@article {989, title = {Genome-wide association of sleep and circadian phenotypes.}, journal = {BMC Med Genet}, volume = {8 Suppl 1}, year = {2007}, month = {2007 Sep 19}, pages = {S9}, abstract = {

BACKGROUND: Numerous studies suggest genetic influences on sleepiness and circadian rhythms. The Sleep Heart Health Study collected questionnaire data on sleep habits and sleepiness from 2848 Framingham Heart Study Offspring Cohort participants. More than 700 participants were genotyped using the Affymetrix 100K SNP GeneChip, providing a unique opportunity to assess genetic linkage and association of these traits.

METHODS: Sleepiness (defined as the Epworth Sleepiness Scale score), usual bedtime and usual sleep duration were assessed by self-completion questionnaire. Standardized residual measures adjusted for age, sex and BMI were analyzed. Multipoint variance components linkage analysis was performed. Association of SNPs to sleep phenotypes was analyzed with both population-based and family-based association tests, with analysis limited to 70,987 autosomal SNPs with minor allele frequency > or =10\%, call rate > or =80\%, and no significant deviation from Hardy-Weinberg equilibrium (p > or = 0.001).

RESULTS: Heritability of sleepiness was 0.29, bedtime 0.22, and sleep duration 0.17. Both genotype and sleep phenotype data were available for 749 subjects. Linkage analysis revealed five linkage peaks of LOD >2: four to usual bedtime, one to sleep duration. These peaks include several candidate sleep-related genes, including CSNK2A2, encoding a known component of the circadian molecular clock, and PROK2, encoding a putative transmitter of the behavioral circadian rhythm from the suprachiasmatic nucleus. Association tests identified an association of usual bedtime with a non-synonymous coding SNP in NPSR1 that has been shown to encode a gain of function mutation of the neuropeptide S receptor, whose endogenous ligand is a potent promoter of wakefulness. Each copy of the minor allele of this SNP was associated with a 15 minute later mean bedtime. The lowest p value was for association of sleepiness with a SNP located in an intron of PDE4D, which encodes a cAMP-specific phosphodiesterase widely expressed in human brain. Full association results are posted at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007 webcite.

CONCLUSION: This analysis confirms prior reports of significant heritability of sleepiness, usual bedtime, and usual sleep duration. Several genetic loci with suggestive linkage to these traits are identified, including linkage peaks containing circadian clock-related genes. Association tests identify NPSR1 and PDE4D as possible mediators of bedtime and sleepiness.

}, keywords = {Adult, Alleles, Cardiovascular Diseases, Circadian Rhythm, Cohort Studies, Female, Gene Frequency, Genetic Linkage, Genome, Human, Genotype, Humans, Male, Middle Aged, Phenotype, Polymorphism, Single Nucleotide, Sleep, Surveys and Questionnaires}, issn = {1471-2350}, doi = {10.1186/1471-2350-8-S1-S9}, author = {Gottlieb, Daniel J and O{\textquoteright}Connor, George T and Wilk, Jemma B} } @article {1150, title = {Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Jan}, pages = {45-52}, abstract = {

Spirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV(1)) and its ratio to forced vital capacity (FEV(1)/FVC), an indicator of airflow obstruction. This meta-analysis included 20,890 participants of European ancestry from four CHARGE Consortium studies: Atherosclerosis Risk in Communities, Cardiovascular Health Study, Framingham Heart Study and Rotterdam Study. We identified eight loci associated with FEV(1)/FVC (HHIP, GPR126, ADAM19, AGER-PPT2, FAM13A, PTCH1, PID1 and HTR4) and one locus associated with FEV(1) (INTS12-GSTCD-NPNT) at or near genome-wide significance (P < 5 x 10(-8)) in the CHARGE Consortium dataset. Our findings may offer insights into pulmonary function and pathogenesis of chronic lung disease.

}, keywords = {Databases, Genetic, Female, Forced Expiratory Volume, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Lung, Lung Diseases, Male, Meta-Analysis as Topic, Polymorphism, Single Nucleotide, Spirometry, Vital Capacity}, issn = {1546-1718}, doi = {10.1038/ng.500}, author = {Hancock, Dana B and Eijgelsheim, Mark and Wilk, Jemma B and Gharib, Sina A and Loehr, Laura R and Marciante, Kristin D and Franceschini, Nora and van Durme, Yannick M T A and Chen, Ting-Hsu and Barr, R Graham and Schabath, Matthew B and Couper, David J and Brusselle, Guy G and Psaty, Bruce M and van Duijn, Cornelia M and Rotter, Jerome I and Uitterlinden, Andr{\'e} G and Hofman, Albert and Punjabi, Naresh M and Rivadeneira, Fernando and Morrison, Alanna C and Enright, Paul L and North, Kari E and Heckbert, Susan R and Lumley, Thomas and Stricker, Bruno H C and O{\textquoteright}Connor, George T and London, Stephanie J} } @article {6096, title = {Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function.}, journal = {Nat Genet}, volume = {43}, year = {2011}, month = {2011 Sep 25}, pages = {1082-90}, abstract = {

Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 {\texttimes} 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.

