@article {1055, title = {Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual patient data from 12 prospective studies.}, journal = {Ann Intern Med}, volume = {149}, year = {2008}, month = {2008 Oct 07}, pages = {461-71, W83-8}, abstract = {

BACKGROUND: Some, but not all, published results have shown an association between circulating blood levels of some insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) and the subsequent risk for prostate cancer.

PURPOSE: To assess the association between levels of IGFs and IGFBPs and the subsequent risk for prostate cancer.

DATA SOURCES: Studies identified in PubMed, Web of Science, and CancerLit.

STUDY SELECTION: The principal investigators of all studies that published data on circulating concentrations of sex steroids, IGFs, or IGFBPs and prostate cancer risk using prospectively collected blood samples were invited to collaborate.

DATA EXTRACTION: Investigators provided individual participant data on circulating concentrations of IGF-I, IGF-II, IGFBP-II, and IGFBP-III and participant characteristics to a central data set in Oxford, United Kingdom.

DATA SYNTHESIS: The study included data on 3700 men with prostate cancer and 5200 control participants. On average, case patients were 61.5 years of age at blood collection and received a diagnosis of prostate cancer 5 years after blood collection. The greater the serum IGF-I concentration, the greater the subsequent risk for prostate cancer (odds ratio [OR] in the highest vs. lowest quintile, 1.38 [95\% CI, 1.19 to 1.60]; P < 0.001 for trend). Neither IGF-II nor IGFBP-II concentrations were associated with prostate cancer risk, but statistical power was limited. Insulin-like growth factor I and IGFBP-III were correlated (r = 0.58), and although IGFBP-III concentration seemed to be associated with prostate cancer risk, this was secondary to its association with IGF-I levels. Insulin-like growth factor I concentrations seemed to be more positively associated with low-grade than high-grade disease; otherwise, the association between IGFs and IGFBPs and prostate cancer risk had no statistically significant heterogeneity related to stage or grade of disease, time between blood collection and diagnosis, age and year of diagnosis, prostate-specific antigen level at recruitment, body mass index, smoking, or alcohol intake.

LIMITATIONS: Insulin-like growth factor concentrations were measured in only 1 sample for each participant, and the laboratory methods to measure IGFs differed in each study. Not all patients had disease stage or grade information, and the diagnosis of prostate cancer may differ among the studies.

CONCLUSION: High circulating IGF-I concentrations are associated with a moderately increased risk for prostate cancer.

}, keywords = {Aged, Humans, Insulin-Like Growth Factor Binding Protein 2, Insulin-Like Growth Factor Binding Protein 3, Insulin-Like Growth Factor Binding Proteins, Insulin-Like Growth Factor I, Insulin-Like Growth Factor II, Male, Middle Aged, Prospective Studies, Prostatic Neoplasms, Risk Factors, Somatomedins}, issn = {1539-3704}, doi = {10.7326/0003-4819-149-7-200810070-00006}, author = {Roddam, Andrew W and Allen, Naomi E and Appleby, Paul and Key, Timothy J and Ferrucci, Luigi and Carter, H Ballentine and Metter, E Jeffrey and Chen, Chu and Weiss, Noel S and Fitzpatrick, Annette and Hsing, Ann W and Lacey, James V and Helzlsouer, Kathy and Rinaldi, Sabina and Riboli, Elio and Kaaks, Rudolf and Janssen, Joop A M J L and Wildhagen, Mark F and Schr{\"o}der, Fritz H and Platz, Elizabeth A and Pollak, Michael and Giovannucci, Edward and Schaefer, Catherine and Quesenberry, Charles P and Vogelman, Joseph H and Severi, Gianluca and English, Dallas R and Giles, Graham G and Stattin, P{\"a}r and Hallmans, G{\"o}ran and Johansson, Mattias and Chan, June M and Gann, Peter and Oliver, Steven E and Holly, Jeff M and Donovan, Jenny and Meyer, Fran{\c c}ois and Bairati, Isabelle and Galan, Pilar} } @article {1141, title = {Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium.}, journal = {Nat Genet}, volume = {41}, year = {2009}, month = {2009 Nov}, pages = {1191-8}, abstract = {

Measurements of erythrocytes within the blood are important clinical traits and can indicate various hematological disorders. We report here genome-wide association studies (GWAS) for six erythrocyte traits, including hemoglobin concentration (Hb), hematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and red blood cell count (RBC). We performed an initial GWAS in cohorts of the CHARGE Consortium totaling 24,167 individuals of European ancestry and replication in additional independent cohorts of the HaemGen Consortium totaling 9,456 individuals. We identified 23 loci significantly associated with these traits in a meta-analysis of the discovery and replication cohorts (combined P values ranging from 5 x 10(-8) to 7 x 10(-86)). Our findings include loci previously associated with these traits (HBS1L-MYB, HFE, TMPRSS6, TFR2, SPTA1) as well as new associations (EPO, TFRC, SH2B3 and 15 other loci). This study has identified new determinants of erythrocyte traits, offering insight into common variants underlying variation in erythrocyte measures.

}, keywords = {Blood Pressure, Cell Line, Cohort Studies, Endothelial Cells, Erythrocytes, Gene Expression, Genome, Human, Genome-Wide Association Study, Humans, Hypertension, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci}, issn = {1546-1718}, doi = {10.1038/ng.466}, author = {Ganesh, Santhi K and Zakai, Neil A and van Rooij, Frank J A and Soranzo, Nicole and Smith, Albert V and Nalls, Michael A and Chen, Ming-Huei and K{\"o}ttgen, Anna and Glazer, Nicole L and Dehghan, Abbas and Kuhnel, Brigitte and Aspelund, Thor and Yang, Qiong and Tanaka, Toshiko and Jaffe, Andrew and Bis, Joshua C M and Verwoert, Germaine C and Teumer, Alexander and Fox, Caroline S and Guralnik, Jack M and Ehret, Georg B and Rice, Kenneth and Felix, Janine F and Rendon, Augusto and Eiriksdottir, Gudny and Levy, Daniel and Patel, Kushang V and Boerwinkle, Eric and Rotter, Jerome I and Hofman, Albert and Sambrook, Jennifer G and Hernandez, Dena G and Zheng, Gang and Bandinelli, Stefania and Singleton, Andrew B and Coresh, Josef and Lumley, Thomas and Uitterlinden, Andr{\'e} G and Vangils, Janine M and Launer, Lenore J and Cupples, L Adrienne and Oostra, Ben A and Zwaginga, Jaap-Jan and Ouwehand, Willem H and Thein, Swee-Lay and Meisinger, Christa and Deloukas, Panos and Nauck, Matthias and Spector, Tim D and Gieger, Christian and Gudnason, Vilmundur and van Duijn, Cornelia M and Psaty, Bruce M and Ferrucci, Luigi and Chakravarti, Aravinda and Greinacher, Andreas and O{\textquoteright}Donnell, Christopher J and Witteman, Jacqueline C M and Furth, Susan and Cushman, Mary and Harris, Tamara B and Lin, Jing-Ping} } @article {1221, title = {Biological, clinical and population relevance of 95 loci for blood lipids.}, journal = {Nature}, volume = {466}, year = {2010}, month = {2010 Aug 05}, pages = {707-13}, abstract = {

Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.

