o}rr, Marcus and Joehanes, Roby and Edwards, Todd L and Esko, T{\~o}nu and Fornage, Myriam and Franceschini, Nora and Franks, Paul W and Gambaro, Giovanni and Groop, Leif and Hallmans, G{\"o}ran and Hansen, Torben and Hayward, Caroline and Heikki, Oksa and Ingelsson, Erik and Tuomilehto, Jaakko and Jarvelin, Marjo-Riitta and Kardia, Sharon L R and Karpe, Fredrik and Kooner, Jaspal S and Lakka, Timo A and Langenberg, Claudia and Lind, Lars and Loos, Ruth J F and Laakso, Markku and McCarthy, Mark I and Melander, Olle and Mohlke, Karen L and Morris, Andrew P and Palmer, Colin N A and Pedersen, Oluf and Polasek, Ozren and Poulter, Neil R and Province, Michael A and Psaty, Bruce M and Ridker, Paul M and Rotter, Jerome I and Rudan, Igor and Salomaa, Veikko and Samani, Nilesh J and Sever, Peter J and Skaaby, Tea and Stafford, Jeanette M and Starr, John M and van der Harst, Pim and van der Meer, Peter and van Duijn, Cornelia M and Vergnaud, Anne-Claire and Gudnason, Vilmundur and Wareham, Nicholas J and Wilson, James G and Willer, Cristen J and Witte, Daniel R and Zeggini, Eleftheria and Saleheen, Danish and Butterworth, Adam S and Danesh, John and Asselbergs, Folkert W and Wain, Louise V and Ehret, Georg B and Chasman, Daniel I and Caulfield, Mark J and Elliott, Paul and Lindgren, Cecilia M and Levy, Daniel and Newton-Cheh, Christopher and Munroe, Patricia B and Howson, Joanna M M} } @article {7686, title = {A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure.}, journal = {Am J Hum Genet}, volume = {102}, year = {2018}, month = {2018 Mar 01}, pages = {375-400}, abstract = {

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined \~{}18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5~{\texttimes} 10) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5~{\texttimes} 10). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2018.01.015}, author = {Sung, Yun J and Winkler, Thomas W and de Las Fuentes, Lisa and Bentley, Amy R and Brown, Michael R and Kraja, Aldi T and Schwander, Karen and Ntalla, Ioanna and Guo, Xiuqing and Franceschini, Nora and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Marten, Jonathan and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Kilpel{\"a}inen, Tuomas O and Richard, Melissa A and Noordam, Raymond and Aslibekyan, Stella and Aschard, Hugues and Bartz, Traci M and Dorajoo, Rajkumar and Liu, Yongmei and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert Vernon and Tajuddin, Salman M and Tayo, Bamidele O and Warren, Helen R and Zhao, Wei and Zhou, Yanhua and Matoba, Nana and Sofer, Tamar and Alver, Maris and Amini, Marzyeh and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gandin, Ilaria and Gao, Chuan and Giulianini, Franco and Goel, Anuj and Harris, Sarah E and Hartwig, Fernando Pires and Horimoto, Andrea R V R and Hsu, Fang-Chi and Jackson, Anne U and K{\"a}h{\"o}nen, Mika and Kasturiratne, Anuradhani and Kuhnel, Brigitte and Leander, Karin and Lee, Wen-Jane and Lin, Keng-Hung and {\textquoteright}an Luan, Jian and McKenzie, Colin A and Meian, He and Nelson, Christopher P and Rauramaa, Rainer and Schupf, Nicole and Scott, Robert A and Sheu, Wayne H H and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and van der Most, Peter J and Varga, Tibor V and Wang, Heming and Wang, Yajuan and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Alfred, Tamuno and Amin, Najaf and Arking, Dan and Aung, Tin and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Braund, Peter S and Brody, Jennifer A and Broeckel, Ulrich and Cabrera, Claudia P and Cade, Brian and Caizheng, Yu and Campbell, Archie and Canouil, Micka{\"e}l and Chakravarti, Aravinda and Chauhan, Ganesh and Christensen, Kaare and Cocca, Massimiliano and Collins, Francis S and Connell, John M and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Debette, Stephanie and D{\"o}rr, Marcus and Duan, Qing and Eaton, Charles B and Ehret, Georg and Evangelou, Evangelos and Faul, Jessica D and Fisher, Virginia A and Forouhi, Nita G and Franco, Oscar H and Friedlander, Yechiel and Gao, He and Gigante, Bruna and Graff, Misa and Gu, C Charles and Gu, Dongfeng and Gupta, Preeti and Hagenaars, Saskia P and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hofman, Albert and Howard, Barbara V and Hunt, Steven and Irvin, Marguerite R and Jia, Yucheng and Joehanes, Roby and Justice, Anne E and Katsuya, Tomohiro and Kaufman, Joel and Kerrison, Nicola D and Khor, Chiea Chuen and Koh, Woon-Puay and Koistinen, Heikki A and Komulainen, Pirjo and Kooperberg, Charles and Krieger, Jose E and Kubo, Michiaki and Kuusisto, Johanna and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Lim, Sing Hui and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Jingmin and Liu, Kiang and Liu, Yeheng and Loh, Marie and Lohman, Kurt K and Long, Jirong and Louie, Tin and M{\"a}gi, Reedik and Mahajan, Anubha and Meitinger, Thomas and Metspalu, Andres and Milani, Lili and Momozawa, Yukihide and Morris, Andrew P and Mosley, Thomas H and Munson, Peter and Murray, Alison D and Nalls, Mike A and Nasri, Ubaydah and Norris, Jill M and North, Kari and Ogunniyi, Adesola and Padmanabhan, Sandosh and Palmas, Walter R and Palmer, Nicholette D and Pankow, James S and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Raitakari, Olli T and Renstrom, Frida and Rice, Treva K and Ridker, Paul M and Robino, Antonietta and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Sabanayagam, Charumathi and Salako, Babatunde L and Sandow, Kevin and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Seshadri, Sudha and Sever, Peter and Sitlani, Colleen M and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and Waldenberger, Melanie and Wang, Lihua and Wang, Ya X and Wei, Wen Bin and Williams, Christine and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Yuan, Jian-Min and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Chen, Yii-Der Ida and de Faire, Ulf and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Forrester, Terrence and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo Lessa and Hung, Yi-Jen and Jonas, Jost B and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Lehtim{\"a}ki, Terho and Liang, Kae-Woei and Magnusson, Patrik K E and Newman, Anne B and Oldehinkel, Albertine J and Pereira, Alexandre C and Redline, Susan and Rettig, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zheng, Wei and Kamatani, Yoichiro and Laurie, Cathy C and Bouchard, Claude and Cooper, Richard S and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Kritchevsky, Stephen B and Levy, Daniel and O{\textquoteright}Connell, Jeff R and Psaty, Bruce M and van Dam, Rob M and Sims, Mario and Arnett, Donna K and Mook-Kanamori, Dennis O and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and Fornage, Myriam and Rotimi, Charles N and Province, Michael A and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Reiner, Alex P and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Caulfield, Mark J and Elliott, Paul and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Cupples, L Adrienne and Rao, Dabeeru C and Chasman, Daniel I} } @article {7795, title = {Meta-analysis of exome array data identifies six novel genetic loci for lung function.}, journal = {Wellcome Open Res}, volume = {3}, year = {2018}, month = {2018}, pages = {4}, abstract = {

Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV ), forced vital capacity (FVC) and the ratio of FEV to FVC (FEV /FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. We identified significant (P<2{\textperiodcentered}8x10 ) associations with six SNPs: a nonsynonymous variant in , which is predicted to be damaging, three intronic SNPs ( and ) and two intergenic SNPs near to and Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including and . Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.

}, issn = {2398-502X}, doi = {10.12688/wellcomeopenres.12583.3}, author = {Jackson, Victoria E and Latourelle, Jeanne C and Wain, Louise V and Smith, Albert V and Grove, Megan L and Bartz, Traci M and Obeidat, Ma{\textquoteright}en and Province, Michael A and Gao, Wei and Qaiser, Beenish and Porteous, David J and Cassano, Patricia A and Ahluwalia, Tarunveer S and Grarup, Niels and Li, Jin and Altmaier, Elisabeth and Marten, Jonathan and Harris, Sarah E and Manichaikul, Ani and Pottinger, Tess D and Li-Gao, Ruifang and Lind-Thomsen, Allan and Mahajan, Anubha and Lahousse, Lies and Imboden, Medea and Teumer, Alexander and Prins, Bram and Lyytik{\"a}inen, Leo-Pekka and Eiriksdottir, Gudny and Franceschini, Nora and Sitlani, Colleen M and Brody, Jennifer A and Boss{\'e}, Yohan and Timens, Wim and Kraja, Aldi and Loukola, Anu and Tang, Wenbo and Liu, Yongmei and Bork-Jensen, Jette and Justesen, Johanne M and Linneberg, Allan and Lange, Leslie A and Rawal, Rajesh and Karrasch, Stefan and Huffman, Jennifer E and Smith, Blair H and Davies, Gail and Burkart, Kristin M and Mychaleckyj, Josyf C and Bonten, Tobias N and Enroth, Stefan and Lind, Lars and Brusselle, Guy G and Kumar, Ashish and Stubbe, Beate and K{\"a}h{\"o}nen, Mika and Wyss, Annah B and Psaty, Bruce M and Heckbert, Susan R and Hao, Ke and Rantanen, Taina and Kritchevsky, Stephen B and Lohman, Kurt and Skaaby, Tea and Pisinger, Charlotta and Hansen, Torben and Schulz, Holger and Polasek, Ozren and Campbell, Archie and Starr, John M and Rich, Stephen S and Mook-Kanamori, Dennis O and Johansson, Asa and Ingelsson, Erik and Uitterlinden, Andr{\'e} G and Weiss, Stefan and Raitakari, Olli T and Gudnason, Vilmundur and North, Kari E and Gharib, Sina A and Sin, Don D and Taylor, Kent D and O{\textquoteright}Connor, George T and Kaprio, Jaakko and Harris, Tamara B and Pederson, Oluf and Vestergaard, Henrik and Wilson, James G and Strauch, Konstantin and Hayward, Caroline and Kerr, Shona and Deary, Ian J and Barr, R Graham and de Mutsert, Ren{\'e}e and Gyllensten, Ulf and Morris, Andrew P and Ikram, M Arfan and Probst-Hensch, Nicole and Gl{\"a}ser, Sven and Zeggini, Eleftheria and Lehtim{\"a}ki, Terho and Strachan, David P and Dupuis, Jos{\'e}e and Morrison, Alanna C and Hall, Ian P and Tobin, Martin D and London, Stephanie J} } @article {7819, title = {Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Jul 30}, pages = {2976}, abstract = {

Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of lung function and clinical relevance of implicated loci.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-05369-0}, author = {Wyss, Annah B and Sofer, Tamar and Lee, Mi Kyeong and Terzikhan, Natalie and Nguyen, Jennifer N and Lahousse, Lies and Latourelle, Jeanne C and Smith, Albert Vernon and Bartz, Traci M and Feitosa, Mary F and Gao, Wei and Ahluwalia, Tarunveer S and Tang, Wenbo and Oldmeadow, Christopher and Duan, Qing and de Jong, Kim and Wojczynski, Mary K and Wang, Xin-Qun and Noordam, Raymond and Hartwig, Fernando Pires and Jackson, Victoria E and Wang, Tianyuan and Obeidat, Ma{\textquoteright}en and Hobbs, Brian D and Huan, Tianxiao and Gui, Hongsheng and Parker, Margaret M and Hu, Donglei and Mogil, Lauren S and Kichaev, Gleb and Jin, Jianping and Graff, Mariaelisa and Harris, Tamara B and Kalhan, Ravi and Heckbert, Susan R and Paternoster, Lavinia and Burkart, Kristin M and Liu, Yongmei and Holliday, Elizabeth G and Wilson, James G and Vonk, Judith M and Sanders, Jason L and Barr, R Graham and de Mutsert, Ren{\'e}e and Menezes, Ana Maria Baptista and Adams, Hieab H H and van den Berge, Maarten and Joehanes, Roby and Levin, Albert M and Liberto, Jennifer and Launer, Lenore J and Morrison, Alanna C and Sitlani, Colleen M and Celed{\'o}n, Juan C and Kritchevsky, Stephen B and Scott, Rodney J and Christensen, Kaare and Rotter, Jerome I and Bonten, Tobias N and Wehrmeister, Fernando C{\'e}sar and Boss{\'e}, Yohan and Xiao, Shujie and Oh, Sam and Franceschini, Nora and Brody, Jennifer A and Kaplan, Robert C and Lohman, Kurt and McEvoy, Mark and Province, Michael A and Rosendaal, Frits R and Taylor, Kent D and Nickle, David C and Williams, L Keoki and Burchard, Esteban G and Wheeler, Heather E and Sin, Don D and Gudnason, Vilmundur and North, Kari E and Fornage, Myriam and Psaty, Bruce M and Myers, Richard H and O{\textquoteright}Connor, George and Hansen, Torben and Laurie, Cathy C and Cassano, Patricia A and Sung, Joohon and Kim, Woo Jin and Attia, John R and Lange, Leslie and Boezen, H Marike and Thyagarajan, Bharat and Rich, Stephen S and Mook-Kanamori, Dennis O and Horta, Bernardo Lessa and Uitterlinden, Andr{\'e} G and Im, Hae Kyung and Cho, Michael H and Brusselle, Guy G and Gharib, Sina A and Dupuis, Jos{\'e}e and Manichaikul, Ani and London, Stephanie J} } @article {7792, title = {Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries.}, journal = {PLoS One}, volume = {13}, year = {2018}, month = {2018}, pages = {e0198166}, abstract = {

Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.

}, issn = {1932-6203}, doi = {10.1371/journal.pone.0198166}, author = {Feitosa, Mary F and Kraja, Aldi T and Chasman, Daniel I and Sung, Yun J and Winkler, Thomas W and Ntalla, Ioanna and Guo, Xiuqing and Franceschini, Nora and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Marten, Jonathan and Musani, Solomon K and Li, Changwei and Bentley, Amy R and Brown, Michael R and Schwander, Karen and Richard, Melissa A and Noordam, Raymond and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Dorajoo, Rajkumar and Fisher, Virginia and Hartwig, Fernando P and Horimoto, Andrea R V R and Lohman, Kurt K and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Wojczynski, Mary K and Alver, Maris and Boissel, Mathilde and Cai, Qiuyin and Campbell, Archie and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Jackson, Anne U and K{\"a}h{\"o}nen, Mika and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Laguzzi, Federica and Luan, Jian{\textquoteright}an and Matoba, Nana and Nolte, Ilja M and Padmanabhan, Sandosh and Riaz, Muhammad and Rueedi, Rico and Robino, Antonietta and Said, M Abdullah and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Vitart, Veronique and Wang, Yajuan and Ware, Erin B and Warren, Helen R and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Aung, Tin and Boerwinkle, Eric and Borecki, Ingrid and Broeckel, Ulrich and Brown, Morris and Brumat, Marco and Burke, Gregory L and Canouil, Micka{\"e}l and Chakravarti, Aravinda and Charumathi, Sabanayagam and Ida Chen, Yii-Der and Connell, John M and Correa, Adolfo and de Las Fuentes, Lisa and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Deng, Xuan and Ding, Jingzhong and Duan, Qing and Eaton, Charles B and Ehret, Georg and Eppinga, Ruben N and Evangelou, Evangelos and Faul, Jessica D and Felix, Stephan B and Forouhi, Nita G and Forrester, Terrence and Franco, Oscar H and Friedlander, Yechiel and Gandin, Ilaria and Gao, He and Ghanbari, Mohsen and Gigante, Bruna and Gu, C Charles and Gu, Dongfeng and Hagenaars, Saskia P and Hallmans, G{\"o}ran and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Howard, Barbara V and Ikram, M Arfan and John, Ulrich and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Krieger, Jose E and Kritchevsky, Stephen B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Lin, Shiow and Liu, Jianjun and Liu, Jingmin and Loh, Marie and Louie, Tin and M{\"a}gi, Reedik and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Momozawa, Yukihide and Nalls, Mike A and Nelson, Christopher P and Sotoodehnia, Nona and Norris, Jill M and O{\textquoteright}Connell, Jeff R and Palmer, Nicholette D and Perls, Thomas and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Poulter, Neil and Raffel, Leslie J and Raitakari, Olli T and Roll, Kathryn and Rose, Lynda M and Rosendaal, Frits R and Rotter, Jerome I and Schmidt, Carsten O and Schreiner, Pamela J and Schupf, Nicole and Scott, William R and Sever, Peter S and Shi, Yuan and Sidney, Stephen and Sims, Mario and Sitlani, Colleen M and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Stringham, Heather M and Tan, Nicholas Y Q and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Turner, Stephen T and Uitterlinden, Andr{\'e} G and Vollenweider, Peter and Waldenberger, Melanie and Wang, Lihua and Wang, Ya Xing and Wei, Wen Bin and Williams, Christine and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Jonas, Jost Bruno and Kamatani, Yoichiro and Kato, Norihiro and Kooner, Jaspal S and Kutalik, Zolt{\'a}n and Laakso, Markku and Laurie, Cathy C and Leander, Karin and Lehtim{\"a}ki, Terho and Study, Lifelines Cohort and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Polasek, Ozren and Porteous, David J and Rauramaa, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zheng, Wei and Bouchard, Claude and Christensen, Kaare and Evans, Michele K and Gudnason, Vilmundur and Horta, Bernardo L and Kardia, Sharon L R and Liu, Yongmei and Pereira, Alexandre C and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Gauderman, W James and Zhu, Xiaofeng and Mook-Kanamori, Dennis O and Fornage, Myriam and Rotimi, Charles N and Cupples, L Adrienne and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Kooperberg, Charles and Palmas, Walter and Rice, Kenneth and Morrison, Alanna C and Elliott, Paul and Caulfield, Mark J and Munroe, Patricia B and Rao, Dabeeru C and Province, Michael A and Levy, Daniel} } @article {7668, title = {Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Apr}, pages = {559-571}, abstract = {

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 {\texttimes} 10); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio <=1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent {\textquoteright}false leads{\textquoteright} with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0084-1}, author = {Mahajan, Anubha and Wessel, Jennifer and Willems, Sara M and Zhao, Wei and Robertson, Neil R and Chu, Audrey Y and Gan, Wei and Kitajima, Hidetoshi and Taliun, Daniel and Rayner, N William and Guo, Xiuqing and Lu, Yingchang and Li, Man and Jensen, Richard A and Hu, Yao and Huo, Shaofeng and Lohman, Kurt K and Zhang, Weihua and Cook, James P and Prins, Bram Peter and Flannick, Jason and Grarup, Niels and Trubetskoy, Vassily Vladimirovich and Kravic, Jasmina and Kim, Young Jin and Rybin, Denis V and Yaghootkar, Hanieh and M{\"u}ller-Nurasyid, Martina and Meidtner, Karina and Li-Gao, Ruifang and Varga, Tibor V and Marten, Jonathan and Li, Jin and Smith, Albert Vernon and An, Ping and Ligthart, Symen and Gustafsson, Stefan and Malerba, Giovanni and Demirkan, Ayse and Tajes, Juan Fernandez and Steinthorsdottir, Valgerdur and Wuttke, Matthias and Lecoeur, C{\'e}cile and Preuss, Michael and Bielak, Lawrence F and Graff, Marielisa and Highland, Heather M and Justice, Anne E and Liu, Dajiang J and Marouli, Eirini and Peloso, Gina Marie and Warren, Helen R and Afaq, Saima and Afzal, Shoaib and Ahlqvist, Emma and Almgren, Peter and Amin, Najaf and Bang, Lia B and Bertoni, Alain G and Bombieri, Cristina and Bork-Jensen, Jette and Brandslund, Ivan and Brody, Jennifer A and Burtt, Noel P and Canouil, Micka{\"e}l and Chen, Yii-Der Ida and Cho, Yoon Shin and Christensen, Cramer and Eastwood, Sophie V and Eckardt, Kai-Uwe and Fischer, Krista and Gambaro, Giovanni and Giedraitis, Vilmantas and Grove, Megan L and de Haan, Hugoline G and Hackinger, Sophie and Hai, Yang and Han, Sohee and Tybj{\ae}rg-Hansen, Anne and Hivert, Marie-France and Isomaa, Bo and J{\"a}ger, Susanne and J{\o}rgensen, Marit E and J{\o}rgensen, Torben and K{\"a}r{\"a}j{\"a}m{\"a}ki, AnneMari and Kim, Bong-Jo and Kim, Sung Soo and Koistinen, Heikki A and Kovacs, Peter and Kriebel, Jennifer and Kronenberg, Florian and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Jung-Jin and Lehne, Benjamin and Li, Huaixing and Lin, Keng-Hung and Linneberg, Allan and Liu, Ching-Ti and Liu, Jun and Loh, Marie and M{\"a}gi, Reedik and Mamakou, Vasiliki and McKean-Cowdin, Roberta and Nadkarni, Girish and Neville, Matt and Nielsen, Sune F and Ntalla, Ioanna and Peyser, Patricia A and Rathmann, Wolfgang and Rice, Kenneth and Rich, Stephen S and Rode, Line and Rolandsson, Olov and Sch{\"o}nherr, Sebastian and Selvin, Elizabeth and Small, Kerrin S and Stan{\v c}{\'a}kov{\'a}, Alena and Surendran, Praveen and Taylor, Kent D and Teslovich, Tanya M and Thorand, Barbara and Thorleifsson, Gudmar and Tin, Adrienne and T{\"o}njes, Anke and Varbo, Anette and Witte, Daniel R and Wood, Andrew R and Yajnik, Pranav and Yao, Jie and Yengo, Loic and Young, Robin and Amouyel, Philippe and Boeing, Heiner and Boerwinkle, Eric and Bottinger, Erwin P and Chowdhury, Rajiv and Collins, Francis S and Dedoussis, George and Dehghan, Abbas and Deloukas, Panos and Ferrario, Marco M and Ferrieres, Jean and Florez, Jose C and Frossard, Philippe and Gudnason, Vilmundur and Harris, Tamara B and Heckbert, Susan R and Howson, Joanna M M and Ingelsson, Martin and Kathiresan, Sekar and Kee, Frank and Kuusisto, Johanna and Langenberg, Claudia and Launer, Lenore J and Lindgren, Cecilia M and M{\"a}nnist{\"o}, Satu and Meitinger, Thomas and Melander, Olle and Mohlke, Karen L and Moitry, Marie and Morris, Andrew D and Murray, Alison D and de Mutsert, Ren{\'e}e and Orho-Melander, Marju and Owen, Katharine R and Perola, Markus and Peters, Annette and Province, Michael A and Rasheed, Asif and Ridker, Paul M and Rivadineira, Fernando and Rosendaal, Frits R and Rosengren, Anders H and Salomaa, Veikko and Sheu, Wayne H-H and Sladek, Rob and Smith, Blair H and Strauch, Konstantin and Uitterlinden, Andr{\'e} G and Varma, Rohit and Willer, Cristen J and Bl{\"u}her, Matthias and Butterworth, Adam S and Chambers, John Campbell and Chasman, Daniel I and Danesh, John and van Duijn, Cornelia and Dupuis, Jos{\'e}e and Franco, Oscar H and Franks, Paul W and Froguel, Philippe and Grallert, Harald and Groop, Leif and Han, Bok-Ghee and Hansen, Torben and Hattersley, Andrew T and Hayward, Caroline and Ingelsson, Erik and Kardia, Sharon L R and Karpe, Fredrik and Kooner, Jaspal Singh and K{\"o}ttgen, Anna and Kuulasmaa, Kari and Laakso, Markku and Lin, Xu and Lind, Lars and Liu, Yongmei and Loos, Ruth J F and Marchini, Jonathan and Metspalu, Andres and Mook-Kanamori, Dennis and Nordestgaard, B{\o}rge G and Palmer, Colin N A and Pankow, James S and Pedersen, Oluf and Psaty, Bruce M and Rauramaa, Rainer and Sattar, Naveed and Schulze, Matthias B and Soranzo, Nicole and Spector, Timothy D and Stefansson, Kari and Stumvoll, Michael and Thorsteinsdottir, Unnur and Tuomi, Tiinamaija and Tuomilehto, Jaakko and Wareham, Nicholas J and Wilson, James G and Zeggini, Eleftheria and Scott, Robert A and Barroso, In{\^e}s and Frayling, Timothy M and Goodarzi, Mark O and Meigs, James B and Boehnke, Michael and Saleheen, Danish and Morris, Andrew P and Rotter, Jerome I and McCarthy, Mark I} } @article {8109, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 06}, pages = {957-972}, abstract = {