}, keywords = {Child, European Continental Ancestry Group, Genome-Wide Association Study, Humans, Pulmonary Disease, Chronic Obstructive, Respiratory Function Tests}, issn = {1546-1718}, doi = {10.1038/ng.941}, author = {Soler Artigas, Maria and Loth, Daan W and Wain, Louise V and Gharib, Sina A and Obeidat, Ma{\textquoteright}en and Tang, Wenbo and Zhai, Guangju and Zhao, Jing Hua and Smith, Albert Vernon and Huffman, Jennifer E and Albrecht, Eva and Jackson, Catherine M and Evans, David M and Cadby, Gemma and Fornage, Myriam and Manichaikul, Ani and Lopez, Lorna M and Johnson, Toby and Aldrich, Melinda C and Aspelund, Thor and Barroso, In{\^e}s and Campbell, Harry and Cassano, Patricia A and Couper, David J and Eiriksdottir, Gudny and Franceschini, Nora and Garcia, Melissa and Gieger, Christian and Gislason, Gauti Kjartan and Grkovic, Ivica and Hammond, Christopher J and Hancock, Dana B and Harris, Tamara B and Ramasamy, Adaikalavan and Heckbert, Susan R and Heli{\"o}vaara, Markku and Homuth, Georg and Hysi, Pirro G and James, Alan L and Jankovic, Stipan and Joubert, Bonnie R and Karrasch, Stefan and Klopp, Norman and Koch, Beate and Kritchevsky, Stephen B and Launer, Lenore J and Liu, Yongmei and Loehr, Laura R and Lohman, Kurt and Loos, Ruth J F and Lumley, Thomas and Al Balushi, Khalid A and Ang, Wei Q and Barr, R Graham and Beilby, John and Blakey, John D and Boban, Mladen and Boraska, Vesna and Brisman, Jonas and Britton, John R and Brusselle, Guy G and Cooper, Cyrus and Curjuric, Ivan and Dahgam, Santosh and Deary, Ian J and Ebrahim, Shah and Eijgelsheim, Mark and Francks, Clyde and Gaysina, Darya and Granell, Raquel and Gu, Xiangjun and Hankinson, John L and Hardy, Rebecca and Harris, Sarah E and Henderson, John and Henry, Amanda and Hingorani, Aroon D and Hofman, Albert and Holt, Patrick G and Hui, Jennie and Hunter, Michael L and Imboden, Medea and Jameson, Karen A and Kerr, Shona M and Kolcic, Ivana and Kronenberg, Florian and Liu, Jason Z and Marchini, Jonathan and McKeever, Tricia and Morris, Andrew D and Olin, Anna-Carin and Porteous, David J and Postma, Dirkje S and Rich, Stephen S and Ring, Susan M and Rivadeneira, Fernando and Rochat, Thierry and Sayer, Avan Aihie and Sayers, Ian and Sly, Peter D and Smith, George Davey and Sood, Akshay and Starr, John M and Uitterlinden, Andr{\'e} G and Vonk, Judith M and Wannamethee, S Goya and Whincup, Peter H and Wijmenga, Cisca and Williams, O Dale and Wong, Andrew and Mangino, Massimo and Marciante, Kristin D and McArdle, Wendy L and Meibohm, Bernd and Morrison, Alanna C and North, Kari E and Omenaas, Ernst and Palmer, Lyle J and Pietil{\"a}inen, Kirsi H and Pin, Isabelle and Pola Sbreve Ek, Ozren and Pouta, Anneli and Psaty, Bruce M and Hartikainen, Anna-Liisa and Rantanen, Taina and Ripatti, Samuli and Rotter, Jerome I and Rudan, Igor and Rudnicka, Alicja R and Schulz, Holger and Shin, So-Youn and Spector, Tim D and Surakka, Ida and Vitart, Veronique and V{\"o}lzke, Henry and Wareham, Nicholas J and Warrington, Nicole M and Wichmann, H-Erich and Wild, Sarah H and Wilk, Jemma B and Wjst, Matthias and Wright, Alan F and Zgaga, Lina and Zemunik, Tatijana and Pennell, Craig E and Nyberg, Fredrik and Kuh, Diana and Holloway, John W and Boezen, H Marike and Lawlor, Debbie A and Morris, Richard W and Probst-Hensch, Nicole and Kaprio, Jaakko and Wilson, James F and Hayward, Caroline and K{\"a}h{\"o}nen, Mika and Heinrich, Joachim and Musk, Arthur W and Jarvis, Deborah L and Gl{\"a}ser, Sven and Jarvelin, Marjo-Riitta and Ch Stricker, Bruno H and Elliott, Paul and O{\textquoteright}Connor, George T and Strachan, David P and London, Stephanie J and Hall, Ian P and Gudnason, Vilmundur and Tobin, Martin D} } @article {6092, title = {Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction.}, journal = {Am J Respir Crit Care Med}, volume = {186}, year = {2012}, month = {2012 Oct 01}, pages = {622-32}, abstract = {