}, keywords = {African Americans, Animals, Asian Continental Ancestry Group, Cholesterol, HDL, Cholesterol, LDL, Coronary Artery Disease, Europe, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Humans, Lipid Metabolism, Lipids, Liver, Male, Mice, N-Acetylgalactosaminyltransferases, Phenotype, Polymorphism, Single Nucleotide, Protein Phosphatase 1, Reproducibility of Results, Triglycerides}, issn = {1476-4687}, doi = {10.1038/nature09270}, author = {Teslovich, Tanya M and Musunuru, Kiran and Smith, Albert V and Edmondson, Andrew C and Stylianou, Ioannis M and Koseki, Masahiro and Pirruccello, James P and Ripatti, Samuli and Chasman, Daniel I and Willer, Cristen J and Johansen, Christopher T and Fouchier, Sigrid W and Isaacs, Aaron and Peloso, Gina M and Barbalic, Maja and Ricketts, Sally L and Bis, Joshua C and Aulchenko, Yurii S and Thorleifsson, Gudmar and Feitosa, Mary F and Chambers, John and Orho-Melander, Marju and Melander, Olle and Johnson, Toby and Li, Xiaohui and Guo, Xiuqing and Li, Mingyao and Shin Cho, Yoon and Jin Go, Min and Jin Kim, Young and Lee, Jong-Young and Park, Taesung and Kim, Kyunga and Sim, Xueling and Twee-Hee Ong, Rick and Croteau-Chonka, Damien C and Lange, Leslie A and Smith, Joshua D and Song, Kijoung and Hua Zhao, Jing and Yuan, Xin and Luan, Jian{\textquoteright}an and Lamina, Claudia and Ziegler, Andreas and Zhang, Weihua and Zee, Robert Y L and Wright, Alan F and Witteman, Jacqueline C M and Wilson, James F and Willemsen, Gonneke and Wichmann, H-Erich and Whitfield, John B and Waterworth, Dawn M and Wareham, Nicholas J and Waeber, G{\'e}rard and Vollenweider, Peter and Voight, Benjamin F and Vitart, Veronique and Uitterlinden, Andr{\'e} G and Uda, Manuela and Tuomilehto, Jaakko and Thompson, John R and Tanaka, Toshiko and Surakka, Ida and Stringham, Heather M and Spector, Tim D and Soranzo, Nicole and Smit, Johannes H and Sinisalo, Juha and Silander, Kaisa and Sijbrands, Eric J G and Scuteri, Angelo and Scott, James and Schlessinger, David and Sanna, Serena and Salomaa, Veikko and Saharinen, Juha and Sabatti, Chiara and Ruokonen, Aimo and Rudan, Igor and Rose, Lynda M and Roberts, Robert and Rieder, Mark and Psaty, Bruce M and Pramstaller, Peter P and Pichler, Irene and Perola, Markus and Penninx, Brenda W J H and Pedersen, Nancy L and Pattaro, Cristian and Parker, Alex N and Par{\'e}, Guillaume and Oostra, Ben A and O{\textquoteright}Donnell, Christopher J and Nieminen, Markku S and Nickerson, Deborah A and Montgomery, Grant W and Meitinger, Thomas and McPherson, Ruth and McCarthy, Mark I and McArdle, Wendy and Masson, David and Martin, Nicholas G and Marroni, Fabio and Mangino, Massimo and Magnusson, Patrik K E and Lucas, Gavin and Luben, Robert and Loos, Ruth J F and Lokki, Marja-Liisa and Lettre, Guillaume and Langenberg, Claudia and Launer, Lenore J and Lakatta, Edward G and Laaksonen, Reijo and Kyvik, Kirsten O and Kronenberg, Florian and K{\"o}nig, Inke R and Khaw, Kay-Tee and Kaprio, Jaakko and Kaplan, Lee M and Johansson, Asa and Jarvelin, Marjo-Riitta and Janssens, A Cecile J W and Ingelsson, Erik and Igl, Wilmar and Kees Hovingh, G and Hottenga, Jouke-Jan and Hofman, Albert and Hicks, Andrew A and Hengstenberg, Christian and Heid, Iris M and Hayward, Caroline and Havulinna, Aki S and Hastie, Nicholas D and Harris, Tamara B and Haritunians, Talin and Hall, Alistair S and Gyllensten, Ulf and Guiducci, Candace and Groop, Leif C and Gonzalez, Elena and Gieger, Christian and Freimer, Nelson B and Ferrucci, Luigi and Erdmann, Jeanette and Elliott, Paul and Ejebe, Kenechi G and D{\"o}ring, Angela and Dominiczak, Anna F and Demissie, Serkalem and Deloukas, Panagiotis and de Geus, Eco J C and de Faire, Ulf and Crawford, Gabriel and Collins, Francis S and Chen, Yii-der I and Caulfield, Mark J and Campbell, Harry and Burtt, Noel P and Bonnycastle, Lori L and Boomsma, Dorret I and Boekholdt, S Matthijs and Bergman, Richard N and Barroso, In{\^e}s and Bandinelli, Stefania and Ballantyne, Christie M and Assimes, Themistocles L and Quertermous, Thomas and Altshuler, David and Seielstad, Mark and Wong, Tien Y and Tai, E-Shyong and Feranil, Alan B and Kuzawa, Christopher W and Adair, Linda S and Taylor, Herman A and Borecki, Ingrid B and Gabriel, Stacey B and Wilson, James G and Holm, Hilma and Thorsteinsdottir, Unnur and Gudnason, Vilmundur and Krauss, Ronald M and Mohlke, Karen L and Ordovas, Jose M and Munroe, Patricia B and Kooner, Jaspal S and Tall, Alan R and Hegele, Robert A and Kastelein, John J P and Schadt, Eric E and Rotter, Jerome I and Boerwinkle, Eric and Strachan, David P and Mooser, Vincent and Stefansson, Kari and Reilly, Muredach P and Samani, Nilesh J and Schunkert, Heribert and Cupples, L Adrienne and Sandhu, Manjinder S and Ridker, Paul M and Rader, Daniel J and van Duijn, Cornelia M and Peltonen, Leena and Abecasis, Goncalo R and Boehnke, Michael and Kathiresan, Sekar} } @article {1222, title = {Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies.}, journal = {Diabetes Care}, volume = {33}, year = {2010}, month = {2010 Dec}, pages = {2684-91}, abstract = {

OBJECTIVE: Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin.

RESEARCH DESIGN AND METHODS: Via meta-analysis of data from 14 cohorts comprising \~{} 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant.

RESULTS: Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95\% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele.

CONCLUSIONS: Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.

}, keywords = {Adult, Aged, Blood Glucose, Edible Grain, European Continental Ancestry Group, Fasting, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Humans, Insulin, Male, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1935-5548}, doi = {10.2337/dc10-1150}, author = {Nettleton, Jennifer A and McKeown, Nicola M and Kanoni, Stavroula and Lemaitre, Rozenn N and Hivert, Marie-France and Ngwa, Julius and van Rooij, Frank J A and Sonestedt, Emily and Wojczynski, Mary K and Ye, Zheng and Tanaka, Tosh and Garcia, Melissa and Anderson, Jennifer S and Follis, Jack L and Djouss{\'e}, Luc and Mukamal, Kenneth and Papoutsakis, Constantina and Mozaffarian, Dariush and Zillikens, M Carola and Bandinelli, Stefania and Bennett, Amanda J and Borecki, Ingrid B and Feitosa, Mary F and Ferrucci, Luigi and Forouhi, Nita G and Groves, Christopher J and Hallmans, G{\"o}ran and Harris, Tamara and Hofman, Albert and Houston, Denise K and Hu, Frank B and Johansson, Ingegerd and Kritchevsky, Stephen B and Langenberg, Claudia and Launer, Lenore and Liu, Yongmei and Loos, Ruth J and Nalls, Michael and Orho-Melander, Marju and Renstrom, Frida and Rice, Kenneth and Riserus, Ulf and Rolandsson, Olov and Rotter, Jerome I and Saylor, Georgia and Sijbrands, Eric J G and Sjogren, Per and Smith, Albert and Steingr{\'\i}msd{\'o}ttir, Laufey and Uitterlinden, Andr{\'e} G and Wareham, Nicholas J and Prokopenko, Inga and Pankow, James S and van Duijn, Cornelia M and Florez, Jose C and Witteman, Jacqueline C M and Dupuis, Jos{\'e}e and Dedoussis, George V and Ordovas, Jose M and Ingelsson, Erik and Cupples, L Adrienne and Siscovick, David S and Franks, Paul W and Meigs, James B} } @article {1160, title = {New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Feb}, pages = {105-16}, abstract = {

Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.