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.

}, keywords = {Chromosome Mapping, European Continental Ancestry Group, Genetic Association Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Inheritance Patterns, Kidney Function Tests, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable, Renal Insufficiency, Chronic, Uromodulin}, issn = {1546-1718}, doi = {10.1038/s41588-019-0407-x}, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B and Feitosa, Mary F and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and van der Most, Peter J and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer S and Almgren, Peter and Amin, Najaf and Arnl{\"o}v, Johan and Bakker, Stephan J L and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and Bottinger, Erwin P and Boutin, Thibaud S and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Micka{\"e}l and Carroll, Robert J and Catamo, Eulalia and Chambers, John C and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E Warwick and de Borst, Martin H and De Grandi, Alessandro and de Mutsert, Ren{\'e}e and de Vries, Aiko P J and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K and Felix, Janine F and Foo, Valencia Hui Xian and Franco, Oscar H and Franke, Andre and Freedman, Barry I and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T and Gao, He and Gasparini, Paolo and Gaziano, J Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and G{\"o}gele, Martin and Gordon, Scott D and Gudbjartsson, Daniel F and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B and Hartman, Catharina A and Hayward, Caroline and Hellwege, Jacklyn N and Heng, Chew-Kiat and Hicks, Andrew A and Hofer, Edith and Huang, Wei and Hutri-K{\"a}h{\"o}nen, Nina and Hwang, Shih-Jen and Ikram, M Arfan and Indridason, Olafur S and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W V and Jakobsdottir, Johanna and Jonas, Jost B and Joshi, Peter K and Josyula, Navya Shilpa and Jung, Bettina and K{\"a}h{\"o}nen, Mika and Kamatani, Yoichiro and Kammerer, Candace M and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E and Koenig, Wolfgang and Kooner, Jaspal S and K{\"o}rner, Antje and Kovacs, Peter and Kraja, Aldi T and Krajcoviechova, Alena and Kramer, Holly and Kr{\"a}mer, Bernhard K and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A and Langefeld, Carl D and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtim{\"a}ki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J F and Lucae, Susanne and Lukas, Mary Ann and Lyytik{\"a}inen, Leo-Pekka and M{\"a}gi, Reedik and Magnusson, Patrik K E and Mahajan, Anubha and Martin, Nicholas G and Martins, Jade and M{\"a}rz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P and Mohlke, Karen L and Mononen, Nina and Montgomery, Grant W and Mook-Kanamori, Dennis O and Mychaleckyj, Josyf C and Nadkarni, Girish N and Nalls, Mike A and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M and Noordam, Raymond and O{\textquoteright}Connell, Jeffrey and O{\textquoteright}Donoghue, Michelle L and Olafsson, Isleifur and Oldehinkel, Albertine J and Orho-Melander, Marju and Ouwehand, Willem H and Padmanabhan, Sandosh and Palmer, Nicholette D and Palsson, Runolfur and Penninx, Brenda W J H and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I and Polasek, Ozren and Ponte, Belen and Porteous, David J and Poulain, Tanja and Pramstaller, Peter P and Preuss, Michael H and Prins, Bram P and Province, Michael A and Rabelink, Ton J and Raffield, Laura M and Raitakari, Olli T and Reilly, Dermot F and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M and Ridker, Paul M and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Sch{\"o}ttker, Ben and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M and Shi, Yuan and Smith, Albert V and Smith, Blair H and Soranzo, Nicole and Spracklen, Cassandra N and Strauch, Konstantin and Stringham, Heather M and Stumvoll, Michael and Svensson, Per O and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M and Tan, Nicholas Y Q and Taylor, Kent D and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H L and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and T{\"o}njes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andr{\'e} G and Vaccargiu, Simona and van Dam, Rob M and van der Harst, Pim and van Duijn, Cornelia M and Velez Edward, Digna R and Verweij, Niek and Vogelezang, Suzanne and V{\"o}lker, Uwe and Vollenweider, Peter and Waeber, G{\'e}rard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M and Bin Wei, Wen and White, Harvey and Whitfield, John B and Wild, Sarah H and Wilson, James F and Wojczynski, Mary K and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M and Zhang, Weihua and Zonderman, Alan B and Rotter, Jerome I and Bochud, Murielle and Psaty, Bruce M and Vitart, Veronique and Wilson, James G and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I and Ho, Kevin and Morris, Andrew P and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A and Sim, Xueling and B{\"o}ger, Carsten A and Okada, Yukinori and Edwards, Todd L and Snieder, Harold and Stefansson, Kari and Hung, Adriana M and Heid, Iris M and Scholz, Markus and Teumer, Alexander and K{\"o}ttgen, Anna and Pattaro, Cristian} } @article {7970, title = {Multi-Ancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions.}, journal = {Am J Epidemiol}, year = {2019}, month = {2019 Jan 29}, abstract = {

An individual{\textquoteright}s lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multi-ancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in Stage 1 (genome-wide discovery) and 66 studies in Stage 2 (focused follow-up), for a total of 394,584 individuals from five ancestry groups. Genetic main and interaction effects were jointly assessed by a 2 degrees of freedom (DF) test, and a 1 DF test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P~<~1~{\texttimes}~10-6) with lipid levels in Stage 1 and were evaluated in Stage 2, followed by combined analyses of Stage 1 and Stage 2. In the combined analysis of Stage 1 and Stage 2, 147 independent loci were associated with lipid levels at P~<~5~{\texttimes}~10-8 using 2 DF tests, of which 18 were novel. No genome-wide significant associations were found testing the interaction effect alone. The novel loci included several genes (PCSK5, VEGFB, and A1CF) with a putative role in lipid metabolism based on existing evidence from cellular and experimental models.

}, issn = {1476-6256}, doi = {10.1093/aje/kwz005}, author = {de Vries, Paul S and Brown, Michael R and Bentley, Amy R and Sung, Yun J and Winkler, Thomas W and Ntalla, Ioanna and Schwander, Karen and Kraja, Aldi T and Guo, Xiuqing and Franceschini, Nora and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Huffman, Jennifer E and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Richard, Melissa A and Noordam, Raymond and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Deng, Xuan and Dorajoo, Rajkumar and Lohman, Kurt K and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Evangelou, Evangelos and Graff, Mariaelisa and Alver, Maris and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gandin, Ilaria and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and Hartwig, Fernando P and He, Meian and Horimoto, Andrea R V R and Hsu, Fang-Chi and Jackson, Anne U and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Laguzzi, Federica and Lee, Joseph H and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Matoba, Nana and Nolte, Ilja M and Pietzner, Maik and Riaz, Muhammad and Said, M Abdullah and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Wang, Yajuan and Ware, Erin B and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Aung, Tin and Ballantyne, Christie and Boerwinkle, Eric and Broeckel, Ulrich and Campbell, Archie and Canouil, Micka{\"e}l and Charumathi, Sabanayagam and Chen, Yii-Der Ida and Connell, John M and de Faire, Ulf and de Las Fuentes, Lisa and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Ding, Jingzhong and Dominiczak, Anna F and Duan, Qing and Eaton, Charles B and Eppinga, Ruben N and Faul, Jessica D and Fisher, Virginia and Forrester, Terrence and Franco, Oscar H and Friedlander, Yechiel and Ghanbari, Mohsen and Giulianini, Franco and Grabe, Hans J and Grove, Megan L and Gu, C Charles and Harris, Tamara B and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hixson, James E and Howard, Barbara V and Ikram, M Arfan and Jacobs, David R and Johnson, Craig and Jonas, Jost Bruno and Kammerer, Candace M and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Koistinen, Heikki A and Kolcic, Ivana and Kooperberg, Charles and Krieger, Jose E and Kritchevsky, Steve B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lemaitre, Rozenn N and Li, Yize and Liang, Jingjing and Liu, Jianjun and Liu, Kiang and Loh, Marie and Louie, Tin and M{\"a}gi, Reedik and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Mosley, Thomas H and Mukamal, Kenneth J and Nalls, Mike A and Nauck, Matthias and Nelson, Christopher P and Sotoodehnia, Nona and O{\textquoteright}Connell, Jeff R and Palmer, Nicholette D and Pazoki, Raha and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Poulter, Neil and Raffel, Leslie J and Raitakari, Olli T and Reiner, Alex P and Rice, Treva K and Rich, Stephen S and Robino, Antonietta and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Sever, Peter and Shi, Yuan and Sidney, Stephen and Sims, Mario and Smith, Blair H and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Tan, Nicholas and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Vuckovic, Dragana and Waldenberger, Melanie and Wang, Lihua and Wang, Yujie and Wang, Zhe and Wei, Wen Bin and Williams, Christine and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Yu, Bing and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo L and Kamatani, Yoichiro and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Penninx, Brenda and Pereira, Alexandre C and Rauramaa, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wang, Ya Xing and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Zheng, Wei and Elliott, Paul and North, Kari E and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Liu, Ching-Ti and Liu, Yongmei and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Kardia, Sharon L R and Zhu, Xiaofeng and Rotimi, Charles N and Mook-Kanamori, Dennis O and Fornage, Myriam and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Liu, Jingmin and Rotter, Jerome I and Gauderman, W James and Province, Michael A and Munroe, Patricia B and Rice, Kenneth and Chasman, Daniel I and Cupples, L Adrienne and Rao, Dabeeru C and Morrison, Alanna C} } @article {8005, title = {Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 Apr}, pages = {636-648}, abstract = {

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.