RATIONALE: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known.

OBJECTIVES: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases.

METHODS: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations.

MEASUREMENTS AND MAIN RESULTS: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis.

CONCLUSIONS: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.

}, keywords = {Aged, Female, Forced Expiratory Volume, Genome-Wide Association Study, Humans, Male, Middle Aged, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Pulmonary Disease, Chronic Obstructive, Receptors, Nicotinic, Receptors, Serotonin, 5-HT4, Smoking, Vital Capacity}, issn = {1535-4970}, doi = {10.1164/rccm.201202-0366OC}, author = {Wilk, Jemma B and Shrine, Nick R G and Loehr, Laura R and Zhao, Jing Hua and Manichaikul, Ani and Lopez, Lorna M and Smith, Albert Vernon and Heckbert, Susan R and Smolonska, Joanna and Tang, Wenbo and Loth, Daan W and Curjuric, Ivan and Hui, Jennie and Cho, Michael H and Latourelle, Jeanne C and Henry, Amanda P and Aldrich, Melinda and Bakke, Per and Beaty, Terri H and Bentley, Amy R and Borecki, Ingrid B and Brusselle, Guy G and Burkart, Kristin M and Chen, Ting-Hsu and Couper, David and Crapo, James D and Davies, Gail and Dupuis, Jos{\'e}e and Franceschini, Nora and Gulsvik, Amund and Hancock, Dana B and Harris, Tamara B and Hofman, Albert and Imboden, Medea and James, Alan L and Khaw, Kay-Tee and Lahousse, Lies and Launer, Lenore J and Litonjua, Augusto and Liu, Yongmei and Lohman, Kurt K and Lomas, David A and Lumley, Thomas and Marciante, Kristin D and McArdle, Wendy L and Meibohm, Bernd and Morrison, Alanna C and Musk, Arthur W and Myers, Richard H and North, Kari E and Postma, Dirkje S and Psaty, Bruce M and Rich, Stephen S and Rivadeneira, Fernando and Rochat, Thierry and Rotter, Jerome I and Soler Artigas, Maria and Starr, John M and Uitterlinden, Andr{\'e} G and Wareham, Nicholas J and Wijmenga, Cisca and Zanen, Pieter and Province, Michael A and Silverman, Edwin K and Deary, Ian J and Palmer, Lyle J and Cassano, Patricia A and Gudnason, Vilmundur and Barr, R Graham and Loos, Ruth J F and Strachan, David P and London, Stephanie J and Boezen, H Marike and Probst-Hensch, Nicole and Gharib, Sina A and Hall, Ian P and O{\textquoteright}Connor, George T and Tobin, Martin D and Stricker, Bruno H} } @article {6088, title = {Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1003098}, abstract = {

Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV(1)), and its ratio to forced vital capacity (FEV(1)/FVC). Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV(1) and FEV(1)/FVC across 19 studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest P(JMA = )5.00{\texttimes}10(-11)), HLA-DQB1 and HLA-DQA2 (smallest P(JMA = )4.35{\texttimes}10(-9)), and KCNJ2 and SOX9 (smallest P(JMA = )1.28{\texttimes}10(-8)) were associated with FEV(1)/FVC or FEV(1) in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.