}, keywords = {Adolescent, Adult, Alleles, Blood Glucose, Child, Databases, Genetic, Diabetes Mellitus, Type 2, DNA Copy Number Variations, Fasting, Gene Expression Regulation, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Homeostasis, Humans, Meta-Analysis as Topic, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable, Reproducibility of Results}, issn = {1546-1718}, doi = {10.1038/ng.520}, author = {Dupuis, Jos{\'e}e and Langenberg, Claudia and Prokopenko, Inga and Saxena, Richa and Soranzo, Nicole and Jackson, Anne U and Wheeler, Eleanor and Glazer, Nicole L and Bouatia-Naji, Nabila and Gloyn, Anna L and Lindgren, Cecilia M and M{\"a}gi, Reedik and Morris, Andrew P and Randall, Joshua and Johnson, Toby and Elliott, Paul and Rybin, Denis and Thorleifsson, Gudmar and Steinthorsdottir, Valgerdur and Henneman, Peter and Grallert, Harald and Dehghan, Abbas and Hottenga, Jouke Jan and Franklin, Christopher S and Navarro, Pau and Song, Kijoung and Goel, Anuj and Perry, John R B and Egan, Josephine M and Lajunen, Taina and Grarup, Niels and Spars{\o}, Thomas and Doney, Alex and Voight, Benjamin F and Stringham, Heather M and Li, Man and Kanoni, Stavroula and Shrader, Peter and Cavalcanti-Proen{\c c}a, Christine and Kumari, Meena and Qi, Lu and Timpson, Nicholas J and Gieger, Christian and Zabena, Carina and Rocheleau, Ghislain and Ingelsson, Erik and An, Ping and O{\textquoteright}Connell, Jeffrey and Luan, Jian{\textquoteright}an and Elliott, Amanda and McCarroll, Steven A and Payne, Felicity and Roccasecca, Rosa Maria and Pattou, Fran{\c c}ois and Sethupathy, Praveen and Ardlie, Kristin and Ariyurek, Yavuz and Balkau, Beverley and Barter, Philip and Beilby, John P and Ben-Shlomo, Yoav and Benediktsson, Rafn and Bennett, Amanda J and Bergmann, Sven and Bochud, Murielle and Boerwinkle, Eric and Bonnefond, Am{\'e}lie and Bonnycastle, Lori L and Borch-Johnsen, Knut and B{\"o}ttcher, Yvonne and Brunner, Eric and Bumpstead, Suzannah J and Charpentier, Guillaume and Chen, Yii-Der Ida and Chines, Peter and Clarke, Robert and Coin, Lachlan J M and Cooper, Matthew N and Cornelis, Marilyn and Crawford, Gabe and Crisponi, Laura and Day, Ian N M and de Geus, Eco J C and Delplanque, Jerome and Dina, Christian and Erdos, Michael R and Fedson, Annette C and Fischer-Rosinsky, Antje and Forouhi, Nita G and Fox, Caroline S and Frants, Rune and Franzosi, Maria Grazia and Galan, Pilar and Goodarzi, Mark O and Graessler, J{\"u}rgen and Groves, Christopher J and Grundy, Scott and Gwilliam, Rhian and Gyllensten, Ulf and Hadjadj, Samy and Hallmans, G{\"o}ran and Hammond, Naomi and Han, Xijing and Hartikainen, Anna-Liisa and Hassanali, Neelam and Hayward, Caroline and Heath, Simon C and Hercberg, Serge and Herder, Christian and Hicks, Andrew A and Hillman, David R and Hingorani, Aroon D and Hofman, Albert and Hui, Jennie and Hung, Joe and Isomaa, Bo and Johnson, Paul R V and J{\o}rgensen, Torben and Jula, Antti and Kaakinen, Marika and Kaprio, Jaakko and Kesaniemi, Y Antero and Kivimaki, Mika and Knight, Beatrice and Koskinen, Seppo and Kovacs, Peter and Kyvik, Kirsten Ohm and Lathrop, G Mark and Lawlor, Debbie A and Le Bacquer, Olivier and Lecoeur, C{\'e}cile and Li, Yun and Lyssenko, Valeriya and Mahley, Robert and Mangino, Massimo and Manning, Alisa K and Mart{\'\i}nez-Larrad, Mar{\'\i}a Teresa and McAteer, Jarred B and McCulloch, Laura J and McPherson, Ruth and Meisinger, Christa and Melzer, David and Meyre, David and Mitchell, Braxton D and Morken, Mario A and Mukherjee, Sutapa and Naitza, Silvia and Narisu, Narisu and Neville, Matthew J and Oostra, Ben A and Orr{\`u}, Marco and Pakyz, Ruth and Palmer, Colin N A and Paolisso, Giuseppe and Pattaro, Cristian and Pearson, Daniel and Peden, John F and Pedersen, Nancy L and Perola, Markus and Pfeiffer, Andreas F H and Pichler, Irene and Polasek, Ozren and Posthuma, Danielle and Potter, Simon C and Pouta, Anneli and Province, Michael A and Psaty, Bruce M and Rathmann, Wolfgang and Rayner, Nigel W and Rice, Kenneth and Ripatti, Samuli and Rivadeneira, Fernando and Roden, Michael and Rolandsson, Olov and Sandbaek, Annelli and Sandhu, Manjinder and Sanna, Serena and Sayer, Avan Aihie and Scheet, Paul and Scott, Laura J and Seedorf, Udo and Sharp, Stephen J and Shields, Beverley and Sigurethsson, Gunnar and Sijbrands, Eric J G and Silveira, Angela and Simpson, Laila and Singleton, Andrew and Smith, Nicholas L and Sovio, Ulla and Swift, Amy and Syddall, Holly and Syv{\"a}nen, Ann-Christine and Tanaka, Toshiko and Thorand, Barbara and Tichet, Jean and T{\"o}njes, Anke and Tuomi, Tiinamaija and Uitterlinden, Andr{\'e} G and van Dijk, Ko Willems and van Hoek, Mandy and Varma, Dhiraj and Visvikis-Siest, Sophie and Vitart, Veronique and Vogelzangs, Nicole and Waeber, G{\'e}rard and Wagner, Peter J and Walley, Andrew and Walters, G Bragi and Ward, Kim L and Watkins, Hugh and Weedon, Michael N and Wild, Sarah H and Willemsen, Gonneke and Witteman, Jaqueline C M and Yarnell, John W G and Zeggini, Eleftheria and Zelenika, Diana and Zethelius, Bj{\"o}rn and Zhai, Guangju and Zhao, Jing Hua and Zillikens, M Carola and Borecki, Ingrid B and Loos, Ruth J F and Meneton, Pierre and Magnusson, Patrik K E and Nathan, David M and Williams, Gordon H and Hattersley, Andrew T and Silander, Kaisa and Salomaa, Veikko and Smith, George Davey and Bornstein, Stefan R and Schwarz, Peter and Spranger, Joachim and Karpe, Fredrik and Shuldiner, Alan R and Cooper, Cyrus and Dedoussis, George V and Serrano-R{\'\i}os, Manuel and Morris, Andrew D and Lind, Lars and Palmer, Lyle J and Hu, Frank B and Franks, Paul W and Ebrahim, Shah and Marmot, Michael and Kao, W H Linda and Pankow, James S and Sampson, Michael J and Kuusisto, Johanna and Laakso, Markku and Hansen, Torben and Pedersen, Oluf and Pramstaller, Peter Paul and Wichmann, H Erich and Illig, Thomas and Rudan, Igor and Wright, Alan F and Stumvoll, Michael and Campbell, Harry and Wilson, James F and Bergman, Richard N and Buchanan, Thomas A and Collins, Francis S and Mohlke, Karen L and Tuomilehto, Jaakko and Valle, Timo T and Altshuler, David and Rotter, Jerome I and Siscovick, David S and Penninx, Brenda W J H and Boomsma, Dorret I and Deloukas, Panos and Spector, Timothy D and Frayling, Timothy M and Ferrucci, Luigi and Kong, Augustine and Thorsteinsdottir, Unnur and Stefansson, Kari and van Duijn, Cornelia M and Aulchenko, Yurii S and Cao, Antonio and Scuteri, Angelo and Schlessinger, David and Uda, Manuela and Ruokonen, Aimo and Jarvelin, Marjo-Riitta and Waterworth, Dawn M and Vollenweider, Peter and Peltonen, Leena and Mooser, Vincent and Abecasis, Goncalo R and Wareham, Nicholas J and Sladek, Robert and Froguel, Philippe and Watanabe, Richard M and Meigs, James B and Groop, Leif and Boehnke, Michael and McCarthy, Mark I and Florez, Jose C and Barroso, In{\^e}s} } @article {1183, title = {New loci associated with kidney function and chronic kidney disease.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 May}, pages = {376-84}, abstract = {

Chronic kidney disease (CKD) is a significant public health problem, and recent genetic studies have identified common CKD susceptibility variants. The CKDGen consortium performed a meta-analysis of genome-wide association data in 67,093 individuals of European ancestry from 20 predominantly population-based studies in order to identify new susceptibility loci for reduced renal function as estimated by serum creatinine (eGFRcrea), serum cystatin c (eGFRcys) and CKD (eGFRcrea < 60 ml/min/1.73 m(2); n = 5,807 individuals with CKD (cases)). Follow-up of the 23 new genome-wide-significant loci (P < 5 x 10(-8)) in 22,982 replication samples identified 13 new loci affecting renal function and CKD (in or near LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2, DACH1, UBE2Q2 and SLC7A9) and 7 loci suspected to affect creatinine production and secretion (CPS1, SLC22A2, TMEM60, WDR37, SLC6A13, WDR72 and BCAS3). These results further our understanding of the biologic mechanisms of kidney function by identifying loci that potentially influence nephrogenesis, podocyte function, angiogenesis, solute transport and metabolic functions of the kidney.

}, keywords = {Cohort Studies, Creatinine, Cystatin C, Diet, Europe, Genetic Markers, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Kidney, Kidney Failure, Chronic, Models, Genetic, Risk Factors}, issn = {1546-1718}, doi = {10.1038/ng.568}, author = {K{\"o}ttgen, Anna and Pattaro, Cristian and B{\"o}ger, Carsten A and Fuchsberger, Christian and Olden, Matthias and Glazer, Nicole L and Parsa, Afshin and Gao, Xiaoyi and Yang, Qiong and Smith, Albert V and O{\textquoteright}Connell, Jeffrey R and Li, Man and Schmidt, Helena and Tanaka, Toshiko and Isaacs, Aaron and Ketkar, Shamika and Hwang, Shih-Jen and Johnson, Andrew D and Dehghan, Abbas and Teumer, Alexander and Par{\'e}, Guillaume and Atkinson, Elizabeth J and Zeller, Tanja and Lohman, Kurt and Cornelis, Marilyn C and Probst-Hensch, Nicole M and Kronenberg, Florian and T{\"o}njes, Anke and Hayward, Caroline and Aspelund, Thor and Eiriksdottir, Gudny and Launer, Lenore J and Harris, Tamara B and Rampersaud, Evadnie and Mitchell, Braxton D and Arking, Dan E and Boerwinkle, Eric and Struchalin, Maksim and Cavalieri, Margherita and Singleton, Andrew and Giallauria, Francesco and Metter, Jeffrey and de Boer, Ian H and Haritunians, Talin and Lumley, Thomas and Siscovick, David and Psaty, Bruce M and Zillikens, M Carola and Oostra, Ben A and Feitosa, Mary and Province, Michael and de Andrade, Mariza and Turner, Stephen T and Schillert, Arne and Ziegler, Andreas and Wild, Philipp S and Schnabel, Renate B and Wilde, Sandra and Munzel, Thomas F and Leak, Tennille S and Illig, Thomas and Klopp, Norman and Meisinger, Christa and Wichmann, H-Erich and Koenig, Wolfgang and Zgaga, Lina and Zemunik, Tatijana and Kolcic, Ivana and Minelli, Cosetta and Hu, Frank B and Johansson, Asa and Igl, Wilmar and Zaboli, Ghazal and Wild, Sarah H and Wright, Alan F and Campbell, Harry and Ellinghaus, David and Schreiber, Stefan and Aulchenko, Yurii S and Felix, Janine F and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Hofman, Albert and Imboden, Medea and Nitsch, Dorothea and Brandst{\"a}tter, Anita and Kollerits, Barbara and Kedenko, Lyudmyla and M{\"a}gi, Reedik and Stumvoll, Michael and Kovacs, Peter and Boban, Mladen and Campbell, Susan and Endlich, Karlhans and V{\"o}lzke, Henry and Kroemer, Heyo K and Nauck, Matthias and V{\"o}lker, Uwe and Polasek, Ozren and Vitart, Veronique and Badola, Sunita and Parker, Alexander N and Ridker, Paul M and Kardia, Sharon L R and Blankenberg, Stefan and Liu, Yongmei and Curhan, Gary C and Franke, Andre and Rochat, Thierry and Paulweber, Bernhard and Prokopenko, Inga and Wang, Wei and Gudnason, Vilmundur and Shuldiner, Alan R and Coresh, Josef and Schmidt, Reinhold and Ferrucci, Luigi and Shlipak, Michael G and van Duijn, Cornelia M and Borecki, Ingrid and Kr{\"a}mer, Bernhard K and Rudan, Igor and Gyllensten, Ulf and Wilson, James F and Witteman, Jacqueline C and Pramstaller, Peter P and Rettig, Rainer and Hastie, Nick and Chasman, Daniel I and Kao, W H and Heid, Iris M and Fox, Caroline S} } @article {1271, title = {CUBN is a gene locus for albuminuria.}, journal = {J Am Soc Nephrol}, volume = {22}, year = {2011}, month = {2011 Mar}, pages = {555-70}, abstract = {

