@article {1150, title = {Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Jan}, pages = {45-52}, abstract = {

Spirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV(1)) and its ratio to forced vital capacity (FEV(1)/FVC), an indicator of airflow obstruction. This meta-analysis included 20,890 participants of European ancestry from four CHARGE Consortium studies: Atherosclerosis Risk in Communities, Cardiovascular Health Study, Framingham Heart Study and Rotterdam Study. We identified eight loci associated with FEV(1)/FVC (HHIP, GPR126, ADAM19, AGER-PPT2, FAM13A, PTCH1, PID1 and HTR4) and one locus associated with FEV(1) (INTS12-GSTCD-NPNT) at or near genome-wide significance (P < 5 x 10(-8)) in the CHARGE Consortium dataset. Our findings may offer insights into pulmonary function and pathogenesis of chronic lung disease.

}, keywords = {Databases, Genetic, Female, Forced Expiratory Volume, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Lung, Lung Diseases, Male, Meta-Analysis as Topic, Polymorphism, Single Nucleotide, Spirometry, Vital Capacity}, issn = {1546-1718}, doi = {10.1038/ng.500}, author = {Hancock, Dana B and Eijgelsheim, Mark and Wilk, Jemma B and Gharib, Sina A and Loehr, Laura R and Marciante, Kristin D and Franceschini, Nora and van Durme, Yannick M T A and Chen, Ting-Hsu and Barr, R Graham and Schabath, Matthew B and Couper, David J and Brusselle, Guy G and Psaty, Bruce M and van Duijn, Cornelia M and Rotter, Jerome I and Uitterlinden, Andr{\'e} G and Hofman, Albert and Punjabi, Naresh M and Rivadeneira, Fernando and Morrison, Alanna C and Enright, Paul L and North, Kari E and Heckbert, Susan R and Lumley, Thomas and Stricker, Bruno H C and O{\textquoteright}Connor, George T and London, Stephanie J} } @article {6092, title = {Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction.}, journal = {Am J Respir Crit Care Med}, volume = {186}, year = {2012}, month = {2012 Oct 01}, pages = {622-32}, abstract = {

RATIONALE: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known.

OBJECTIVES: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases.

METHODS: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations.

MEASUREMENTS AND MAIN RESULTS: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis.

CONCLUSIONS: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.

}, keywords = {Aged, Female, Forced Expiratory Volume, Genome-Wide Association Study, Humans, Male, Middle Aged, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Pulmonary Disease, Chronic Obstructive, Receptors, Nicotinic, Receptors, Serotonin, 5-HT4, Smoking, Vital Capacity}, issn = {1535-4970}, doi = {10.1164/rccm.201202-0366OC}, author = {Wilk, Jemma B and Shrine, Nick R G and Loehr, Laura R and Zhao, Jing Hua and Manichaikul, Ani and Lopez, Lorna M and Smith, Albert Vernon and Heckbert, Susan R and Smolonska, Joanna and Tang, Wenbo and Loth, Daan W and Curjuric, Ivan and Hui, Jennie and Cho, Michael H and Latourelle, Jeanne C and Henry, Amanda P and Aldrich, Melinda and Bakke, Per and Beaty, Terri H and Bentley, Amy R and Borecki, Ingrid B and Brusselle, Guy G and Burkart, Kristin M and Chen, Ting-Hsu and Couper, David and Crapo, James D and Davies, Gail and Dupuis, Jos{\'e}e and Franceschini, Nora and Gulsvik, Amund and Hancock, Dana B and Harris, Tamara B and Hofman, Albert and Imboden, Medea and James, Alan L and Khaw, Kay-Tee and Lahousse, Lies and Launer, Lenore J and Litonjua, Augusto and Liu, Yongmei and Lohman, Kurt K and Lomas, David A and Lumley, Thomas and Marciante, Kristin D and McArdle, Wendy L and Meibohm, Bernd and Morrison, Alanna C and Musk, Arthur W and Myers, Richard H and North, Kari E and Postma, Dirkje S and Psaty, Bruce M and Rich, Stephen S and Rivadeneira, Fernando and Rochat, Thierry and Rotter, Jerome I and Soler Artigas, Maria and Starr, John M and Uitterlinden, Andr{\'e} G and Wareham, Nicholas J and Wijmenga, Cisca and Zanen, Pieter and Province, Michael A and Silverman, Edwin K and Deary, Ian J and Palmer, Lyle J and Cassano, Patricia A and Gudnason, Vilmundur and Barr, R Graham and Loos, Ruth J F and Strachan, David P and London, Stephanie J and Boezen, H Marike and Probst-Hensch, Nicole and Gharib, Sina A and Hall, Ian P and O{\textquoteright}Connor, George T and Tobin, Martin D and Stricker, Bruno H} } @article {6088, title = {Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1003098}, abstract = {

Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV(1)), and its ratio to forced vital capacity (FEV(1)/FVC). Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV(1) and FEV(1)/FVC across 19 studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest P(JMA = )5.00{\texttimes}10(-11)), HLA-DQB1 and HLA-DQA2 (smallest P(JMA = )4.35{\texttimes}10(-9)), and KCNJ2 and SOX9 (smallest P(JMA = )1.28{\texttimes}10(-8)) were associated with FEV(1)/FVC or FEV(1) in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.