}, issn = {1546-1718}, doi = {10.1038/s41588-019-0378-y}, author = {Bentley, Amy R and Sung, Yun J and Brown, Michael R and Winkler, Thomas W and Kraja, Aldi T and Ntalla, Ioanna and Schwander, Karen and Chasman, Daniel I and Lim, Elise and Deng, Xuan and Guo, Xiuqing and Liu, Jingmin and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Huffman, Jennifer E and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Richard, Melissa A and Noordam, Raymond and Baker, Jenna and Chen, Guanjie and Aschard, Hugues and Bartz, Traci M and Ding, Jingzhong and Dorajoo, Rajkumar and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Zhao, Wei and Graff, Mariaelisa and Alver, Maris and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and Hartwig, Fernando P and He, Meian and Horimoto, Andrea R V R and Hsu, Fang-Chi and Hung, Yi-Jen and Jackson, Anne U and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Leander, Karin and Lin, Keng-Hung and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Matoba, Nana and Nolte, Ilja M and Pietzner, Maik and Prins, Bram and Riaz, Muhammad and Robino, Antonietta and Said, M Abdullah and Schupf, Nicole and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Wang, Tzung-Dau and Wang, Yajuan and Ware, Erin B and Wen, Wanqing and Xiang, Yong-Bing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Adeyemo, Adebowale and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Arzumanyan, Zorayr and Aung, Tin and Ballantyne, Christie and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Broeckel, Ulrich and Brown, Morris and Cade, Brian E and Campbell, Archie and Canouil, Micka{\"e}l and Charumathi, Sabanayagam and Chen, Yii-Der Ida and Christensen, Kaare and Concas, Maria Pina and Connell, John M and de Las Fuentes, Lisa and de Silva, H Janaka and de Vries, Paul S and Doumatey, Ayo and Duan, Qing and Eaton, Charles B and Eppinga, Ruben N and Faul, Jessica D and Floyd, James S and Forouhi, Nita G and Forrester, Terrence and Friedlander, Yechiel and Gandin, Ilaria and Gao, He and Ghanbari, Mohsen and Gharib, Sina A and Gigante, Bruna and Giulianini, Franco and Grabe, Hans J and Gu, C Charles and Harris, Tamara B and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hixson, James E and Ikram, M Arfan and Jia, Yucheng and Joehanes, Roby and Johnson, Craig and Jonas, Jost Bruno and Justice, Anne E and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Kolcic, Ivana and Kooperberg, Charles and Krieger, Jose E and Kritchevsky, Stephen B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Liang, Jingjing and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Kiang and Loh, Marie and Lohman, Kurt K and Louie, Tin and Luzzi, Anna and M{\"a}gi, Reedik and Mahajan, Anubha and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Momozawa, Yukihide and Morris, Andrew P and Murray, Alison D and Nalls, Mike A and Nauck, Matthias and Nelson, Christopher P and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Papanicolau, George J and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Poulter, Neil and Raitakari, Olli T and Reiner, Alex P and Renstrom, Frida and Rice, Treva K and Rich, Stephen S and Robinson, Jennifer G and Rose, Lynda M and Rosendaal, Frits R and Rudan, Igor and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Sever, Peter and Shi, Yuan and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Stringham, Heather M and Tan, Nicholas Y Q and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Tiemeier, Henning and Turner, Stephen T and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Waldenberger, Melanie and Wang, Heming and Wang, Lan and Wang, Lihua and Wei, Wen Bin and Williams, Christine A and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Young, Kristin and Yu, Caizheng and Yuan, Jian-Min and Zhou, Jie and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Cooper, Richard S and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo L and Juang, Jyh-Ming Jimmy and Kamatani, Yoichiro and Kammerer, Candace M and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Laurie, Cathy C and Lee, I-Te and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Pereira, Alexandre C and Rauramaa, Rainer and Redline, Susan and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wang, Jun-Sing and Wang, Ya Xing and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zeggini, Eleftheria and Zheng, Wei and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Mook-Kanamori, Dennis O and Fornage, Myriam and Province, Michael A and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Franceschini, Nora and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Rao, Dabeeru C and Rotimi, Charles N and Cupples, L Adrienne} } @article {7976, title = {Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 01 22}, pages = {376}, abstract = {

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.

}, keywords = {Adolescent, Adult, African Continental Ancestry Group, Aged, Aged, 80 and over, Asian Continental Ancestry Group, Brazil, Calcium-Binding Proteins, Cholesterol, Cholesterol, HDL, Cholesterol, LDL, European Continental Ancestry Group, Exercise, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Hispanic Americans, Humans, LIM-Homeodomain Proteins, Lipid Metabolism, Lipids, Male, Membrane Proteins, Microtubule-Associated Proteins, Middle Aged, Muscle Proteins, Nerve Tissue Proteins, Transcription Factors, Triglycerides, Young Adult}, issn = {2041-1723}, doi = {10.1038/s41467-018-08008-w}, author = {Kilpel{\"a}inen, Tuomas O and Bentley, Amy R and Noordam, Raymond and Sung, Yun Ju and Schwander, Karen and Winkler, Thomas W and Jakupovi{\'c}, Hermina and Chasman, Daniel I and Manning, Alisa and Ntalla, Ioanna and Aschard, Hugues and Brown, Michael R and de Las Fuentes, Lisa and Franceschini, Nora and Guo, Xiuqing and Vojinovic, Dina and Aslibekyan, Stella and Feitosa, Mary F and Kho, Minjung and Musani, Solomon K and Richard, Melissa and Wang, Heming and Wang, Zhe and Bartz, Traci M and Bielak, Lawrence F and Campbell, Archie and Dorajoo, Rajkumar and Fisher, Virginia and Hartwig, Fernando P and Horimoto, Andrea R V R and Li, Changwei and Lohman, Kurt K and Marten, Jonathan and Sim, Xueling and Smith, Albert V and Tajuddin, Salman M and Alver, Maris and Amini, Marzyeh and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Graff, Mariaelisa and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Jackson, Anne U and Zhao, Jing Hua and Kraja, Aldi T and Kuhnel, Brigitte and Laguzzi, Federica and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Rauramaa, Rainer and Riaz, Muhammad and Robino, Antonietta and Rueedi, Rico and Stringham, Heather M and Takeuchi, Fumihiko and van der Most, Peter J and Varga, Tibor V and Verweij, Niek and Ware, Erin B and Wen, Wanqing and Li, Xiaoyin and Yanek, Lisa R and Amin, Najaf and Arnett, Donna K and Boerwinkle, Eric and Brumat, Marco and Cade, Brian and Canouil, Micka{\"e}l and Chen, Yii-Der Ida and Concas, Maria Pina and Connell, John and de Mutsert, Ren{\'e}e and de Silva, H Janaka and de Vries, Paul S and Demirkan, Ayse and Ding, Jingzhong and Eaton, Charles B and Faul, Jessica D and Friedlander, Yechiel and Gabriel, Kelley P and Ghanbari, Mohsen and Giulianini, Franco and Gu, Chi Charles and Gu, Dongfeng and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hunt, Steven C and Ikram, M Arfan and Jonas, Jost B and Koh, Woon-Puay and Komulainen, Pirjo and Krieger, Jose E and Kritchevsky, Stephen B and Kutalik, Zolt{\'a}n and Kuusisto, Johanna and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Leander, Karin and Lemaitre, Rozenn N and Lewis, Cora E and Liang, Jingjing and Liu, Jianjun and M{\"a}gi, Reedik and Manichaikul, Ani and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Mohlke, Karen L and Mosley, Thomas H and Murray, Alison D and Nalls, Mike A and Nang, Ei-Ei Khaing and Nelson, Christopher P and Nona, Sotoodehnia and Norris, Jill M and Nwuba, Chiamaka Vivian and O{\textquoteright}Connell, Jeff and Palmer, Nicholette D and Papanicolau, George J and Pazoki, Raha and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Porteous, David J and Poveda, Alaitz and Raitakari, Olli T and Rich, Stephen S and Risch, Neil and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Schreiner, Pamela J and Scott, Robert A and Sidney, Stephen S and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Sofer, Tamar and Starr, John M and Sternfeld, Barbara and Strauch, Konstantin and Tang, Hua and Taylor, Kent D and Tsai, Michael Y and Tuomilehto, Jaakko and Uitterlinden, Andr{\'e} G and van der Ende, M Yldau and van Heemst, Diana and Voortman, Trudy and Waldenberger, Melanie and Wennberg, Patrik and Wilson, Gregory and Xiang, Yong-Bing and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Kato, Norihiro and Laakso, Markku and Lakka, Timo A and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Samani, Nilesh J and Shu, Xiao-Ou and van der Harst, Pim and van Vliet-Ostaptchouk, Jana V and Vollenweider, Peter and Wagenknecht, Lynne E and Wang, Ya X and Wareham, Nicholas J and Weir, David R and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Evans, Michele K and Franks, Paul W and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kelly, Tanika N and Liu, Yongmei and North, Kari E and Pereira, Alexandre C and Ridker, Paul M and Tai, E Shyong and van Dam, Rob M and Fox, Ervin R and Kardia, Sharon L R and Liu, Ching-Ti and Mook-Kanamori, Dennis O and Province, Michael A and Redline, Susan and van Duijn, Cornelia M and Rotter, Jerome I and Kooperberg, Charles B and Gauderman, W James and Psaty, Bruce M and Rice, Kenneth and Munroe, Patricia B and Fornage, Myriam and Cupples, L Adrienne and Rotimi, Charles N and Morrison, Alanna C and Rao, Dabeeru C and Loos, Ruth J F} } @article {8491, title = {Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.}, journal = {Diabetes}, year = {2020}, month = {2020 Sep 11}, abstract = {

Leptin influences food intake by informing the brain about the status of body fat stores. Rare mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in , and , and one intergenic variant near The missense variant Val94Met (rs17151919) in was common in individuals of African ancestry only and its association with lower leptin concentrations was specific to this ancestry (P=2x10, n=3,901). Using analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting leptin regulates early adiposity.