Identification of genetic risk factors for albuminuria may alter strategies for early prevention of CKD progression, particularly among patients with diabetes. Little is known about the influence of common genetic variants on albuminuria in both general and diabetic populations. We performed a meta-analysis of data from 63,153 individuals of European ancestry with genotype information from genome-wide association studies (CKDGen Consortium) and from a large candidate gene study (CARe Consortium) to identify susceptibility loci for the quantitative trait urinary albumin-to-creatinine ratio (UACR) and the clinical diagnosis microalbuminuria. We identified an association between a missense variant (I2984V) in the CUBN gene, which encodes cubilin, and both UACR (P = 1.1 {\texttimes} 10(-11)) and microalbuminuria (P = 0.001). We observed similar associations among 6981 African Americans in the CARe Consortium. The associations between this variant and both UACR and microalbuminuria were significant in individuals of European ancestry regardless of diabetes status. Finally, this variant associated with a 41\% increased risk for the development of persistent microalbuminuria during 20 years of follow-up among 1304 participants with type 1 diabetes in the prospective DCCT/EDIC Study. In summary, we identified a missense CUBN variant that associates with levels of albuminuria in both the general population and in individuals with diabetes.

}, keywords = {African Continental Ancestry Group, Albuminuria, European Continental Ancestry Group, Genetic Loci, Genetic Predisposition to Disease, Humans, Mutation, Missense, Receptors, Cell Surface}, issn = {1533-3450}, doi = {10.1681/ASN.2010060598}, author = {B{\"o}ger, Carsten A and Chen, Ming-Huei and Tin, Adrienne and Olden, Matthias and K{\"o}ttgen, Anna and de Boer, Ian H and Fuchsberger, Christian and O{\textquoteright}Seaghdha, Conall M and Pattaro, Cristian and Teumer, Alexander and Liu, Ching-Ti and Glazer, Nicole L and Li, Man and O{\textquoteright}Connell, Jeffrey R and Tanaka, Toshiko and Peralta, Carmen A and Kutalik, Zolt{\'a}n and Luan, Jian{\textquoteright}an and Zhao, Jing Hua and Hwang, Shih-Jen and Akylbekova, Ermeg and Kramer, Holly and van der Harst, Pim and Smith, Albert V and Lohman, Kurt and de Andrade, Mariza and Hayward, Caroline and Kollerits, Barbara and T{\"o}njes, Anke and Aspelund, Thor and Ingelsson, Erik and Eiriksdottir, Gudny and Launer, Lenore J and Harris, Tamara B and Shuldiner, Alan R and Mitchell, Braxton D and Arking, Dan E and Franceschini, Nora and Boerwinkle, Eric and Egan, Josephine and Hernandez, Dena and Reilly, Muredach and Townsend, Raymond R and Lumley, Thomas and Siscovick, David S and Psaty, Bruce M and Kestenbaum, Bryan and Haritunians, Talin and Bergmann, Sven and Vollenweider, Peter and Waeber, G{\'e}rard and Mooser, Vincent and Waterworth, Dawn and Johnson, Andrew D and Florez, Jose C and Meigs, James B and Lu, Xiaoning and Turner, Stephen T and Atkinson, Elizabeth J and Leak, Tennille S and Aasar{\o}d, Knut and Skorpen, Frank and Syv{\"a}nen, Ann-Christine and Illig, Thomas and Baumert, Jens and Koenig, Wolfgang and Kr{\"a}mer, Bernhard K and Devuyst, Olivier and Mychaleckyj, Josyf C and Minelli, Cosetta and Bakker, Stephan J L and Kedenko, Lyudmyla and Paulweber, Bernhard and Coassin, Stefan and Endlich, Karlhans and Kroemer, Heyo K and Biffar, Reiner and Stracke, Sylvia and V{\"o}lzke, Henry and Stumvoll, Michael and M{\"a}gi, Reedik and Campbell, Harry and Vitart, Veronique and Hastie, Nicholas D and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Polasek, Ozren and Curhan, Gary and Kronenberg, Florian and Prokopenko, Inga and Rudan, Igor and Arnl{\"o}v, Johan and Hallan, Stein and Navis, Gerjan and Parsa, Afshin and Ferrucci, Luigi and Coresh, Josef and Shlipak, Michael G and Bull, Shelley B and Paterson, Nicholas J and Wichmann, H-Erich and Wareham, Nicholas J and Loos, Ruth J F and Rotter, Jerome I and Pramstaller, Peter P and Cupples, L Adrienne and Beckmann, Jacques S and Yang, Qiong and Heid, Iris M and Rettig, Rainer and Dreisbach, Albert W and Bochud, Murielle and Fox, Caroline S and Kao, W H L} } @article {1259, title = {Gait speed and survival in older adults.}, journal = {JAMA}, volume = {305}, year = {2011}, month = {2011 Jan 05}, pages = {50-8}, abstract = {

CONTEXT: Survival estimates help individualize goals of care for geriatric patients, but life tables fail to account for the great variability in survival. Physical performance measures, such as gait speed, might help account for variability, allowing clinicians to make more individualized estimates.

OBJECTIVE: To evaluate the relationship between gait speed and survival.

DESIGN, SETTING, AND PARTICIPANTS: Pooled analysis of 9 cohort studies (collected between 1986 and 2000), using individual data from 34,485 community-dwelling older adults aged 65 years or older with baseline gait speed data, followed up for 6 to 21 years. Participants were a mean (SD) age of 73.5 (5.9) years; 59.6\%, women; and 79.8\%, white; and had a mean (SD) gait speed of 0.92 (0.27) m/s.

MAIN OUTCOME MEASURES: Survival rates and life expectancy.

RESULTS: There were 17,528 deaths; the overall 5-year survival rate was 84.8\% (confidence interval [CI], 79.6\%-88.8\%) and 10-year survival rate was 59.7\% (95\% CI, 46.5\%-70.6\%). Gait speed was associated with survival in all studies (pooled hazard ratio per 0.1 m/s, 0.88; 95\% CI, 0.87-0.90; P < .001). Survival increased across the full range of gait speeds, with significant increments per 0.1 m/s. At age 75, predicted 10-year survival across the range of gait speeds ranged from 19\% to 87\% in men and from 35\% to 91\% in women. Predicted survival based on age, sex, and gait speed was as accurate as predicted based on age, sex, use of mobility aids, and self-reported function or as age, sex, chronic conditions, smoking history, blood pressure, body mass index, and hospitalization.

CONCLUSION: In this pooled analysis of individual data from 9 selected cohorts, gait speed was associated with survival in older adults.

}, keywords = {Aged, Cohort Studies, Female, Gait, Geriatric Assessment, Humans, Life Expectancy, Male, Survival Analysis, United States}, issn = {1538-3598}, doi = {10.1001/jama.2010.1923}, author = {Studenski, Stephanie and Perera, Subashan and Patel, Kushang and Rosano, Caterina and Faulkner, Kimberly and Inzitari, Marco and Brach, Jennifer and Chandler, Julie and Cawthon, Peggy and Connor, Elizabeth Barrett and Nevitt, Michael and Visser, Marjolein and Kritchevsky, Stephen and Badinelli, Stefania and Harris, Tamara and Newman, Anne B and Cauley, Jane and Ferrucci, Luigi and Guralnik, Jack} } @article {1311, title = {Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium.}, journal = {PLoS Genet}, volume = {7}, year = {2011}, month = {2011 Jul}, pages = {e1002193}, abstract = {

Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3 x 10$^{-}$$^{6}$$^{4}$) and lower levels of eicosapentaenoic acid (EPA, p = 5 x 10$^{-}$$^{5}$$^{8}$) and docosapentaenoic acid (DPA, p = 4 x 10$^{-}${\textonesuperior}$^{5}$$^{4}$). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2 x 10$^{-}${\textonesuperior}{\texttwosuperior}) and DPA (p = 1 x 10$^{-}$$^{4}${\textthreesuperior}) and lower docosahexaenoic acid (DHA, p = 1 x 10$^{-}${\textonesuperior}$^{5}$). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1 x 10$^{-}$$^{8}$). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries.

}, keywords = {Alleles, Continental Population Groups, Fatty Acids, Omega-3, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002193}, author = {Lemaitre, Rozenn N and Tanaka, Toshiko and Tang, Weihong and Manichaikul, Ani and Foy, Millennia and Kabagambe, Edmond K and Nettleton, Jennifer A and King, Irena B and Weng, Lu-Chen and Bhattacharya, Sayanti and Bandinelli, Stefania and Bis, Joshua C and Rich, Stephen S and Jacobs, David R and Cherubini, Antonio and McKnight, Barbara and Liang, Shuang and Gu, Xiangjun and Rice, Kenneth and Laurie, Cathy C and Lumley, Thomas and Browning, Brian L and Psaty, Bruce M and Chen, Yii-der I and Friedlander, Yechiel and Djouss{\'e}, Luc and Wu, Jason H Y and Siscovick, David S and Uitterlinden, Andr{\'e} G and Arnett, Donna K and Ferrucci, Luigi and Fornage, Myriam and Tsai, Michael Y and Mozaffarian, Dariush and Steffen, Lyn M} } @article {1325, title = {Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.}, journal = {Nature}, volume = {478}, year = {2011}, month = {2011 Sep 11}, pages = {103-9}, abstract = {

Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>=140 mm Hg systolic blood pressure or >=90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.

