@article {9099, title = {Insights From a Large-Scale Whole-Genome Sequencing Study of Systolic Blood Pressure, Diastolic Blood Pressure, and Hypertension.}, journal = {Hypertension}, year = {2022}, month = {2022 Jun 02}, pages = {101161HYPERTENSIONAHA12219324}, abstract = {

BACKGROUND: The availability of whole-genome sequencing data in large studies has enabled the assessment of coding and noncoding variants across the allele frequency spectrum for their associations with blood pressure.

METHODS: We conducted a multiancestry whole-genome sequencing analysis of blood pressure among 51 456 Trans-Omics for Precision Medicine and Centers for Common Disease Genomics program participants (stage-1). Stage-2 analyses leveraged array data from UK Biobank (N=383 145), Million Veteran Program (N=318 891), and Reasons for Geographic and Racial Differences in Stroke (N=10 643) participants, along with whole-exome sequencing data from UK Biobank (N=199 631) participants.

RESULTS: Two blood pressure signals achieved genome-wide significance in meta-analyses of stage-1 and stage-2 single variant findings (<5{\texttimes}10). Among them, a rare intergenic variant at novel locus, , was associated with lower systolic blood pressure in stage-1 (beta [SE]=-32.6 [6.0]; =4.99{\texttimes}10) but not stage-2 analysis (=0.11). Furthermore, a novel common variant at the known locus was suggestively associated with diastolic blood pressure in stage-1 (beta [SE]=-0.36 [0.07]; =4.18{\texttimes}10) and attained genome-wide significance in stage-2 (beta [SE]=-0.29 [0.03]; =7.28{\texttimes}10). Nineteen additional signals suggestively associated with blood pressure in meta-analysis of single and aggregate rare variant findings (<1{\texttimes}10 and <1{\texttimes}10, respectively).

DISCUSSION: We report one promising but unconfirmed rare variant for blood pressure and, more importantly, contribute insights for future blood pressure sequencing studies. Our findings suggest promise of aggregate analyses to complement single variant analysis strategies and the need for larger, diverse samples, and family studies to enable robust rare variant identification.

}, issn = {1524-4563}, doi = {10.1161/HYPERTENSIONAHA.122.19324}, author = {Kelly, Tanika N and Sun, Xiao and He, Karen Y and Brown, Michael R and Taliun, Sarah A Gagliano and Hellwege, Jacklyn N and Irvin, Marguerite R and Mi, Xuenan and Brody, Jennifer A and Franceschini, Nora and Guo, Xiuqing and Hwang, Shih-Jen and de Vries, Paul S and Gao, Yan and Moscati, Arden and Nadkarni, Girish N and Yanek, Lisa R and Elfassy, Tali and Smith, Jennifer A and Chung, Ren-Hua and Beitelshees, Amber L and Patki, Amit and Aslibekyan, Stella and Blobner, Brandon M and Peralta, Juan M and Assimes, Themistocles L and Palmas, Walter R and Liu, Chunyu and Bress, Adam P and Huang, Zhijie and Becker, Lewis C and Hwa, Chii-Min and O{\textquoteright}Connell, Jeffrey R and Carlson, Jenna C and Warren, Helen R and Das, Sayantan and Giri, Ayush and Martin, Lisa W and Craig Johnson, W and Fox, Ervin R and Bottinger, Erwin P and Razavi, Alexander C and Vaidya, Dhananjay and Chuang, Lee-Ming and Chang, Yen-Pei C and Naseri, Take and Jain, Deepti and Kang, Hyun Min and Hung, Adriana M and Srinivasasainagendra, Vinodh and Snively, Beverly M and Gu, Dongfeng and Montasser, May E and Reupena, Muagututi{\textquoteright}a Sefuiva and Heavner, Benjamin D and LeFaive, Jonathon and Hixson, James E and Rice, Kenneth M and Wang, Fei Fei and Nielsen, Jonas B and Huang, Jianfeng and Khan, Alyna T and Zhou, Wei and Nierenberg, Jovia L and Laurie, Cathy C and Armstrong, Nicole D and Shi, Mengyao and Pan, Yang and Stilp, Adrienne M and Emery, Leslie and Wong, Quenna and Hawley, Nicola L and Minster, Ryan L and Curran, Joanne E and Munroe, Patricia B and Weeks, Daniel E and North, Kari E and Tracy, Russell P and Kenny, Eimear E and Shimbo, Daichi and Chakravarti, Aravinda and Rich, Stephen S and Reiner, Alex P and Blangero, John and Redline, Susan and Mitchell, Braxton D and Rao, Dabeeru C and Ida Chen, Yii-Der and Kardia, Sharon L R and Kaplan, Robert C and Mathias, Rasika A and He, Jiang and Psaty, Bruce M and Fornage, Myriam and Loos, Ruth J F and Correa, Adolfo and Boerwinkle, Eric and Rotter, Jerome I and Kooperberg, Charles and Edwards, Todd L and Abecasis, Goncalo R and Zhu, Xiaofeng and Levy, Daniel and Arnett, Donna K and Morrison, Alanna C} } @article {9258, title = {Whole-Exome Sequencing Study Identifies Four Novel Gene Loci Associated with Diabetic Kidney Disease.}, journal = {Hum Mol Genet}, year = {2022}, month = {2022 Nov 29}, abstract = {

Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease (CKD) and diabetes. Our two-stage whole-exome sequencing study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort (CRIC) and Atherosclerosis Risk in Communities (ARIC) studies (stage-1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine (TOPMed) participants (stage-2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex, and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test (SKAT-O) implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds (95\% confidence interval: 33.6, 1105) of DKD compared with non-carriers (P = 3.59 {\texttimes} 10-9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95\% confidence interval: 3.06, 9.21) of DKD (P = 2.72 {\texttimes} 10-9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 {\texttimes} 10-8) and NPEPPS (P = 1.51 {\texttimes} 10-7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddac290}, author = {Pan, Yang and Sun, Xiao and Mi, Xuenan and Huang, Zhijie and Hsu, Yenchih and Hixson, James E and Munzy, Donna and Metcalf, Ginger and Franceschini, Nora and Tin, Adrienne and K{\"o}ttgen, Anna and Francis, Michael and Brody, Jennifer A and Kestenbaum, Bryan and Sitlani, Colleen M and Mychaleckyj, Josyf C and Kramer, Holly and Lange, Leslie A and Guo, Xiuqing and Hwang, Shih-Jen and Irvin, Marguerite R and Smith, Jennifer A and Yanek, Lisa R and Vaidya, Dhananjay and Chen, Yii-Der Ida and Fornage, Myriam and Lloyd-Jones, Donald M and Hou, Lifang and Mathias, Rasika A and Mitchell, Braxton D and Peyser, Patricia A and Kardia, Sharon L R and Arnett, Donna K and Correa, Adolfo and Raffield, Laura M and Vasan, Ramachandran S and Cupple, L Adrienne and Levy, Daniel and Kaplan, Robert C and North, Kari E and Rotter, Jerome I and Kooperberg, Charles and Reiner, Alexander P and Psaty, Bruce M and Tracy, Russell P and Gibbs, Richard A and Morrison, Alanna C and Feldman, Harold and Boerwinkle, Eric and He, Jiang and Kelly, Tanika N} } @article {9412, title = {Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing.}, journal = {Nat Genet}, volume = {55}, year = {2023}, month = {2023 Feb}, pages = {291-300}, abstract = {

Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55\% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.