}, keywords = {Forced Expiratory Volume, Gene Expression, Genome, Human, Genome-Wide Association Study, HLA-DQ Antigens, HLA-DQ beta-Chains, Humans, Lung, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Potassium Channels, Inwardly Rectifying, Pulmonary Disease, Chronic Obstructive, Receptors, Cell Surface, Smoking, SOX9 Transcription Factor, Vital Capacity}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003098}, author = {Hancock, Dana B and Soler Artigas, Maria and Gharib, Sina A and Henry, Amanda and Manichaikul, Ani and Ramasamy, Adaikalavan and Loth, Daan W and Imboden, Medea and Koch, Beate and McArdle, Wendy L and Smith, Albert V and Smolonska, Joanna and Sood, Akshay and Tang, Wenbo and Wilk, Jemma B and Zhai, Guangju and Zhao, Jing Hua and Aschard, Hugues and Burkart, Kristin M and Curjuric, Ivan and Eijgelsheim, Mark and Elliott, Paul and Gu, Xiangjun and Harris, Tamara B and Janson, Christer and Homuth, Georg and Hysi, Pirro G and Liu, Jason Z and Loehr, Laura R and Lohman, Kurt and Loos, Ruth J F and Manning, Alisa K and Marciante, Kristin D and Obeidat, Ma{\textquoteright}en and Postma, Dirkje S and Aldrich, Melinda C and Brusselle, Guy G and Chen, Ting-Hsu and Eiriksdottir, Gudny and Franceschini, Nora and Heinrich, Joachim and Rotter, Jerome I and Wijmenga, Cisca and Williams, O Dale and Bentley, Amy R and Hofman, Albert and Laurie, Cathy C and Lumley, Thomas and Morrison, Alanna C and Joubert, Bonnie R and Rivadeneira, Fernando and Couper, David J and Kritchevsky, Stephen B and Liu, Yongmei and Wjst, Matthias and Wain, Louise V and Vonk, Judith M and Uitterlinden, Andr{\'e} G and Rochat, Thierry and Rich, Stephen S and Psaty, Bruce M and O{\textquoteright}Connor, George T and North, Kari E and Mirel, Daniel B and Meibohm, Bernd and Launer, Lenore J and Khaw, Kay-Tee and Hartikainen, Anna-Liisa and Hammond, Christopher J and Gl{\"a}ser, Sven and Marchini, Jonathan and Kraft, Peter and Wareham, Nicholas J and V{\"o}lzke, Henry and Stricker, Bruno H C and Spector, Timothy D and Probst-Hensch, Nicole M and Jarvis, Deborah and Jarvelin, Marjo-Riitta and Heckbert, Susan R and Gudnason, Vilmundur and Boezen, H Marike and Barr, R Graham and Cassano, Patricia A and Strachan, David P and Fornage, Myriam and Hall, Ian P and Dupuis, Jos{\'e}e and Tobin, Martin D and London, Stephanie J} } @article {6080, title = {Common FABP4 genetic variants and plasma levels of fatty acid binding protein 4 in older adults.}, journal = {Lipids}, volume = {48}, year = {2013}, month = {2013 Nov}, pages = {1169-75}, abstract = {

We examined common variants in the fatty acid binding protein 4 gene (FABP4) and plasma levels of FABP4 in adults aged 65 and older from the Cardiovascular Health Study. We genotyped rs16909187, rs1054135, rs16909192, rs10808846, rs7018409, rs2290201, and rs6992708 and measured circulating FABP4 levels among 3190 European Americans and 660 African Americans. Among European Americans, the minor alleles of six single nucleotide polymorphisms (SNP) were associated with lower FABP4 levels (all p~<=~0.01). Among African Americans, the SNP with the lowest minor allele frequency was associated with lower FABP4 levels (p~=~0.015). The C-A haplotype of rs16909192 and rs2290201 was associated with lower FABP4 levels in both European Americans (frequency~=~16~\%; p~=~0.001) and African Americans (frequency~=~8~\%; p~=~0.04). The haplotype combined a SNP in the first intron with one in the 3{\textquoteright}untranslated region. However, the alleles associated with lower FABP4 levels were associated with higher fasting glucose in meta-analyses from the MAGIC consortium. These results demonstrate associations of common SNP and haplotypes in the FABP4 gene with lower plasma FABP4 but higher fasting glucose levels.

}, keywords = {African Americans, Aged, Aged, 80 and over, Blood Glucose, Body Mass Index, Cohort Studies, European Continental Ancestry Group, Fatty Acid-Binding Proteins, Female, Gene Frequency, Genetic Association Studies, Haplotypes, Humans, Insulin, Linkage Disequilibrium, Male, Polymorphism, Single Nucleotide}, issn = {1558-9307}, doi = {10.1007/s11745-013-3838-7}, author = {Mukamal, Kenneth J and Wilk, Jemma B and Biggs, Mary L and Jensen, Majken K and Ix, Joachim H and Kizer, Jorge R and Tracy, Russell P and Zieman, Susan J and Mozaffarian, Dariush and Psaty, Bruce M and Siscovick, David S and Djouss{\'e}, Luc} } @article {6580, title = {ADAM19 and HTR4 variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {350-8}, abstract = {

BACKGROUND: The pulmonary function measures of forced expiratory volume in 1 second (FEV1) and its ratio to forced vital capacity (FVC) are used in the diagnosis and monitoring of lung diseases and predict cardiovascular mortality in the general population. Genome-wide association studies (GWASs) have identified numerous loci associated with FEV1 and FEV1/FVC, but the causal variants remain uncertain. We hypothesized that novel or rare variants poorly tagged by GWASs may explain the significant associations between FEV1/FVC and 2 genes: ADAM19 and HTR4.

