@article {1114, title = {Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry.}, journal = {Nat Genet}, volume = {41}, year = {2009}, month = {2009 Aug}, pages = {879-81}, abstract = {

We conducted meta-analyses of genome-wide association studies for atrial fibrillation (AF) in participants from five community-based cohorts. Meta-analyses of 896 prevalent (15,768 referents) and 2,517 incident (21,337 referents) AF cases identified a new locus for AF (ZFHX3, rs2106261, risk ratio RR = 1.19; P = 2.3 x 10(-7)). We replicated this association in an independent cohort from the German AF Network (odds ratio = 1.44; P = 1.6 x 10(-11); combined RR = 1.25; combined P = 1.8 x 10(-15)).

}, keywords = {Atrial Fibrillation, Chromosomes, Human, Pair 16, European Continental Ancestry Group, Genetic Predisposition to Disease, Genome-Wide Association Study, Homeodomain Proteins, Humans, Meta-Analysis as Topic, Mutation, Polymorphism, Single Nucleotide, Reproducibility of Results}, issn = {1546-1718}, doi = {10.1038/ng.416}, author = {Benjamin, Emelia J and Rice, Kenneth M and Arking, Dan E and Pfeufer, Arne and van Noord, Charlotte and Smith, Albert V and Schnabel, Renate B and Bis, Joshua C and Boerwinkle, Eric and Sinner, Moritz F and Dehghan, Abbas and Lubitz, Steven A and D{\textquoteright}Agostino, Ralph B and Lumley, Thomas and Ehret, Georg B and Heeringa, Jan and Aspelund, Thor and Newton-Cheh, Christopher and Larson, Martin G and Marciante, Kristin D and Soliman, Elsayed Z and Rivadeneira, Fernando and Wang, Thomas J and Eiriksdottir, Gudny and Levy, Daniel and Psaty, Bruce M and Li, Man and Chamberlain, Alanna M and Hofman, Albert and Vasan, Ramachandran S and Harris, Tamara B and Rotter, Jerome I and Kao, W H Linda and Agarwal, Sunil K and Stricker, Bruno H Ch and Wang, Ke and Launer, Lenore J and Smith, Nicholas L and Chakravarti, Aravinda and Uitterlinden, Andr{\'e} G and Wolf, Philip A and Sotoodehnia, Nona and K{\"o}ttgen, Anna and van Duijn, Cornelia M and Meitinger, Thomas and Mueller, Martina and Perz, Siegfried and Steinbeck, Gerhard and Wichmann, H-Erich and Lunetta, Kathryn L and Heckbert, Susan R and Gudnason, Vilmundur and Alonso, Alvaro and K{\"a}{\"a}b, Stefan and Ellinor, Patrick T and Witteman, Jacqueline C M} } @article {1170, title = {Common variants in KCNN3 are associated with lone atrial fibrillation.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Mar}, pages = {240-4}, abstract = {

Atrial fibrillation (AF) is the most common sustained arrhythmia. Previous studies have identified several genetic loci associated with typical AF. We sought to identify common genetic variants underlying lone AF. This condition affects a subset of individuals without overt heart disease and with an increased heritability of AF. We report a meta-analysis of genome-wide association studies conducted using 1,335 individuals with lone AF (cases) and 12,844 unaffected individuals (referents). Cases were obtained from the German AF Network, Heart and Vascular Health Study, the Atherosclerosis Risk in Communities Study, the Cleveland Clinic and Massachusetts General Hospital. We identified an association on chromosome 1q21 to lone AF (rs13376333, adjusted odds ratio = 1.56; P = 6.3 x 10(-12)), and we replicated this association in two independent cohorts with lone AF (overall combined odds ratio = 1.52, 95\% CI 1.40-1.64; P = 1.83 x 10(-21)). rs13376333 is intronic to KCNN3, which encodes a potassium channel protein involved in atrial repolarization.

}, keywords = {Adolescent, Adult, Aged, Atrial Fibrillation, Case-Control Studies, Cohort Studies, Female, Genome-Wide Association Study, Humans, Introns, Male, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide, Small-Conductance Calcium-Activated Potassium Channels, Young Adult}, issn = {1546-1718}, doi = {10.1038/ng.537}, author = {Ellinor, Patrick T and Lunetta, Kathryn L and Glazer, Nicole L and Pfeufer, Arne and Alonso, Alvaro and Chung, Mina K and Sinner, Moritz F and de Bakker, Paul I W and Mueller, Martina and Lubitz, Steven A and Fox, Ervin and Darbar, Dawood and Smith, Nicholas L and Smith, Jonathan D and Schnabel, Renate B and Soliman, Elsayed Z and Rice, Kenneth M and Van Wagoner, David R and Beckmann, Britt-M and van Noord, Charlotte and Wang, Ke and Ehret, Georg B and Rotter, Jerome I and Hazen, Stanley L and Steinbeck, Gerhard and Smith, Albert V and Launer, Lenore J and Harris, Tamara B and Makino, Seiko and Nelis, Mari and Milan, David J and Perz, Siegfried and Esko, T{\~o}nu and K{\"o}ttgen, Anna and Moebus, Susanne and Newton-Cheh, Christopher and Li, Man and M{\"o}hlenkamp, Stefan and Wang, Thomas J and Kao, W H Linda and Vasan, Ramachandran S and N{\"o}then, Markus M and MacRae, Calum A and Stricker, Bruno H Ch and Hofman, Albert and Uitterlinden, Andr{\'e} G and Levy, Daniel and Boerwinkle, Eric and Metspalu, Andres and Topol, Eric J and Chakravarti, Aravinda and Gudnason, Vilmundur and Psaty, Bruce M and Roden, Dan M and Meitinger, Thomas and Wichmann, H-Erich and Witteman, Jacqueline C M and Barnard, John and Arking, Dan E and Benjamin, Emelia J and Heckbert, Susan R and K{\"a}{\"a}b, Stefan} } @article {1248, title = {European ancestry as a risk factor for atrial fibrillation in African Americans.}, journal = {Circulation}, volume = {122}, year = {2010}, month = {2010 Nov 16}, pages = {2009-15}, abstract = {

BACKGROUND: Despite a higher burden of standard atrial fibrillation (AF) risk factors, African Americans have a lower risk of AF than whites. It is unknown whether the higher risk is due to genetic or environmental factors. Because African Americans have varying degrees of European ancestry, we sought to test the hypothesis that European ancestry is an independent risk factor for AF.

METHODS AND RESULTS: We studied whites (n=4543) and African Americans (n=822) in the Cardiovascular Health Study (CHS) and whites (n=10 902) and African Americans (n=3517) in the Atherosclerosis Risk in Communities (ARIC) Study (n=3517). Percent European ancestry in African Americans was estimated with 1747 ancestry informative markers from the Illumina custom ITMAT-Broad-CARe array. Among African Americans without baseline AF, 120 of 804 CHS participants and 181 of 3517 ARIC participants developed incident AF. A meta-analysis from the 2 studies revealed that every 10\% increase in European ancestry increased the risk of AF by 13\% (hazard ratio, 1.13; 95\% confidence interval, 1.03 to 1.23; P=0.007). After adjustment for potential confounders, European ancestry remained a predictor of incident AF in each cohort alone, with a combined estimated hazard ratio for each 10\% increase in European ancestry of 1.17 (95\% confidence interval, 1.07 to 1.29; P=0.001). A second analysis using 3192 ancestry informative markers from a genome-wide Affymetrix 6.0 array in ARIC African Americans yielded similar results.

CONCLUSIONS: European ancestry predicted risk of incident AF. Our study suggests that investigating genetic variants contributing to differential AF risk in individuals of African versus European ancestry will be informative.

}, keywords = {African Americans, Aged, Atrial Fibrillation, European Continental Ancestry Group, Female, Genome-Wide Association Study, Humans, Male, Middle Aged, Risk Factors}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.110.958306}, author = {Marcus, Gregory M and Alonso, Alvaro and Peralta, Carmen A and Lettre, Guillaume and Vittinghoff, Eric and Lubitz, Steven A and Fox, Ervin R and Levitzky, Yamini S and Mehra, Reena and Kerr, Kathleen F and Deo, Rajat and Sotoodehnia, Nona and Akylbekova, Meggie and Ellinor, Patrick T and Paltoo, Dina N and Soliman, Elsayed Z and Benjamin, Emelia J and Heckbert, Susan R} } @article {1159, title = {Genome-wide association study of PR interval.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Feb}, pages = {153-9}, abstract = {

The electrocardiographic PR interval (or PQ interval) reflects atrial and atrioventricular nodal conduction, disturbances of which increase risk of atrial fibrillation. We report a meta-analysis of genome-wide association studies for PR interval from seven population-based European studies in the CHARGE Consortium: AGES, ARIC, CHS, FHS, KORA, Rotterdam Study, and SardiNIA (N = 28,517). We identified nine loci associated with PR interval at P < 5 x 10(-8). At the 3p22.2 locus, we observed two independent associations in voltage-gated sodium channel genes, SCN10A and SCN5A. Six of the loci were near cardiac developmental genes, including CAV1-CAV2, NKX2-5 (CSX1), SOX5, WNT11, MEIS1, and TBX5-TBX3, providing pathophysiologically interesting candidate genes. Five of the loci, SCN5A, SCN10A, NKX2-5, CAV1-CAV2, and SOX5, were also associated with atrial fibrillation (N = 5,741 cases, P < 0.0056). This suggests a role for common variation in ion channel and developmental genes in atrial and atrioventricular conduction as well as in susceptibility to atrial fibrillation.

}, keywords = {Aged, Atrial Fibrillation, Cohort Studies, Electrocardiography, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Heart Conduction System, Humans, Male, Meta-Analysis as Topic}, issn = {1546-1718}, doi = {10.1038/ng.517}, author = {Pfeufer, Arne and van Noord, Charlotte and Marciante, Kristin D and Arking, Dan E and Larson, Martin G and Smith, Albert Vernon and Tarasov, Kirill V and M{\"u}ller, Martina and Sotoodehnia, Nona and Sinner, Moritz F and Verwoert, Germaine C and Li, Man and Kao, W H Linda and K{\"o}ttgen, Anna and Coresh, Josef and Bis, Joshua C and Psaty, Bruce M and Rice, Kenneth and Rotter, Jerome I and Rivadeneira, Fernando and Hofman, Albert and Kors, Jan A and Stricker, Bruno H C and Uitterlinden, Andr{\'e} G and van Duijn, Cornelia M and Beckmann, Britt M and Sauter, Wiebke and Gieger, Christian and Lubitz, Steven A and Newton-Cheh, Christopher and Wang, Thomas J and Magnani, Jared W and Schnabel, Renate B and Chung, Mina K and Barnard, John and Smith, Jonathan D and Van Wagoner, David R and Vasan, Ramachandran S and Aspelund, Thor and Eiriksdottir, Gudny and Harris, Tamara B and Launer, Lenore J and Najjar, Samer S and Lakatta, Edward and Schlessinger, David and Uda, Manuela and Abecasis, Goncalo R and M{\"u}ller-Myhsok, Bertram and Ehret, Georg B and Boerwinkle, Eric and Chakravarti, Aravinda and Soliman, Elsayed Z and Lunetta, Kathryn L and Perz, Siegfried and Wichmann, H-Erich and Meitinger, Thomas and Levy, Daniel and Gudnason, Vilmundur and Ellinor, Patrick T and Sanna, Serena and K{\"a}{\"a}b, Stefan and Witteman, Jacqueline C M and Alonso, Alvaro and Benjamin, Emelia J and Heckbert, Susan R} } @article {1226, title = {Independent susceptibility markers for atrial fibrillation on chromosome 4q25.}, journal = {Circulation}, volume = {122}, year = {2010}, month = {2010 Sep 07}, pages = {976-84}, abstract = {

BACKGROUND: Genetic variants on chromosome 4q25 are associated with atrial fibrillation (AF). We sought to determine whether there is more than 1 susceptibility signal at this locus.

METHODS AND RESULTS: Thirty-four haplotype-tagging single-nucleotide polymorphisms (SNPs) at the 4q25 locus were genotyped in 790 case and 1177 control subjects from Massachusetts General Hospital and tested for association with AF. We replicated SNPs associated with AF after adjustment for the most significantly associated SNP in 5066 case and 30 661 referent subjects from the German Competence Network for Atrial Fibrillation, Atherosclerosis Risk In Communities Study, Cleveland Clinic Lone AF Study, Cardiovascular Health Study, and Rotterdam Study. All subjects were of European ancestry. A multimarker risk score composed of SNPs that tagged distinct AF susceptibility signals was constructed and tested for association with AF, and all results were subjected to meta-analysis. The previously reported SNP, rs2200733, was most significantly associated with AF (minor allele odds ratio 1.80, 95\% confidence interval 1.50 to 2.15, P=1.2 x 10(-20)) in the discovery sample. Adjustment for rs2200733 genotype revealed 2 additional susceptibility signals marked by rs17570669 and rs3853445. A graded risk of AF was observed with an increasing number of AF risk alleles at SNPs that tagged these 3 susceptibility signals.

CONCLUSIONS: We identified 2 novel AF susceptibility signals on chromosome 4q25. Consideration of multiple susceptibility signals at chromosome 4q25 identifies individuals with an increased risk of AF and may localize regulatory elements at the locus with biological relevance in the pathogenesis of AF.

}, keywords = {Aged, Aged, 80 and over, Atrial Fibrillation, Chromosome Mapping, Chromosomes, Human, Pair 4, European Continental Ancestry Group, Female, Genetic Markers, Genetic Predisposition to Disease, Haplotypes, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.109.886440}, author = {Lubitz, Steven A and Sinner, Moritz F and Lunetta, Kathryn L and Makino, Seiko and Pfeufer, Arne and Rahman, Rosanna and Veltman, Caroline E and Barnard, John and Bis, Joshua C and Danik, Stephan P and Sonni, Akshata and Shea, Marisa A and Del Monte, Federica and Perz, Siegfried and M{\"u}ller, Martina and Peters, Annette and Greenberg, Steven M and Furie, Karen L and van Noord, Charlotte and Boerwinkle, Eric and Stricker, Bruno H C and Witteman, Jacqueline and Smith, Jonathan D and Chung, Mina K and Heckbert, Susan R and Benjamin, Emelia J and Rosand, Jonathan and Arking, Dan E and Alonso, Alvaro and K{\"a}{\"a}b, Stefan and Ellinor, Patrick T} } @article {1316, title = {Large-scale candidate gene analysis in whites and African Americans identifies IL6R polymorphism in relation to atrial fibrillation: the National Heart, Lung, and Blood Institute{\textquoteright}s Candidate Gene Association Resource (CARe) project.}, journal = {Circ Cardiovasc Genet}, volume = {4}, year = {2011}, month = {2011 Oct}, pages = {557-64}, abstract = {

BACKGROUND: The genetic background of atrial fibrillation (AF) in whites and African Americans is largely unknown. Genes in cardiovascular pathways have not been systematically investigated.

METHODS AND RESULTS: We examined a panel of approximately 50,000 common single-nucleotide polymorphisms (SNPs) in 2095 cardiovascular candidate genes and AF in 3 cohorts with participants of European (n=18,524; 2260 cases) or African American descent (n=3662; 263 cases) in the National Heart, Lung, and Blood Institute{\textquoteright}s Candidate Gene Association Resource. Results in whites were followed up in the German Competence Network for AF (n=906, 468 cases). The top result was assessed in relation to incident ischemic stroke in the Cohorts for Heart and Aging Research in Genomic Epidemiology Stroke Consortium (n=19,602 whites, 1544 incident strokes). SNP rs4845625 in the IL6R gene was associated with AF (relative risk [RR] C allele, 0.90; 95\% confidence interval [CI], 0.85-0.95; P=0.0005) in whites but did not reach statistical significance in African Americans (RR, 0.86; 95\% CI, 0.72-1.03; P=0.09). The results were comparable in the German AF Network replication, (RR, 0.71; 95\% CI, 0.57-0.89; P=0.003). No association between rs4845625 and stroke was observed in whites. The known chromosome 4 locus near PITX2 in whites also was associated with AF in African Americans (rs4611994; hazard ratio, 1.40; 95\% CI, 1.16-1.69; P=0.0005).

CONCLUSIONS: In a community-based cohort meta-analysis, we identified genetic association in IL6R with AF in whites. Additionally, we demonstrated that the chromosome 4 locus known from recent genome-wide association studies in whites is associated with AF in African Americans.

}, keywords = {African Americans, Aged, Alleles, Atrial Fibrillation, Chromosomes, Human, Pair 4, Cohort Studies, European Continental Ancestry Group, Female, Humans, Male, Middle Aged, National Heart, Lung, and Blood Institute (U.S.), Polymorphism, Single Nucleotide, Receptors, Interleukin-6, Risk Factors, Stroke, United States}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.110.959197}, author = {Schnabel, Renate B and Kerr, Kathleen F and Lubitz, Steven A and Alkylbekova, Ermeg L and Marcus, Gregory M and Sinner, Moritz F and Magnani, Jared W and Wolf, Philip A and Deo, Rajat and Lloyd-Jones, Donald M and Lunetta, Kathryn L and Mehra, Reena and Levy, Daniel and Fox, Ervin R and Arking, Dan E and Mosley, Thomas H and M{\"u}ller-Nurasyid, Martina and Young, Taylor R and Wichmann, H-Erich and Seshadri, Sudha and Farlow, Deborah N and Rotter, Jerome I and Soliman, Elsayed Z and Glazer, Nicole L and Wilson, James G and Breteler, Monique M B and Sotoodehnia, Nona and Newton-Cheh, Christopher and K{\"a}{\"a}b, Stefan and Ellinor, Patrick T and Alonso, Alvaro and Benjamin, Emelia J and Heckbert, Susan R} } @article {1383, title = {Meta-analysis identifies six new susceptibility loci for atrial fibrillation.}, journal = {Nat Genet}, volume = {44}, year = {2012}, month = {2012 Apr 29}, pages = {670-5}, abstract = {

Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death. We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 10,030 subjects without atrial fibrillation (P < 5 {\texttimes} 10(-8)). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules.