}, keywords = {Africa, Asia, Blood Pressure, Cardiovascular Diseases, Coronary Artery Disease, Europe, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hypertension, Kidney Diseases, Polymorphism, Single Nucleotide, Stroke}, issn = {1476-4687}, doi = {10.1038/nature10405}, author = {Ehret, Georg B and Munroe, Patricia B and Rice, Kenneth M and Bochud, Murielle and Johnson, Andrew D and Chasman, Daniel I and Smith, Albert V and Tobin, Martin D and Verwoert, Germaine C and Hwang, Shih-Jen and Pihur, Vasyl and Vollenweider, Peter and O{\textquoteright}Reilly, Paul F and Amin, Najaf and Bragg-Gresham, Jennifer L and Teumer, Alexander and Glazer, Nicole L and Launer, Lenore and Zhao, Jing Hua and Aulchenko, Yurii and Heath, Simon and S{\~o}ber, Siim and Parsa, Afshin and Luan, Jian{\textquoteright}an and Arora, Pankaj and Dehghan, Abbas and Zhang, Feng and Lucas, Gavin and Hicks, Andrew A and Jackson, Anne U and Peden, John F and Tanaka, Toshiko and Wild, Sarah H and Rudan, Igor and Igl, Wilmar and Milaneschi, Yuri and Parker, Alex N and Fava, Cristiano and Chambers, John C and Fox, Ervin R and Kumari, Meena and Go, Min Jin and van der Harst, Pim and Kao, Wen Hong Linda and Sj{\"o}gren, Marketa and Vinay, D G and Alexander, Myriam and Tabara, Yasuharu and Shaw-Hawkins, Sue and Whincup, Peter H and Liu, Yongmei and Shi, Gang and Kuusisto, Johanna and Tayo, Bamidele and Seielstad, Mark and Sim, Xueling and Nguyen, Khanh-Dung Hoang and Lehtim{\"a}ki, Terho and Matullo, Giuseppe and Wu, Ying and Gaunt, Tom R and Onland-Moret, N Charlotte and Cooper, Matthew N and Platou, Carl G P and Org, Elin and Hardy, Rebecca and Dahgam, Santosh and Palmen, Jutta and Vitart, Veronique and Braund, Peter S and Kuznetsova, Tatiana and Uiterwaal, Cuno S P M and Adeyemo, Adebowale and Palmas, Walter and Campbell, Harry and Ludwig, Barbara and Tomaszewski, Maciej and Tzoulaki, Ioanna and Palmer, Nicholette D and Aspelund, Thor and Garcia, Melissa and Chang, Yen-Pei C and O{\textquoteright}Connell, Jeffrey R and Steinle, Nanette I and Grobbee, Diederick E and Arking, Dan E and Kardia, Sharon L and Morrison, Alanna C and Hernandez, Dena and Najjar, Samer and McArdle, Wendy L and Hadley, David and Brown, Morris J and Connell, John M and Hingorani, Aroon D and Day, Ian N M and Lawlor, Debbie A and Beilby, John P and Lawrence, Robert W and Clarke, Robert and Hopewell, Jemma C and Ongen, Halit and Dreisbach, Albert W and Li, Yali and Young, J Hunter and Bis, Joshua C and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Adair, Linda S and Lee, Nanette R and Chen, Ming-Huei and Olden, Matthias and Pattaro, Cristian and Bolton, Judith A Hoffman and K{\"o}ttgen, Anna and Bergmann, Sven and Mooser, Vincent and Chaturvedi, Nish and Frayling, Timothy M and Islam, Muhammad and Jafar, Tazeen H and Erdmann, Jeanette and Kulkarni, Smita R and Bornstein, Stefan R and Gr{\"a}ssler, J{\"u}rgen and Groop, Leif and Voight, Benjamin F and Kettunen, Johannes and Howard, Philip and Taylor, Andrew and Guarrera, Simonetta and Ricceri, Fulvio and Emilsson, Valur and Plump, Andrew and Barroso, In{\^e}s and Khaw, Kay-Tee and Weder, Alan B and Hunt, Steven C and Sun, Yan V and Bergman, Richard N and Collins, Francis S and Bonnycastle, Lori L and Scott, Laura J and Stringham, Heather M and Peltonen, Leena and Perola, Markus and Vartiainen, Erkki and Brand, Stefan-Martin and Staessen, Jan A and Wang, Thomas J and Burton, Paul R and Soler Artigas, Maria and Dong, Yanbin and Snieder, Harold and Wang, Xiaoling and Zhu, Haidong and Lohman, Kurt K and Rudock, Megan E and Heckbert, Susan R and Smith, Nicholas L and Wiggins, Kerri L and Doumatey, Ayo and Shriner, Daniel and Veldre, Gudrun and Viigimaa, Margus and Kinra, Sanjay and Prabhakaran, Dorairaj and Tripathy, Vikal and Langefeld, Carl D and Rosengren, Annika and Thelle, Dag S and Corsi, Anna Maria and Singleton, Andrew and Forrester, Terrence and Hilton, Gina and McKenzie, Colin A and Salako, Tunde and Iwai, Naoharu and Kita, Yoshikuni and Ogihara, Toshio and Ohkubo, Takayoshi and Okamura, Tomonori and Ueshima, Hirotsugu and Umemura, Satoshi and Eyheramendy, Susana and Meitinger, Thomas and Wichmann, H-Erich and Cho, Yoon Shin and Kim, Hyung-Lae and Lee, Jong-Young and Scott, James and Sehmi, Joban S and Zhang, Weihua and Hedblad, Bo and Nilsson, Peter and Smith, George Davey and Wong, Andrew and Narisu, Narisu and Stan{\v c}{\'a}kov{\'a}, Alena and Raffel, Leslie J and Yao, Jie and Kathiresan, Sekar and O{\textquoteright}Donnell, Christopher J and Schwartz, Stephen M and Ikram, M Arfan and Longstreth, W T and Mosley, Thomas H and Seshadri, Sudha and Shrine, Nick R G and Wain, Louise V and Morken, Mario A and Swift, Amy J and Laitinen, Jaana and Prokopenko, Inga and Zitting, Paavo and Cooper, Jackie A and Humphries, Steve E and Danesh, John and Rasheed, Asif and Goel, Anuj and Hamsten, Anders and Watkins, Hugh and Bakker, Stephan J L and van Gilst, Wiek H and Janipalli, Charles S and Mani, K Radha and Yajnik, Chittaranjan S and Hofman, Albert and Mattace-Raso, Francesco U S and Oostra, Ben A and Demirkan, Ayse and Isaacs, Aaron and Rivadeneira, Fernando and Lakatta, Edward G and Orr{\`u}, Marco and Scuteri, Angelo and Ala-Korpela, Mika and Kangas, Antti J and Lyytik{\"a}inen, Leo-Pekka and Soininen, Pasi and Tukiainen, Taru and W{\"u}rtz, Peter and Ong, Rick Twee-Hee and D{\"o}rr, Marcus and Kroemer, Heyo K and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Galan, Pilar and Hercberg, Serge and Lathrop, Mark and Zelenika, Diana and Deloukas, Panos and Mangino, Massimo and Spector, Tim D and Zhai, Guangju and Meschia, James F and Nalls, Michael A and Sharma, Pankaj and Terzic, Janos and Kumar, M V Kranthi and Denniff, Matthew and Zukowska-Szczechowska, Ewa and Wagenknecht, Lynne E and Fowkes, F Gerald R and Charchar, Fadi J and Schwarz, Peter E H and Hayward, Caroline and Guo, Xiuqing and Rotimi, Charles and Bots, Michiel L and Brand, Eva and Samani, Nilesh J and Polasek, Ozren and Talmud, Philippa J and Nyberg, Fredrik and Kuh, Diana and Laan, Maris and Hveem, Kristian and Palmer, Lyle J and van der Schouw, Yvonne T and Casas, Juan P and Mohlke, Karen L and Vineis, Paolo and Raitakari, Olli and Ganesh, Santhi K and Wong, Tien Y and Tai, E Shyong and Cooper, Richard S and Laakso, Markku and Rao, Dabeeru C and Harris, Tamara B and Morris, Richard W and Dominiczak, Anna F and Kivimaki, Mika and Marmot, Michael G and Miki, Tetsuro and Saleheen, Danish and Chandak, Giriraj R and Coresh, Josef and Navis, Gerjan and Salomaa, Veikko and Han, Bok-Ghee and Zhu, Xiaofeng and Kooner, Jaspal S and Melander, Olle and Ridker, Paul M and Bandinelli, Stefania and Gyllensten, Ulf B and Wright, Alan F and Wilson, James F and Ferrucci, Luigi and Farrall, Martin and Tuomilehto, Jaakko and Pramstaller, Peter P and Elosua, Roberto and Soranzo, Nicole and Sijbrands, Eric J G and Altshuler, David and Loos, Ruth J F and Shuldiner, Alan R and Gieger, Christian and Meneton, Pierre and Uitterlinden, Andr{\'e} G and Wareham, Nicholas J and Gudnason, Vilmundur and Rotter, Jerome I and Rettig, Rainer and Uda, Manuela and Strachan, David P and Witteman, Jacqueline C M and Hartikainen, Anna-Liisa and Beckmann, Jacques S and Boerwinkle, Eric and Vasan, Ramachandran S and Boehnke, Michael and Larson, Martin G and Jarvelin, Marjo-Riitta and Psaty, Bruce M and Abecasis, Goncalo R and Chakravarti, Aravinda and Elliott, Paul and van Duijn, Cornelia M and Newton-Cheh, Christopher and Levy, Daniel and Caulfield, Mark J and Johnson, Toby} } @article {1324, title = {Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.}, journal = {Nat Genet}, volume = {43}, year = {2011}, month = {2011 Sep 11}, pages = {1005-11}, abstract = {

Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 {\texttimes} 10(-8) to P = 2.3 {\texttimes} 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.