}, keywords = {Forced Expiratory Volume, Gene Expression, Genome, Human, Genome-Wide Association Study, HLA-DQ Antigens, HLA-DQ beta-Chains, Humans, Lung, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Potassium Channels, Inwardly Rectifying, Pulmonary Disease, Chronic Obstructive, Receptors, Cell Surface, Smoking, SOX9 Transcription Factor, Vital Capacity}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003098}, author = {Hancock, Dana B and Soler Artigas, Maria and Gharib, Sina A and Henry, Amanda and Manichaikul, Ani and Ramasamy, Adaikalavan and Loth, Daan W and Imboden, Medea and Koch, Beate and McArdle, Wendy L and Smith, Albert V and Smolonska, Joanna and Sood, Akshay and Tang, Wenbo and Wilk, Jemma B and Zhai, Guangju and Zhao, Jing Hua and Aschard, Hugues and Burkart, Kristin M and Curjuric, Ivan and Eijgelsheim, Mark and Elliott, Paul and Gu, Xiangjun and Harris, Tamara B and Janson, Christer and Homuth, Georg and Hysi, Pirro G and Liu, Jason Z and Loehr, Laura R and Lohman, Kurt and Loos, Ruth J F and Manning, Alisa K and Marciante, Kristin D and Obeidat, Ma{\textquoteright}en and Postma, Dirkje S and Aldrich, Melinda C and Brusselle, Guy G and Chen, Ting-Hsu and Eiriksdottir, Gudny and Franceschini, Nora and Heinrich, Joachim and Rotter, Jerome I and Wijmenga, Cisca and Williams, O Dale and Bentley, Amy R and Hofman, Albert and Laurie, Cathy C and Lumley, Thomas and Morrison, Alanna C and Joubert, Bonnie R and Rivadeneira, Fernando and Couper, David J and Kritchevsky, Stephen B and Liu, Yongmei and Wjst, Matthias and Wain, Louise V and Vonk, Judith M and Uitterlinden, Andr{\'e} G and Rochat, Thierry and Rich, Stephen S and Psaty, Bruce M and O{\textquoteright}Connor, George T and North, Kari E and Mirel, Daniel B and Meibohm, Bernd and Launer, Lenore J and Khaw, Kay-Tee and Hartikainen, Anna-Liisa and Hammond, Christopher J and Gl{\"a}ser, Sven and Marchini, Jonathan and Kraft, Peter and Wareham, Nicholas J and V{\"o}lzke, Henry and Stricker, Bruno H C and Spector, Timothy D and Probst-Hensch, Nicole M and Jarvis, Deborah and Jarvelin, Marjo-Riitta and Heckbert, Susan R and Gudnason, Vilmundur and Boezen, H Marike and Barr, R Graham and Cassano, Patricia A and Strachan, David P and Fornage, Myriam and Hall, Ian P and Dupuis, Jos{\'e}e and Tobin, Martin D and London, Stephanie J} } @article {6270, title = {Sleep duration does not mediate or modify association of common genetic variants with type 2 diabetes.}, journal = {Diabetologia}, volume = {57}, year = {2014}, month = {2014 Feb}, pages = {339-46}, abstract = {

AIMS/HYPOTHESIS: Short and long sleep duration are associated with increased risk of type 2 diabetes. We aimed to investigate whether genetic variants for fasting glucose or type 2 diabetes associate with short or long sleep duration and whether sleep duration modifies the association of genetic variants with these traits.

METHODS: We examined the cross-sectional relationship between self-reported habitual sleep duration and prevalence of type 2 diabetes in individuals of European descent participating in five studies included in the Candidate Gene Association Resource (CARe), totalling 1,474 cases and 8,323 controls. We tested for association of 16 fasting glucose-associated variants, 27 type 2 diabetes-associated variants and aggregate genetic risk scores with continuous and dichotomised (<=5~h or >=9~h) sleep duration using regression models adjusted for age, sex and BMI. Finally, we tested whether a gene {\texttimes} behaviour interaction of variants with sleep duration had an impact on fasting glucose or type 2 diabetes risk.

RESULTS: Short sleep duration was significantly associated with type 2 diabetes in CARe (OR 1.32; 95\% CI 1.08, 1.61; p = 0.008). Variants previously associated with fasting glucose or type 2 diabetes and genetic risk scores were not associated with sleep duration. Furthermore, no study-wide significant interaction was observed between sleep duration and these variants on glycaemic traits. Nominal interactions were observed for sleep duration and PPARG rs1801282, CRY2 rs7943320 and HNF1B rs4430796 in influencing risk of type 2 diabetes (p < 0.05).