}, keywords = {Adolescent, Adult, Aged, Aged, 80 and over, Asian Continental Ancestry Group, Atrial Fibrillation, Child, Child, Preschool, European Continental Ancestry Group, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Infant, Infant, Newborn, Male, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors, Young Adult}, issn = {1546-1718}, doi = {10.1038/ng.2261}, author = {Ellinor, Patrick T and Lunetta, Kathryn L and Albert, Christine M and Glazer, Nicole L and Ritchie, Marylyn D and Smith, Albert V and Arking, Dan E and M{\"u}ller-Nurasyid, Martina and Krijthe, Bouwe P and Lubitz, Steven A and Bis, Joshua C and Chung, Mina K and D{\"o}rr, Marcus and Ozaki, Kouichi and Roberts, Jason D and Smith, J Gustav and Pfeufer, Arne and Sinner, Moritz F and Lohman, Kurt and Ding, Jingzhong and Smith, Nicholas L and Smith, Jonathan D and Rienstra, Michiel and Rice, Kenneth M and Van Wagoner, David R and Magnani, Jared W and Wakili, Reza and Clauss, Sebastian and Rotter, Jerome I and Steinbeck, Gerhard and Launer, Lenore J and Davies, Robert W and Borkovich, Matthew and Harris, Tamara B and Lin, Honghuang and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Milan, David J and Hofman, Albert and Boerwinkle, Eric and Chen, Lin Y and Soliman, Elsayed Z and Voight, Benjamin F and Li, Guo and Chakravarti, Aravinda and Kubo, Michiaki and Tedrow, Usha B and Rose, Lynda M and Ridker, Paul M and Conen, David and Tsunoda, Tatsuhiko and Furukawa, Tetsushi and Sotoodehnia, Nona and Xu, Siyan and Kamatani, Naoyuki and Levy, Daniel and Nakamura, Yusuke and Parvez, Babar and Mahida, Saagar and Furie, Karen L and Rosand, Jonathan and Muhammad, Raafia and Psaty, Bruce M and Meitinger, Thomas and Perz, Siegfried and Wichmann, H-Erich and Witteman, Jacqueline C M and Kao, W H Linda and Kathiresan, Sekar and Roden, Dan M and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and McKnight, Barbara and Sj{\"o}gren, Marketa and Newman, Anne B and Liu, Yongmei and Gollob, Michael H and Melander, Olle and Tanaka, Toshihiro and Stricker, Bruno H Ch and Felix, Stephan B and Alonso, Alvaro and Darbar, Dawood and Barnard, John and Chasman, Daniel I and Heckbert, Susan R and Benjamin, Emelia J and Gudnason, Vilmundur and K{\"a}{\"a}b, Stefan} } @article {6084, title = {Novel loci associated with PR interval in a genome-wide association study of 10 African American cohorts.}, journal = {Circ Cardiovasc Genet}, volume = {5}, year = {2012}, month = {2012 Dec}, pages = {639-46}, abstract = {

BACKGROUND: The PR interval, as measured by the resting, standard 12-lead ECG, reflects the duration of atrial/atrioventricular nodal depolarization. Substantial evidence exists for a genetic contribution to PR, including genome-wide association studies that have identified common genetic variants at 9 loci influencing PR in populations of European and Asian descent. However, few studies have examined loci associated with PR in African Americans.

METHODS AND RESULTS: We present results from the largest genome-wide association study to date of PR in 13 415 adults of African descent from 10 cohorts. We tested for association between PR (ms) and ≈2.8 million genotyped and imputed single-nucleotide polymorphisms. Imputation was performed using HapMap 2 YRI and CEU panels. Study-specific results, adjusted for global ancestry and clinical correlates of PR, were meta-analyzed using the inverse variance method. Variation in genome-wide test statistic distributions was noted within studies (λ range: 0.9-1.1), although not after genomic control correction was applied to the overall meta-analysis (λ: 1.008). In addition to generalizing previously reported associations with MEIS1, SCN5A, ARHGAP24, CAV1, and TBX5 to African American populations at the genome-wide significance level (P<5.0 {\texttimes} 10(-8)), we also identified a novel locus: ITGA9, located in a region previously implicated in SCN5A expression. The 3p21 region harboring SCN5A also contained 2 additional independent secondary signals influencing PR (P<5.0 {\texttimes} 10(-8)).

CONCLUSIONS: This study demonstrates the ability to map novel loci in African Americans as well as the generalizability of loci associated with PR across populations of African, European, and Asian descent.

}, keywords = {Adult, African Americans, Cohort Studies, Electrocardiography, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.112.963991}, author = {Butler, Anne M and Yin, Xiaoyan and Evans, Daniel S and Nalls, Michael A and Smith, Erin N and Tanaka, Toshiko and Li, Guo and Buxbaum, Sarah G and Whitsel, Eric A and Alonso, Alvaro and Arking, Dan E and Benjamin, Emelia J and Berenson, Gerald S and Bis, Josh C and Chen, Wei and Deo, Rajat and Ellinor, Patrick T and Heckbert, Susan R and Heiss, Gerardo and Hsueh, Wen-Chi and Keating, Brendan J and Kerr, Kathleen F and Li, Yun and Limacher, Marian C and Liu, Yongmei and Lubitz, Steven A and Marciante, Kristin D and Mehra, Reena and Meng, Yan A and Newman, Anne B and Newton-Cheh, Christopher and North, Kari E and Palmer, Cameron D and Psaty, Bruce M and Quibrera, P Miguel and Redline, Susan and Reiner, Alex P and Rotter, Jerome I and Schnabel, Renate B and Schork, Nicholas J and Singleton, Andrew B and Smith, J Gustav and Soliman, Elsayed Z and Srinivasan, Sathanur R and Zhang, Zhu-Ming and Zonderman, Alan B and Ferrucci, Luigi and Murray, Sarah S and Evans, Michele K and Sotoodehnia, Nona and Magnani, Jared W and Avery, Christy L} } @article {5878, title = {Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium.}, journal = {J Am Heart Assoc}, volume = {2}, year = {2013}, month = {2013 Mar 18}, pages = {e000102}, abstract = {

BACKGROUND: Tools for the prediction of atrial fibrillation (AF) may identify high-risk individuals more likely to benefit from preventive interventions and serve as a benchmark to test novel putative risk factors.

METHODS AND RESULTS: Individual-level data from 3 large cohorts in the United States (Atherosclerosis Risk in Communities [ARIC] study, the Cardiovascular Health Study [CHS], and the Framingham Heart Study [FHS]), including 18 556 men and women aged 46 to 94 years (19\% African Americans, 81\% whites) were pooled to derive predictive models for AF using clinical variables. Validation of the derived models was performed in 7672 participants from the Age, Gene and Environment-Reykjavik study (AGES) and the Rotterdam Study (RS). The analysis included 1186 incident AF cases in the derivation cohorts and 585 in the validation cohorts. A simple 5-year predictive model including the variables age, race, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, diabetes, and history of myocardial infarction and heart failure had good discrimination (C-statistic, 0.765; 95\% CI, 0.748 to 0.781). Addition of variables from the electrocardiogram did not improve the overall model discrimination (C-statistic, 0.767; 95\% CI, 0.750 to 0.783; categorical net reclassification improvement, -0.0032; 95\% CI, -0.0178 to 0.0113). In the validation cohorts, discrimination was acceptable (AGES C-statistic, 0.664; 95\% CI, 0.632 to 0.697 and RS C-statistic, 0.705; 95\% CI, 0.664 to 0.747) and calibration was adequate.

CONCLUSION: A risk model including variables readily available in primary care settings adequately predicted AF in diverse populations from the United States and Europe.

}, keywords = {African Americans, Age Factors, Aged, Aged, 80 and over, Atrial Fibrillation, Cohort Studies, Diabetes Mellitus, European Continental Ancestry Group, Female, Heart Failure, Humans, Hypertension, Iceland, Incidence, Male, Middle Aged, Myocardial Infarction, Netherlands, Proportional Hazards Models, Risk Assessment, Smoking, United States}, issn = {2047-9980}, doi = {10.1161/JAHA.112.000102}, author = {Alonso, Alvaro and Krijthe, Bouwe P and Aspelund, Thor and Stepas, Katherine A and Pencina, Michael J and Moser, Carlee B and Sinner, Moritz F and Sotoodehnia, Nona and Fontes, Jo{\~a}o D and Janssens, A Cecile J W and Kronmal, Richard A and Magnani, Jared W and Witteman, Jacqueline C and Chamberlain, Alanna M and Lubitz, Steven A and Schnabel, Renate B and Agarwal, Sunil K and McManus, David D and Ellinor, Patrick T and Larson, Martin G and Burke, Gregory L and Launer, Lenore J and Hofman, Albert and Levy, Daniel and Gottdiener, John S and K{\"a}{\"a}b, Stefan and Couper, David and Harris, Tamara B and Soliman, Elsayed Z and Stricker, Bruno H C and Gudnason, Vilmundur and Heckbert, Susan R and Benjamin, Emelia J} } @article {6601, title = {B-type natriuretic peptide and C-reactive protein in the prediction of atrial fibrillation risk: the CHARGE-AF Consortium of community-based cohort studies.}, journal = {Europace}, volume = {16}, year = {2014}, month = {2014 Oct}, pages = {1426-33}, abstract = {

AIMS: B-type natriuretic peptide (BNP) and C-reactive protein (CRP) predict atrial fibrillation (AF) risk. However, their risk stratification abilities in the broad community remain uncertain. We sought to improve risk stratification for AF using biomarker information.

METHODS AND RESULTS: We ascertained AF incidence in 18 556 Whites and African Americans from the Atherosclerosis Risk in Communities Study (ARIC, n=10 675), Cardiovascular Health Study (CHS, n = 5043), and Framingham Heart Study (FHS, n = 2838), followed for 5 years (prediction horizon). We added BNP (ARIC/CHS: N-terminal pro-B-type natriuretic peptide; FHS: BNP), CRP, or both to a previously reported AF risk score, and assessed model calibration and predictive ability [C-statistic, integrated discrimination improvement (IDI), and net reclassification improvement (NRI)]. We replicated models in two independent European cohorts: Age, Gene/Environment Susceptibility Reykjavik Study (AGES), n = 4467; Rotterdam Study (RS), n = 3203. B-type natriuretic peptide and CRP were significantly associated with AF incidence (n = 1186): hazard ratio per 1-SD ln-transformed biomarker 1.66 [95\% confidence interval (CI), 1.56-1.76], P < 0.0001 and 1.18 (95\% CI, 1.11-1.25), P < 0.0001, respectively. Model calibration was sufficient (BNP, χ(2) = 17.0; CRP, χ(2) = 10.5; BNP and CRP, χ(2) = 13.1). B-type natriuretic peptide improved the C-statistic from 0.765 to 0.790, yielded an IDI of 0.027 (95\% CI, 0.022-0.032), a relative IDI of 41.5\%, and a continuous NRI of 0.389 (95\% CI, 0.322-0.455). The predictive ability of CRP was limited (C-statistic increment 0.003). B-type natriuretic peptide consistently improved prediction in AGES and RS.

CONCLUSION: B-type natriuretic peptide, not CRP, substantially improved AF risk prediction beyond clinical factors in an independently replicated, heterogeneous population. B-type natriuretic peptide may serve as a benchmark to evaluate novel putative AF risk biomarkers.

}, keywords = {Aged, Atrial Fibrillation, Biomarkers, C-Reactive Protein, Europe, Female, Humans, Incidence, Male, Natriuretic Peptide, Brain, Peptide Fragments, Predictive Value of Tests, Risk Assessment, Risk Factors, United States}, issn = {1532-2092}, doi = {10.1093/europace/euu175}, author = {Sinner, Moritz F and Stepas, Katherine A and Moser, Carlee B and Krijthe, Bouwe P and Aspelund, Thor and Sotoodehnia, Nona and Fontes, Jo{\~a}o D and Janssens, A Cecile J W and Kronmal, Richard A and Magnani, Jared W and Witteman, Jacqueline C and Chamberlain, Alanna M and Lubitz, Steven A and Schnabel, Renate B and Vasan, Ramachandran S and Wang, Thomas J and Agarwal, Sunil K and McManus, David D and Franco, Oscar H and Yin, Xiaoyan and Larson, Martin G and Burke, Gregory L and Launer, Lenore J and Hofman, Albert and Levy, Daniel and Gottdiener, John S and K{\"a}{\"a}b, Stefan and Couper, David and Harris, Tamara B and Astor, Brad C and Ballantyne, Christie M and Hoogeveen, Ron C and Arai, Andrew E and Soliman, Elsayed Z and Ellinor, Patrick T and Stricker, Bruno H C and Gudnason, Vilmundur and Heckbert, Susan R and Pencina, Michael J and Benjamin, Emelia J and Alonso, Alvaro} } @article {6600, title = {Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation.}, journal = {Circulation}, volume = {130}, year = {2014}, month = {2014 Oct 7}, pages = {1225-35}, abstract = {

BACKGROUND: Atrial fibrillation (AF) affects >30 million individuals worldwide and is associated with an increased risk of stroke, heart failure, and death. AF is highly heritable, yet the genetic basis for the arrhythmia remains incompletely understood.

METHODS AND RESULTS: To identify new AF-related genes, we used a multifaceted approach, combining large-scale genotyping in 2 ethnically distinct populations, cis-eQTL (expression quantitative trait loci) mapping, and functional validation. Four novel loci were identified in individuals of European descent near the genes NEURL (rs12415501; relative risk [RR]=1.18; 95\% confidence interval [CI], 1.13-1.23; P=6.5{\texttimes}10(-16)), GJA1 (rs13216675; RR=1.10; 95\% CI, 1.06-1.14; P=2.2{\texttimes}10(-8)), TBX5 (rs10507248; RR=1.12; 95\% CI, 1.08-1.16; P=5.7{\texttimes}10(-11)), and CAND2 (rs4642101; RR=1.10; 95\% CI, 1.06-1.14; P=9.8{\texttimes}10(-9)). In Japanese, novel loci were identified near NEURL (rs6584555; RR=1.32; 95\% CI, 1.26-1.39; P=2.0{\texttimes}10(-25)) and CUX2 (rs6490029; RR=1.12; 95\% CI, 1.08-1.16; P=3.9{\texttimes}10(-9)). The top single-nucleotide polymorphisms or their proxies were identified as cis-eQTLs for the genes CAND2 (P=2.6{\texttimes}10(-19)), GJA1 (P=2.66{\texttimes}10(-6)), and TBX5 (P=1.36{\texttimes}10(-5)). Knockdown of the zebrafish orthologs of NEURL and CAND2 resulted in prolongation of the atrial action potential duration (17\% and 45\%, respectively).

CONCLUSIONS: We have identified 5 novel loci for AF. Our results expand the diversity of genetic pathways implicated in AF and provide novel molecular targets for future biological and pharmacological investigation.

}, keywords = {Aged, Animals, Atrial Fibrillation, Chromosome Mapping, Connexin 43, Europe, Female, Gene Knockdown Techniques, Genetic Loci, Genetic Predisposition to Disease, Genotype, Homeodomain Proteins, Humans, Japan, Male, Middle Aged, Muscle Proteins, Nuclear Proteins, Quantitative Trait Loci, Repressor Proteins, T-Box Domain Proteins, Transcription Factors, Ubiquitin-Protein Ligases, Zebrafish, Zebrafish Proteins}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.114.009892}, author = {Sinner, Moritz F and Tucker, Nathan R and Lunetta, Kathryn L and Ozaki, Kouichi and Smith, J Gustav and Trompet, Stella and Bis, Joshua C and Lin, Honghuang and Chung, Mina K and Nielsen, Jonas B and Lubitz, Steven A and Krijthe, Bouwe P and Magnani, Jared W and Ye, Jiangchuan and Gollob, Michael H and Tsunoda, Tatsuhiko and M{\"u}ller-Nurasyid, Martina and Lichtner, Peter and Peters, Annette and Dolmatova, Elena and Kubo, Michiaki and Smith, Jonathan D and Psaty, Bruce M and Smith, Nicholas L and Jukema, J Wouter and Chasman, Daniel I and Albert, Christine M and Ebana, Yusuke and Furukawa, Tetsushi and Macfarlane, Peter W and Harris, Tamara B and Darbar, Dawood and D{\"o}rr, Marcus and Holst, Anders G and Svendsen, Jesper H and Hofman, Albert and Uitterlinden, Andr{\'e} G and Gudnason, Vilmundur and Isobe, Mitsuaki and Malik, Rainer and Dichgans, Martin and Rosand, Jonathan and Van Wagoner, David R and Benjamin, Emelia J and Milan, David J and Melander, Olle and Heckbert, Susan R and Ford, Ian and Liu, Yongmei and Barnard, John and Olesen, Morten S and Stricker, Bruno H C and Tanaka, Toshihiro and K{\"a}{\"a}b, Stefan and Ellinor, Patrick T} } @article {6820, title = {Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese.}, journal = {J Am Coll Cardiol}, volume = {63}, year = {2014}, month = {2014 Apr 1}, pages = {1200-10}, abstract = {

OBJECTIVES: This study sought to identify nonredundant atrial fibrillation (AF) genetic susceptibility signals and examine their cumulative relations with AF risk.

BACKGROUND: AF-associated loci span broad genomic regions that may contain multiple susceptibility signals. Whether multiple signals exist at AF loci has not been systematically explored.

METHODS: We performed association testing conditioned on the most significant, independently associated genetic markers at 9 established AF loci using 2 complementary techniques in 64,683 individuals of European ancestry (3,869 incident and 3,302 prevalent AF cases). Genetic risk scores were created and tested for association with AF in Europeans and an independent sample of 11,309 individuals of Japanese ancestry (7,916 prevalent AF cases).

RESULTS: We observed at least 4 distinct AF susceptibility signals on chromosome 4q25 upstream of PITX2, but not at the remaining 8 AF loci. A multilocus score comprised 12 genetic markers demonstrated an estimated 5-fold gradient in AF risk. We observed a similar spectrum of risk associated with these markers in Japanese. Regions containing AF signals on chromosome 4q25 displayed a greater degree of evolutionary conservation than the remainder of the locus, suggesting that they may tag regulatory elements.