}, issn = {1939-327X}, doi = {10.2337/db20-0070}, author = {Yaghootkar, Hanieh and Zhang, Yiying and Spracklen, Cassandra N and Karaderi, Tugce and Huang, Lam Opal and Bradfield, Jonathan and Schurmann, Claudia and Fine, Rebecca S and Preuss, Michael H and Kutalik, Zolt{\'a}n and Wittemans, Laura Bl and Lu, Yingchang and Metz, Sophia and Willems, Sara M and Li-Gao, Ruifang and Grarup, Niels and Wang, Shuai and Molnos, Sophie and Sandoval-Z{\'a}rate, Am{\'e}rica A and Nalls, Mike A and Lange, Leslie A and Haesser, Jeffrey and Guo, Xiuqing and Lyytik{\"a}inen, Leo-Pekka and Feitosa, Mary F and Sitlani, Colleen M and Venturini, Cristina and Mahajan, Anubha and Kacprowski, Tim and Wang, Carol A and Chasman, Daniel I and Amin, Najaf and Broer, Linda and Robertson, Neil and Young, Kristin L and Allison, Matthew and Auer, Paul L and Bl{\"u}her, Matthias and Borja, Judith B and Bork-Jensen, Jette and Carrasquilla, Germ{\'a}n D and Christofidou, Paraskevi and Demirkan, Ayse and Doege, Claudia A and Garcia, Melissa E and Graff, Mariaelisa and Guo, Kaiying and Hakonarson, Hakon and Hong, Jaeyoung and Ida Chen, Yii-Der and Jackson, Rebecca and Jakupovi{\'c}, Hermina and Jousilahti, Pekka and Justice, Anne E and K{\"a}h{\"o}nen, Mika and Kizer, Jorge R and Kriebel, Jennifer and LeDuc, Charles A and Li, Jin and Lind, Lars and Luan, Jian{\textquoteright}an and Mackey, David and Mangino, Massimo and M{\"a}nnist{\"o}, Satu and Martin Carli, Jayne F and Medina-G{\'o}mez, Carolina and Mook-Kanamori, Dennis O and Morris, Andrew P and de Mutsert, Ren{\'e}e and Nauck, Matthias and Nedeljkovic, Ivana and Pennell, Craig E and Pradhan, Arund D and Psaty, Bruce M and Raitakari, Olli T and Scott, Robert A and Skaaby, Tea and Strauch, Konstantin and Taylor, Kent D and Teumer, Alexander and Uitterlinden, Andr{\'e} G and Wu, Ying and Yao, Jie and Walker, Mark and North, Kari E and Kovacs, Peter and Ikram, M Arfan and van Duijn, Cornelia M and Ridker, Paul M and Lye, Stephen and Homuth, Georg and Ingelsson, Erik and Spector, Tim D and McKnight, Barbara and Province, Michael A and Lehtim{\"a}ki, Terho and Adair, Linda S and Rotter, Jerome I and Reiner, Alexander P and Wilson, James G and Harris, Tamara B and Ripatti, Samuli and Grallert, Harald and Meigs, James B and Salomaa, Veikko and Hansen, Torben and Willems van Dijk, Ko and Wareham, Nicholas J and Grant, Struan Fa and Langenberg, Claudia and Frayling, Timothy M and Lindgren, Cecilia M and Mohlke, Karen L and Leibel, Rudolph L and Loos, Ruth Jf and Kilpel{\"a}inen, Tuomas O} } @article {8407, title = {Role of Rare and Low-Frequency Variants in Gene-Alcohol Interactions on Plasma Lipid Levels.}, journal = {Circ Genom Precis Med}, volume = {13}, year = {2020}, month = {2020 Aug}, pages = {e002772}, abstract = {

BACKGROUND: Alcohol intake influences plasma lipid levels, and such effects may be moderated by genetic variants. We aimed to characterize the role of aggregated rare and low-frequency protein-coding variants in gene by alcohol consumption interactions associated with fasting plasma lipid levels.

METHODS: In the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, fasting plasma triglycerides and high- and low-density lipoprotein cholesterol were measured in 34 153 individuals with European ancestry from 5 discovery studies and 32 277 individuals from 6 replication studies. Rare and low-frequency functional protein-coding variants (minor allele frequency, <=5\%) measured by an exome array were aggregated by genes and evaluated by a gene-environment interaction test and a joint test of genetic main and gene-environment interaction effects. Two dichotomous self-reported alcohol consumption variables, current drinker, defined as any recurrent drinking behavior, and regular drinker, defined as the subset of current drinkers who consume at least 2 drinks per week, were considered.

RESULTS: We discovered and replicated 21 gene-lipid associations at 13 known lipid loci through the joint test. Eight loci (, , , , , , , and ) remained significant after conditioning on the common index single-nucleotide polymorphism identified by previous genome-wide association studies, suggesting an independent role for rare and low-frequency variants at these loci. One significant gene-alcohol interaction on triglycerides in a novel locus was significantly discovered (=6.65{\texttimes}10 for the interaction test) and replicated at nominal significance level (=0.013) in .

CONCLUSIONS: In conclusion, this study applied new gene-based statistical approaches and suggested that rare and low-frequency genetic variants interacted with alcohol consumption on lipid levels.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.119.002772}, author = {Wang, Zhe and Chen, Han and Bartz, Traci M and Bielak, Lawrence F and Chasman, Daniel I and Feitosa, Mary F and Franceschini, Nora and Guo, Xiuqing and Lim, Elise and Noordam, Raymond and Richard, Melissa A and Wang, Heming and Cade, Brian and Cupples, L Adrienne and de Vries, Paul S and Giulanini, Franco and Lee, Jiwon and Lemaitre, Rozenn N and Martin, Lisa W and Reiner, Alex P and Rich, Stephen S and Schreiner, Pamela J and Sidney, Stephen and Sitlani, Colleen M and Smith, Jennifer A and Willems van Dijk, Ko and Yao, Jie and Zhao, Wei and Fornage, Myriam and Kardia, Sharon L R and Kooperberg, Charles and Liu, Ching-Ti and Mook-Kanamori, Dennis O and Province, Michael A and Psaty, Bruce M and Redline, Susan and Ridker, Paul M and Rotter, Jerome I and Boerwinkle, Eric and Morrison, Alanna C} } @article {9112, title = {Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals.}, journal = {Commun Biol}, volume = {5}, year = {2022}, month = {2022 Jun 13}, pages = {580}, abstract = {

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (n = 178,691, n = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.

}, keywords = {Creatinine, Diabetes Mellitus, Diabetic Nephropathies, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Kidney}, issn = {2399-3642}, doi = {10.1038/s42003-022-03448-z}, author = {Winkler, Thomas W and Rasheed, Humaira and Teumer, Alexander and Gorski, Mathias and Rowan, Bryce X and Stanzick, Kira J and Thomas, Laurent F and Tin, Adrienne and Hoppmann, Anselm and Chu, Audrey Y and Tayo, Bamidele and Thio, Chris H L and Cusi, Daniele and Chai, Jin-Fang and Sieber, Karsten B and Horn, Katrin and Li, Man and Scholz, Markus and Cocca, Massimiliano and Wuttke, Matthias and van der Most, Peter J and Yang, Qiong and Ghasemi, Sahar and Nutile, Teresa and Li, Yong and Pontali, Giulia and G{\"u}nther, Felix and Dehghan, Abbas and Correa, Adolfo and Parsa, Afshin and Feresin, Agnese and de Vries, Aiko P J and Zonderman, Alan B and Smith, Albert V and Oldehinkel, Albertine J and De Grandi, Alessandro and Rosenkranz, Alexander R and Franke, Andre and Teren, Andrej and Metspalu, Andres and Hicks, Andrew A and Morris, Andrew P and T{\"o}njes, Anke and Morgan, Anna and Podgornaia, Anna I and Peters, Annette and K{\"o}rner, Antje and Mahajan, Anubha and Campbell, Archie and Freedman, Barry I and Spedicati, Beatrice and Ponte, Belen and Sch{\"o}ttker, Ben and Brumpton, Ben and Banas, Bernhard and Kr{\"a}mer, Bernhard K and Jung, Bettina and {\r A}svold, Bj{\o}rn Olav and Smith, Blair H and Ning, Boting and Penninx, Brenda W J H and Vanderwerff, Brett R and Psaty, Bruce M and Kammerer, Candace M and Langefeld, Carl D and Hayward, Caroline and Spracklen, Cassandra N and Robinson-Cohen, Cassianne and Hartman, Catharina A and Lindgren, Cecilia M and Wang, Chaolong and Sabanayagam, Charumathi and Heng, Chew-Kiat and Lanzani, Chiara and Khor, Chiea-Chuen and Cheng, Ching-Yu and Fuchsberger, Christian and Gieger, Christian and Shaffer, Christian M and Schulz, Christina-Alexandra and Willer, Cristen J and Chasman, Daniel I and Gudbjartsson, Daniel F and Ruggiero, Daniela and Toniolo, Daniela and Czamara, Darina and Porteous, David J and Waterworth, Dawn M and Mascalzoni, Deborah and Mook-Kanamori, Dennis O and Reilly, Dermot F and Daw, E Warwick and Hofer, Edith and Boerwinkle, Eric and Salvi, Erika and Bottinger, Erwin P and Tai, E-Shyong and Catamo, Eulalia and Rizzi, Federica and Guo, Feng and Rivadeneira, Fernando and Guilianini, Franco and Sveinbjornsson, Gardar and Ehret, Georg and Waeber, G{\'e}rard and Biino, Ginevra and Girotto, Giorgia and Pistis, Giorgio and Nadkarni, Girish N and Delgado, Graciela E and Montgomery, Grant W and Snieder, Harold and Campbell, Harry and White, Harvey D and Gao, He and Stringham, Heather M and Schmidt, Helena and Li, Hengtong and Brenner, Hermann and Holm, Hilma and Kirsten, Holgen and Kramer, Holly and Rudan, Igor and Nolte, Ilja M and Tzoulaki, Ioanna and Olafsson, Isleifur and Martins, Jade and Cook, James P and Wilson, James F and Halbritter, Jan and Felix, Janine F and Divers, Jasmin and Kooner, Jaspal S and Lee, Jeannette Jen-Mai and O{\textquoteright}Connell, Jeffrey and Rotter, Jerome I and Liu, Jianjun and Xu, Jie and Thiery, Joachim and Arnl{\"o}v, Johan and Kuusisto, Johanna and Jakobsdottir, Johanna and Tremblay, Johanne and Chambers, John C and Whitfield, John B and Gaziano, John M and Marten, Jonathan and Coresh, Josef and Jonas, Jost B and Mychaleckyj, Josyf C and Christensen, Kaare and Eckardt, Kai-Uwe and Mohlke, Karen L and Endlich, Karlhans and Dittrich, Katalin and Ryan, Kathleen A and Rice, Kenneth M and Taylor, Kent D and Ho, Kevin and Nikus, Kjell and Matsuda, Koichi and Strauch, Konstantin and Miliku, Kozeta and Hveem, Kristian and Lind, Lars and Wallentin, Lars and Yerges-Armstrong, Laura M and Raffield, Laura M and Phillips, Lawrence S and Launer, Lenore J and Lyytik{\"a}inen, Leo-Pekka and Lange, Leslie A and Citterio, Lorena and Klaric, Lucija and Ikram, M Arfan and Ising, Marcus and Kleber, Marcus E and Francescatto, Margherita and Concas, Maria Pina and Ciullo, Marina and Piratsu, Mario and Orho-Melander, Marju and Laakso, Markku and Loeffler, Markus and Perola, Markus and de Borst, Martin H and G{\"o}gele, Martin and Bianca, Martina La and Lukas, Mary Ann and Feitosa, Mary F and Biggs, Mary L and Wojczynski, Mary K and Kavousi, Maryam and Kanai, Masahiro and Akiyama, Masato and Yasuda, Masayuki and Nauck, Matthias and Waldenberger, Melanie and Chee, Miao-Li and Chee, Miao-Ling and Boehnke, Michael and Preuss, Michael H and Stumvoll, Michael and Province, Michael A and Evans, Michele K and O{\textquoteright}Donoghue, Michelle L and Kubo, Michiaki and K{\"a}h{\"o}nen, Mika and Kastarinen, Mika and Nalls, Mike A and Kuokkanen, Mikko and Ghanbari, Mohsen and Bochud, Murielle and Josyula, Navya Shilpa and Martin, Nicholas G and Tan, Nicholas Y Q and Palmer, Nicholette D and Pirastu, Nicola and Schupf, Nicole and Verweij, Niek and Hutri-K{\"a}h{\"o}nen, Nina and Mononen, Nina and Bansal, Nisha and Devuyst, Olivier and Melander, Olle and Raitakari, Olli T and Polasek, Ozren and Manunta, Paolo and Gasparini, Paolo and Mishra, Pashupati P and Sulem, Patrick and Magnusson, Patrik K E and Elliott, Paul and Ridker, Paul M and Hamet, Pavel and Svensson, Per O and Joshi, Peter K and Kovacs, Peter and Pramstaller, Peter P and Rossing, Peter and Vollenweider, Peter and van der Harst, Pim and Dorajoo, Rajkumar and Sim, Ralene Z H and Burkhardt, Ralph and Tao, Ran and Noordam, Raymond and M{\"a}gi, Reedik and Schmidt, Reinhold and de Mutsert, Ren{\'e}e and Rueedi, Rico and van Dam, Rob M and Carroll, Robert J and Gansevoort, Ron T and Loos, Ruth J F and Felicita, Sala Cinzia and Sedaghat, Sanaz and Padmanabhan, Sandosh and Freitag-Wolf, Sandra and Pendergrass, Sarah A and Graham, Sarah E and Gordon, Scott D and Hwang, Shih-Jen and Kerr, Shona M and Vaccargiu, Simona and Patil, Snehal B and Hallan, Stein and Bakker, Stephan J L and Lim, Su-Chi and Lucae, Susanne and Vogelezang, Suzanne and Bergmann, Sven and Corre, Tanguy and Ahluwalia, Tarunveer S and Lehtim{\"a}ki, Terho and Boutin, Thibaud S and Meitinger, Thomas and Wong, Tien-Yin and Bergler, Tobias and Rabelink, Ton J and Esko, T{\~o}nu and Haller, Toomas and Thorsteinsdottir, Unnur and V{\"o}lker, Uwe and Foo, Valencia Hui Xian and Salomaa, Veikko and Vitart, Veronique and Giedraitis, Vilmantas and Gudnason, Vilmundur and Jaddoe, Vincent W V and Huang, Wei and Zhang, Weihua and Wei, Wen Bin and Kiess, Wieland and M{\"a}rz, Winfried and Koenig, Wolfgang and Lieb, Wolfgang and G{\`a}o, Xin and Sim, Xueling and Wang, Ya Xing and Friedlander, Yechiel and Tham, Yih-Chung and Kamatani, Yoichiro and Okada, Yukinori and Milaneschi, Yuri and Yu, Zhi and Stark, Klaus J and Stefansson, Kari and B{\"o}ger, Carsten A and Hung, Adriana M and Kronenberg, Florian and K{\"o}ttgen, Anna and Pattaro, Cristian and Heid, Iris M} } @article {9104, title = {Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation.}, journal = {Nat Genet}, volume = {54}, year = {2022}, month = {2022 May}, pages = {560-572}, abstract = {