}, keywords = {Arteries, Blood Pressure, Case-Control Studies, Follow-Up Studies, Genetic Loci, Genome-Wide Association Study, Humans, Hypertension, Linkage Disequilibrium, Polymorphism, Single Nucleotide}, issn = {1546-1718}, doi = {10.1038/ng.922}, author = {Wain, Louise V and Verwoert, Germaine C and O{\textquoteright}Reilly, Paul F and Shi, Gang and Johnson, Toby and Johnson, Andrew D and Bochud, Murielle and Rice, Kenneth M and Henneman, Peter and Smith, Albert V and Ehret, Georg B and Amin, Najaf and Larson, Martin G and Mooser, Vincent and Hadley, David and D{\"o}rr, Marcus and Bis, Joshua C and Aspelund, Thor and Esko, T{\~o}nu and Janssens, A Cecile J W and Zhao, Jing Hua and Heath, Simon and Laan, Maris and Fu, Jingyuan and Pistis, Giorgio and Luan, Jian{\textquoteright}an and Arora, Pankaj and Lucas, Gavin and Pirastu, Nicola and Pichler, Irene and Jackson, Anne U and Webster, Rebecca J and Zhang, Feng and Peden, John F and Schmidt, Helena and Tanaka, Toshiko and Campbell, Harry and Igl, Wilmar and Milaneschi, Yuri and Hottenga, Jouke-Jan and Vitart, Veronique and Chasman, Daniel I and Trompet, Stella and Bragg-Gresham, Jennifer L and Alizadeh, Behrooz Z and Chambers, John C and Guo, Xiuqing and Lehtim{\"a}ki, Terho and Kuhnel, Brigitte and Lopez, Lorna M and Polasek, Ozren and Boban, Mladen and Nelson, Christopher P and Morrison, Alanna C and Pihur, Vasyl and Ganesh, Santhi K and Hofman, Albert and Kundu, Suman and Mattace-Raso, Francesco U S and Rivadeneira, Fernando and Sijbrands, Eric J G and Uitterlinden, Andr{\'e} G and Hwang, Shih-Jen and Vasan, Ramachandran S and Wang, Thomas J and Bergmann, Sven and Vollenweider, Peter and Waeber, G{\'e}rard and Laitinen, Jaana and Pouta, Anneli and Zitting, Paavo and McArdle, Wendy L and Kroemer, Heyo K and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Glazer, Nicole L and Taylor, Kent D and Harris, Tamara B and Alavere, Helene and Haller, Toomas and Keis, Aime and Tammesoo, Mari-Liis and Aulchenko, Yurii and Barroso, In{\^e}s and Khaw, Kay-Tee and Galan, Pilar and Hercberg, Serge and Lathrop, Mark and Eyheramendy, Susana and Org, Elin and S{\~o}ber, Siim and Lu, Xiaowen and Nolte, Ilja M and Penninx, Brenda W and Corre, Tanguy and Masciullo, Corrado and Sala, Cinzia and Groop, Leif and Voight, Benjamin F and Melander, Olle and O{\textquoteright}Donnell, Christopher J and Salomaa, Veikko and d{\textquoteright}Adamo, Adamo Pio and Fabretto, Antonella and Faletra, Flavio and Ulivi, Sheila and Del Greco, Fabiola M and Facheris, Maurizio and Collins, Francis S and Bergman, Richard N and Beilby, John P and Hung, Joseph and Musk, A William and Mangino, Massimo and Shin, So-Youn and Soranzo, Nicole and Watkins, Hugh and Goel, Anuj and Hamsten, Anders and Gider, Pierre and Loitfelder, Marisa and Zeginigg, Marion and Hernandez, Dena and Najjar, Samer S and Navarro, Pau and Wild, Sarah H and Corsi, Anna Maria and Singleton, Andrew and de Geus, Eco J C and Willemsen, Gonneke and Parker, Alex N and Rose, Lynda M and Buckley, Brendan and Stott, David and Orr{\`u}, Marco and Uda, Manuela and van der Klauw, Melanie M and Zhang, Weihua and Li, Xinzhong and Scott, James and Chen, Yii-Der Ida and Burke, Gregory L and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and D{\"o}ring, Angela and Meitinger, Thomas and Davies, Gail and Starr, John M and Emilsson, Valur and Plump, Andrew and Lindeman, Jan H and Hoen, Peter A C {\textquoteright}t and K{\"o}nig, Inke R and Felix, Janine F and Clarke, Robert and Hopewell, Jemma C and Ongen, Halit and Breteler, Monique and Debette, Stephanie and DeStefano, Anita L and Fornage, Myriam and Mitchell, Gary F and Smith, Nicholas L and Holm, Hilma and Stefansson, Kari and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Samani, Nilesh J and Preuss, Michael and Rudan, Igor and Hayward, Caroline and Deary, Ian J and Wichmann, H-Erich and Raitakari, Olli T and Palmas, Walter and Kooner, Jaspal S and Stolk, Ronald P and Jukema, J Wouter and Wright, Alan F and Boomsma, Dorret I and Bandinelli, Stefania and Gyllensten, Ulf B and Wilson, James F and Ferrucci, Luigi and Schmidt, Reinhold and Farrall, Martin and Spector, Tim D and Palmer, Lyle J and Tuomilehto, Jaakko and Pfeufer, Arne and Gasparini, Paolo and Siscovick, David and Altshuler, David and Loos, Ruth J F and Toniolo, Daniela and Snieder, Harold and Gieger, Christian and Meneton, Pierre and Wareham, Nicholas J and Oostra, Ben A and Metspalu, Andres and Launer, Lenore and Rettig, Rainer and Strachan, David P and Beckmann, Jacques S and Witteman, Jacqueline C M and Erdmann, Jeanette and van Dijk, Ko Willems and Boerwinkle, Eric and Boehnke, Michael and Ridker, Paul M and Jarvelin, Marjo-Riitta and Chakravarti, Aravinda and Abecasis, Goncalo R and Gudnason, Vilmundur and Newton-Cheh, Christopher and Levy, Daniel and Munroe, Patricia B and Psaty, Bruce M and Caulfield, Mark J and Rao, Dabeeru C and Tobin, Martin D and Elliott, Paul and van Duijn, Cornelia M} } @article {1307, title = {A genome-wide association study of aging.}, journal = {Neurobiol Aging}, volume = {32}, year = {2011}, month = {2011 Nov}, pages = {2109.e15-28}, abstract = {

Human longevity and healthy aging show moderate heritability (20\%-50\%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 {\texttimes} 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer{\textquoteright}s disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity.

}, keywords = {Aging, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Longevity}, issn = {1558-1497}, doi = {10.1016/j.neurobiolaging.2011.05.026}, author = {Walter, Stefan and Atzmon, Gil and Demerath, Ellen W and Garcia, Melissa E and Kaplan, Robert C and Kumari, Meena and Lunetta, Kathryn L and Milaneschi, Yuri and Tanaka, Toshiko and Tranah, Gregory J and V{\"o}lker, Uwe and Yu, Lei and Arnold, Alice and Benjamin, Emelia J and Biffar, Reiner and Buchman, Aron S and Boerwinkle, Eric and Couper, David and De Jager, Philip L and Evans, Denis A and Harris, Tamara B and Hoffmann, Wolfgang and Hofman, Albert and Karasik, David and Kiel, Douglas P and Kocher, Thomas and Kuningas, Maris and Launer, Lenore J and Lohman, Kurt K and Lutsey, Pamela L and Mackenbach, Johan and Marciante, Kristin and Psaty, Bruce M and Reiman, Eric M and Rotter, Jerome I and Seshadri, Sudha and Shardell, Michelle D and Smith, Albert V and van Duijn, Cornelia and Walston, Jeremy and Zillikens, M Carola and Bandinelli, Stefania and Baumeister, Sebastian E and Bennett, David A and Ferrucci, Luigi and Gudnason, Vilmundur and Kivimaki, Mika and Liu, Yongmei and Murabito, Joanne M and Newman, Anne B and Tiemeier, Henning and Franceschini, Nora} } @article {1267, title = {Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels.}, journal = {Circulation}, volume = {123}, year = {2011}, month = {2011 Feb 22}, pages = {731-8}, abstract = {

BACKGROUND: C-reactive protein (CRP) is a heritable marker of chronic inflammation that is strongly associated with cardiovascular disease. We sought to identify genetic variants that are associated with CRP levels.

METHODS AND RESULTS: We performed a genome-wide association analysis of CRP in 66 185 participants from 15 population-based studies. We sought replication for the genome-wide significant and suggestive loci in a replication panel comprising 16 540 individuals from 10 independent studies. We found 18 genome-wide significant loci, and we provided evidence of replication for 8 of them. Our results confirm 7 previously known loci and introduce 11 novel loci that are implicated in pathways related to the metabolic syndrome (APOC1, HNF1A, LEPR, GCKR, HNF4A, and PTPN2) or the immune system (CRP, IL6R, NLRP3, IL1F10, and IRF1) or that reside in regions previously not known to play a role in chronic inflammation (PPP1R3B, SALL1, PABPC4, ASCL1, RORA, and BCL7B). We found a significant interaction of body mass index with LEPR (P<2.9{\texttimes}10(-6)). A weighted genetic risk score that was developed to summarize the effect of risk alleles was strongly associated with CRP levels and explained ≈5\% of the trait variance; however, there was no evidence for these genetic variants explaining the association of CRP with coronary heart disease.