CONCLUSIONS: The chromosome 4q25 AF locus is architecturally complex and harbors at least 4 AF susceptibility signals in individuals of European ancestry. Similar polygenic AF susceptibility exists between Europeans and Japanese. Future work is necessary to identify causal variants, determine mechanisms by which associated loci predispose to AF, and explore whether AF susceptibility signals classify individuals at risk for AF and related morbidity.

}, keywords = {Adult, Aged, Aged, 80 and over, Asian Continental Ancestry Group, Atrial Fibrillation, Chromosome Mapping, Chromosomes, Human, Pair 4, Europe, European Continental Ancestry Group, Female, Genetic Markers, Genetic Predisposition to Disease, Homeodomain Proteins, Humans, Japan, Male, Middle Aged, Polymorphism, Single Nucleotide, Transcription Factors}, issn = {1558-3597}, doi = {10.1016/j.jacc.2013.12.015}, author = {Lubitz, Steven A and Lunetta, Kathryn L and Lin, Honghuang and Arking, Dan E and Trompet, Stella and Li, Guo and Krijthe, Bouwe P and Chasman, Daniel I and Barnard, John and Kleber, Marcus E and D{\"o}rr, Marcus and Ozaki, Kouichi and Smith, Albert V and M{\"u}ller-Nurasyid, Martina and Walter, Stefan and Agarwal, Sunil K and Bis, Joshua C and Brody, Jennifer A and Chen, Lin Y and Everett, Brendan M and Ford, Ian and Franco, Oscar H and Harris, Tamara B and Hofman, Albert and K{\"a}{\"a}b, Stefan and Mahida, Saagar and Kathiresan, Sekar and Kubo, Michiaki and Launer, Lenore J and Macfarlane, Peter W and Magnani, Jared W and McKnight, Barbara and McManus, David D and Peters, Annette and Psaty, Bruce M and Rose, Lynda M and Rotter, Jerome I and Silbernagel, Guenther and Smith, Jonathan D and Sotoodehnia, Nona and Stott, David J and Taylor, Kent D and Tomaschitz, Andreas and Tsunoda, Tatsuhiko and Uitterlinden, Andr{\'e} G and Van Wagoner, David R and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Murabito, Joanne M and Sinner, Moritz F and Gudnason, Vilmundur and Felix, Stephan B and M{\"a}rz, Winfried and Chung, Mina and Albert, Christine M and Stricker, Bruno H and Tanaka, Toshihiro and Heckbert, Susan R and Jukema, J Wouter and Alonso, Alvaro and Benjamin, Emelia J and Ellinor, Patrick T} } @article {6583, title = {Sequencing of SCN5A identifies rare and common variants associated with cardiac conduction: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {365-73}, abstract = {

BACKGROUND: The cardiac sodium channel SCN5A regulates atrioventricular and ventricular conduction. Genetic variants in this gene are associated with PR and QRS intervals. We sought to characterize further the contribution of rare and common coding variation in SCN5A to cardiac conduction.

METHODS AND RESULTS: In Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study, we performed targeted exonic sequencing of SCN5A (n=3699, European ancestry individuals) and identified 4 common (minor allele frequency >1\%) and 157 rare variants. Common and rare SCN5A coding variants were examined for association with PR and QRS intervals through meta-analysis of European ancestry participants from CHARGE, National Heart, Lung, and Blood Institute{\textquoteright}s Exome Sequencing Project (n=607), and the UK10K (n=1275) and by examining Exome Sequencing Project African ancestry participants (n=972). Rare coding SCN5A variants in aggregate were associated with PR interval in European and African ancestry participants (P=1.3{\texttimes}10(-3)). Three common variants were associated with PR and QRS interval duration among European ancestry participants and one among African ancestry participants. These included 2 well-known missense variants: rs1805124 (H558R) was associated with PR and QRS shortening in European ancestry participants (P=6.25{\texttimes}10(-4) and P=5.2{\texttimes}10(-3), respectively) and rs7626962 (S1102Y) was associated with PR shortening in those of African ancestry (P=2.82{\texttimes}10(-3)). Among European ancestry participants, 2 novel synonymous variants, rs1805126 and rs6599230, were associated with cardiac conduction. Our top signal, rs1805126 was associated with PR and QRS lengthening (P=3.35{\texttimes}10(-7) and P=2.69{\texttimes}10(-4), respectively) and rs6599230 was associated with PR shortening (P=2.67{\texttimes}10(-5)).

CONCLUSIONS: By sequencing SCN5A, we identified novel common and rare coding variants associated with cardiac conduction.

}, keywords = {Adult, Aged, Aged, 80 and over, Aging, Cohort Studies, Female, Genetic Variation, Genome-Wide Association Study, Genomics, Heart Conduction System, Heart Diseases, Humans, Male, Middle Aged, NAV1.5 Voltage-Gated Sodium Channel, Polymorphism, Single Nucleotide, Sequence Analysis, DNA}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000098}, author = {Magnani, Jared W and Brody, Jennifer A and Prins, Bram P and Arking, Dan E and Lin, Honghuang and Yin, Xiaoyan and Liu, Ching-Ti and Morrison, Alanna C and Zhang, Feng and Spector, Tim D and Alonso, Alvaro and Bis, Joshua C and Heckbert, Susan R and Lumley, Thomas and Sitlani, Colleen M and Cupples, L Adrienne and Lubitz, Steven A and Soliman, Elsayed Z and Pulit, Sara L and Newton-Cheh, Christopher and O{\textquoteright}Donnell, Christopher J and Ellinor, Patrick T and Benjamin, Emelia J and Muzny, Donna M and Gibbs, Richard A and Santibanez, Jireh and Taylor, Herman A and Rotter, Jerome I and Lange, Leslie A and Psaty, Bruce M and Jackson, Rebecca and Rich, Stephen S and Boerwinkle, Eric and Jamshidi, Yalda and Sotoodehnia, Nona} } @article {6149, title = {Targeted sequencing in candidate genes for atrial fibrillation: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Targeted Sequencing Study.}, journal = {Heart Rhythm}, volume = {11}, year = {2014}, month = {2014 Mar}, pages = {452-7}, abstract = {

BACKGROUND: Genome-wide association studies (GWAS) have identified common genetic variants that predispose to atrial fibrillation (AF). It is unclear whether rare and low-frequency variants in genes implicated by such GWAS confer additional risk of AF.

OBJECTIVE: To study the association of genetic variants with AF at GWAS top loci.

METHODS: In the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Targeted Sequencing Study, we selected and sequenced 77 target gene regions from GWAS loci of complex diseases or traits, including 4 genes hypothesized to be related to AF (PRRX1, CAV1, CAV2, and ZFHX3). Sequencing was performed in participants with (n = 948) and without (n = 3330) AF from the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Massachusetts General Hospital.

RESULTS: One common variant (rs11265611; P = 1.70 {\texttimes} 10(-6)) intronic to IL6R (interleukin-6 receptor gene) was significantly associated with AF after Bonferroni correction (odds ratio 0.70; 95\% confidence interval 0.58-0.85). The variant was not genotyped or imputed by prior GWAS, but it is in linkage disequilibrium (r(2) = .69) with the single-nucleotide polymorphism, with the strongest association with AF so far at this locus (rs4845625). In the rare variant joint analysis, damaging variants within the PRRX1 region showed significant association with AF after Bonferroni correction (P = .01).

CONCLUSIONS: We identified 1 common single-nucleotide polymorphism and 1 gene region that were significantly associated with AF. Future sequencing efforts with larger sample sizes and more comprehensive genome coverage are anticipated to identify additional AF-related variants.

}, keywords = {Aged, Atrial Fibrillation, Female, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Homeodomain Proteins, Humans, Linkage Disequilibrium, Male, Middle Aged, Polymorphism, Single Nucleotide, Receptors, Interleukin-6}, issn = {1556-3871}, doi = {10.1016/j.hrthm.2013.11.012}, author = {Lin, Honghuang and Sinner, Moritz F and Brody, Jennifer A and Arking, Dan E and Lunetta, Kathryn L and Rienstra, Michiel and Lubitz, Steven A and Magnani, Jared W and Sotoodehnia, Nona and McKnight, Barbara and McManus, David D and Boerwinkle, Eric and Psaty, Bruce M and Rotter, Jerome I and Bis, Joshua C and Gibbs, Richard A and Muzny, Donna and Kovar, Christie L and Morrison, Alanna C and Gupta, Mayetri and Folsom, Aaron R and K{\"a}{\"a}b, Stefan and Heckbert, Susan R and Alonso, Alvaro and Ellinor, Patrick T and Benjamin, Emelia J} } @article {7250, title = {Whole Exome Sequencing in Atrial Fibrillation.}, journal = {PLoS Genet}, volume = {12}, year = {2016}, month = {2016 Sep}, pages = {e1006284}, abstract = {

Atrial fibrillation (AF) is a morbid and heritable arrhythmia. Over 35 genes have been reported to underlie AF, most of which were described in small candidate gene association studies. Replication remains lacking for most, and therefore the contribution of coding variation to AF susceptibility remains poorly understood. We examined whole exome sequencing data in a large community-based sample of 1,734 individuals with and 9,423 without AF from the Framingham Heart Study, Cardiovascular Health Study, Atherosclerosis Risk in Communities Study, and NHLBI-GO Exome Sequencing Project and meta-analyzed the results. We also examined whether genetic variation was enriched in suspected AF genes (N = 37) in AF cases versus controls. The mean age ranged from 59 to 73 years; 8,656 (78\%) were of European ancestry. None of the 99,404 common variants evaluated was significantly associated after adjusting for multiple testing. Among the most significantly associated variants was a common (allele frequency = 86\%) missense variant in SYNPO2L (rs3812629, p.Pro707Leu, [odds ratio 1.27, 95\% confidence interval 1.13-1.43, P = 6.6x10-5]) which lies at a known AF susceptibility locus and is in linkage disequilibrium with a top marker from prior analyses at the locus. We did not observe significant associations between rare variants and AF in gene-based tests. Individuals with AF did not display any statistically significant enrichment for common or rare coding variation in previously implicated AF genes. In conclusion, we did not observe associations between coding genetic variants and AF, suggesting that large-effect coding variation is not the predominant mechanism underlying AF. A coding variant in SYNPO2L requires further evaluation to determine whether it is causally related to AF. Efforts to identify biologically meaningful coding variation underlying AF may require large sample sizes or populations enriched for large genetic effects.

}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1006284}, author = {Lubitz, Steven A and Brody, Jennifer A and Bihlmeyer, Nathan A and Roselli, Carolina and Weng, Lu-Chen and Christophersen, Ingrid E and Alonso, Alvaro and Boerwinkle, Eric and Gibbs, Richard A and Bis, Joshua C and Cupples, L Adrienne and Mohler, Peter J and Nickerson, Deborah A and Muzny, Donna and Perez, Marco V and Psaty, Bruce M and Soliman, Elsayed Z and Sotoodehnia, Nona and Lunetta, Kathryn L and Benjamin, Emelia J and Heckbert, Susan R and Arking, Dan E and Ellinor, Patrick T and Lin, Honghuang} } @article {7363, title = {Discovery of novel heart rate-associated loci using the Exome Chip.}, journal = {Hum Mol Genet}, year = {2017}, month = {2017 Apr 03}, abstract = {

Background Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. GWAS analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9\% of the variation.Aim To discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Methods Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104,452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134,251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.Results We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2, SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long range regulatory chromatin interactions in heart tissue (SCD, SLF2, MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Conclusion Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddx113}, author = {van den Berg, Marten E and Warren, Helen R and Cabrera, Claudia P and Verweij, Niek and Mifsud, Borbala and Haessler, Jeffrey and Bihlmeyer, Nathan A and Fu, Yi-Ping and Weiss, Stefan and Lin, Henry J and Grarup, Niels and Li-Gao, Ruifang and Pistis, Giorgio and Shah, Nabi and Brody, Jennifer A and M{\"u}ller-Nurasyid, Martina and Lin, Honghuang and Mei, Hao and Smith, Albert V and Lyytik{\"a}inen, Leo-Pekka and Hall, Leanne M and van Setten, Jessica and Trompet, Stella and Prins, Bram P and Isaacs, Aaron and Radmanesh, Farid and Marten, Jonathan and Entwistle, Aiman and Kors, Jan A and Silva, Claudia T and Alonso, Alvaro and Bis, Joshua C and de Boer, Rudolf and de Haan, Hugoline G and de Mutsert, Ren{\'e}e and Dedoussis, George and Dominiczak, Anna F and Doney, Alex S F and Ellinor, Patrick T and Eppinga, Ruben N and Felix, Stephan B and Guo, Xiuqing and Hagemeijer, Yanick and Hansen, Torben and Harris, Tamara B and Heckbert, Susan R and Huang, Paul L and Hwang, Shih-Jen and K{\"a}h{\"o}nen, Mika and Kanters, J{\o}rgen K and Kolcic, Ivana and Launer, Lenore J and Li, Man and Yao, Jie and Linneberg, Allan and Liu, Simin and Macfarlane, Peter W and Mangino, Massimo and Morris, Andrew D and Mulas, Antonella and Murray, Alison D and Nelson, Christopher P and Orr{\`u}, Marco and Padmanabhan, Sandosh and Peters, Annette and Porteous, David J and Poulter, Neil and Psaty, Bruce M and Qi, Lihong and Raitakari, Olli T and Rivadeneira, Fernando and Roselli, Carolina and Rudan, Igor and Sattar, Naveed and Sever, Peter and Sinner, Moritz F and Soliman, Elsayed Z and Spector, Timothy D and Stanton, Alice V and Stirrups, Kathleen E and Taylor, Kent D and Tobin, Martin D and Uitterlinden, Andre and Vaartjes, Ilonca and Hoes, Arno W and van der Meer, Peter and V{\"o}lker, Uwe and Waldenberger, Melanie and Xie, Zhijun and Zoledziewska, Magdalena and Tinker, Andrew and Polasek, Ozren and Rosand, Jonathan and Jamshidi, Yalda and van Duijn, Cornelia M and Zeggini, Eleftheria and Wouter Jukema, J and Asselbergs, Folkert W and Samani, Nilesh J and Lehtim{\"a}ki, Terho and Gudnason, Vilmundur and Wilson, James and Lubitz, Steven A and K{\"a}{\"a}b, Stefan and Sotoodehnia, Nona and Caulfield, Mark J and Palmer, Colin N A and Sanna, Serena and Mook-Kanamori, Dennis O and Deloukas, Panos and Pedersen, Oluf and Rotter, Jerome I and D{\"o}rr, Marcus and O{\textquoteright}Donnell, Chris J and Hayward, Caroline and Arking, Dan E and Kooperberg, Charles and van der Harst, Pim and Eijgelsheim, Mark and Stricker, Bruno H and Munroe, Patricia B} } @article {7557, title = {Fifteen Genetic Loci Associated With the Electrocardiographic P Wave.}, journal = {Circ Cardiovasc Genet}, volume = {10}, year = {2017}, month = {2017 Aug}, abstract = {

BACKGROUND: The P wave on an ECG is a measure of atrial electric function, and its characteristics may serve as predictors for atrial arrhythmias. Increased mean P-wave duration and P-wave terminal force traditionally have been used as markers for left atrial enlargement, and both have been associated with increased risk of atrial fibrillation. Here, we explore the genetic basis of P-wave morphology through meta-analysis of genome-wide association study results for P-wave duration and P-wave terminal force from 12 cohort studies.

METHODS AND RESULTS: We included 44 456 individuals, of which 6778 (16\%) were of African ancestry. Genotyping, imputation, and genome-wide association study were performed at each study site. Summary-level results were meta-analyzed centrally using inverse-variance weighting. In meta-analyses of P-wave duration, we identified 6 significant (P<5{\texttimes}10-8) novel loci and replicated a prior association with SCN10A. We identified 3 loci at SCN5A, TBX5, and CAV1/CAV2 that were jointly associated with the PR interval, PR segment, and P-wave duration. We identified 6 novel loci in meta-analysis of P-wave terminal force. Four of the identified genetic loci were significantly associated with gene expression in 329 left atrial samples. Finally, we observed that some of the loci associated with the P wave were linked to overall atrial conduction, whereas others identified distinct phases of atrial conduction.

CONCLUSIONS: We have identified 6 novel genetic loci associated with P-wave duration and 6 novel loci associated with P-wave terminal force. Future studies of these loci may aid in identifying new targets for drugs that may modify atrial conduction or treat atrial arrhythmias.

}, keywords = {Arrhythmias, Cardiac, Caveolin 1, Caveolin 2, Electrocardiography, Genetic Loci, Genome-Wide Association Study, Genotype, Heart Atria, Humans, NAV1.5 Voltage-Gated Sodium Channel, NAV1.8 Voltage-Gated Sodium Channel, T-Box Domain Proteins}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.116.001667}, author = {Christophersen, Ingrid E and Magnani, Jared W and Yin, Xiaoyan and Barnard, John and Weng, Lu-Chen and Arking, Dan E and Niemeijer, Maartje N and Lubitz, Steven A and Avery, Christy L and Duan, Qing and Felix, Stephan B and Bis, Joshua C and Kerr, Kathleen F and Isaacs, Aaron and M{\"u}ller-Nurasyid, Martina and M{\"u}ller, Christian and North, Kari E and Reiner, Alex P and Tinker, Lesley F and Kors, Jan A and Teumer, Alexander and Petersmann, Astrid and Sinner, Moritz F and B{\r u}zkov{\'a}, Petra and Smith, Jonathan D and Van Wagoner, David R and V{\"o}lker, Uwe and Waldenberger, Melanie and Peters, Annette and Meitinger, Thomas and Limacher, Marian C and Wilhelmsen, Kirk C and Psaty, Bruce M and Hofman, Albert and Uitterlinden, Andre and Krijthe, Bouwe P and Zhang, Zhu-Ming and Schnabel, Renate B and K{\"a}{\"a}b, Stefan and van Duijn, Cornelia and Rotter, Jerome I and Sotoodehnia, Nona and D{\"o}rr, Marcus and Li, Yun and Chung, Mina K and Soliman, Elsayed Z and Alonso, Alvaro and Whitsel, Eric A and Stricker, Bruno H and Benjamin, Emelia J and Heckbert, Susan R and Ellinor, Patrick T} } @article {7595, title = {Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation: The AFGen Consortium.}, journal = {Sci Rep}, volume = {7}, year = {2017}, month = {2017 Sep 12}, pages = {11303}, abstract = {

It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects <= 65 years of age than among those > 65 years (interaction p-value = 4.0 {\texttimes} 10-5). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 {\texttimes} 10-8). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk.