We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9\% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 {\texttimes} 10), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4\% of T2D associations to a single variant with >50\% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.

}, keywords = {Diabetes Mellitus, Type 2, Ethnicity, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1546-1718}, doi = {10.1038/s41588-022-01058-3}, author = {Mahajan, Anubha and Spracklen, Cassandra N and Zhang, Weihua and Ng, Maggie C Y and Petty, Lauren E and Kitajima, Hidetoshi and Yu, Grace Z and R{\"u}eger, Sina and Speidel, Leo and Kim, Young Jin and Horikoshi, Momoko and Mercader, Josep M and Taliun, Daniel and Moon, Sanghoon and Kwak, Soo-Heon and Robertson, Neil R and Rayner, Nigel W and Loh, Marie and Kim, Bong-Jo and Chiou, Joshua and Miguel-Escalada, Irene and Della Briotta Parolo, Pietro and Lin, Kuang and Bragg, Fiona and Preuss, Michael H and Takeuchi, Fumihiko and Nano, Jana and Guo, Xiuqing and Lamri, Amel and Nakatochi, Masahiro and Scott, Robert A and Lee, Jung-Jin and Huerta-Chagoya, Alicia and Graff, Mariaelisa and Chai, Jin-Fang and Parra, Esteban J and Yao, Jie and Bielak, Lawrence F and Tabara, Yasuharu and Hai, Yang and Steinthorsdottir, Valgerdur and Cook, James P and Kals, Mart and Grarup, Niels and Schmidt, Ellen M and Pan, Ian and Sofer, Tamar and Wuttke, Matthias and Sarnowski, Chloe and Gieger, Christian and Nousome, Darryl and Trompet, Stella and Long, Jirong and Sun, Meng and Tong, Lin and Chen, Wei-Min and Ahmad, Meraj and Noordam, Raymond and Lim, Victor J Y and Tam, Claudia H T and Joo, Yoonjung Yoonie and Chen, Chien-Hsiun and Raffield, Laura M and Lecoeur, C{\'e}cile and Prins, Bram Peter and Nicolas, Aude and Yanek, Lisa R and Chen, Guanjie and Jensen, Richard A and Tajuddin, Salman and Kabagambe, Edmond K and An, Ping and Xiang, Anny H and Choi, Hyeok Sun and Cade, Brian E and Tan, Jingyi and Flanagan, Jack and Abaitua, Fernando and Adair, Linda S and Adeyemo, Adebowale and Aguilar-Salinas, Carlos A and Akiyama, Masato and Anand, Sonia S and Bertoni, Alain and Bian, Zheng and Bork-Jensen, Jette and Brandslund, Ivan and Brody, Jennifer A and Brummett, Chad M and Buchanan, Thomas A and Canouil, Micka{\"e}l and Chan, Juliana C N and Chang, Li-Ching and Chee, Miao-Li and Chen, Ji and Chen, Shyh-Huei and Chen, Yuan-Tsong and Chen, Zhengming and Chuang, Lee-Ming and Cushman, Mary and Das, Swapan K and de Silva, H Janaka and Dedoussis, George and Dimitrov, Latchezar and Doumatey, Ayo P and Du, Shufa and Duan, Qing and Eckardt, Kai-Uwe and Emery, Leslie S and Evans, Daniel S and Evans, Michele K and Fischer, Krista and Floyd, James S and Ford, Ian and Fornage, Myriam and Franco, Oscar H and Frayling, Timothy M and Freedman, Barry I and Fuchsberger, Christian and Genter, Pauline and Gerstein, Hertzel C and Giedraitis, Vilmantas and Gonz{\'a}lez-Villalpando, Clicerio and Gonzalez-Villalpando, Maria Elena and Goodarzi, Mark O and Gordon-Larsen, Penny and Gorkin, David and Gross, Myron and Guo, Yu and Hackinger, Sophie and Han, Sohee and Hattersley, Andrew T and Herder, Christian and Howard, Annie-Green and Hsueh, Willa and Huang, Mengna and Huang, Wei and Hung, Yi-Jen and Hwang, Mi Yeong and Hwu, Chii-Min and Ichihara, Sahoko and Ikram, Mohammad Arfan and Ingelsson, Martin and Islam, Md Tariqul and Isono, Masato and Jang, Hye-Mi and Jasmine, Farzana and Jiang, Guozhi and Jonas, Jost B and J{\o}rgensen, Marit E and J{\o}rgensen, Torben and Kamatani, Yoichiro and Kandeel, Fouad R and Kasturiratne, Anuradhani and Katsuya, Tomohiro and Kaur, Varinderpal and Kawaguchi, Takahisa and Keaton, Jacob M and Kho, Abel N and Khor, Chiea-Chuen and Kibriya, Muhammad G and Kim, Duk-Hwan and Kohara, Katsuhiko and Kriebel, Jennifer and Kronenberg, Florian and Kuusisto, Johanna and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Myung-Shik and Lee, Nanette R and Leong, Aaron and Li, Liming and Li, Yun and Li-Gao, Ruifang and Ligthart, Symen and Lindgren, Cecilia M and Linneberg, Allan and Liu, Ching-Ti and Liu, Jianjun and Locke, Adam E and Louie, Tin and Luan, Jian{\textquoteright}an and Luk, Andrea O and Luo, Xi and Lv, Jun and Lyssenko, Valeriya and Mamakou, Vasiliki and Mani, K Radha and Meitinger, Thomas and Metspalu, Andres and Morris, Andrew D and Nadkarni, Girish N and Nadler, Jerry L and Nalls, Michael A and Nayak, Uma and Nongmaithem, Suraj S and Ntalla, Ioanna and Okada, Yukinori and Orozco, Lorena and Patel, Sanjay R and Pereira, Mark A and Peters, Annette and Pirie, Fraser J and Porneala, Bianca and Prasad, Gauri and Preissl, Sebastian and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Roden, Michael and Rohde, Rebecca and Roll, Kathryn and Sabanayagam, Charumathi and Sander, Maike and Sandow, Kevin and Sattar, Naveed and Sch{\"o}nherr, Sebastian and Schurmann, Claudia and Shahriar, Mohammad and Shi, Jinxiu and Shin, Dong Mun and Shriner, Daniel and Smith, Jennifer A and So, Wing Yee and Stan{\v c}{\'a}kov{\'a}, Alena and Stilp, Adrienne M and Strauch, Konstantin and Suzuki, Ken and Takahashi, Atsushi and Taylor, Kent D and Thorand, Barbara and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tomlinson, Brian and Torres, Jason M and Tsai, Fuu-Jen and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and Valladares-Salgado, Adan and van Dam, Rob M and van Klinken, Jan B and Varma, Rohit and Vujkovic, Marijana and Wacher-Rodarte, Niels and Wheeler, Eleanor and Whitsel, Eric A and Wickremasinghe, Ananda R and van Dijk, Ko Willems and Witte, Daniel R and Yajnik, Chittaranjan S and Yamamoto, Ken and Yamauchi, Toshimasa and Yengo, Loic and Yoon, Kyungheon and Yu, Canqing and Yuan, Jian-Min and Yusuf, Salim and Zhang, Liang and Zheng, Wei and Raffel, Leslie J and Igase, Michiya and Ipp, Eli and Redline, Susan and Cho, Yoon Shin and Lind, Lars and Province, Michael A and Hanis, Craig L and Peyser, Patricia A and Ingelsson, Erik and Zonderman, Alan B and Psaty, Bruce M and Wang, Ya-Xing and Rotimi, Charles N and Becker, Diane M and Matsuda, Fumihiko and Liu, Yongmei and Zeggini, Eleftheria and Yokota, Mitsuhiro and Rich, Stephen S and Kooperberg, Charles and Pankow, James S and Engert, James C and Chen, Yii-Der Ida and Froguel, Philippe and Wilson, James G and Sheu, Wayne H H and Kardia, Sharon L R and Wu, Jer-Yuarn and Hayes, M Geoffrey and Ma, Ronald C W and Wong, Tien-Yin and Groop, Leif and Mook-Kanamori, Dennis O and Chandak, Giriraj R and Collins, Francis S and Bharadwaj, Dwaipayan and Par{\'e}, Guillaume and Sale, Mich{\`e}le M and Ahsan, Habibul and Motala, Ayesha A and Shu, Xiao-Ou and Park, Kyong-Soo and Jukema, J Wouter and Cruz, Miguel and McKean-Cowdin, Roberta and Grallert, Harald and Cheng, Ching-Yu and Bottinger, Erwin P and Dehghan, Abbas and Tai, E-Shyong and Dupuis, Jos{\'e}e and Kato, Norihiro and Laakso, Markku and K{\"o}ttgen, Anna and Koh, Woon-Puay and Palmer, Colin N A and Liu, Simin and Abecasis, Goncalo and Kooner, Jaspal S and Loos, Ruth J F and North, Kari E and Haiman, Christopher A and Florez, Jose C and Saleheen, Danish and Hansen, Torben and Pedersen, Oluf and M{\"a}gi, Reedik and Langenberg, Claudia and Wareham, Nicholas J and Maeda, Shiro and Kadowaki, Takashi and Lee, Juyoung and Millwood, Iona Y and Walters, Robin G and Stefansson, Kari and Myers, Simon R and Ferrer, Jorge and Gaulton, Kyle J and Meigs, James B and Mohlke, Karen L and Gloyn, Anna L and Bowden, Donald W and Below, Jennifer E and Chambers, John C and Sim, Xueling and Boehnke, Michael and Rotter, Jerome I and McCarthy, Mark I and Morris, Andrew P} } @article {9385, title = {Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications.}, journal = {medRxiv}, year = {2023}, month = {2023 Mar 31}, abstract = {