METHODS AND RESULTS: We sequenced ADAM19 and its promoter region along with the ≈21-kb portion of HTR4 harboring GWAS single-nucleotide polymorphisms for pulmonary function and analyzed associations with FEV1/FVC among 3983 participants of European ancestry from Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Meta-analysis of common variants in each region identified statistically significant associations (316 tests; P<1.58{\texttimes}10(-4)) with FEV1/FVC for 14 ADAM19 single-nucleotide polymorphisms and 24 HTR4 single-nucleotide polymorphisms. After conditioning on the sentinel GWASs hit in each gene (ADAM19 rs1422795, minor allele frequency=0.33 and HTR4 rs11168048, minor allele frequency=0.40], 1 single-nucleotide polymorphism remained statistically significant (ADAM19 rs13155908, minor allele frequency=0.12; P=1.56{\texttimes}10(-4)). Analysis of rare variants (minor allele frequency <1\%) using sequence kernel association test did not identify associations with either region.

CONCLUSIONS: Sequencing identified 1 common variant associated with FEV1/FVC independent of the sentinel ADAM19 GWAS hit and supports the original HTR4 GWAS findings. Rare variants do not seem to underlie GWAS associations with pulmonary function for common variants in ADAM19 and HTR4.

}, keywords = {ADAM Proteins, Aged, Aged, 80 and over, Aging, Cohort Studies, Female, Genetic Variation, Genome-Wide Association Study, Genomics, Heart Diseases, Humans, Lung, Male, Middle Aged, Polymorphism, Single Nucleotide, Sequence Analysis, DNA}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000066}, author = {London, Stephanie J and Gao, Wei and Gharib, Sina A and Hancock, Dana B and Wilk, Jemma B and House, John S and Gibbs, Richard A and Muzny, Donna M and Lumley, Thomas and Franceschini, Nora and North, Kari E and Psaty, Bruce M and Kovar, Christie L and Coresh, Josef and Zhou, Yanhua and Heckbert, Susan R and Brody, Jennifer A and Morrison, Alanna C and Dupuis, Jos{\'e}e} } @article {6582, title = {Genome-wide association analysis identifies six new loci associated with forced vital capacity.}, journal = {Nat Genet}, volume = {46}, year = {2014}, month = {2014 Jul}, pages = {669-77}, abstract = {

Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 {\texttimes} 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.