}, issn = {2045-2322}, doi = {10.1038/s41598-017-09396-7}, author = {Weng, Lu-Chen and Lunetta, Kathryn L and M{\"u}ller-Nurasyid, Martina and Smith, Albert Vernon and Th{\'e}riault, S{\'e}bastien and Weeke, Peter E and Barnard, John and Bis, Joshua C and Lyytik{\"a}inen, Leo-Pekka and Kleber, Marcus E and Martinsson, Andreas and Lin, Henry J and Rienstra, Michiel and Trompet, Stella and Krijthe, Bouwe P and D{\"o}rr, Marcus and Klarin, Derek and Chasman, Daniel I and Sinner, Moritz F and Waldenberger, Melanie and Launer, Lenore J and Harris, Tamara B and Soliman, Elsayed Z and Alonso, Alvaro and Par{\'e}, Guillaume and Teixeira, Pedro L and Denny, Joshua C and Shoemaker, M Benjamin and Van Wagoner, David R and Smith, Jonathan D and Psaty, Bruce M and Sotoodehnia, Nona and Taylor, Kent D and K{\"a}h{\"o}nen, Mika and Nikus, Kjell and Delgado, Graciela E and Melander, Olle and Engstr{\"o}m, Gunnar and Yao, Jie and Guo, Xiuqing and Christophersen, Ingrid E and Ellinor, Patrick T and Geelhoed, Bastiaan and Verweij, Niek and Macfarlane, Peter and Ford, Ian and Heeringa, Jan and Franco, Oscar H and Uitterlinden, Andr{\'e} G and V{\"o}lker, Uwe and Teumer, Alexander and Rose, Lynda M and K{\"a}{\"a}b, Stefan and Gudnason, Vilmundur and Arking, Dan E and Conen, David and Roden, Dan M and Chung, Mina K and Heckbert, Susan R and Benjamin, Emelia J and Lehtim{\"a}ki, Terho and M{\"a}rz, Winfried and Smith, J Gustav and Rotter, Jerome I and van der Harst, Pim and Jukema, J Wouter and Stricker, Bruno H and Felix, Stephan B and Albert, Christine M and Lubitz, Steven A} } @article {7579, title = {Genetic loci associated with heart rate variability and their effects on cardiac disease risk.}, journal = {Nat Commun}, volume = {8}, year = {2017}, month = {2017 Jun 14}, pages = {15805}, abstract = {

Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6\% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74}, issn = {2041-1723}, doi = {10.1038/ncomms15805}, author = {Nolte, Ilja M and Munoz, M Loretto and Tragante, Vinicius and Amare, Azmeraw T and Jansen, Rick and Vaez, Ahmad and von der Heyde, Benedikt and Avery, Christy L and Bis, Joshua C and Dierckx, Bram and van Dongen, Jenny and Gogarten, Stephanie M and Goyette, Philippe and Hernesniemi, Jussi and Huikari, Ville and Hwang, Shih-Jen and Jaju, Deepali and Kerr, Kathleen F and Kluttig, Alexander and Krijthe, Bouwe P and Kumar, Jitender and van der Laan, Sander W and Lyytik{\"a}inen, Leo-Pekka and Maihofer, Adam X and Minassian, Arpi and van der Most, Peter J and M{\"u}ller-Nurasyid, Martina and Nivard, Michel and Salvi, Erika and Stewart, James D and Thayer, Julian F and Verweij, Niek and Wong, Andrew and Zabaneh, Delilah and Zafarmand, Mohammad H and Abdellaoui, Abdel and Albarwani, Sulayma and Albert, Christine and Alonso, Alvaro and Ashar, Foram and Auvinen, Juha and Axelsson, Tomas and Baker, Dewleen G and de Bakker, Paul I W and Barcella, Matteo and Bayoumi, Riad and Bieringa, Rob J and Boomsma, Dorret and Boucher, Gabrielle and Britton, Annie R and Christophersen, Ingrid and Dietrich, Andrea and Ehret, George B and Ellinor, Patrick T and Eskola, Markku and Felix, Janine F and Floras, John S and Franco, Oscar H and Friberg, Peter and Gademan, Maaike G J and Geyer, Mark A and Giedraitis, Vilmantas and Hartman, Catharina A and Hemerich, Daiane and Hofman, Albert and Hottenga, Jouke-Jan and Huikuri, Heikki and Hutri-K{\"a}h{\"o}nen, Nina and Jouven, Xavier and Junttila, Juhani and Juonala, Markus and Kiviniemi, Antti M and Kors, Jan A and Kumari, Meena and Kuznetsova, Tatiana and Laurie, Cathy C and Lefrandt, Joop D and Li, Yong and Li, Yun and Liao, Duanping and Limacher, Marian C and Lin, Henry J and Lindgren, Cecilia M and Lubitz, Steven A and Mahajan, Anubha and McKnight, Barbara and Zu Schwabedissen, Henriette Meyer and Milaneschi, Yuri and Mononen, Nina and Morris, Andrew P and Nalls, Mike A and Navis, Gerjan and Neijts, Melanie and Nikus, Kjell and North, Kari E and O{\textquoteright}Connor, Daniel T and Ormel, Johan and Perz, Siegfried and Peters, Annette and Psaty, Bruce M and Raitakari, Olli T and Risbrough, Victoria B and Sinner, Moritz F and Siscovick, David and Smit, Johannes H and Smith, Nicholas L and Soliman, Elsayed Z and Sotoodehnia, Nona and Staessen, Jan A and Stein, Phyllis K and Stilp, Adrienne M and Stolarz-Skrzypek, Katarzyna and Strauch, Konstantin and Sundstr{\"o}m, Johan and Swenne, Cees A and Syv{\"a}nen, Ann-Christine and Tardif, Jean-Claude and Taylor, Kent D and Teumer, Alexander and Thornton, Timothy A and Tinker, Lesley E and Uitterlinden, Andr{\'e} G and van Setten, Jessica and Voss, Andreas and Waldenberger, Melanie and Wilhelmsen, Kirk C and Willemsen, Gonneke and Wong, Quenna and Zhang, Zhu-Ming and Zonderman, Alan B and Cusi, Daniele and Evans, Michele K and Greiser, Halina K and van der Harst, Pim and Hassan, Mohammad and Ingelsson, Erik and Jarvelin, Marjo-Riitta and K{\"a}{\"a}b, Stefan and K{\"a}h{\"o}nen, Mika and Kivimaki, Mika and Kooperberg, Charles and Kuh, Diana and Lehtim{\"a}ki, Terho and Lind, Lars and Nievergelt, Caroline M and O{\textquoteright}Donnell, Chris J and Oldehinkel, Albertine J and Penninx, Brenda and Reiner, Alexander P and Riese, Harri{\"e}tte and van Roon, Arie M and Rioux, John D and Rotter, Jerome I and Sofer, Tamar and Stricker, Bruno H and Tiemeier, Henning and Vrijkotte, Tanja G M and Asselbergs, Folkert W and Brundel, Bianca J J M and Heckbert, Susan R and Whitsel, Eric A and den Hoed, Marcel and Snieder, Harold and de Geus, Eco J C} } @article {7396, title = {Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation.}, journal = {Nat Genet}, volume = {49}, year = {2017}, month = {2017 Jun}, pages = {946-952}, abstract = {

Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery.

}, issn = {1546-1718}, doi = {10.1038/ng.3843}, author = {Christophersen, Ingrid E and Rienstra, Michiel and Roselli, Carolina and Yin, Xiaoyan and Geelhoed, Bastiaan and Barnard, John and Lin, Honghuang and Arking, Dan E and Smith, Albert V and Albert, Christine M and Chaffin, Mark and Tucker, Nathan R and Li, Molong and Klarin, Derek and Bihlmeyer, Nathan A and Low, Siew-Kee and Weeke, Peter E and M{\"u}ller-Nurasyid, Martina and Smith, J Gustav and Brody, Jennifer A and Niemeijer, Maartje N and D{\"o}rr, Marcus and Trompet, Stella and Huffman, Jennifer and Gustafsson, Stefan and Schurmann, Claudia and Kleber, Marcus E and Lyytik{\"a}inen, Leo-Pekka and Sepp{\"a}l{\"a}, Ilkka and Malik, Rainer and Horimoto, Andrea R V R and Perez, Marco and Sinisalo, Juha and Aeschbacher, Stefanie and Th{\'e}riault, S{\'e}bastien and Yao, Jie and Radmanesh, Farid and Weiss, Stefan and Teumer, Alexander and Choi, Seung Hoan and Weng, Lu-Chen and Clauss, Sebastian and Deo, Rajat and Rader, Daniel J and Shah, Svati H and Sun, Albert and Hopewell, Jemma C and Debette, Stephanie and Chauhan, Ganesh and Yang, Qiong and Worrall, Bradford B and Par{\'e}, Guillaume and Kamatani, Yoichiro and Hagemeijer, Yanick P and Verweij, Niek and Siland, Joylene E and Kubo, Michiaki and Smith, Jonathan D and Van Wagoner, David R and Bis, Joshua C and Perz, Siegfried and Psaty, Bruce M and Ridker, Paul M and Magnani, Jared W and Harris, Tamara B and Launer, Lenore J and Shoemaker, M Benjamin and Padmanabhan, Sandosh and Haessler, Jeffrey and Bartz, Traci M and Waldenberger, Melanie and Lichtner, Peter and Arendt, Marina and Krieger, Jose E and K{\"a}h{\"o}nen, Mika and Risch, Lorenz and Mansur, Alfredo J and Peters, Annette and Smith, Blair H and Lind, Lars and Scott, Stuart A and Lu, Yingchang and Bottinger, Erwin B and Hernesniemi, Jussi and Lindgren, Cecilia M and Wong, Jorge A and Huang, Jie and Eskola, Markku and Morris, Andrew P and Ford, Ian and Reiner, Alex P and Delgado, Graciela and Chen, Lin Y and Chen, Yii-Der Ida and Sandhu, Roopinder K and Li, Man and Boerwinkle, Eric and Eisele, Lewin and Lannfelt, Lars and Rost, Natalia and Anderson, Christopher D and Taylor, Kent D and Campbell, Archie and Magnusson, Patrik K and Porteous, David and Hocking, Lynne J and Vlachopoulou, Efthymia and Pedersen, Nancy L and Nikus, Kjell and Orho-Melander, Marju and Hamsten, Anders and Heeringa, Jan and Denny, Joshua C and Kriebel, Jennifer and Darbar, Dawood and Newton-Cheh, Christopher and Shaffer, Christian and Macfarlane, Peter W and Heilmann-Heimbach, Stefanie and Almgren, Peter and Huang, Paul L and Sotoodehnia, Nona and Soliman, Elsayed Z and Uitterlinden, Andr{\'e} G and Hofman, Albert and Franco, Oscar H and V{\"o}lker, Uwe and J{\"o}ckel, Karl-Heinz and Sinner, Moritz F and Lin, Henry J and Guo, Xiuqing and Dichgans, Martin and Ingelsson, Erik and Kooperberg, Charles and Melander, Olle and Loos, Ruth J F and Laurikka, Jari and Conen, David and Rosand, Jonathan and van der Harst, Pim and Lokki, Marja-Liisa and Kathiresan, Sekar and Pereira, Alexandre and Jukema, J Wouter and Hayward, Caroline and Rotter, Jerome I and M{\"a}rz, Winfried and Lehtim{\"a}ki, Terho and Stricker, Bruno H and Chung, Mina K and Felix, Stephan B and Gudnason, Vilmundur and Alonso, Alvaro and Roden, Dan M and K{\"a}{\"a}b, Stefan and Chasman, Daniel I and Heckbert, Susan R and Benjamin, Emelia J and Tanaka, Toshihiro and Lunetta, Kathryn L and Lubitz, Steven A and Ellinor, Patrick T} } @article {7801, title = {Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 May}, pages = {e002037}, abstract = {

BACKGROUND: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability.

METHODS: We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval.

RESULTS: We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction (<1.2{\texttimes}10), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at (=5.9{\texttimes}10) and (=1.1{\texttimes}10) were associated with PR interval. locus also was implicated in the common variant analysis, whereas was a novel locus.

CONCLUSIONS: We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.117.002037}, author = {Lin, Honghuang and van Setten, Jessica and Smith, Albert V and Bihlmeyer, Nathan A and Warren, Helen R and Brody, Jennifer A and Radmanesh, Farid and Hall, Leanne and Grarup, Niels and M{\"u}ller-Nurasyid, Martina and Boutin, Thibaud and Verweij, Niek and Lin, Henry J and Li-Gao, Ruifang and van den Berg, Marten E and Marten, Jonathan and Weiss, Stefan and Prins, Bram P and Haessler, Jeffrey and Lyytik{\"a}inen, Leo-Pekka and Mei, Hao and Harris, Tamara B and Launer, Lenore J and Li, Man and Alonso, Alvaro and Soliman, Elsayed Z and Connell, John M and Huang, Paul L and Weng, Lu-Chen and Jameson, Heather S and Hucker, William and Hanley, Alan and Tucker, Nathan R and Chen, Yii-Der Ida and Bis, Joshua C and Rice, Kenneth M and Sitlani, Colleen M and Kors, Jan A and Xie, Zhijun and Wen, Chengping and Magnani, Jared W and Nelson, Christopher P and Kanters, J{\o}rgen K and Sinner, Moritz F and Strauch, Konstantin and Peters, Annette and Waldenberger, Melanie and Meitinger, Thomas and Bork-Jensen, Jette and Pedersen, Oluf and Linneberg, Allan and Rudan, Igor and de Boer, Rudolf A and van der Meer, Peter and Yao, Jie and Guo, Xiuqing and Taylor, Kent D and Sotoodehnia, Nona and Rotter, Jerome I and Mook-Kanamori, Dennis O and Trompet, Stella and Rivadeneira, Fernando and Uitterlinden, Andre and Eijgelsheim, Mark and Padmanabhan, Sandosh and Smith, Blair H and V{\"o}lzke, Henry and Felix, Stephan B and Homuth, Georg and V{\"o}lker, Uwe and Mangino, Massimo and Spector, Timothy D and Bots, Michiel L and Perez, Marco and K{\"a}h{\"o}nen, Mika and Raitakari, Olli T and Gudnason, Vilmundur and Arking, Dan E and Munroe, Patricia B and Psaty, Bruce M and van Duijn, Cornelia M and Benjamin, Emelia J and Rosand, Jonathan and Samani, Nilesh J and Hansen, Torben and K{\"a}{\"a}b, Stefan and Polasek, Ozren and van der Harst, Pim and Heckbert, Susan R and Jukema, J Wouter and Stricker, Bruno H and Hayward, Caroline and D{\"o}rr, Marcus and Jamshidi, Yalda and Asselbergs, Folkert W and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Wilson, James G and Ellinor, Patrick T and Lubitz, Steven A and Isaacs, Aaron} } @article {7802, title = {Common Coding Variants in Are Associated With the Nav1.8 Late Current and Cardiac Conduction.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 May}, pages = {e001663}, abstract = {

BACKGROUND: Genetic variants at the / locus are strongly associated with electrocardiographic PR and QRS intervals. While is the canonical cardiac sodium channel gene, the role of in cardiac conduction is less well characterized.

METHODS: We sequenced the locus in 3699 European-ancestry individuals to identify variants associated with cardiac conduction, and replicated our findings in 21,000 individuals of European ancestry. We examined association with expression in human atrial tissue. We explored the biophysical effect of variation on channel function using cellular electrophysiology.

RESULTS: We identified 2 intronic single nucleotide polymorphisms in high linkage disequilibrium ( =0.86) with each other to be the strongest signals for PR (rs10428132, β=-4.74, =1.52{\texttimes}10) and QRS intervals (rs6599251, QRS β=-0.73; =1.2{\texttimes}10), respectively. Although these variants were not associated with or expression in human atrial tissue (n=490), they were in high linkage disequilibrium ( >=0.72) with a common missense variant, rs6795970 (V1073A). In total, we identified 7 missense variants, 4 of which (I962V, P1045T, V1073A, and L1092P) were associated with cardiac conduction. These 4 missense variants cluster in the cytoplasmic linker of the second and third domains of the SCN10A protein and together form 6 common haplotypes. Using cellular electrophysiology, we found that haplotypes associated with shorter PR intervals had a significantly larger percentage of late current compared with wild-type (I962V+V1073A+L1092P, 20.2{\textpm}3.3\%, =0.03, and I962V+V1073A, 22.4{\textpm}0.8\%, =0.0004 versus wild-type 11.7{\textpm}1.6\%), and the haplotype associated with the longest PR interval had a significantly smaller late current percentage (P1045T, 6.4{\textpm}1.2\%, =0.03).