}, keywords = {Biology, Drug Repositioning, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide, Tobacco Use, Transcriptome}, issn = {1546-1718}, doi = {10.1038/s41588-022-01282-x}, author = {Chen, Fang and Wang, Xingyan and Jang, Seon-Kyeong and Quach, Bryan C and Weissenkampen, J Dylan and Khunsriraksakul, Chachrit and Yang, Lina and Sauteraud, Renan and Albert, Christine M and Allred, Nicholette D D and Arnett, Donna K and Ashley-Koch, Allison E and Barnes, Kathleen C and Barr, R Graham and Becker, Diane M and Bielak, Lawrence F and Bis, Joshua C and Blangero, John and Boorgula, Meher Preethi and Chasman, Daniel I and Chavan, Sameer and Chen, Yii-der I and Chuang, Lee-Ming and Correa, Adolfo and Curran, Joanne E and David, Sean P and Fuentes, Lisa de Las and Deka, Ranjan and Duggirala, Ravindranath and Faul, Jessica D and Garrett, Melanie E and Gharib, Sina A and Guo, Xiuqing and Hall, Michael E and Hawley, Nicola L and He, Jiang and Hobbs, Brian D and Hokanson, John E and Hsiung, Chao A and Hwang, Shih-Jen and Hyde, Thomas M and Irvin, Marguerite R and Jaffe, Andrew E and Johnson, Eric O and Kaplan, Robert and Kardia, Sharon L R and Kaufman, Joel D and Kelly, Tanika N and Kleinman, Joel E and Kooperberg, Charles and Lee, I-Te and Levy, Daniel and Lutz, Sharon M and Manichaikul, Ani W and Martin, Lisa W and Marx, Olivia and McGarvey, Stephen T and Minster, Ryan L and Moll, Matthew and Moussa, Karine A and Naseri, Take and North, Kari E and Oelsner, Elizabeth C and Peralta, Juan M and Peyser, Patricia A and Psaty, Bruce M and Rafaels, Nicholas and Raffield, Laura M and Reupena, Muagututi{\textquoteright}a Sefuiva and Rich, Stephen S and Rotter, Jerome I and Schwartz, David A and Shadyab, Aladdin H and Sheu, Wayne H-H and Sims, Mario and Smith, Jennifer A and Sun, Xiao and Taylor, Kent D and Telen, Marilyn J and Watson, Harold and Weeks, Daniel E and Weir, David R and Yanek, Lisa R and Young, Kendra A and Young, Kristin L and Zhao, Wei and Hancock, Dana B and Jiang, Bibo and Vrieze, Scott and Liu, Dajiang J} } @article {9581, title = {Whole genome sequence analysis of apparent treatment resistant hypertension status in participants from the Trans-Omics for Precision Medicine program.}, journal = {Front Genet}, volume = {14}, year = {2023}, month = {2023}, pages = {1278215}, abstract = {

Apparent treatment-resistant hypertension (aTRH) is characterized by the use of four or more antihypertensive (AHT) classes to achieve blood pressure (BP) control. In the current study, we conducted single-variant and gene-based analyses of aTRH among individuals from 12 Trans-Omics for Precision Medicine cohorts with whole-genome sequencing data. Cases were defined as individuals treated for hypertension (HTN) taking three different AHT classes, with average systolic BP >= 140 or diastolic BP >= 90~mmHg, or four or more medications regardless of BP ( = 1,705). A normotensive control group was defined as individuals with BP < 140/90~mmHg ( = 22,079), not on AHT medication. A second control group comprised individuals who were treatment responsive on one AHT medication with BP < 140/ 90~mmHg ( = 5,424). Logistic regression with kinship adjustment using the Scalable and Accurate Implementation of Generalized mixed models (SAIGE) was performed, adjusting for age, sex, and genetic ancestry. We assessed variants using SKAT-O in rare-variant analyses. Single-variant and gene-based tests were conducted in a pooled multi-ethnicity stratum, as well as self-reported ethnic/racial strata (European and African American). One variant in the known HTN locus, , was a top finding in the multi-ethnic analysis ( = 8.23E-07) for the normotensive control group [rs12476527, odds ratio (95\% confidence interval) = 0.80 (0.74-0.88)]. This variant was replicated in the Vanderbilt University Medical Center{\textquoteright}s DNA repository data. Aggregate gene-based signals included the genes and . Additional work validating these loci in larger, more diverse populations, is warranted to determine whether these regions influence the pathobiology of aTRH.

}, issn = {1664-8021}, doi = {10.3389/fgene.2023.1278215}, author = {Armstrong, Nicole D and Srinivasasainagendra, Vinodh and Ammous, Farah and Assimes, Themistocles L and Beitelshees, Amber L and Brody, Jennifer and Cade, Brian E and Ida Chen, Yii-Der and Chen, Han and de Vries, Paul S and Floyd, James S and Franceschini, Nora and Guo, Xiuqing and Hellwege, Jacklyn N and House, John S and Hwu, Chii-Min and Kardia, Sharon L R and Lange, Ethan M and Lange, Leslie A and McDonough, Caitrin W and Montasser, May E and O{\textquoteright}Connell, Jeffrey R and Shuey, Megan M and Sun, Xiao and Tanner, Rikki M and Wang, Zhe and Zhao, Wei and Carson, April P and Edwards, Todd L and Kelly, Tanika N and Kenny, Eimear E and Kooperberg, Charles and Loos, Ruth J F and Morrison, Alanna C and Motsinger-Reif, Alison and Psaty, Bruce M and Rao, Dabeeru C and Redline, Susan and Rich, Stephen S and Rotter, Jerome I and Smith, Jennifer A and Smith, Albert V and Irvin, Marguerite R and Arnett, Donna K} }