}, keywords = {Cohort Studies, Databases, Genetic, Follow-Up Studies, Forced Expiratory Volume, Genetic Loci, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Lung Diseases, Meta-Analysis as Topic, Polymorphism, Single Nucleotide, Prognosis, Quantitative Trait Loci, Respiratory Function Tests, Spirometry, Vital Capacity}, issn = {1546-1718}, doi = {10.1038/ng.3011}, author = {Loth, Daan W and Soler Artigas, Maria and Gharib, Sina A and Wain, Louise V and Franceschini, Nora and Koch, Beate and Pottinger, Tess D and Smith, Albert Vernon and Duan, Qing and Oldmeadow, Chris and Lee, Mi Kyeong and Strachan, David P and James, Alan L and Huffman, Jennifer E and Vitart, Veronique and Ramasamy, Adaikalavan and Wareham, Nicholas J and Kaprio, Jaakko and Wang, Xin-Qun and Trochet, Holly and K{\"a}h{\"o}nen, Mika and Flexeder, Claudia and Albrecht, Eva and Lopez, Lorna M and de Jong, Kim and Thyagarajan, Bharat and Alves, Alexessander Couto and Enroth, Stefan and Omenaas, Ernst and Joshi, Peter K and Fall, Tove and Vi{\~n}uela, Ana and Launer, Lenore J and Loehr, Laura R and Fornage, Myriam and Li, Guo and Wilk, Jemma B and Tang, Wenbo and Manichaikul, Ani and Lahousse, Lies and Harris, Tamara B and North, Kari E and Rudnicka, Alicja R and Hui, Jennie and Gu, Xiangjun and Lumley, Thomas and Wright, Alan F and Hastie, Nicholas D and Campbell, Susan and Kumar, Rajesh and Pin, Isabelle and Scott, Robert A and Pietil{\"a}inen, Kirsi H and Surakka, Ida and Liu, Yongmei and Holliday, Elizabeth G and Schulz, Holger and Heinrich, Joachim and Davies, Gail and Vonk, Judith M and Wojczynski, Mary and Pouta, Anneli and Johansson, Asa and Wild, Sarah H and Ingelsson, Erik and Rivadeneira, Fernando and V{\"o}lzke, Henry and Hysi, Pirro G and Eiriksdottir, Gudny and Morrison, Alanna C and Rotter, Jerome I and Gao, Wei and Postma, Dirkje S and White, Wendy B and Rich, Stephen S and Hofman, Albert and Aspelund, Thor and Couper, David and Smith, Lewis J and Psaty, Bruce M and Lohman, Kurt and Burchard, Esteban G and Uitterlinden, Andr{\'e} G and Garcia, Melissa and Joubert, Bonnie R and McArdle, Wendy L and Musk, A Bill and Hansel, Nadia and Heckbert, Susan R and Zgaga, Lina and van Meurs, Joyce B J and Navarro, Pau and Rudan, Igor and Oh, Yeon-Mok and Redline, Susan and Jarvis, Deborah L and Zhao, Jing Hua and Rantanen, Taina and O{\textquoteright}Connor, George T and Ripatti, Samuli and Scott, Rodney J and Karrasch, Stefan and Grallert, Harald and Gaddis, Nathan C and Starr, John M and Wijmenga, Cisca and Minster, Ryan L and Lederer, David J and Pekkanen, Juha and Gyllensten, Ulf and Campbell, Harry and Morris, Andrew P and Gl{\"a}ser, Sven and Hammond, Christopher J and Burkart, Kristin M and Beilby, John and Kritchevsky, Stephen B and Gudnason, Vilmundur and Hancock, Dana B and Williams, O Dale and Polasek, Ozren and Zemunik, Tatijana and Kolcic, Ivana and Petrini, Marcy F and Wjst, Matthias and Kim, Woo Jin and Porteous, David J and Scotland, Generation and Smith, Blair H and Viljanen, Anne and Heli{\"o}vaara, Markku and Attia, John R and Sayers, Ian and Hampel, Regina and Gieger, Christian and Deary, Ian J and Boezen, H Marike and Newman, Anne and Jarvelin, Marjo-Riitta and Wilson, James F and Lind, Lars and Stricker, Bruno H and Teumer, Alexander and Spector, Timothy D and Mel{\'e}n, Erik and Peters, Marjolein J and Lange, Leslie A and Barr, R Graham and Bracke, Ken R and Verhamme, Fien M and Sung, Joohon and Hiemstra, Pieter S and Cassano, Patricia A and Sood, Akshay and Hayward, Caroline and Dupuis, Jos{\'e}e and Hall, Ian P and Brusselle, Guy G and Tobin, Martin D and London, Stephanie J} } @article {6604, title = {Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.}, journal = {PLoS One}, volume = {9}, year = {2014}, month = {2014}, pages = {e100776}, abstract = {

BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function.

METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis.

RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 {\texttimes} 10(-7)). In addition, meta-analysis using the five cohorts with >=3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 {\texttimes} 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.

CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.

}, keywords = {Adult, Chromosomes, Human, Pair 11, Female, Gene Expression Regulation, Genetic Loci, Genome-Wide Association Study, Humans, Longitudinal Studies, Male, Respiration}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100776}, author = {Tang, Wenbo and Kowgier, Matthew and Loth, Daan W and Soler Artigas, Maria and Joubert, Bonnie R and Hodge, Emily and Gharib, Sina A and Smith, Albert V and Ruczinski, Ingo and Gudnason, Vilmundur and Mathias, Rasika A and Harris, Tamara B and Hansel, Nadia N and Launer, Lenore J and Barnes, Kathleen C and Hansen, Joyanna G and Albrecht, Eva and Aldrich, Melinda C and Allerhand, Michael and Barr, R Graham and Brusselle, Guy G and Couper, David J and Curjuric, Ivan and Davies, Gail and Deary, Ian J and Dupuis, Jos{\'e}e and Fall, Tove and Foy, Millennia and Franceschini, Nora and Gao, Wei and Gl{\"a}ser, Sven and Gu, Xiangjun and Hancock, Dana B and Heinrich, Joachim and Hofman, Albert and Imboden, Medea and Ingelsson, Erik and James, Alan and Karrasch, Stefan and Koch, Beate and Kritchevsky, Stephen B and Kumar, Ashish and Lahousse, Lies and Li, Guo and Lind, Lars and Lindgren, Cecilia and Liu, Yongmei and Lohman, Kurt and Lumley, Thomas and McArdle, Wendy L and Meibohm, Bernd and Morris, Andrew P and Morrison, Alanna C and Musk, Bill and North, Kari E and Palmer, Lyle J and Probst-Hensch, Nicole M and Psaty, Bruce M and Rivadeneira, Fernando and Rotter, Jerome I and Schulz, Holger and Smith, Lewis J and Sood, Akshay and Starr, John M and Strachan, David P and Teumer, Alexander and Uitterlinden, Andr{\'e} G and V{\"o}lzke, Henry and Voorman, Arend and Wain, Louise V and Wells, Martin T and Wilk, Jemma B and Williams, O Dale and Heckbert, Susan R and Stricker, Bruno H and London, Stephanie J and Fornage, Myriam and Tobin, Martin D and O{\textquoteright}Connor, George T and Hall, Ian P and Cassano, Patricia A} } @article {6860, title = {Integrative pathway genomics of lung function and airflow obstruction.}, journal = {Hum Mol Genet}, volume = {24}, year = {2015}, month = {2015 Dec 1}, pages = {6836-48}, abstract = {

Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies (GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the phenotypic variability. We postulated that integrating pathway-based methods with GWASs of pulmonary function and airflow obstruction would identify a broader repertoire of genes and processes influencing these traits. We performed two independent GWASs of lung function and applied gene set enrichment analysis to one of the studies and validated the results using the second GWAS. We identified 131 significantly enriched gene sets associated with lung function and clustered them into larger biological modules involved in diverse processes including development, immunity, cell signaling, proliferation and arachidonic acid. We found that enrichment of gene sets was not driven by GWAS-significant variants or loci, but instead by those with less stringent association P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow obstruction. We identified several biologic modules that functionally overlapped with those associated with pulmonary function. However, differences were also noted, including enrichment of extracellular matrix (ECM) processes specifically in the airflow obstruction study. Network analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), as a putative disease target. We used a knockout mouse model to functionally validate MMP10{\textquoteright}s role in influencing lung{\textquoteright}s susceptibility to cigarette smoke-induced emphysema. By integrating pathway analysis with population-based genomics, we unraveled biologic processes underlying pulmonary function traits and identified a candidate gene for obstructive lung disease.

}, keywords = {Airway Obstruction, Animals, Cell Proliferation, European Continental Ancestry Group, Genetic Predisposition to Disease, Genome-Wide Association Study, Genomics, Humans, Immune System, Lung, Male, Metabolic Networks and Pathways, Mice, Phenotype, Polymorphism, Single Nucleotide, Signal Transduction}, issn = {1460-2083}, doi = {10.1093/hmg/ddv378}, author = {Gharib, Sina A and Loth, Daan W and Soler Artigas, Maria and Birkland, Timothy P and Wilk, Jemma B and Wain, Louise V and Brody, Jennifer A and Obeidat, Ma{\textquoteright}en and Hancock, Dana B and Tang, Wenbo and Rawal, Rajesh and Boezen, H Marike and Imboden, Medea and Huffman, Jennifer E and Lahousse, Lies and Alves, Alexessander C and Manichaikul, Ani and Hui, Jennie and Morrison, Alanna C and Ramasamy, Adaikalavan and Smith, Albert Vernon and Gudnason, Vilmundur and Surakka, Ida and Vitart, Veronique and Evans, David M and Strachan, David P and Deary, Ian J and Hofman, Albert and Gl{\"a}ser, Sven and Wilson, James F and North, Kari E and Zhao, Jing Hua and Heckbert, Susan R and Jarvis, Deborah L and Probst-Hensch, Nicole and Schulz, Holger and Barr, R Graham and Jarvelin, Marjo-Riitta and O{\textquoteright}Connor, George T and K{\"a}h{\"o}nen, Mika and Cassano, Patricia A and Hysi, Pirro G and Dupuis, Jos{\'e}e and Hayward, Caroline and Psaty, Bruce M and Hall, Ian P and Parks, William C and Tobin, Martin D and London, Stephanie J} } @article {7144, title = {Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure.}, journal = {PLoS Genet}, volume = {12}, year = {2016}, month = {2016 May}, pages = {e1006034}, abstract = {

Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinants of mortality in patients with new-onset heart failure, we performed a meta-analysis of genome-wide association studies and follow-up genotyping in independent populations. We identified and replicated an association for a genetic variant on chromosome 5q22 with 36\% increased risk of death in subjects with heart failure (rs9885413, P = 2.7x10-9). We provide evidence from reporter gene assays, computational predictions and epigenomic marks that this polymorphism increases activity of an enhancer region active in multiple human tissues. The polymorphism was further reproducibly associated with a DNA methylation signature in whole blood (P = 4.5x10-40) that also associated with allergic sensitization and expression in blood of the cytokine TSLP (P = 1.1x10-4). Knockdown of the transcription factor predicted to bind the enhancer region (NHLH1) in a human cell line (HEK293) expressing NHLH1 resulted in lower TSLP expression. In addition, we observed evidence of recent positive selection acting on the risk allele in populations of African descent. Our findings provide novel genetic leads to factors that influence mortality in patients with heart failure.