CONCLUSIONS: Our findings suggest an association between genetic variation in , the late sodium current, and alterations in cardiac conduction.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.116.001663}, author = {Macri, Vincenzo and Brody, Jennifer A and Arking, Dan E and Hucker, William J and Yin, Xiaoyan and Lin, Honghuang and Mills, Robert W and Sinner, Moritz F and Lubitz, Steven A and Liu, Ching-Ti and Morrison, Alanna C and Alonso, Alvaro and Li, Ning and Fedorov, Vadim V and Janssen, Paul M and Bis, Joshua C and Heckbert, Susan R and Dolmatova, Elena V and Lumley, Thomas and Sitlani, Colleen M and Cupples, L Adrienne and Pulit, Sara L and Newton-Cheh, Christopher and Barnard, John and Smith, Jonathan D and Van Wagoner, David R and Chung, Mina K and Vlahakes, Gus J and O{\textquoteright}Donnell, Christopher J and Rotter, Jerome I and Margulies, Kenneth B and Morley, Michael P and Cappola, Thomas P and Benjamin, Emelia J and Muzny, Donna and Gibbs, Richard A and Jackson, Rebecca D and Magnani, Jared W and Herndon, Caroline N and Rich, Stephen S and Psaty, Bruce M and Milan, David J and Boerwinkle, Eric and Mohler, Peter J and Sotoodehnia, Nona and Ellinor, Patrick T} } @article {7809, title = {Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6.}, journal = {Genome Biol}, volume = {19}, year = {2018}, month = {2018 07 17}, pages = {87}, abstract = {

BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear.

RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874~individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction.

CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.

}, issn = {1474-760X}, doi = {10.1186/s13059-018-1457-6}, author = {Prins, Bram P and Mead, Timothy J and Brody, Jennifer A and Sveinbjornsson, Gardar and Ntalla, Ioanna and Bihlmeyer, Nathan A and van den Berg, Marten and Bork-Jensen, Jette and Cappellani, Stefania and Van Duijvenboden, Stefan and Klena, Nikolai T and Gabriel, George C and Liu, Xiaoqin and Gulec, Cagri and Grarup, Niels and Haessler, Jeffrey and Hall, Leanne M and Iorio, Annamaria and Isaacs, Aaron and Li-Gao, Ruifang and Lin, Honghuang and Liu, Ching-Ti and Lyytik{\"a}inen, Leo-Pekka and Marten, Jonathan and Mei, Hao and M{\"u}ller-Nurasyid, Martina and Orini, Michele and Padmanabhan, Sandosh and Radmanesh, Farid and Ramirez, Julia and Robino, Antonietta and Schwartz, Molly and van Setten, Jessica and Smith, Albert V and Verweij, Niek and Warren, Helen R and Weiss, Stefan and Alonso, Alvaro and Arnar, David O and Bots, Michiel L and de Boer, Rudolf A and Dominiczak, Anna F and Eijgelsheim, Mark and Ellinor, Patrick T and Guo, Xiuqing and Felix, Stephan B and Harris, Tamara B and Hayward, Caroline and Heckbert, Susan R and Huang, Paul L and Jukema, J W and K{\"a}h{\"o}nen, Mika and Kors, Jan A and Lambiase, Pier D and Launer, Lenore J and Li, Man and Linneberg, Allan and Nelson, Christopher P and Pedersen, Oluf and Perez, Marco and Peters, Annette and Polasek, Ozren and Psaty, Bruce M and Raitakari, Olli T and Rice, Kenneth M and Rotter, Jerome I and Sinner, Moritz F and Soliman, Elsayed Z and Spector, Tim D and Strauch, Konstantin and Thorsteinsdottir, Unnur and Tinker, Andrew and Trompet, Stella and Uitterlinden, Andre and Vaartjes, Ilonca and van der Meer, Peter and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Waldenberger, Melanie and Wilson, James G and Xie, Zhijun and Asselbergs, Folkert W and D{\"o}rr, Marcus and van Duijn, Cornelia M and Gasparini, Paolo and Gudbjartsson, Daniel F and Gudnason, Vilmundur and Hansen, Torben and K{\"a}{\"a}b, Stefan and Kanters, J{\o}rgen K and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Lin, Henry J and Lubitz, Steven A and Mook-Kanamori, Dennis O and Conti, Francesco J and Newton-Cheh, Christopher H and Rosand, Jonathan and Rudan, Igor and Samani, Nilesh J and Sinagra, Gianfranco and Smith, Blair H and Holm, Hilma and Stricker, Bruno H and Ulivi, Sheila and Sotoodehnia, Nona and Apte, Suneel S and van der Harst, Pim and Stefansson, Kari and Munroe, Patricia B and Arking, Dan E and Lo, Cecilia W and Jamshidi, Yalda} } @article {7784, title = {ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 Jan}, pages = {e001758}, abstract = {

BACKGROUND: QT interval, measured through a standard ECG, captures the time it takes for the cardiac ventricles to depolarize and repolarize. JT interval is the component of the QT interval that reflects ventricular repolarization alone. Prolonged QT interval has been linked to higher risk of sudden cardiac arrest.

METHODS AND RESULTS: We performed an ExomeChip-wide analysis for both QT and JT intervals, including 209 449 variants, both common and rare, in 17 341 genes from the Illumina Infinium HumanExome BeadChip. We identified 10 loci that modulate QT and JT interval duration that have not been previously reported in the literature using single-variant statistical models in a meta-analysis of 95 626 individuals from 23 cohorts (comprised 83 884 European ancestry individuals, 9610 blacks, 1382 Hispanics, and 750 Asians). This brings the total number of ventricular repolarization associated loci to 45. In addition, our approach of using coding variants has highlighted the role of 17 specific genes for involvement in ventricular repolarization, 7 of which are in novel loci.

CONCLUSIONS: Our analyses show a role for myocyte internal structure and interconnections in modulating QT interval duration, adding to previous known roles of potassium, sodium, and calcium ion regulation, as well as autonomic control. We anticipate that these discoveries will open new paths to the goal of making novel remedies for the prevention of lethal ventricular arrhythmias and sudden cardiac arrest.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.117.001758}, author = {Bihlmeyer, Nathan A and Brody, Jennifer A and Smith, Albert Vernon and Warren, Helen R and Lin, Honghuang and Isaacs, Aaron and Liu, Ching-Ti and Marten, Jonathan and Radmanesh, Farid and Hall, Leanne M and Grarup, Niels and Mei, Hao and M{\"u}ller-Nurasyid, Martina and Huffman, Jennifer E and Verweij, Niek and Guo, Xiuqing and Yao, Jie and Li-Gao, Ruifang and van den Berg, Marten and Weiss, Stefan and Prins, Bram P and van Setten, Jessica and Haessler, Jeffrey and Lyytik{\"a}inen, Leo-Pekka and Li, Man and Alonso, Alvaro and Soliman, Elsayed Z and Bis, Joshua C and Austin, Tom and Chen, Yii-Der Ida and Psaty, Bruce M and Harrris, Tamara B and Launer, Lenore J and Padmanabhan, Sandosh and Dominiczak, Anna and Huang, Paul L and Xie, Zhijun and Ellinor, Patrick T and Kors, Jan A and Campbell, Archie and Murray, Alison D and Nelson, Christopher P and Tobin, Martin D and Bork-Jensen, Jette and Hansen, Torben and Pedersen, Oluf and Linneberg, Allan and Sinner, Moritz F and Peters, Annette and Waldenberger, Melanie and Meitinger, Thomas and Perz, Siegfried and Kolcic, Ivana and Rudan, Igor and de Boer, Rudolf A and van der Meer, Peter and Lin, Henry J and Taylor, Kent D and de Mutsert, Ren{\'e}e and Trompet, Stella and Jukema, J Wouter and Maan, Arie C and Stricker, Bruno H C and Rivadeneira, Fernando and Uitterlinden, Andre and V{\"o}lker, Uwe and Homuth, Georg and V{\"o}lzke, Henry and Felix, Stephan B and Mangino, Massimo and Spector, Timothy D and Bots, Michiel L and Perez, Marco and Raitakari, Olli T and K{\"a}h{\"o}nen, Mika and Mononen, Nina and Gudnason, Vilmundur and Munroe, Patricia B and Lubitz, Steven A and van Duijn, Cornelia M and Newton-Cheh, Christopher H and Hayward, Caroline and Rosand, Jonathan and Samani, Nilesh J and Kanters, J{\o}rgen K and Wilson, James G and K{\"a}{\"a}b, Stefan and Polasek, Ozren and van der Harst, Pim and Heckbert, Susan R and Rotter, Jerome I and Mook-Kanamori, Dennis O and Eijgelsheim, Mark and D{\"o}rr, Marcus and Jamshidi, Yalda and Asselbergs, Folkert W and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Arking, Dan E and Sotoodehnia, Nona} } @article {7683, title = {Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Apr}, pages = {524-537}, abstract = {

Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and~using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0058-3}, author = {Malik, Rainer and Chauhan, Ganesh and Traylor, Matthew and Sargurupremraj, Muralidharan and Okada, Yukinori and Mishra, Aniket and Rutten-Jacobs, Loes and Giese, Anne-Katrin and van der Laan, Sander W and Gretarsdottir, Solveig and Anderson, Christopher D and Chong, Michael and Adams, Hieab H H and Ago, Tetsuro and Almgren, Peter and Amouyel, Philippe and Ay, Hakan and Bartz, Traci M and Benavente, Oscar R and Bevan, Steve and Boncoraglio, Giorgio B and Brown, Robert D and Butterworth, Adam S and Carrera, Caty and Carty, Cara L and Chasman, Daniel I and Chen, Wei-Min and Cole, John W and Correa, Adolfo and Cotlarciuc, Ioana and Cruchaga, Carlos and Danesh, John and de Bakker, Paul I W and DeStefano, Anita L and den Hoed, Marcel and Duan, Qing and Engelter, Stefan T and Falcone, Guido J and Gottesman, Rebecca F and Grewal, Raji P and Gudnason, Vilmundur and Gustafsson, Stefan and Haessler, Jeffrey and Harris, Tamara B and Hassan, Ahamad and Havulinna, Aki S and Heckbert, Susan R and Holliday, Elizabeth G and Howard, George and Hsu, Fang-Chi and Hyacinth, Hyacinth I and Ikram, M Arfan and Ingelsson, Erik and Irvin, Marguerite R and Jian, Xueqiu and Jimenez-Conde, Jordi and Johnson, Julie A and Jukema, J Wouter and Kanai, Masahiro and Keene, Keith L and Kissela, Brett M and Kleindorfer, Dawn O and Kooperberg, Charles and Kubo, Michiaki and Lange, Leslie A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lee, Jin-Moo and Lemmens, Robin and Leys, Didier and Lewis, Cathryn M and Lin, Wei-Yu and Lindgren, Arne G and Lorentzen, Erik and Magnusson, Patrik K and Maguire, Jane and Manichaikul, Ani and McArdle, Patrick F and Meschia, James F and Mitchell, Braxton D and Mosley, Thomas H and Nalls, Michael A and Ninomiya, Toshiharu and O{\textquoteright}Donnell, Martin J and Psaty, Bruce M and Pulit, Sara L and Rannikmae, Kristiina and Reiner, Alexander P and Rexrode, Kathryn M and Rice, Kenneth and Rich, Stephen S and Ridker, Paul M and Rost, Natalia S and Rothwell, Peter M and Rotter, Jerome I and Rundek, Tatjana and Sacco, Ralph L and Sakaue, Saori and Sale, Mich{\`e}le M and Salomaa, Veikko and Sapkota, Bishwa R and Schmidt, Reinhold and Schmidt, Carsten O and Schminke, Ulf and Sharma, Pankaj and Slowik, Agnieszka and Sudlow, Cathie L M and Tanislav, Christian and Tatlisumak, Turgut and Taylor, Kent D and Thijs, Vincent N S and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiedt, Steffen and Trompet, Stella and Tzourio, Christophe and van Duijn, Cornelia M and Walters, Matthew and Wareham, Nicholas J and Wassertheil-Smoller, Sylvia and Wilson, James G and Wiggins, Kerri L and Yang, Qiong and Yusuf, Salim and Bis, Joshua C and Pastinen, Tomi and Ruusalepp, Arno and Schadt, Eric E and Koplev, Simon and Bj{\"o}rkegren, Johan L M and Codoni, Veronica and Civelek, Mete and Smith, Nicholas L and Tr{\'e}gou{\"e}t, David A and Christophersen, Ingrid E and Roselli, Carolina and Lubitz, Steven A and Ellinor, Patrick T and Tai, E Shyong and Kooner, Jaspal S and Kato, Norihiro and He, Jiang and van der Harst, Pim and Elliott, Paul and Chambers, John C and Takeuchi, Fumihiko and Johnson, Andrew D and Sanghera, Dharambir K and Melander, Olle and Jern, Christina and Strbian, Daniel and Fernandez-Cadenas, Israel and Longstreth, W T and Rolfs, Arndt and Hata, Jun and Woo, Daniel and Rosand, Jonathan and Par{\'e}, Guillaume and Hopewell, Jemma C and Saleheen, Danish and Stefansson, Kari and Worrall, Bradford B and Kittner, Steven J and Seshadri, Sudha and Fornage, Myriam and Markus, Hugh S and Howson, Joanna M M and Kamatani, Yoichiro and Debette, Stephanie and Dichgans, Martin and Malik, Rainer and Chauhan, Ganesh and Traylor, Matthew and Sargurupremraj, Muralidharan and Okada, Yukinori and Mishra, Aniket and Rutten-Jacobs, Loes and Giese, Anne-Katrin and van der Laan, Sander W and Gretarsdottir, Solveig and Anderson, Christopher D and Chong, Michael and Adams, Hieab H H and Ago, Tetsuro and Almgren, Peter and Amouyel, Philippe and Ay, Hakan and Bartz, Traci M and Benavente, Oscar R and Bevan, Steve and Boncoraglio, Giorgio B and Brown, Robert D and Butterworth, Adam S and Carrera, Caty and Carty, Cara L and Chasman, Daniel I and Chen, Wei-Min and Cole, John W and Correa, Adolfo and Cotlarciuc, Ioana and Cruchaga, Carlos and Danesh, John and de Bakker, Paul I W and DeStefano, Anita L and Hoed, Marcel den and Duan, Qing and Engelter, Stefan T and Falcone, Guido J and Gottesman, Rebecca F and Grewal, Raji P and Gudnason, Vilmundur and Gustafsson, Stefan and Haessler, Jeffrey and Harris, Tamara B and Hassan, Ahamad and Havulinna, Aki S and Heckbert, Susan R and Holliday, Elizabeth G and Howard, George and Hsu, Fang-Chi and Hyacinth, Hyacinth I and Ikram, M Arfan and Ingelsson, Erik and Irvin, Marguerite R and Jian, Xueqiu and Jimenez-Conde, Jordi and Johnson, Julie A and Jukema, J Wouter and Kanai, Masahiro and Keene, Keith L and Kissela, Brett M and Kleindorfer, Dawn O and Kooperberg, Charles and Kubo, Michiaki and Lange, Leslie A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lee, Jin-Moo and Lemmens, Robin and Leys, Didier and Lewis, Cathryn M and Lin, Wei-Yu and Lindgren, Arne G and Lorentzen, Erik and Magnusson, Patrik K and Maguire, Jane and Manichaikul, Ani and McArdle, Patrick F and Meschia, James F and Mitchell, Braxton D and Mosley, Thomas H and Nalls, Michael A and Ninomiya, Toshiharu and O{\textquoteright}Donnell, Martin J and Psaty, Bruce M and Pulit, Sara L and Rannikmae, Kristiina and Reiner, Alexander P and Rexrode, Kathryn M and Rice, Kenneth and Rich, Stephen S and Ridker, Paul M and Rost, Natalia S and Rothwell, Peter M and Rotter, Jerome I and Rundek, Tatjana and Sacco, Ralph L and Sakaue, Saori and Sale, Mich{\`e}le M and Salomaa, Veikko and Sapkota, Bishwa R and Schmidt, Reinhold and Schmidt, Carsten O and Schminke, Ulf and Sharma, Pankaj and Slowik, Agnieszka and Sudlow, Cathie L M and Tanislav, Christian and Tatlisumak, Turgut and Taylor, Kent D and Thijs, Vincent N S and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiedt, Steffen and Trompet, Stella and Tzourio, Christophe and van Duijn, Cornelia M and Walters, Matthew and Wareham, Nicholas J and Wassertheil-Smoller, Sylvia and Wilson, James G and Wiggins, Kerri L and Yang, Qiong and Yusuf, Salim and Amin, Najaf and Aparicio, Hugo S and Arnett, Donna K and Attia, John and Beiser, Alexa S and Berr, Claudine and Buring, Julie E and Bustamante, Mariana and Caso, Valeria and Cheng, Yu-Ching and Choi, Seung Hoan and Chowhan, Ayesha and Cullell, Natalia and Dartigues, Jean-Fran{\c c}ois and Delavaran, Hossein and Delgado, Pilar and D{\"o}rr, Marcus and Engstr{\"o}m, Gunnar and Ford, Ian and Gurpreet, Wander S and Hamsten, Anders and Heitsch, Laura and Hozawa, Atsushi and Ibanez, Laura and Ilinca, Andreea and Ingelsson, Martin and Iwasaki, Motoki and Jackson, Rebecca D and Jood, Katarina and Jousilahti, Pekka and Kaffashian, Sara and Kalra, Lalit and Kamouchi, Masahiro and Kitazono, Takanari and Kjartansson, Olafur and Kloss, Manja and Koudstaal, Peter J and Krupinski, Jerzy and Labovitz, Daniel L and Laurie, Cathy C and Levi, Christopher R and Li, Linxin and Lind, Lars and Lindgren, Cecilia M and Lioutas, Vasileios and Liu, Yong Mei and Lopez, Oscar L and Makoto, Hirata and Martinez-Majander, Nicolas and Matsuda, Koichi and Minegishi, Naoko and Montaner, Joan and Morris, Andrew P and Mui{\~n}o, Elena and M{\"u}ller-Nurasyid, Martina and Norrving, Bo and Ogishima, Soichi and Parati, Eugenio A and Peddareddygari, Leema Reddy and Pedersen, Nancy L and Pera, Joanna and Perola, Markus and Pezzini, Alessandro and Pileggi, Silvana and Rabionet, Raquel and Riba-Llena, Iolanda and Ribas{\'e}s, Marta and Romero, Jose R and Roquer, Jaume and Rudd, Anthony G and Sarin, Antti-Pekka and Sarju, Ralhan and Sarnowski, Chloe and Sasaki, Makoto and Satizabal, Claudia L and Satoh, Mamoru and Sattar, Naveed and Sawada, Norie and Sibolt, Gerli and Sigurdsson, {\'A}sgeir and Smith, Albert and Sobue, Kenji and Soriano-T{\'a}rraga, Carolina and Stanne, Tara and Stine, O Colin and Stott, David J and Strauch, Konstantin and Takai, Takako and Tanaka, Hideo and Tanno, Kozo and Teumer, Alexander and Tomppo, Liisa and Torres-Aguila, Nuria P and Touze, Emmanuel and Tsugane, Shoichiro and Uitterlinden, Andr{\'e} G and Valdimarsson, Einar M and van der Lee, Sven J and V{\"o}lzke, Henry and Wakai, Kenji and Weir, David and Williams, Stephen R and Wolfe, Charles D A and Wong, Quenna and Xu, Huichun and Yamaji, Taiki and Sanghera, Dharambir K and Melander, Olle and Jern, Christina and Strbian, Daniel and Fernandez-Cadenas, Israel and Longstreth, W T and Rolfs, Arndt and Hata, Jun and Woo, Daniel and Rosand, Jonathan and Par{\'e}, Guillaume and Hopewell, Jemma C and Saleheen, Danish and Stefansson, Kari and Worrall, Bradford B and Kittner, Steven J and Seshadri, Sudha and Fornage, Myriam and Markus, Hugh S and Howson, Joanna M M and Kamatani, Yoichiro and Debette, Stephanie and Dichgans, Martin} } @article {7811, title = {Multi-ethnic genome-wide association study for atrial fibrillation.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Sep}, pages = {1225-1233}, abstract = {

Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0133-9}, author = {Roselli, Carolina and Chaffin, Mark D and Weng, Lu-Chen and Aeschbacher, Stefanie and Ahlberg, Gustav and Albert, Christine M and Almgren, Peter and Alonso, Alvaro and Anderson, Christopher D and Aragam, Krishna G and Arking, Dan E and Barnard, John and Bartz, Traci M and Benjamin, Emelia J and Bihlmeyer, Nathan A and Bis, Joshua C and Bloom, Heather L and Boerwinkle, Eric and Bottinger, Erwin B and Brody, Jennifer A and Calkins, Hugh and Campbell, Archie and Cappola, Thomas P and Carlquist, John and Chasman, Daniel I and Chen, Lin Y and Chen, Yii-Der Ida and Choi, Eue-Keun and Choi, Seung Hoan and Christophersen, Ingrid E and Chung, Mina K and Cole, John W and Conen, David and Cook, James and Crijns, Harry J and Cutler, Michael J and Damrauer, Scott M and Daniels, Brian R and Darbar, Dawood and Delgado, Graciela and Denny, Joshua C and Dichgans, Martin and D{\"o}rr, Marcus and Dudink, Elton A and Dudley, Samuel C and Esa, Nada and Esko, T{\~o}nu and Eskola, Markku and Fatkin, Diane and Felix, Stephan B and Ford, Ian and Franco, Oscar H and Geelhoed, Bastiaan and Grewal, Raji P and Gudnason, Vilmundur and Guo, Xiuqing and Gupta, Namrata and Gustafsson, Stefan and Gutmann, Rebecca and Hamsten, Anders and Harris, Tamara B and Hayward, Caroline and Heckbert, Susan R and Hernesniemi, Jussi and Hocking, Lynne J and Hofman, Albert and Horimoto, Andrea R V R and Huang, Jie and Huang, Paul L and Huffman, Jennifer and Ingelsson, Erik and Ipek, Esra Gucuk and Ito, Kaoru and Jimenez-Conde, Jordi and Johnson, Renee and Jukema, J Wouter and K{\"a}{\"a}b, Stefan and K{\"a}h{\"o}nen, Mika and Kamatani, Yoichiro and Kane, John P and Kastrati, Adnan and Kathiresan, Sekar and Katschnig-Winter, Petra and Kavousi, Maryam and Kessler, Thorsten and Kietselaer, Bas L and Kirchhof, Paulus and Kleber, Marcus E and Knight, Stacey and Krieger, Jose E and Kubo, Michiaki and Launer, Lenore J and Laurikka, Jari and Lehtim{\"a}ki, Terho and Leineweber, Kirsten and Lemaitre, Rozenn N and Li, Man and Lim, Hong Euy and Lin, Henry J and Lin, Honghuang and Lind, Lars and Lindgren, Cecilia M and Lokki, Marja-Liisa and London, Barry and Loos, Ruth J F and Low, Siew-Kee and Lu, Yingchang and Lyytik{\"a}inen, Leo-Pekka and Macfarlane, Peter W and Magnusson, Patrik K and Mahajan, Anubha and Malik, Rainer and Mansur, Alfredo J and Marcus, Gregory M and Margolin, Lauren and Margulies, Kenneth B and M{\"a}rz, Winfried and McManus, David D and Melander, Olle and Mohanty, Sanghamitra and Montgomery, Jay A and Morley, Michael P and Morris, Andrew P and M{\"u}ller-Nurasyid, Martina and Natale, Andrea and Nazarian, Saman and Neumann, Benjamin and Newton-Cheh, Christopher and Niemeijer, Maartje N and Nikus, Kjell and Nilsson, Peter and Noordam, Raymond and Oellers, Heidi and Olesen, Morten S and Orho-Melander, Marju and Padmanabhan, Sandosh and Pak, Hui-Nam and Par{\'e}, Guillaume and Pedersen, Nancy L and Pera, Joanna and Pereira, Alexandre and Porteous, David and Psaty, Bruce M and Pulit, Sara L and Pullinger, Clive R and Rader, Daniel J and Refsgaard, Lena and Ribas{\'e}s, Marta and Ridker, Paul M and Rienstra, Michiel and Risch, Lorenz and Roden, Dan M and Rosand, Jonathan and Rosenberg, Michael A and Rost, Natalia and Rotter, Jerome I and Saba, Samir and Sandhu, Roopinder K and Schnabel, Renate B and Schramm, Katharina and Schunkert, Heribert and Schurman, Claudia and Scott, Stuart A and Sepp{\"a}l{\"a}, Ilkka and Shaffer, Christian and Shah, Svati and Shalaby, Alaa A and Shim, Jaemin and Shoemaker, M Benjamin and Siland, Joylene E and Sinisalo, Juha and Sinner, Moritz F and Slowik, Agnieszka and Smith, Albert V and Smith, Blair H and Smith, J Gustav and Smith, Jonathan D and Smith, Nicholas L and Soliman, Elsayed Z and Sotoodehnia, Nona and Stricker, Bruno H and Sun, Albert and Sun, Han and Svendsen, Jesper H and Tanaka, Toshihiro and Tanriverdi, Kahraman and Taylor, Kent D and Teder-Laving, Maris and Teumer, Alexander and Th{\'e}riault, S{\'e}bastien and Trompet, Stella and Tucker, Nathan R and Tveit, Arnljot and Uitterlinden, Andr{\'e} G and van der Harst, Pim and Van Gelder, Isabelle C and Van Wagoner, David R and Verweij, Niek and Vlachopoulou, Efthymia and V{\"o}lker, Uwe and Wang, Biqi and Weeke, Peter E and Weijs, Bob and Weiss, Raul and Weiss, Stefan and Wells, Quinn S and Wiggins, Kerri L and Wong, Jorge A and Woo, Daniel and Worrall, Bradford B and Yang, Pil-Sung and Yao, Jie and Yoneda, Zachary T and Zeller, Tanja and Zeng, Lingyao and Lubitz, Steven A and Lunetta, Kathryn L and Ellinor, Patrick T} } @article {7815, title = {PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Jul 25}, pages = {2904}, abstract = {

Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genome-wide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity. Genes in these loci are over-represented in cardiac disease processes including heart block and atrial fibrillation. Variants in over half of the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with missense variants. Six additional loci were identified either by meta-analysis of ~105,000 African and European-descent individuals and/or by pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation. These findings implicate developmental pathways, and identify transcription factors, ion-channel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction, identifying potential targets for drug development.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-04766-9}, author = {van Setten, Jessica and Brody, Jennifer A and Jamshidi, Yalda and Swenson, Brenton R and Butler, Anne M and Campbell, Harry and Del Greco, Fabiola M and Evans, Daniel S and Gibson, Quince and Gudbjartsson, Daniel F and Kerr, Kathleen F and Krijthe, Bouwe P and Lyytik{\"a}inen, Leo-Pekka and M{\"u}ller, Christian and M{\"u}ller-Nurasyid, Martina and Nolte, Ilja M and Padmanabhan, Sandosh and Ritchie, Marylyn D and Robino, Antonietta and Smith, Albert V and Steri, Maristella and Tanaka, Toshiko and Teumer, Alexander and Trompet, Stella and Ulivi, Sheila and Verweij, Niek and Yin, Xiaoyan and Arnar, David O and Asselbergs, Folkert W and Bader, Joel S and Barnard, John and Bis, Josh and Blankenberg, Stefan and Boerwinkle, Eric and Bradford, Yuki and Buckley, Brendan M and Chung, Mina K and Crawford, Dana and den Hoed, Marcel and Denny, Josh C and Dominiczak, Anna F and Ehret, Georg B and Eijgelsheim, Mark and Ellinor, Patrick T and Felix, Stephan B and Franco, Oscar H and Franke, Lude and Harris, Tamara B and Holm, Hilma and Ilaria, Gandin and Iorio, Annamaria and K{\"a}h{\"o}nen, Mika and Kolcic, Ivana and Kors, Jan A and Lakatta, Edward G and Launer, Lenore J and Lin, Honghuang and Lin, Henry J and Loos, Ruth J F and Lubitz, Steven A and Macfarlane, Peter W and Magnani, Jared W and Leach, Irene Mateo and Meitinger, Thomas and Mitchell, Braxton D and M{\"u}nzel, Thomas and Papanicolaou, George J and Peters, Annette and Pfeufer, Arne and Pramstaller, Peter P and Raitakari, Olli T and Rotter, Jerome I and Rudan, Igor and Samani, Nilesh J and Schlessinger, David and Silva Aldana, Claudia T and Sinner, Moritz F and Smith, Jonathan D and Snieder, Harold and Soliman, Elsayed Z and Spector, Timothy D and Stott, David J and Strauch, Konstantin and Tarasov, Kirill V and Thorsteinsdottir, Unnur and Uitterlinden, Andr{\'e} G and Van Wagoner, David R and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Waldenberger, Melanie and Jan Westra, Harm and Wild, Philipp S and Zeller, Tanja and Alonso, Alvaro and Avery, Christy L and Bandinelli, Stefania and Benjamin, Emelia J and Cucca, Francesco and D{\"o}rr, Marcus and Ferrucci, Luigi and Gasparini, Paolo and Gudnason, Vilmundur and Hayward, Caroline and Heckbert, Susan R and Hicks, Andrew A and Jukema, J Wouter and K{\"a}{\"a}b, Stefan and Lehtim{\"a}ki, Terho and Liu, Yongmei and Munroe, Patricia B and Parsa, Afshin and Polasek, Ozren and Psaty, Bruce M and Roden, Dan M and Schnabel, Renate B and Sinagra, Gianfranco and Stefansson, Kari and Stricker, Bruno H and van der Harst, Pim and van Duijn, Cornelia M and Wilson, James F and Gharib, Sina A and de Bakker, Paul I W and Isaacs, Aaron and Arking, Dan E and Sotoodehnia, Nona} } @article {7973, title = {Assessment of the Relationship Between Genetic Determinants of Thyroid Function and Atrial Fibrillation: A Mendelian Randomization Study.}, journal = {JAMA Cardiol}, year = {2019}, month = {2019 Jan 23}, abstract = {

Importance: Increased free thyroxine (FT4) and decreased thyrotropin are associated with increased risk of atrial fibrillation (AF) in observational studies, but direct involvement is unclear.

Objective: To evaluate the potential direct involvement of thyroid traits on AF.

Design, Setting, and Participants: Study-level mendelian randomization (MR) included 11 studies, and summary-level MR included 55 114 AF cases and 482 295 referents, all of European ancestry.

Exposures: Genomewide significant variants were used as instruments for standardized FT4 and thyrotropin levels within the reference range, standardized triiodothyronine (FT3):FT4 ratio, hypothyroidism, standardized thyroid peroxidase antibody levels, and hyperthyroidism. Mendelian randomization used genetic risk scores in study-level analysis or individual single-nucleotide polymorphisms in 2-sample MR for the summary-level data.

Main Outcomes and Measures: Prevalent and incident AF.

Results: The study-level analysis included 7679 individuals with AF and 49 233 referents (mean age [standard error], 62 [3] years; 15 859 men [29.7\%]). In study-level random-effects meta-analysis, the pooled hazard ratio of FT4 levels (nanograms per deciliter) for incident AF was 1.55 (95\% CI, 1.09-2.20; P = .02; I2 = 76\%) and the pooled odds ratio (OR) for prevalent AF was 2.80 (95\% CI, 1.41-5.54; P = .003; I2 = 64\%) in multivariable-adjusted analyses. The FT4 genetic risk score was associated with an increase in FT4 by 0.082 SD (standard error, 0.007; P < .001) but not with incident AF (risk ratio, 0.84; 95\% CI, 0.62-1.14; P = .27) or prevalent AF (OR, 1.32; 95\% CI, 0.64-2.73; P = .46). Similarly, in summary-level inverse-variance weighted random-effects MR, gene-based FT4 within the reference range was not associated with AF (OR, 1.01; 95\% CI, 0.89-1.14; P = .88). However, gene-based increased FT3:FT4 ratio, increased thyrotropin within the reference range, and hypothyroidism were associated with AF with inverse-variance weighted random-effects OR of 1.33 (95\% CI, 1.08-1.63; P = .006), 0.88 (95\% CI, 0.84-0.92; P < .001), and 0.94 (95\% CI, 0.90-0.99; P = .009), respectively, and robust to tests of horizontal pleiotropy. However, the subset of hypothyroidism single-nucleotide polymorphisms involved in autoimmunity and thyroid peroxidase antibodies levels were not associated with AF. Gene-based hyperthyroidism was associated with AF with MR-Egger OR of 1.31 (95\% CI, 1.05-1.63; P = .02) with evidence of horizontal pleiotropy (P = .045).

Conclusions and Relevance: Genetically increased FT3:FT4 ratio and hyperthyroidism, but not FT4 within the reference range, were associated with increased AF, and increased thyrotropin within the reference range and hypothyroidism were associated with decreased AF, supporting a pathway involving the pituitary-thyroid-cardiac axis.

}, issn = {2380-6591}, doi = {10.1001/jamacardio.2018.4635}, author = {Ellervik, Christina and Roselli, Carolina and Christophersen, Ingrid E and Alonso, Alvaro and Pietzner, Maik and Sitlani, Collen M and Trompet, Stella and Arking, Dan E and Geelhoed, Bastiaan and Guo, Xiuqing and Kleber, Marcus E and Lin, Henry J and Lin, Honghuang and Macfarlane, Peter and Selvin, Elizabeth and Shaffer, Christian and Smith, Albert V and Verweij, Niek and Weiss, Stefan and Cappola, Anne R and D{\"o}rr, Marcus and Gudnason, Vilmundur and Heckbert, Susan and Mooijaart, Simon and M{\"a}rz, Winfried and Psaty, Bruce M and Ridker, Paul M and Roden, Dan and Stott, David J and V{\"o}lzke, Henry and Benjamin, Emelia J and Delgado, Graciela and Ellinor, Patrick and Homuth, Georg and K{\"o}ttgen, Anna and Jukema, Johan W and Lubitz, Steven A and Mora, Samia and Rienstra, Michiel and Rotter, Jerome I and Shoemaker, M Benjamin and Sotoodehnia, Nona and Taylor, Kent D and van der Harst, Pim and Albert, Christine M and Chasman, Daniel I} } @article {8621, title = {Inherited causes of clonal haematopoiesis in 97,691 whole genomes.}, journal = {Nature}, volume = {586}, year = {2020}, month = {2020 10}, pages = {763-768}, abstract = {

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer and coronary heart disease-this phenomenon is~termed clonal haematopoiesis of indeterminate potential (CHIP). Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP~driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.

}, issn = {1476-4687}, doi = {10.1038/s41586-020-2819-2}, author = {Bick, Alexander G and Weinstock, Joshua S and Nandakumar, Satish K and Fulco, Charles P and Bao, Erik L and Zekavat, Seyedeh M and Szeto, Mindy D and Liao, Xiaotian and Leventhal, Matthew J and Nasser, Joseph and Chang, Kyle and Laurie, Cecelia and Burugula, Bala Bharathi and Gibson, Christopher J and Lin, Amy E and Taub, Margaret A and Aguet, Francois and Ardlie, Kristin and Mitchell, Braxton D and Barnes, Kathleen C and Moscati, Arden and Fornage, Myriam and Redline, Susan and Psaty, Bruce M and Silverman, Edwin K and Weiss, Scott T and Palmer, Nicholette D and Vasan, Ramachandran S and Burchard, Esteban G and Kardia, Sharon L R and He, Jiang and Kaplan, Robert C and Smith, Nicholas L and Arnett, Donna K and Schwartz, David A and Correa, Adolfo and de Andrade, Mariza and Guo, Xiuqing and Konkle, Barbara A and Custer, Brian and Peralta, Juan M and Gui, Hongsheng and Meyers, Deborah A and McGarvey, Stephen T and Chen, Ida Yii-Der and Shoemaker, M Benjamin and Peyser, Patricia A and Broome, Jai G and Gogarten, Stephanie M and Wang, Fei Fei and Wong, Quenna and Montasser, May E and Daya, Michelle and Kenny, Eimear E and North, Kari E and Launer, Lenore J and Cade, Brian E and Bis, Joshua C and Cho, Michael H and Lasky-Su, Jessica and Bowden, Donald W and Cupples, L Adrienne and Mak, Angel C Y and Becker, Lewis C and Smith, Jennifer A and Kelly, Tanika N and Aslibekyan, Stella and Heckbert, Susan R and Tiwari, Hemant K and Yang, Ivana V and Heit, John A and Lubitz, Steven A and Johnsen, Jill M and Curran, Joanne E and Wenzel, Sally E and Weeks, Daniel E and Rao, Dabeeru C and Darbar, Dawood and Moon, Jee-Young and Tracy, Russell P and Buth, Erin J and Rafaels, Nicholas and Loos, Ruth J F and Durda, Peter and Liu, Yongmei and Hou, Lifang and Lee, Jiwon and Kachroo, Priyadarshini and Freedman, Barry I and Levy, Daniel and Bielak, Lawrence F and Hixson, James E and Floyd, James S and Whitsel, Eric A and Ellinor, Patrick T and Irvin, Marguerite R and Fingerlin, Tasha E and Raffield, Laura M and Armasu, Sebastian M and Wheeler, Marsha M and Sabino, Ester C and Blangero, John and Williams, L Keoki and Levy, Bruce D and Sheu, Wayne Huey-Herng and Roden, Dan M and Boerwinkle, Eric and Manson, JoAnn E and Mathias, Rasika A and Desai, Pinkal and Taylor, Kent D and Johnson, Andrew D and Auer, Paul L and Kooperberg, Charles and Laurie, Cathy C and Blackwell, Thomas W and Smith, Albert V and Zhao, Hongyu and Lange, Ethan and Lange, Leslie and Rich, Stephen S and Rotter, Jerome I and Wilson, James G and Scheet, Paul and Kitzman, Jacob O and Lander, Eric S and Engreitz, Jesse M and Ebert, Benjamin L and Reiner, Alexander P and Jaiswal, Siddhartha and Abecasis, Goncalo and Sankaran, Vijay G and Kathiresan, Sekar and Natarajan, Pradeep} } @article {8368, title = {Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction.}, journal = {Nat Commun}, volume = {11}, year = {2020}, month = {2020 May 21}, pages = {2542}, abstract = {

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5\% to 62.6\%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.