CONCLUSIONS: We identified 18 loci that were associated with CRP levels. Our study highlights immune response and metabolic regulatory pathways involved in the regulation of chronic inflammation.

}, keywords = {Biomarkers, C-Reactive Protein, Cardiovascular Diseases, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Risk Factors, Vasculitis}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.110.948570}, author = {Dehghan, Abbas and Dupuis, Jos{\'e}e and Barbalic, Maja and Bis, Joshua C and Eiriksdottir, Gudny and Lu, Chen and Pellikka, Niina and Wallaschofski, Henri and Kettunen, Johannes and Henneman, Peter and Baumert, Jens and Strachan, David P and Fuchsberger, Christian and Vitart, Veronique and Wilson, James F and Par{\'e}, Guillaume and Naitza, Silvia and Rudock, Megan E and Surakka, Ida and de Geus, Eco J C and Alizadeh, Behrooz Z and Guralnik, Jack and Shuldiner, Alan and Tanaka, Toshiko and Zee, Robert Y L and Schnabel, Renate B and Nambi, Vijay and Kavousi, Maryam and Ripatti, Samuli and Nauck, Matthias and Smith, Nicholas L and Smith, Albert V and Sundvall, Jouko and Scheet, Paul and Liu, Yongmei and Ruokonen, Aimo and Rose, Lynda M and Larson, Martin G and Hoogeveen, Ron C and Freimer, Nelson B and Teumer, Alexander and Tracy, Russell P and Launer, Lenore J and Buring, Julie E and Yamamoto, Jennifer F and Folsom, Aaron R and Sijbrands, Eric J G and Pankow, James and Elliott, Paul and Keaney, John F and Sun, Wei and Sarin, Antti-Pekka and Fontes, Jo{\~a}o D and Badola, Sunita and Astor, Brad C and Hofman, Albert and Pouta, Anneli and Werdan, Karl and Greiser, Karin H and Kuss, Oliver and Meyer zu Schwabedissen, Henriette E and Thiery, Joachim and Jamshidi, Yalda and Nolte, Ilja M and Soranzo, Nicole and Spector, Timothy D and V{\"o}lzke, Henry and Parker, Alexander N and Aspelund, Thor and Bates, David and Young, Lauren and Tsui, Kim and Siscovick, David S and Guo, Xiuqing and Rotter, Jerome I and Uda, Manuela and Schlessinger, David and Rudan, Igor and Hicks, Andrew A and Penninx, Brenda W and Thorand, Barbara and Gieger, Christian and Coresh, Joe and Willemsen, Gonneke and Harris, Tamara B and Uitterlinden, Andr{\'e} G and Jarvelin, Marjo-Riitta and Rice, Kenneth and Radke, D{\"o}rte and Salomaa, Veikko and Willems van Dijk, Ko and Boerwinkle, Eric and Vasan, Ramachandran S and Ferrucci, Luigi and Gibson, Quince D and Bandinelli, Stefania and Snieder, Harold and Boomsma, Dorret I and Xiao, Xiangjun and Campbell, Harry and Hayward, Caroline and Pramstaller, Peter P and van Duijn, Cornelia M and Peltonen, Leena and Psaty, Bruce M and Gudnason, Vilmundur and Ridker, Paul M and Homuth, Georg and Koenig, Wolfgang and Ballantyne, Christie M and Witteman, Jacqueline C M and Benjamin, Emelia J and Perola, Markus and Chasman, Daniel I} } @article {1308, title = {Total zinc intake may modify the glucose-raising effect of a zinc transporter (SLC30A8) variant: a 14-cohort meta-analysis.}, journal = {Diabetes}, volume = {60}, year = {2011}, month = {2011 Sep}, pages = {2407-16}, abstract = {

OBJECTIVE: Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants.

RESEARCH DESIGN AND METHODS: We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes.

RESULTS: We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient {\textpm} SE per 1 mg/day of zinc intake: -0.0012 {\textpm} 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient {\textpm} SE per A allele for 1 mg/day of greater total zinc intake: -0.0017 {\textpm} 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant.

CONCLUSIONS: Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels.

}, keywords = {Blood Glucose, Cation Transport Proteins, Cohort Studies, Humans, Polymorphism, Single Nucleotide, Zinc, Zinc Transporter 8}, issn = {1939-327X}, doi = {10.2337/db11-0176}, author = {Kanoni, Stavroula and Nettleton, Jennifer A and Hivert, Marie-France and Ye, Zheng and van Rooij, Frank J A and Shungin, Dmitry and Sonestedt, Emily and Ngwa, Julius S and Wojczynski, Mary K and Lemaitre, Rozenn N and Gustafsson, Stefan and Anderson, Jennifer S and Tanaka, Toshiko and Hindy, George and Saylor, Georgia and Renstrom, Frida and Bennett, Amanda J and van Duijn, Cornelia M and Florez, Jose C and Fox, Caroline S and Hofman, Albert and Hoogeveen, Ron C and Houston, Denise K and Hu, Frank B and Jacques, Paul F and Johansson, Ingegerd and Lind, Lars and Liu, Yongmei and McKeown, Nicola and Ordovas, Jose and Pankow, James S and Sijbrands, Eric J G and Syv{\"a}nen, Ann-Christine and Uitterlinden, Andr{\'e} G and Yannakoulia, Mary and Zillikens, M Carola and Wareham, Nick J and Prokopenko, Inga and Bandinelli, Stefania and Forouhi, Nita G and Cupples, L Adrienne and Loos, Ruth J and Hallmans, G{\"o}ran and Dupuis, Jos{\'e}e and Langenberg, Claudia and Ferrucci, Luigi and Kritchevsky, Stephen B and McCarthy, Mark I and Ingelsson, Erik and Borecki, Ingrid B and Witteman, Jacqueline C M and Orho-Melander, Marju and Siscovick, David S and Meigs, James B and Franks, Paul W and Dedoussis, George V} } @article {1359, title = {Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies.}, journal = {Circ Cardiovasc Genet}, volume = {5}, year = {2012}, month = {2012 Feb 01}, pages = {100-12}, abstract = {

BACKGROUND: Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based cohorts.

METHODS AND RESULTS: Continuous ABI and PAD (ABI <=0.9) phenotypes adjusted for age and sex were examined. Each study conducted genotyping and imputed data to the ≈2.5 million single nucleotide polymorphisms (SNPs) in HapMap. Linear and logistic regression models were used to test each SNP for association with ABI and PAD using additive genetic models. Study-specific data were combined using fixed effects inverse variance weighted meta-analyses. There were a total of 41 692 participants of European ancestry (≈60\% women, mean ABI 1.02 to 1.19), including 3409 participants with PAD and with genome-wide association study data available. In the discovery meta-analysis, rs10757269 on chromosome 9 near CDKN2B had the strongest association with ABI (β=-0.006, P=2.46{\texttimes}10(-8)). We sought replication of the 6 strongest SNP associations in 5 population-based studies and 3 clinical samples (n=16 717). The association for rs10757269 strengthened in the combined discovery and replication analysis (P=2.65{\texttimes}10(-9)). No other SNP associations for ABI or PAD achieved genome-wide significance. However, 2 previously reported candidate genes for PAD and 1 SNP associated with coronary artery disease were associated with ABI: DAB21P (rs13290547, P=3.6{\texttimes}10(-5)), CYBA (rs3794624, P=6.3{\texttimes}10(-5)), and rs1122608 (LDLR, P=0.0026).

CONCLUSIONS: Genome-wide association studies in more than 40 000 individuals identified 1 genome wide significant association on chromosome 9p21 with ABI. Two candidate genes for PAD and 1 SNP for coronary artery disease are associated with ABI.