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7\% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5{\texttimes}10 ) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

}, doi = {10.1101/2023.03.31.23287839}, author = {Suzuki, Ken and Hatzikotoulas, Konstantinos and Southam, Lorraine and Taylor, Henry J and Yin, Xianyong and Lorenz, Kim M and Mandla, Ravi and Huerta-Chagoya, Alicia and Rayner, Nigel W and Bocher, Ozvan and Ana Luiza de, S V Arruda and Sonehara, Kyuto and Namba, Shinichi and Lee, Simon S K and Preuss, Michael H and Petty, Lauren E and Schroeder, Philip and Vanderwerff, Brett and Kals, Mart and Bragg, Fiona and Lin, Kuang and Guo, Xiuqing and Zhang, Weihua and Yao, Jie and Kim, Young Jin and Graff, Mariaelisa and Takeuchi, Fumihiko and Nano, Jana and Lamri, Amel and Nakatochi, Masahiro and Moon, Sanghoon and Scott, Robert A and Cook, James P and Lee, Jung-Jin and Pan, Ian and Taliun, Daniel and Parra, Esteban J and Chai, Jin-Fang and Bielak, Lawrence F and Tabara, Yasuharu and Hai, Yang and Thorleifsson, Gudmar and Grarup, Niels and Sofer, Tamar and Wuttke, Matthias and Sarnowski, Chloe and Gieger, Christian and Nousome, Darryl and Trompet, Stella and Kwak, Soo-Heon and Long, Jirong and Sun, Meng and Tong, Lin and Chen, Wei-Min and Nongmaithem, Suraj S and Noordam, Raymond and Lim, Victor J Y and Tam, Claudia H T and Joo, Yoonjung Yoonie and Chen, Chien-Hsiun and Raffield, Laura M and Prins, Bram Peter and Nicolas, Aude and Yanek, Lisa R and Chen, Guanjie and Brody, Jennifer A and Kabagambe, Edmond and An, Ping and Xiang, Anny H and Choi, Hyeok Sun and Cade, Brian E and Tan, Jingyi and Alaine Broadaway, K and Williamson, Alice and Kamali, Zoha and Cui, Jinrui and Adair, Linda S and Adeyemo, Adebowale and Aguilar-Salinas, Carlos A and Ahluwalia, Tarunveer S and Anand, Sonia S and Bertoni, Alain and Bork-Jensen, Jette and Brandslund, Ivan and Buchanan, Thomas A and Burant, Charles F and Butterworth, Adam S and Canouil, Micka{\"e}l and Chan, Juliana C N and Chang, Li-Ching and Chee, Miao-Li and Chen, Ji and Chen, Shyh-Huei and Chen, Yuan-Tsong and Chen, Zhengming and Chuang, Lee-Ming and Cushman, Mary and Danesh, John and Das, Swapan K and Janaka de Silva, H and Dedoussis, George and Dimitrov, Latchezar and Doumatey, Ayo P and Du, Shufa and Duan, Qing and Eckardt, Kai-Uwe and Emery, Leslie S and Evans, Daniel S and Evans, Michele K and Fischer, Krista and Floyd, James S and Ford, Ian and Franco, Oscar H and Frayling, Timothy M and Freedman, Barry I and Genter, Pauline and Gerstein, Hertzel C and Giedraitis, Vilmantas and Gonz{\'a}lez-Villalpando, Clicerio and Gonzalez-Villalpando, Maria Elena and Gordon-Larsen, Penny and Gross, Myron and Guare, Lindsay A and Hackinger, Sophie and Han, Sohee and Hattersley, Andrew T and Herder, Christian and Horikoshi, Momoko and Howard, Annie-Green and Hsueh, Willa and Huang, Mengna and Huang, Wei and Hung, Yi-Jen and Hwang, Mi Yeong and Hwu, Chii-Min and Ichihara, Sahoko and Ikram, Mohammad Arfan and Ingelsson, Martin and Islam, Md Tariqul and Isono, Masato and Jang, Hye-Mi and Jasmine, Farzana and Jiang, Guozhi and Jonas, Jost B and J{\o}rgensen, Torben and Kandeel, Fouad R and Kasturiratne, Anuradhani and Katsuya, Tomohiro and Kaur, Varinderpal and Kawaguchi, Takahisa and Keaton, Jacob M and Kho, Abel N and Khor, Chiea-Chuen and Kibriya, Muhammad G and Kim, Duk-Hwan and Kronenberg, Florian and Kuusisto, Johanna and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Kyung Min and Lee, Myung-Shik and Lee, Nanette R and Leong, Aaron and Li, Liming and Li, Yun and Li-Gao, Ruifang and Lithgart, Symen and Lindgren, Cecilia M and Linneberg, Allan and Liu, Ching-Ti and Liu, Jianjun and Locke, Adam E and Louie, Tin and Luan, Jian{\textquoteright}an and Luk, Andrea O and Luo, Xi and Lv, Jun and Lynch, Julie A and Lyssenko, Valeriya and Maeda, Shiro and Mamakou, Vasiliki and Mansuri, Sohail Rafik and Matsuda, Koichi and Meitinger, Thomas and Metspalu, Andres and Mo, Huan and Morris, Andrew D and Nadler, Jerry L and Nalls, Michael A and Nayak, Uma and Ntalla, Ioanna and Okada, Yukinori and Orozco, Lorena and Patel, Sanjay R and Patil, Snehal and Pei, Pei and Pereira, Mark A and Peters, Annette and Pirie, Fraser J and Polikowsky, Hannah G and Porneala, Bianca and Prasad, Gauri and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Roden, Michael and Rohde, Rebecca and Roll, Katheryn and Sabanayagam, Charumathi and Sandow, Kevin and Sankareswaran, Alagu and Sattar, Naveed and Sch{\"o}nherr, Sebastian and Shahriar, Mohammad and Shen, Botong and Shi, Jinxiu and Shin, Dong Mun and Shojima, Nobuhiro and Smith, Jennifer A and So, Wing Yee and Stan{\v c}{\'a}kov{\'a}, Alena and Steinthorsdottir, Valgerdur and Stilp, Adrienne M and Strauch, Konstantin and Taylor, Kent D and Thorand, Barbara and Thorsteinsdottir, Unnur and Tomlinson, Brian and Tran, Tam C and Tsai, Fuu-Jen and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and Valladares-Salgado, Adan and van Dam, Rob M and van Klinken, Jan B and Varma, Rohit and Wacher-Rodarte, Niels and Wheeler, Eleanor and Wickremasinghe, Ananda R and van Dijk, Ko Willems and Witte, Daniel R and Yajnik, Chittaranjan S and Yamamoto, Ken and Yamamoto, Kenichi and Yoon, Kyungheon and Yu, Canqing and Yuan, Jian-Min and Yusuf, Salim and Zawistowski, Matthew and Zhang, Liang and Zheng, Wei and Project, Biobank Japan and BioBank, Penn Medicine and Center, Regeneron Genetics and Consortium, eMERGE and Raffel, Leslie J and Igase, Michiya and Ipp, Eli and Redline, Susan and Cho, Yoon Shin and Lind, Lars and Province, Michael A and Fornage, Myriam and Hanis, Craig L and Ingelsson, Erik and Zonderman, Alan B and Psaty, Bruce M and Wang, Ya-Xing and Rotimi, Charles N and Becker, Diane M and Matsuda, Fumihiko and Liu, Yongmei and Yokota, Mitsuhiro and Kardia, Sharon L R and Peyser, Patricia A and Pankow, James S and Engert, James C and Bonnefond, Am{\'e}lie and Froguel, Philippe and Wilson, James G and Sheu, Wayne H H and Wu, Jer-Yuarn and Geoffrey Hayes, M and Ma, Ronald C W and Wong, Tien-Yin and Mook-Kanamori, Dennis O and Tuomi, Tiinamaija and Chandak, Giriraj R and Collins, Francis S and Bharadwaj, Dwaipayan and Par{\'e}, Guillaume and Sale, Mich{\`e}le M and Ahsan, Habibul and Motala, Ayesha A and Shu, Xiao-Ou and Park, Kyong-Soo and Jukema, J Wouter and Cruz, Miguel and Chen, Yii-Der Ida and Rich, Stephen S and McKean-Cowdin, Roberta and Grallert, Harald and Cheng, Ching-Yu and Ghanbari, Mohsen and Tai, E-Shyong and Dupuis, Jos{\'e}e and Kato, Norihiro and Laakso, Markku and K{\"o}ttgen, Anna and Koh, Woon-Puay and Bowden, Donald W and Palmer, Colin N A and Kooner, Jaspal S and Kooperberg, Charles and Liu, Simin and North, Kari E and Saleheen, Danish and Hansen, Torben and Pedersen, Oluf and Wareham, Nicholas J and Lee, Juyoung and Kim, Bong-Jo and Millwood, Iona Y and Walters, Robin G and Stefansson, Kari and Goodarzi, Mark O and Mohlke, Karen L and Langenberg, Claudia and Haiman, Christopher A and Loos, Ruth J F and Florez, Jose C and Rader, Daniel J and Ritchie, Marylyn D and Z{\"o}llner, Sebastian and M{\"a}gi, Reedik and Denny, Joshua C and Yamauchi, Toshimasa and Kadowaki, Takashi and Chambers, John C and Ng, Maggie C Y and Sim, Xueling and Below, Jennifer E and Tsao, Philip S and Chang, Kyong-Mi and McCarthy, Mark I and Meigs, James B and Mahajan, Anubha and Spracklen, Cassandra N and Mercader, Josep M and Boehnke, Michael and Rotter, Jerome I and Vujkovic, Marijana and Voight, Benjamin F and Morris, Andrew P and Zeggini, Eleftheria} } @article {9619, title = {Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.}, journal = {Nature}, year = {2024}, month = {2024 Feb 19}, abstract = {

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes and molecular mechanisms that are often specific to cell type. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7\% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 {\texttimes} 10) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.