}, issn = {2041-1723}, doi = {10.1038/s41467-020-15706-x}, author = {Ntalla, Ioanna and Weng, Lu-Chen and Cartwright, James H and Hall, Amelia Weber and Sveinbjornsson, Gardar and Tucker, Nathan R and Choi, Seung Hoan and Chaffin, Mark D and Roselli, Carolina and Barnes, Michael R and Mifsud, Borbala and Warren, Helen R and Hayward, Caroline and Marten, Jonathan and Cranley, James J and Concas, Maria Pina and Gasparini, Paolo and Boutin, Thibaud and Kolcic, Ivana and Polasek, Ozren and Rudan, Igor and Araujo, Nathalia M and Lima-Costa, Maria Fernanda and Ribeiro, Antonio Luiz P and Souza, Renan P and Tarazona-Santos, Eduardo and Giedraitis, Vilmantas and Ingelsson, Erik and Mahajan, Anubha and Morris, Andrew P and del Greco M, Fabiola and Foco, Luisa and G{\"o}gele, Martin and Hicks, Andrew A and Cook, James P and Lind, Lars and Lindgren, Cecilia M and Sundstr{\"o}m, Johan and Nelson, Christopher P and Riaz, Muhammad B and Samani, Nilesh J and Sinagra, Gianfranco and Ulivi, Sheila and K{\"a}h{\"o}nen, Mika and Mishra, Pashupati P and Mononen, Nina and Nikus, Kjell and Caulfield, Mark J and Dominiczak, Anna and Padmanabhan, Sandosh and Montasser, May E and O{\textquoteright}Connell, Jeff R and Ryan, Kathleen and Shuldiner, Alan R and Aeschbacher, Stefanie and Conen, David and Risch, Lorenz and Th{\'e}riault, S{\'e}bastien and Hutri-K{\"a}h{\"o}nen, Nina and Lehtim{\"a}ki, Terho and Lyytik{\"a}inen, Leo-Pekka and Raitakari, Olli T and Barnes, Catriona L K and Campbell, Harry and Joshi, Peter K and Wilson, James F and Isaacs, Aaron and Kors, Jan A and van Duijn, Cornelia M and Huang, Paul L and Gudnason, Vilmundur and Harris, Tamara B and Launer, Lenore J and Smith, Albert V and Bottinger, Erwin P and Loos, Ruth J F and Nadkarni, Girish N and Preuss, Michael H and Correa, Adolfo and Mei, Hao and Wilson, James and Meitinger, Thomas and M{\"u}ller-Nurasyid, Martina and Peters, Annette and Waldenberger, Melanie and Mangino, Massimo and Spector, Timothy D and Rienstra, Michiel and van de Vegte, Yordi J and van der Harst, Pim and Verweij, Niek and K{\"a}{\"a}b, Stefan and Schramm, Katharina and Sinner, Moritz F and Strauch, Konstantin and Cutler, Michael J and Fatkin, Diane and London, Barry and Olesen, Morten and Roden, Dan M and Benjamin Shoemaker, M and Gustav Smith, J and Biggs, Mary L and Bis, Joshua C and Brody, Jennifer A and Psaty, Bruce M and Rice, Kenneth and Sotoodehnia, Nona and De Grandi, Alessandro and Fuchsberger, Christian and Pattaro, Cristian and Pramstaller, Peter P and Ford, Ian and Wouter Jukema, J and Macfarlane, Peter W and Trompet, Stella and D{\"o}rr, Marcus and Felix, Stephan B and V{\"o}lker, Uwe and Weiss, Stefan and Havulinna, Aki S and Jula, Antti and S{\"a}{\"a}ksj{\"a}rvi, Katri and Salomaa, Veikko and Guo, Xiuqing and Heckbert, Susan R and Lin, Henry J and Rotter, Jerome I and Taylor, Kent D and Yao, Jie and de Mutsert, Ren{\'e}e and Maan, Arie C and Mook-Kanamori, Dennis O and Noordam, Raymond and Cucca, Francesco and Ding, Jun and Lakatta, Edward G and Qian, Yong and Tarasov, Kirill V and Levy, Daniel and Lin, Honghuang and Newton-Cheh, Christopher H and Lunetta, Kathryn L and Murray, Alison D and Porteous, David J and Smith, Blair H and Stricker, Bruno H and Uitterlinden, Andre and van den Berg, Marten E and Haessler, Jeffrey and Jackson, Rebecca D and Kooperberg, Charles and Peters, Ulrike and Reiner, Alexander P and Whitsel, Eric A and Alonso, Alvaro and Arking, Dan E and Boerwinkle, Eric and Ehret, Georg B and Soliman, Elsayed Z and Avery, Christy L and Gogarten, Stephanie M and Kerr, Kathleen F and Laurie, Cathy C and Seyerle, Amanda A and Stilp, Adrienne and Assa, Solmaz and Abdullah Said, M and Yldau van der Ende, M and Lambiase, Pier D and Orini, Michele and Ramirez, Julia and Van Duijvenboden, Stefan and Arnar, David O and Gudbjartsson, Daniel F and Holm, Hilma and Sulem, Patrick and Thorleifsson, Gudmar and Thorolfsdottir, Rosa B and Thorsteinsdottir, Unnur and Benjamin, Emelia J and Tinker, Andrew and Stefansson, Kari and Ellinor, Patrick T and Jamshidi, Yalda and Lubitz, Steven A and Munroe, Patricia B} } @article {8711, title = {Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices.}, journal = {Nat Commun}, volume = {12}, year = {2021}, month = {2021 04 12}, pages = {2182}, abstract = {

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 {\texttimes} 10), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 {\texttimes} 10), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 {\texttimes} 10). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.

}, issn = {2041-1723}, doi = {10.1038/s41467-021-22339-1}, author = {Natarajan, Pradeep and Pampana, Akhil and Graham, Sarah E and Ruotsalainen, Sanni E and Perry, James A and de Vries, Paul S and Broome, Jai G and Pirruccello, James P and Honigberg, Michael C and Aragam, Krishna and Wolford, Brooke and Brody, Jennifer A and Antonacci-Fulton, Lucinda and Arden, Moscati and Aslibekyan, Stella and Assimes, Themistocles L and Ballantyne, Christie M and Bielak, Lawrence F and Bis, Joshua C and Cade, Brian E and Do, Ron and Doddapaneni, Harsha and Emery, Leslie S and Hung, Yi-Jen and Irvin, Marguerite R and Khan, Alyna T and Lange, Leslie and Lee, Jiwon and Lemaitre, Rozenn N and Martin, Lisa W and Metcalf, Ginger and Montasser, May E and Moon, Jee-Young and Muzny, Donna and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Peralta, Juan M and Peyser, Patricia A and Stilp, Adrienne M and Tsai, Michael and Wang, Fei Fei and Weeks, Daniel E and Yanek, Lisa R and Wilson, James G and Abecasis, Goncalo and Arnett, Donna K and Becker, Lewis C and Blangero, John and Boerwinkle, Eric and Bowden, Donald W and Chang, Yi-Cheng and Chen, Yii-der I and Choi, Won Jung and Correa, Adolfo and Curran, Joanne E and Daly, Mark J and Dutcher, Susan K and Ellinor, Patrick T and Fornage, Myriam and Freedman, Barry I and Gabriel, Stacey and Germer, Soren and Gibbs, Richard A and He, Jiang and Hveem, Kristian and Jarvik, Gail P and Kaplan, Robert C and Kardia, Sharon L R and Kenny, Eimear and Kim, Ryan W and Kooperberg, Charles and Laurie, Cathy C and Lee, Seonwook and Lloyd-Jones, Don M and Loos, Ruth J F and Lubitz, Steven A and Mathias, Rasika A and Martinez, Karine A Viaud and McGarvey, Stephen T and Mitchell, Braxton D and Nickerson, Deborah A and North, Kari E and Palotie, Aarno and Park, Cheol Joo and Psaty, Bruce M and Rao, D C and Redline, Susan and Reiner, Alexander P and Seo, Daekwan and Seo, Jeong-Sun and Smith, Albert V and Tracy, Russell P and Vasan, Ramachandran S and Kathiresan, Sekar and Cupples, L Adrienne and Rotter, Jerome I and Morrison, Alanna C and Rich, Stephen S and Ripatti, Samuli and Willer, Cristen and Peloso, Gina M} } @article {9001, title = {Epigenetic Age and the Risk of Incident Atrial Fibrillation.}, journal = {Circulation}, volume = {144}, year = {2021}, month = {2021 12 14}, pages = {1899-1911}, abstract = {

BACKGROUND: The most prominent risk factor for atrial fibrillation (AF) is chronological age; however, underlying mechanisms are unexplained. Algorithms using epigenetic modifications to the human genome effectively predict chronological age. Chronological and epigenetic predicted ages may diverge in a phenomenon referred to as epigenetic age acceleration (EAA), which may reflect accelerated biological aging. We sought to evaluate for associations between epigenetic age measures and incident AF.

METHODS: Measures for 4 epigenetic clocks (Horvath, Hannum, DNA methylation [DNAm] PhenoAge, and DNAm GrimAge) and an epigenetic predictor of PAI-1 (plasminogen activator inhibitor-1) levels (ie, DNAm PAI-1) were determined for study participants from 3 population-based cohort studies. Cox models evaluated for associations with incident AF and results were combined via random-effects meta-analyses. Two-sample summary-level Mendelian randomization analyses evaluated for associations between genetic instruments of the EAA measures and AF.

RESULTS: Among 5600 participants (mean age, 65.5 years; female, 60.1\%; Black, 50.7\%), there were 905 incident AF cases during a mean follow-up of 12.9 years. Unadjusted analyses revealed all 4 epigenetic clocks and the DNAm PAI-1 predictor were associated with statistically significant higher hazards of incident AF, though the magnitudes of their point estimates were smaller relative to the associations observed for chronological age. The pooled EAA estimates for each epigenetic measure, with the exception of Horvath EAA, were associated with incident AF in models adjusted for chronological age, race, sex, and smoking variables. After multivariable adjustment for additional known AF risk factors that could also potentially function as mediators, pooled EAA measures for 2 clocks remained statistically significant. Five-year increases in EAA measures for DNAm GrimAge and DNAm PhenoAge were associated with 19\% (adjusted hazard ratio [HR], 1.19 [95\% CI, 1.09-1.31]; <0.01) and 15\% (adjusted HR, 1.15 [95\% CI, 1.05-1.25]; <0.01) higher hazards of incident AF, respectively. Mendelian randomization analyses for the 5 EAA measures did not reveal statistically significant associations with AF.

CONCLUSIONS: Our study identified adjusted associations between EAA measures and incident AF, suggesting that biological aging plays an important role independent of chronological age, though a potential underlying causal relationship remains unclear. These aging processes may be modifiable and not constrained by the immutable factor of time.

}, keywords = {Aged, Aging, Atrial Fibrillation, DNA Methylation, Epigenesis, Genetic, Epigenomics, Female, Follow-Up Studies, Humans, Incidence, Male, Mendelian Randomization Analysis, Middle Aged, Models, Cardiovascular, Models, Genetic}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.121.056456}, author = {Roberts, Jason D and Vittinghoff, Eric and Lu, Ake T and Alonso, Alvaro and Wang, Biqi and Sitlani, Colleen M and Mohammadi-Shemirani, Pedrum and Fornage, Myriam and Kornej, Jelena and Brody, Jennifer A and Arking, Dan E and Lin, Honghuang and Heckbert, Susan R and Prokic, Ivana and Ghanbari, Mohsen and Skanes, Allan C and Bartz, Traci M and Perez, Marco V and Taylor, Kent D and Lubitz, Steven A and Ellinor, Patrick T and Lunetta, Kathryn L and Pankow, James S and Par{\'e}, Guillaume and Sotoodehnia, Nona and Benjamin, Emelia J and Horvath, Steve and Marcus, Gregory M} } @article {8666, title = {Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.}, journal = {Nature}, volume = {590}, year = {2021}, month = {2021 02}, pages = {290-299}, abstract = {

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes). In the first 53,831 TOPMed samples, we detected more than 400~million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400~million detected variants, 97\% have frequencies of less than 1\% and 46\% are singletons that are present in only one individual (53\% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01\%.

}, issn = {1476-4687}, doi = {10.1038/s41586-021-03205-y}, author = {Taliun, Daniel and Harris, Daniel N and Kessler, Michael D and Carlson, Jedidiah and Szpiech, Zachary A and Torres, Raul and Taliun, Sarah A Gagliano and Corvelo, Andr{\'e} and Gogarten, Stephanie M and Kang, Hyun Min and Pitsillides, Achilleas N and LeFaive, Jonathon and Lee, Seung-Been and Tian, Xiaowen and Browning, Brian L and Das, Sayantan and Emde, Anne-Katrin and Clarke, Wayne E and Loesch, Douglas P and Shetty, Amol C and Blackwell, Thomas W and Smith, Albert V and Wong, Quenna and Liu, Xiaoming and Conomos, Matthew P and Bobo, Dean M and Aguet, Francois and Albert, Christine and Alonso, Alvaro and Ardlie, Kristin G and Arking, Dan E and Aslibekyan, Stella and Auer, Paul L and Barnard, John and Barr, R Graham and Barwick, Lucas and Becker, Lewis C and Beer, Rebecca L and Benjamin, Emelia J and Bielak, Lawrence F and Blangero, John and Boehnke, Michael and Bowden, Donald W and Brody, Jennifer A and Burchard, Esteban G and Cade, Brian E and Casella, James F and Chalazan, Brandon and Chasman, Daniel I and Chen, Yii-Der Ida and Cho, Michael H and Choi, Seung Hoan and Chung, Mina K and Clish, Clary B and Correa, Adolfo and Curran, Joanne E and Custer, Brian and Darbar, Dawood and Daya, Michelle and de Andrade, Mariza and DeMeo, Dawn L and Dutcher, Susan K and Ellinor, Patrick T and Emery, Leslie S and Eng, Celeste and Fatkin, Diane and Fingerlin, Tasha and Forer, Lukas and Fornage, Myriam and Franceschini, Nora and Fuchsberger, Christian and Fullerton, Stephanie M and Germer, Soren and Gladwin, Mark T and Gottlieb, Daniel J and Guo, Xiuqing and Hall, Michael E and He, Jiang and Heard-Costa, Nancy L and Heckbert, Susan R and Irvin, Marguerite R and Johnsen, Jill M and Johnson, Andrew D and Kaplan, Robert and Kardia, Sharon L R and Kelly, Tanika and Kelly, Shannon and Kenny, Eimear E and Kiel, Douglas P and Klemmer, Robert and Konkle, Barbara A and Kooperberg, Charles and K{\"o}ttgen, Anna and Lange, Leslie A and Lasky-Su, Jessica and Levy, Daniel and Lin, Xihong and Lin, Keng-Han and Liu, Chunyu and Loos, Ruth J F and Garman, Lori and Gerszten, Robert and Lubitz, Steven A and Lunetta, Kathryn L and Mak, Angel C Y and Manichaikul, Ani and Manning, Alisa K and Mathias, Rasika A and McManus, David D and McGarvey, Stephen T and Meigs, James B and Meyers, Deborah A and Mikulla, Julie L and Minear, Mollie A and Mitchell, Braxton D and Mohanty, Sanghamitra and Montasser, May E and Montgomery, Courtney and Morrison, Alanna C and Murabito, Joanne M and Natale, Andrea and Natarajan, Pradeep and Nelson, Sarah C and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Pankratz, Nathan and Peloso, Gina M and Peyser, Patricia A and Pleiness, Jacob and Post, Wendy S and Psaty, Bruce M and Rao, D C and Redline, Susan and Reiner, Alexander P and Roden, Dan and Rotter, Jerome I and Ruczinski, Ingo and Sarnowski, Chloe and Schoenherr, Sebastian and Schwartz, David A and Seo, Jeong-Sun and Seshadri, Sudha and Sheehan, Vivien A and Sheu, Wayne H and Shoemaker, M Benjamin and Smith, Nicholas L and Smith, Jennifer A and Sotoodehnia, Nona and Stilp, Adrienne M and Tang, Weihong and Taylor, Kent D and Telen, Marilyn and Thornton, Timothy A and Tracy, Russell P and Van Den Berg, David J and Vasan, Ramachandran S and Viaud-Martinez, Karine A and Vrieze, Scott and Weeks, Daniel E and Weir, Bruce S and Weiss, Scott T and Weng, Lu-Chen and Willer, Cristen J and Zhang, Yingze and Zhao, Xutong and Arnett, Donna K and Ashley-Koch, Allison E and Barnes, Kathleen C and Boerwinkle, Eric and Gabriel, Stacey and Gibbs, Richard and Rice, Kenneth M and Rich, Stephen S and Silverman, Edwin K and Qasba, Pankaj and Gan, Weiniu and Papanicolaou, George J and Nickerson, Deborah A and Browning, Sharon R and Zody, Michael C and Z{\"o}llner, Sebastian and Wilson, James G and Cupples, L Adrienne and Laurie, Cathy C and Jaquish, Cashell E and Hernandez, Ryan D and O{\textquoteright}Connor, Timothy D and Abecasis, Goncalo R} } @article {9042, title = {Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data.}, journal = {Nat Genet}, volume = {54}, year = {2022}, month = {2022 Mar}, pages = {263-273}, abstract = {

Analyses of data from genome-wide association studies on unrelated individuals have shown that, for human traits and diseases, approximately one-third to two-thirds of heritability is captured by common SNPs. However, it is not known whether the remaining heritability is due to the imperfect tagging of causal variants by common SNPs, in particular whether the causal variants are rare, or whether it is overestimated due to bias in inference from pedigree data. Here we estimated heritability for height and body mass index (BMI) from whole-genome sequence data on 25,465 unrelated individuals of European ancestry. The estimated heritability was 0.68 (standard error 0.10) for height and 0.30 (standard error 0.10) for body mass index. Low minor allele frequency variants in low linkage disequilibrium (LD) with neighboring variants were enriched for heritability, to a greater extent for protein-altering variants, consistent with negative selection. Our results imply that rare variants, in particular those in regions of low linkage disequilibrium, are a major source of the still missing heritability of complex traits and disease.