CONCLUSIONS/INTERPRETATION: Our findings suggest that differences in habitual sleep duration do not mediate or modify the relationship between common variants underlying glycaemic traits (including in circadian rhythm genes) and diabetes.

}, keywords = {Blood Glucose, Body Composition, Body Mass Index, Cross-Sectional Studies, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Fasting, Female, Genetic Predisposition to Disease, Genetic Variation, Genotype, Glucose Intolerance, Glycated Hemoglobin A, Humans, Insulin Resistance, Male, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors, Sleep, Surveys and Questionnaires, Time Factors, United States}, issn = {1432-0428}, doi = {10.1007/s00125-013-3110-y}, author = {Tare, Archana and Lane, Jacqueline M and Cade, Brian E and Grant, Struan F A and Chen, Ting-Hsu and Punjabi, Naresh M and Lauderdale, Diane S and Zee, Phyllis C and Gharib, Sina A and Gottlieb, Daniel J and Scheer, Frank A J L and Redline, Susan and Saxena, Richa} } @article {7168, title = {Genetic variants in RBFOX3 are associated with sleep latency.}, journal = {Eur J Hum Genet}, volume = {24}, year = {2016}, month = {2016 Oct}, pages = {1488-95}, abstract = {

Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We performed a meta-analysis of genome-wide association studies (GWAS) including 2 572 737 single nucleotide polymorphisms (SNPs) established in seven European cohorts including 4242 individuals. We found a cluster of three highly correlated variants (rs9900428, rs9907432 and rs7211029) in the RNA-binding protein fox-1 homolog 3 gene (RBFOX3) associated with sleep latency (P-values=5.77 {\texttimes} 10(-08), 6.59 {\texttimes} 10(-)(08) and 9.17 {\texttimes} 10(-)(08)). These SNPs were replicated in up to 12 independent populations including 30 377 individuals (P-values=1.5 {\texttimes} 10(-)(02), 7.0 {\texttimes} 10(-)(03) and 2.5 {\texttimes} 10(-)(03); combined meta-analysis P-values=5.5 {\texttimes} 10(-07), 5.4 {\texttimes} 10(-07) and 1.0 {\texttimes} 10(-07)). A functional prediction of RBFOX3 based on co-expression with other genes shows that this gene is predominantly expressed in brain (P-value=1.4 {\texttimes} 10(-316)) and the central nervous system (P-value=7.5 {\texttimes} 10(-)(321)). The predicted function of RBFOX3 based on co-expression analysis with other genes shows that this gene is significantly involved in the release cycle of neurotransmitters including gamma-aminobutyric acid and various monoamines (P-values<2.9 {\texttimes} 10(-11)) that are crucial in triggering the onset of sleep. To conclude, in this first large-scale GWAS of sleep latency we report a novel association of variants in RBFOX3 gene. Further, a functional prediction of RBFOX3 supports the involvement of RBFOX3 with sleep latency.

}, issn = {1476-5438}, doi = {10.1038/ejhg.2016.31}, author = {Amin, Najaf and Allebrandt, Karla V and van der Spek, Ashley and M{\"u}ller-Myhsok, Bertram and Hek, Karin and Teder-Laving, Maris and Hayward, Caroline and Esko, T{\~o}nu and van Mill, Josine G and Mbarek, Hamdi and Watson, Nathaniel F and Melville, Scott A and Del Greco, Fabiola M and Byrne, Enda M and Oole, Edwin and Kolcic, Ivana and Chen, Ting-Hsu and Evans, Daniel S and Coresh, Josef and Vogelzangs, Nicole and Karjalainen, Juha and Willemsen, Gonneke and Gharib, Sina A and Zgaga, Lina and Mihailov, Evelin and Stone, Katie L and Campbell, Harry and Brouwer, Rutger Ww and Demirkan, Ayse and Isaacs, Aaron and Dogas, Zoran and Marciante, Kristin D and Campbell, Susan and Borovecki, Fran and Luik, Annemarie I and Li, Man and Hottenga, Jouke Jan and Huffman, Jennifer E and van den Hout, Mirjam Cgn and Cummings, Steven R and Aulchenko, Yurii S and Gehrman, Philip R and Uitterlinden, Andr{\'e} G and Wichmann, Heinz-Erich and M{\"u}ller-Nurasyid, Martina and Fehrmann, Rudolf Sn and Montgomery, Grant W and Hofman, Albert and Kao, Wen Hong Linda and Oostra, Ben A and Wright, Alan F and Vink, Jacqueline M and Wilson, James F and Pramstaller, Peter P and Hicks, Andrew A and Polasek, Ozren and Punjabi, Naresh M and Redline, Susan and Psaty, Bruce M and Heath, Andrew C and Merrow, Martha and Tranah, Gregory J and Gottlieb, Daniel J and Boomsma, Dorret I and Martin, Nicholas G and Rudan, Igor and Tiemeier, Henning and van IJcken, Wilfred Fj and Penninx, Brenda W and Metspalu, Andres and Meitinger, Thomas and Franke, Lude and Roenneberg, Till and van Duijn, Cornelia M} }