}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1006034}, author = {Smith, J Gustav and Felix, Janine F and Morrison, Alanna C and Kalogeropoulos, Andreas and Trompet, Stella and Wilk, Jemma B and Gidl{\"o}f, Olof and Wang, Xinchen and Morley, Michael and Mendelson, Michael and Joehanes, Roby and Ligthart, Symen and Shan, Xiaoyin and Bis, Joshua C and Wang, Ying A and Sj{\"o}gren, Marketa and Ngwa, Julius and Brandimarto, Jeffrey and Stott, David J and Aguilar, David and Rice, Kenneth M and Sesso, Howard D and Demissie, Serkalem and Buckley, Brendan M and Taylor, Kent D and Ford, Ian and Yao, Chen and Liu, Chunyu and Sotoodehnia, Nona and van der Harst, Pim and Stricker, Bruno H Ch and Kritchevsky, Stephen B and Liu, Yongmei and Gaziano, J Michael and Hofman, Albert and Moravec, Christine S and Uitterlinden, Andr{\'e} G and Kellis, Manolis and van Meurs, Joyce B and Margulies, Kenneth B and Dehghan, Abbas and Levy, Daniel and Olde, Bj{\"o}rn and Psaty, Bruce M and Cupples, L Adrienne and Jukema, J Wouter and Djouss{\'e}, Luc and Franco, Oscar H and Boerwinkle, Eric and Boyer, Laurie A and Newton-Cheh, Christopher and Butler, Javed and Vasan, Ramachandran S and Cappola, Thomas P and Smith, Nicholas L} } @article {7345, title = {Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis.}, journal = {Nat Genet}, volume = {49}, year = {2017}, month = {2017 Mar}, pages = {426-432}, abstract = {

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 {\texttimes} 10(-6)) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases.

}, issn = {1546-1718}, doi = {10.1038/ng.3752}, author = {Hobbs, Brian D and de Jong, Kim and Lamontagne, Maxime and Boss{\'e}, Yohan and Shrine, Nick and Artigas, Maria Soler and Wain, Louise V and Hall, Ian P and Jackson, Victoria E and Wyss, Annah B and London, Stephanie J and North, Kari E and Franceschini, Nora and Strachan, David P and Beaty, Terri H and Hokanson, John E and Crapo, James D and Castaldi, Peter J and Chase, Robert P and Bartz, Traci M and Heckbert, Susan R and Psaty, Bruce M and Gharib, Sina A and Zanen, Pieter and Lammers, Jan W and Oudkerk, Matthijs and Groen, H J and Locantore, Nicholas and Tal-Singer, Ruth and Rennard, Stephen I and Vestbo, J{\o}rgen and Timens, Wim and Par{\'e}, Peter D and Latourelle, Jeanne C and Dupuis, Jos{\'e}e and O{\textquoteright}Connor, George T and Wilk, Jemma B and Kim, Woo Jin and Lee, Mi Kyeong and Oh, Yeon-Mok and Vonk, Judith M and de Koning, Harry J and Leng, Shuguang and Belinsky, Steven A and Tesfaigzi, Yohannes and Manichaikul, Ani and Wang, Xin-Qun and Rich, Stephen S and Barr, R Graham and Sparrow, David and Litonjua, Augusto A and Bakke, Per and Gulsvik, Amund and Lahousse, Lies and Brusselle, Guy G and Stricker, Bruno H and Uitterlinden, Andr{\'e} G and Ampleford, Elizabeth J and Bleecker, Eugene R and Woodruff, Prescott G and Meyers, Deborah A and Qiao, Dandi and Lomas, David A and Yim, Jae-Joon and Kim, Deog Kyeom and Hawrylkiewicz, Iwona and Sliwinski, Pawel and Hardin, Megan and Fingerlin, Tasha E and Schwartz, David A and Postma, Dirkje S and MacNee, William and Tobin, Martin D and Silverman, Edwin K and Boezen, H Marike and Cho, Michael H} }