}, issn = {1476-4687}, doi = {10.1038/s41586-024-07019-6}, author = {Suzuki, Ken and Hatzikotoulas, Konstantinos and Southam, Lorraine and Taylor, Henry J and Yin, Xianyong and Lorenz, Kim M and Mandla, Ravi and Huerta-Chagoya, Alicia and Melloni, Giorgio E M and Kanoni, Stavroula and Rayner, Nigel W and Bocher, Ozvan and Arruda, Ana Luiza and Sonehara, Kyuto and Namba, Shinichi and Lee, Simon S K and Preuss, Michael H and Petty, Lauren E and Schroeder, Philip and Vanderwerff, Brett and Kals, Mart and Bragg, Fiona and Lin, Kuang and Guo, Xiuqing and Zhang, Weihua and Yao, Jie and Kim, Young Jin and Graff, Mariaelisa and Takeuchi, Fumihiko and Nano, Jana and Lamri, Amel and Nakatochi, Masahiro and Moon, Sanghoon and Scott, Robert A and Cook, James P and Lee, Jung-Jin and Pan, Ian and Taliun, Daniel and Parra, Esteban J and Chai, Jin-Fang and Bielak, Lawrence F and Tabara, Yasuharu and Hai, Yang and Thorleifsson, Gudmar and Grarup, Niels and Sofer, Tamar and Wuttke, Matthias and Sarnowski, Chloe and Gieger, Christian and Nousome, Darryl and Trompet, Stella and Kwak, Soo-Heon and Long, Jirong and Sun, Meng and Tong, Lin and Chen, Wei-Min and Nongmaithem, Suraj S and Noordam, Raymond and Lim, Victor J Y and Tam, Claudia H T and Joo, Yoonjung Yoonie and Chen, Chien-Hsiun and Raffield, Laura M and Prins, Bram Peter and Nicolas, Aude and Yanek, Lisa R and Chen, Guanjie and Brody, Jennifer A and Kabagambe, Edmond and An, Ping and Xiang, Anny H and Choi, Hyeok Sun and Cade, Brian E and Tan, Jingyi and Broadaway, K Alaine and Williamson, Alice and Kamali, Zoha and Cui, Jinrui and Thangam, Manonanthini and Adair, Linda S and Adeyemo, Adebowale and Aguilar-Salinas, Carlos A and Ahluwalia, Tarunveer S and Anand, Sonia S and Bertoni, Alain and Bork-Jensen, Jette and Brandslund, Ivan and Buchanan, Thomas A and Burant, Charles F and Butterworth, Adam S and Canouil, Micka{\"e}l and Chan, Juliana C N and Chang, Li-Ching and Chee, Miao-Li and Chen, Ji and Chen, Shyh-Huei and Chen, Yuan-Tsong and Chen, Zhengming and Chuang, Lee-Ming and Cushman, Mary and Danesh, John and Das, Swapan K and de Silva, H Janaka and Dedoussis, George and Dimitrov, Latchezar and Doumatey, Ayo P and Du, Shufa and Duan, Qing and Eckardt, Kai-Uwe and Emery, Leslie S and Evans, Daniel S and Evans, Michele K and Fischer, Krista and Floyd, James S and Ford, Ian and Franco, Oscar H and Frayling, Timothy M and Freedman, Barry I and Genter, Pauline and Gerstein, Hertzel C and Giedraitis, Vilmantas and Gonz{\'a}lez-Villalpando, Clicerio and Gonzalez-Villalpando, Maria Elena and Gordon-Larsen, Penny and Gross, Myron and Guare, Lindsay A and Hackinger, Sophie and Hakaste, Liisa and Han, Sohee and Hattersley, Andrew T and Herder, Christian and Horikoshi, Momoko and Howard, Annie-Green and Hsueh, Willa and Huang, Mengna and Huang, Wei and Hung, Yi-Jen and Hwang, Mi Yeong and Hwu, Chii-Min and Ichihara, Sahoko and Ikram, Mohammad Arfan and Ingelsson, Martin and Islam, Md Tariqul and Isono, Masato and Jang, Hye-Mi and Jasmine, Farzana and Jiang, Guozhi and Jonas, Jost B and J{\o}rgensen, Torben and Kamanu, Frederick K and Kandeel, Fouad R and Kasturiratne, Anuradhani and Katsuya, Tomohiro and Kaur, Varinderpal and Kawaguchi, Takahisa and Keaton, Jacob M and Kho, Abel N and Khor, Chiea-Chuen and Kibriya, Muhammad G and Kim, Duk-Hwan and Kronenberg, Florian and Kuusisto, Johanna and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Kyung Min and Lee, Myung-Shik and Lee, Nanette R and Leong, Aaron and Li, Liming and Li, Yun and Li-Gao, Ruifang and Ligthart, Symen and Lindgren, Cecilia M and Linneberg, Allan and Liu, Ching-Ti and Liu, Jianjun and Locke, Adam E and Louie, Tin and Luan, Jian{\textquoteright}an and Luk, Andrea O and Luo, Xi and Lv, Jun and Lynch, Julie A and Lyssenko, Valeriya and Maeda, Shiro and Mamakou, Vasiliki and Mansuri, Sohail Rafik and Matsuda, Koichi and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mo, Huan and Morris, Andrew D and Moura, Filipe A and Nadler, Jerry L and Nalls, Michael A and Nayak, Uma and Ntalla, Ioanna and Okada, Yukinori and Orozco, Lorena and Patel, Sanjay R and Patil, Snehal and Pei, Pei and Pereira, Mark A and Peters, Annette and Pirie, Fraser J and Polikowsky, Hannah G and Porneala, Bianca and Prasad, Gauri and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Roden, Michael and Rohde, Rebecca and Roll, Katheryn and Sabanayagam, Charumathi and Sandow, Kevin and Sankareswaran, Alagu and Sattar, Naveed and Sch{\"o}nherr, Sebastian and Shahriar, Mohammad and Shen, Botong and Shi, Jinxiu and Shin, Dong Mun and Shojima, Nobuhiro and Smith, Jennifer A and So, Wing Yee and Stan{\v c}{\'a}kov{\'a}, Alena and Steinthorsdottir, Valgerdur and Stilp, Adrienne M and Strauch, Konstantin and Taylor, Kent D and Thorand, Barbara and Thorsteinsdottir, Unnur and Tomlinson, Brian and Tran, Tam C and Tsai, Fuu-Jen and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and Valladares-Salgado, Adan and van Dam, Rob M and van Klinken, Jan B and Varma, Rohit and Wacher-Rodarte, Niels and Wheeler, Eleanor and Wickremasinghe, Ananda R and van Dijk, Ko Willems and Witte, Daniel R and Yajnik, Chittaranjan S and Yamamoto, Ken and Yamamoto, Kenichi and Yoon, Kyungheon and Yu, Canqing and Yuan, Jian-Min and Yusuf, Salim and Zawistowski, Matthew and Zhang, Liang and Zheng, Wei and Raffel, Leslie J and Igase, Michiya and Ipp, Eli and Redline, Susan and Cho, Yoon Shin and Lind, Lars and Province, Michael A and Fornage, Myriam and Hanis, Craig L and Ingelsson, Erik and Zonderman, Alan B and Psaty, Bruce M and Wang, Ya-Xing and Rotimi, Charles N and Becker, Diane M and Matsuda, Fumihiko and Liu, Yongmei and Yokota, Mitsuhiro and Kardia, Sharon L R and Peyser, Patricia A and Pankow, James S and Engert, James C and Bonnefond, Am{\'e}lie and Froguel, Philippe and Wilson, James G and Sheu, Wayne H H and Wu, Jer-Yuarn and Hayes, M Geoffrey and Ma, Ronald C W and Wong, Tien-Yin and Mook-Kanamori, Dennis O and Tuomi, Tiinamaija and Chandak, Giriraj R and Collins, Francis S and Bharadwaj, Dwaipayan and Par{\'e}, Guillaume and Sale, Mich{\`e}le M and Ahsan, Habibul and Motala, Ayesha A and Shu, Xiao-Ou and Park, Kyong-Soo and Jukema, J Wouter and Cruz, Miguel and Chen, Yii-Der Ida and Rich, Stephen S and McKean-Cowdin, Roberta and Grallert, Harald and Cheng, Ching-Yu and Ghanbari, Mohsen and Tai, E-Shyong and Dupuis, Jos{\'e}e and Kato, Norihiro and Laakso, Markku and K{\"o}ttgen, Anna and Koh, Woon-Puay and Bowden, Donald W and Palmer, Colin N A and Kooner, Jaspal S and Kooperberg, Charles and Liu, Simin and North, Kari E and Saleheen, Danish and Hansen, Torben and Pedersen, Oluf and Wareham, Nicholas J and Lee, Juyoung and Kim, Bong-Jo and Millwood, Iona Y and Walters, Robin G and Stefansson, Kari and Ahlqvist, Emma and Goodarzi, Mark O and Mohlke, Karen L and Langenberg, Claudia and Haiman, Christopher A and Loos, Ruth J F and Florez, Jose C and Rader, Daniel J and Ritchie, Marylyn D and Z{\"o}llner, Sebastian and M{\"a}gi, Reedik and Marston, Nicholas A and Ruff, Christian T and van Heel, David A and Finer, Sarah and Denny, Joshua C and Yamauchi, Toshimasa and Kadowaki, Takashi and Chambers, John C and Ng, Maggie C Y and Sim, Xueling and Below, Jennifer E and Tsao, Philip S and Chang, Kyong-Mi and McCarthy, Mark I and Meigs, James B and Mahajan, Anubha and Spracklen, Cassandra N and Mercader, Josep M and Boehnke, Michael and Rotter, Jerome I and Vujkovic, Marijana and Voight, Benjamin F and Morris, Andrew P and Zeggini, Eleftheria} }