}, issn = {1546-1718}, doi = {10.1038/s41588-021-00997-7}, author = {Wainschtein, Pierrick and Jain, Deepti and Zheng, Zhili and Cupples, L Adrienne and Shadyab, Aladdin H and McKnight, Barbara and Shoemaker, Benjamin M and Mitchell, Braxton D and Psaty, Bruce M and Kooperberg, Charles and Liu, Ching-Ti and Albert, Christine M and Roden, Dan and Chasman, Daniel I and Darbar, Dawood and Lloyd-Jones, Donald M and Arnett, Donna K and Regan, Elizabeth A and Boerwinkle, Eric and Rotter, Jerome I and O{\textquoteright}Connell, Jeffrey R and Yanek, Lisa R and de Andrade, Mariza and Allison, Matthew A and McDonald, Merry-Lynn N and Chung, Mina K and Fornage, Myriam and Chami, Nathalie and Smith, Nicholas L and Ellinor, Patrick T and Vasan, Ramachandran S and Mathias, Rasika A and Loos, Ruth J F and Rich, Stephen S and Lubitz, Steven A and Heckbert, Susan R and Redline, Susan and Guo, Xiuqing and Chen, Y -D Ida and Laurie, Cecelia A and Hernandez, Ryan D and McGarvey, Stephen T and Goddard, Michael E and Laurie, Cathy C and North, Kari E and Lange, Leslie A and Weir, Bruce S and Yengo, Loic and Yang, Jian and Visscher, Peter M} } @article {9167, title = {Endophenotype effect sizes support variant pathogenicity in monogenic disease susceptibility genes.}, journal = {Nat Commun}, volume = {13}, year = {2022}, month = {2022 08 30}, pages = {5106}, abstract = {

Accurate and efficient classification of variant pathogenicity is critical for research and clinical care. Using data from three large studies, we demonstrate that population-based associations between rare variants and quantitative endophenotypes for three monogenic diseases (low-density-lipoprotein cholesterol for familial hypercholesterolemia, electrocardiographic QTc interval for long QT syndrome, and glycosylated hemoglobin for maturity-onset diabetes of the young) provide evidence for variant pathogenicity. Effect sizes are associated with pathogenic ClinVar assertions (P < 0.001 for each trait) and discriminate pathogenic from non-pathogenic variants (area under the curve 0.82-0.84 across endophenotypes). An effect size threshold of >= 0.5 times the endophenotype standard deviation nominates up to 35\% of rare variants of uncertain significance or not in ClinVar in disease susceptibility genes with pathogenic potential. We propose that variant associations with quantitative endophenotypes for monogenic diseases can provide evidence supporting pathogenicity.

}, keywords = {Disease Susceptibility, Endophenotypes, Humans, Long QT Syndrome, Virulence}, issn = {2041-1723}, doi = {10.1038/s41467-022-32009-5}, author = {Halford, Jennifer L and Morrill, Valerie N and Choi, Seung Hoan and Jurgens, Sean J and Melloni, Giorgio and Marston, Nicholas A and Weng, Lu-Chen and Nauffal, Victor and Hall, Amelia W and Gunn, Sophia and Austin-Tse, Christina A and Pirruccello, James P and Khurshid, Shaan and Rehm, Heidi L and Benjamin, Emelia J and Boerwinkle, Eric and Brody, Jennifer A and Correa, Adolfo and Fornwalt, Brandon K and Gupta, Namrata and Haggerty, Christopher M and Harris, Stephanie and Heckbert, Susan R and Hong, Charles C and Kooperberg, Charles and Lin, Henry J and Loos, Ruth J F and Mitchell, Braxton D and Morrison, Alanna C and Post, Wendy and Psaty, Bruce M and Redline, Susan and Rice, Kenneth M and Rich, Stephen S and Rotter, Jerome I and Schnatz, Peter F and Soliman, Elsayed Z and Sotoodehnia, Nona and Wong, Eugene K and Sabatine, Marc S and Ruff, Christian T and Lunetta, Kathryn L and Ellinor, Patrick T and Lubitz, Steven A} } @article {9038, title = {Monogenic and Polygenic Contributions to QTc Prolongation in the Population.}, journal = {Circulation}, year = {2022}, month = {2022 Apr 07}, abstract = {

Rare sequence variation in genes underlying cardiac repolarization and common polygenic variation influence QT interval duration. However, current clinical genetic testing of individuals with unexplained QT prolongation is restricted to examination of monogenic rare variants. The recent emergence of large-scale biorepositories with sequence data enables examination of the joint contribution of rare and common variation to the QT interval in the population. We performed a genome wide association study (GWAS) of the QTc in 84,630 United Kingdom Biobank (UKB) participants and created a polygenic risk score (PRS). Among 26,976 participants with whole genome sequencing and electrocardiogram data in the Trans-Omics for Precision Medicine (TOPMed) program, we identified 160 carriers of putative pathogenic rare variants in 10 genes known to be associated with the QT interval. We examined QTc associations with the PRS and with rare variants in TOPMed. Fifty-four independent loci were identified by GWAS in the UKB. Twenty-one loci were novel, of which 12 were replicated in TOPMed. The PRS comprising 1,110,494 common variants was significantly associated with the QTc in TOPMed (ΔQTc/ = 1.4 ms, 95\% CI 1.3 -1.5; p-value=1.1{\texttimes}10). Carriers of putative pathogenic rare variants had longer QTc than non-carriers (ΔQTc=10.9 ms [7.4-14.4]). 23.7\% of individuals with QTc>480 ms carried either a monogenic rare variant or had a PRS in the top decile (3.4\% monogenic, 21\% top decile of PRS). QTc duration in the population is influenced by both rare variants in genes underlying cardiac repolarization and polygenic risk, with a sizeable contribution from polygenic risk. Comprehensive assessment of the genetic determinants of QTc prolongation includes incorporation of both polygenic and monogenic risk.

}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.121.057261}, author = {Nauffal, Victor and Morrill, Valerie N and Jurgens, Sean J and Choi, Seung Hoan and Hall, Amelia W and Weng, Lu-Chen and Halford, Jennifer L and Austin-Tse, Christina and Haggerty, Christopher M and Harris, Stephanie L and Wong, Eugene K and Alonso, Alvaro and Arking, Dan E and Benjamin, Emelia J and Boerwinkle, Eric and Min, Yuan-I and Correa, Adolfo and Fornwalt, Brandon K and Heckbert, Susan R and Kooperberg, Charles and Lin, Henry J and Loos, Ruth J F and Rice, Kenneth M and Gupta, Namrata and Blackwell, Thomas W and Mitchell, Braxton D and Morrison, Alanna C and Psaty, Bruce M and Post, Wendy S and Redline, Susan and Rehm, Heidi L and Rich, Stephen S and Rotter, Jerome I and Soliman, Elsayed Z and Sotoodehnia, Nona and Lunetta, Kathryn L and Ellinor, Patrick T and Lubitz, Steven A} } @article {8975, title = {Rare coding variants in 35 genes associate with circulating lipid levels-A multi-ancestry analysis of 170,000 exomes.}, journal = {Am J Hum Genet}, volume = {109}, year = {2022}, month = {2022 01 06}, pages = {81-96}, abstract = {

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1\%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.

}, keywords = {Alleles, Blood Glucose, Case-Control Studies, Computational Biology, Databases, Genetic, Diabetes Mellitus, Type 2, Exome, Genetic Predisposition to Disease, Genetic Variation, Genetics, Population, Genome-Wide Association Study, Humans, Lipid Metabolism, Lipids, Liver, Molecular Sequence Annotation, Multifactorial Inheritance, Open Reading Frames, Phenotype, Polymorphism, Single Nucleotide}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2021.11.021}, author = {Hindy, George and Dornbos, Peter and Chaffin, Mark D and Liu, Dajiang J and Wang, Minxian and Selvaraj, Margaret Sunitha and Zhang, David and Park, Joseph and Aguilar-Salinas, Carlos A and Antonacci-Fulton, Lucinda and Ardissino, Diego and Arnett, Donna K and Aslibekyan, Stella and Atzmon, Gil and Ballantyne, Christie M and Barajas-Olmos, Francisco and Barzilai, Nir and Becker, Lewis C and Bielak, Lawrence F and Bis, Joshua C and Blangero, John and Boerwinkle, Eric and Bonnycastle, Lori L and Bottinger, Erwin and Bowden, Donald W and Bown, Matthew J and Brody, Jennifer A and Broome, Jai G and Burtt, Noel P and Cade, Brian E and Centeno-Cruz, Federico and Chan, Edmund and Chang, Yi-Cheng and Chen, Yii-der I and Cheng, Ching-Yu and Choi, Won Jung and Chowdhury, Rajiv and Contreras-Cubas, Cecilia and C{\'o}rdova, Emilio J and Correa, Adolfo and Cupples, L Adrienne and Curran, Joanne E and Danesh, John and de Vries, Paul S and DeFronzo, Ralph A and Doddapaneni, Harsha and Duggirala, Ravindranath and Dutcher, Susan K and Ellinor, Patrick T and Emery, Leslie S and Florez, Jose C and Fornage, Myriam and Freedman, Barry I and Fuster, Valentin and Garay-Sevilla, Ma Eugenia and Garc{\'\i}a-Ortiz, Humberto and Germer, Soren and Gibbs, Richard A and Gieger, Christian and Glaser, Benjamin and Gonzalez, Clicerio and Gonzalez-Villalpando, Maria Elena and Graff, Mariaelisa and Graham, Sarah E and Grarup, Niels and Groop, Leif C and Guo, Xiuqing and Gupta, Namrata and Han, Sohee and Hanis, Craig L and Hansen, Torben and He, Jiang and Heard-Costa, Nancy L and Hung, Yi-Jen and Hwang, Mi Yeong and Irvin, Marguerite R and Islas-Andrade, Sergio and Jarvik, Gail P and Kang, Hyun Min and Kardia, Sharon L R and Kelly, Tanika and Kenny, Eimear E and Khan, Alyna T and Kim, Bong-Jo and Kim, Ryan W and Kim, Young Jin and Koistinen, Heikki A and Kooperberg, Charles and Kuusisto, Johanna and Kwak, Soo Heon and Laakso, Markku and Lange, Leslie A and Lee, Jiwon and Lee, Juyoung and Lee, Seonwook and Lehman, Donna M and Lemaitre, Rozenn N and Linneberg, Allan and Liu, Jianjun and Loos, Ruth J F and Lubitz, Steven A and Lyssenko, Valeriya and Ma, Ronald C W and Martin, Lisa Warsinger and Mart{\'\i}nez-Hern{\'a}ndez, Ang{\'e}lica and Mathias, Rasika A and McGarvey, Stephen T and McPherson, Ruth and Meigs, James B and Meitinger, Thomas and Melander, Olle and Mendoza-Caamal, Elvia and Metcalf, Ginger A and Mi, Xuenan and Mohlke, Karen L and Montasser, May E and Moon, Jee-Young and Moreno-Macias, Hortensia and Morrison, Alanna C and Muzny, Donna M and Nelson, Sarah C and Nilsson, Peter M and O{\textquoteright}Connell, Jeffrey R and Orho-Melander, Marju and Orozco, Lorena and Palmer, Colin N A and Palmer, Nicholette D and Park, Cheol Joo and Park, Kyong Soo and Pedersen, Oluf and Peralta, Juan M and Peyser, Patricia A and Post, Wendy S and Preuss, Michael and Psaty, Bruce M and Qi, Qibin and Rao, D C and Redline, Susan and Reiner, Alexander P and Revilla-Monsalve, Cristina and Rich, Stephen S and Samani, Nilesh and Schunkert, Heribert and Schurmann, Claudia and Seo, Daekwan and Seo, Jeong-Sun and Sim, Xueling and Sladek, Rob and Small, Kerrin S and So, Wing Yee and Stilp, Adrienne M and Tai, E Shyong and Tam, Claudia H T and Taylor, Kent D and Teo, Yik Ying and Thameem, Farook and Tomlinson, Brian and Tsai, Michael Y and Tuomi, Tiinamaija and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and van Dam, Rob M and Vasan, Ramachandran S and Viaud Martinez, Karine A and Wang, Fei Fei and Wang, Xuzhi and Watkins, Hugh and Weeks, Daniel E and Wilson, James G and Witte, Daniel R and Wong, Tien-Yin and Yanek, Lisa R and Kathiresan, Sekar and Rader, Daniel J and Rotter, Jerome I and Boehnke, Michael and McCarthy, Mark I and Willer, Cristen J and Natarajan, Pradeep and Flannick, Jason A and Khera, Amit V and Peloso, Gina M} } @article {9109, title = {The Value of Rare Genetic Variation in the Prediction of Common Obesity in European Ancestry Populations.}, journal = {Front Endocrinol (Lausanne)}, volume = {13}, year = {2022}, month = {2022}, pages = {863893}, abstract = {

Polygenic risk scores (PRSs) aggregate the effects of genetic variants across the genome and are used to predict risk of complex diseases, such as obesity. Current PRSs only include common variants (minor allele frequency (MAF) >=1\%), whereas the contribution of rare variants in PRSs to predict disease remains unknown. Here, we examine whether augmenting the standard common variant PRS (PRS) with a rare variant PRS (PRS) improves prediction of obesity. We used genome-wide genotyped and imputed data on 451,145 European-ancestry participants of the UK Biobank, as well as whole exome sequencing (WES) data on 184,385 participants. We performed single variant analyses (for both common and rare variants) and gene-based analyses (for rare variants) for association with BMI (kg/m), obesity (BMI >= 30 kg/m), and extreme obesity (BMI >= 40 kg/m). We built PRSs and PRSs using a range of methods (Clumping+Thresholding [C+T], PRS-CS, lassosum, gene-burden test). We selected the best-performing PRSs and assessed their performance in 36,757 European-ancestry unrelated participants with whole genome sequencing (WGS) data from the Trans-Omics for Precision Medicine (TOPMed) program. The best-performing PRS explained 10.1\% of variation in BMI, and 18.3\% and 22.5\% of the susceptibility to obesity and extreme obesity, respectively, whereas the best-performing PRS explained 1.49\%, and 2.97\% and 3.68\%, respectively. The PRS was associated with an increased risk of obesity and extreme obesity (OR = 1.37 per SD, = 1.7x10; OR = 1.55 per SD, = 3.8x10), which was attenuated, after adjusting for PRS (OR = 1.08 per SD, = 9.8x10; OR= 1.09 per SD, = 0.02). When PRS and PRS are combined, the increase in explained variance attributed to PRS was small (incremental Nagelkerke R = 0.24\% for obesity and 0.51\% for extreme obesity). Consistently, combining PRS to PRS provided little improvement to the prediction of obesity (PRS AUC = 0.591; PRS AUC = 0.708; PRS AUC = 0.710). In summary, while rare variants show convincing association with BMI, obesity and extreme obesity, the PRS provides limited improvement over PRS in the prediction of obesity risk, based on these large populations.

}, keywords = {Gene Frequency, Genetic Variation, Genome-Wide Association Study, Humans, Obesity, Whole Genome Sequencing}, issn = {1664-2392}, doi = {10.3389/fendo.2022.863893}, author = {Wang, Zhe and Choi, Shing Wan and Chami, Nathalie and Boerwinkle, Eric and Fornage, Myriam and Redline, Susan and Bis, Joshua C and Brody, Jennifer A and Psaty, Bruce M and Kim, Wonji and McDonald, Merry-Lynn N and Regan, Elizabeth A and Silverman, Edwin K and Liu, Ching-Ti and Vasan, Ramachandran S and Kalyani, Rita R and Mathias, Rasika A and Yanek, Lisa R and Arnett, Donna K and Justice, Anne E and North, Kari E and Kaplan, Robert and Heckbert, Susan R and de Andrade, Mariza and Guo, Xiuqing and Lange, Leslie A and Rich, Stephen S and Rotter, Jerome I and Ellinor, Patrick T and Lubitz, Steven A and Blangero, John and Shoemaker, M Benjamin and Darbar, Dawood and Gladwin, Mark T and Albert, Christine M and Chasman, Daniel I and Jackson, Rebecca D and Kooperberg, Charles and Reiner, Alexander P and O{\textquoteright}Reilly, Paul F and Loos, Ruth J F} }