}, keywords = {Adult, Age Factors, Aged, Aged, 80 and over, Alleles, Ankle Brachial Index, Chromosomes, Human, Pair 9, Cohort Studies, Cyclin-Dependent Kinase Inhibitor p15, Female, Genome-Wide Association Study, Genotype, HapMap Project, Humans, Logistic Models, Male, Middle Aged, Peripheral Vascular Diseases, Phenotype, Polymorphism, Single Nucleotide, Risk Factors, Sex Factors}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.111.961292}, author = {Murabito, Joanne M and White, Charles C and Kavousi, Maryam and Sun, Yan V and Feitosa, Mary F and Nambi, Vijay and Lamina, Claudia and Schillert, Arne and Coassin, Stefan and Bis, Joshua C and Broer, Linda and Crawford, Dana C and Franceschini, Nora and Frikke-Schmidt, Ruth and Haun, Margot and Holewijn, Suzanne and Huffman, Jennifer E and Hwang, Shih-Jen and Kiechl, Stefan and Kollerits, Barbara and Montasser, May E and Nolte, Ilja M and Rudock, Megan E and Senft, Andrea and Teumer, Alexander and van der Harst, Pim and Vitart, Veronique and Waite, Lindsay L and Wood, Andrew R and Wassel, Christina L and Absher, Devin M and Allison, Matthew A and Amin, Najaf and Arnold, Alice and Asselbergs, Folkert W and Aulchenko, Yurii and Bandinelli, Stefania and Barbalic, Maja and Boban, Mladen and Brown-Gentry, Kristin and Couper, David J and Criqui, Michael H and Dehghan, Abbas and den Heijer, Martin and Dieplinger, Benjamin and Ding, Jingzhong and D{\"o}rr, Marcus and Espinola-Klein, Christine and Felix, Stephan B and Ferrucci, Luigi and Folsom, Aaron R and Fraedrich, Gustav and Gibson, Quince and Goodloe, Robert and Gunjaca, Grgo and Haltmayer, Meinhard and Heiss, Gerardo and Hofman, Albert and Kieback, Arne and Kiemeney, Lambertus A and Kolcic, Ivana and Kullo, Iftikhar J and Kritchevsky, Stephen B and Lackner, Karl J and Li, Xiaohui and Lieb, Wolfgang and Lohman, Kurt and Meisinger, Christa and Melzer, David and Mohler, Emile R and Mudnic, Ivana and Mueller, Thomas and Navis, Gerjan and Oberhollenzer, Friedrich and Olin, Jeffrey W and O{\textquoteright}Connell, Jeff and O{\textquoteright}Donnell, Christopher J and Palmas, Walter and Penninx, Brenda W and Petersmann, Astrid and Polasek, Ozren and Psaty, Bruce M and Rantner, Barbara and Rice, Ken and Rivadeneira, Fernando and Rotter, Jerome I and Seldenrijk, Adrie and Stadler, Marietta and Summerer, Monika and Tanaka, Toshiko and Tybjaerg-Hansen, Anne and Uitterlinden, Andr{\'e} G and van Gilst, Wiek H and Vermeulen, Sita H and Wild, Sarah H and Wild, Philipp S and Willeit, Johann and Zeller, Tanja and Zemunik, Tatijana and Zgaga, Lina and Assimes, Themistocles L and Blankenberg, Stefan and Boerwinkle, Eric and Campbell, Harry and Cooke, John P and de Graaf, Jacqueline and Herrington, David and Kardia, Sharon L R and Mitchell, Braxton D and Murray, Anna and M{\"u}nzel, Thomas and Newman, Anne B and Oostra, Ben A and Rudan, Igor and Shuldiner, Alan R and Snieder, Harold and van Duijn, Cornelia M and V{\"o}lker, Uwe and Wright, Alan F and Wichmann, H-Erich and Wilson, James F and Witteman, Jacqueline C M and Liu, Yongmei and Hayward, Caroline and Borecki, Ingrid B and Ziegler, Andreas and North, Kari E and Cupples, L Adrienne and Kronenberg, Florian} } @article {1554, title = {Genetic variants and associations of 25-hydroxyvitamin D concentrations with major clinical outcomes.}, journal = {JAMA}, volume = {308}, year = {2012}, month = {2012 Nov 14}, pages = {1898-905}, abstract = {

CONTEXT: Lower serum 25-hydroxyvitamin D concentrations are associated with greater risks of many chronic diseases across large, prospective community-based studies. Substrate 25-hydroxyvitamin D must be converted to 1,25-dihydroxyvitamin D for full biological activity, and complex metabolic pathways suggest that interindividual variability in vitamin D metabolism may alter the clinical consequences of measured serum 25-hydroxyvitamin D.

OBJECTIVE: To investigate whether common variation within genes encoding the vitamin D-binding protein, megalin, cubilin, CYP27B1, CYP24A1, and the vitamin D receptor (VDR) modify associations of low 25-hydroxyvitamin D with major clinical outcomes.

DESIGN, SETTING, AND PARTICIPANTS: Examination of 141 single-nucleotide polymorphisms in a discovery cohort of 1514 white participants (who were recruited from 4 US regions) from the community-based Cardiovascular Health Study. Participants had serum 25-hydroxyvitamin D measurements in 1992-1993 and were followed up for a median of 11 years (through 2006). Replication meta-analyses were conducted across the independent, community-based US Health, Aging, and Body Composition (n = 922; follow-up: 1998-1999 through 2005), Italian Invecchiare in Chianti (n = 835; follow-up: 1998-2000 through 2006), and Swedish Uppsala Longitudinal Study of Adult Men (n = 970; follow-up: 1991-1995 through 2008) cohort studies.

MAIN OUTCOME MEASURE: Composite outcome of incident hip facture, myocardial infarction, cancer, and mortality over long-term follow-up.

RESULTS: Interactions between 5 single-nucleotide polymorphisms and low 25-hydroxyvitamin D concentration were identified in the discovery phase and 1 involving a variant in the VDR gene replicated in independent meta-analysis. Among Cardiovascular Health Study participants, low 25-hydroxyvitamin D concentration was associated with hazard ratios for risk of the composite outcome of 1.40 (95\% CI, 1.12-1.74) for those who had 1 minor allele at rs7968585 and 1.82 (95\% CI, 1.31-2.54) for those with 2 minor alleles at rs7968585. In contrast, there was no evidence of an association (estimated hazard ratio, 0.93 [95\% CI, 0.70-1.24]) among participants who had 0 minor alleles at this single-nucleotide polymorphism.

CONCLUSION: Known associations of low 25-hydroxyvitamin D with major health outcomes may vary according to common genetic differences in the vitamin D receptor.

}, keywords = {25-Hydroxyvitamin D3 1-alpha-Hydroxylase, Aged, Chronic Disease, Cohort Studies, Female, Genetic Variation, Genotype, Hip Fractures, Humans, Low Density Lipoprotein Receptor-Related Protein-2, Male, Meta-Analysis as Topic, Myocardial Infarction, Neoplasms, Polymorphism, Single Nucleotide, Receptors, Calcitriol, Receptors, Cell Surface, Risk, Steroid Hydroxylases, Vitamin D, Vitamin D3 24-Hydroxylase}, issn = {1538-3598}, doi = {10.1001/jama.2012.17304}, author = {Levin, Gregory P and Robinson-Cohen, Cassianne and de Boer, Ian H and Houston, Denise K and Lohman, Kurt and Liu, Yongmei and Kritchevsky, Stephen B and Cauley, Jane A and Tanaka, Toshiko and Ferrucci, Luigi and Bandinelli, Stefania and Patel, Kushang V and Hagstr{\"o}m, Emil and Micha{\"e}lsson, Karl and Melhus, H{\r a}kan and Wang, Thomas and Wolf, Myles and Psaty, Bruce M and Siscovick, David and Kestenbaum, Bryan} } @article {1377, title = {Genome-wide association and functional follow-up reveals new loci for kidney function.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1002584}, abstract = {

Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

}, keywords = {African Americans, Aged, Animals, Caspase 9, Cyclin-Dependent Kinases, DEAD-box RNA Helicases, DNA Helicases, European Continental Ancestry Group, Female, Follow-Up Studies, Gene Knockdown Techniques, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Kidney, Kidney Failure, Chronic, Male, Middle Aged, Phosphoric Diester Hydrolases, Zebrafish}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002584}, author = {Pattaro, Cristian and K{\"o}ttgen, Anna and Teumer, Alexander and Garnaas, Maija and B{\"o}ger, Carsten A and Fuchsberger, Christian and Olden, Matthias and Chen, Ming-Huei and Tin, Adrienne and Taliun, Daniel and Li, Man and Gao, Xiaoyi and Gorski, Mathias and Yang, Qiong and Hundertmark, Claudia and Foster, Meredith C and O{\textquoteright}Seaghdha, Conall M and Glazer, Nicole and Isaacs, Aaron and Liu, Ching-Ti and Smith, Albert V and O{\textquoteright}Connell, Jeffrey R and Struchalin, Maksim and Tanaka, Toshiko and Li, Guo and Johnson, Andrew D and Gierman, Hinco J and Feitosa, Mary and Hwang, Shih-Jen and Atkinson, Elizabeth J and Lohman, Kurt and Cornelis, Marilyn C and Johansson, Asa and T{\"o}njes, Anke and Dehghan, Abbas and Chouraki, Vincent and Holliday, Elizabeth G and Sorice, Rossella and Kutalik, Zolt{\'a}n and Lehtim{\"a}ki, Terho and Esko, T{\~o}nu and Deshmukh, Harshal and Ulivi, Sheila and Chu, Audrey Y and Murgia, Federico and Trompet, Stella and Imboden, Medea and Kollerits, Barbara and Pistis, Giorgio and Harris, Tamara B and Launer, Lenore J and Aspelund, Thor and Eiriksdottir, Gudny and Mitchell, Braxton D and Boerwinkle, Eric and Schmidt, Helena and Cavalieri, Margherita and Rao, Madhumathi and Hu, Frank B and Demirkan, Ayse and Oostra, Ben A and de Andrade, Mariza and Turner, Stephen T and Ding, Jingzhong and Andrews, Jeanette S and Freedman, Barry I and Koenig, Wolfgang and Illig, Thomas and D{\"o}ring, Angela and Wichmann, H-Erich and Kolcic, Ivana and Zemunik, Tatijana and Boban, Mladen and Minelli, Cosetta and Wheeler, Heather E and Igl, Wilmar and Zaboli, Ghazal and Wild, Sarah H and Wright, Alan F and Campbell, Harry and Ellinghaus, David and N{\"o}thlings, Ute and Jacobs, Gunnar and Biffar, Reiner and Endlich, Karlhans and Ernst, Florian and Homuth, Georg and Kroemer, Heyo K and Nauck, Matthias and Stracke, Sylvia and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Kovacs, Peter and Stumvoll, Michael and M{\"a}gi, Reedik and Hofman, Albert and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Aulchenko, Yurii S and Polasek, Ozren and Hastie, Nick and Vitart, Veronique and Helmer, Catherine and Wang, Jie Jin and Ruggiero, Daniela and Bergmann, Sven and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Nikopensius, Tiit and Province, Michael and Ketkar, Shamika and Colhoun, Helen and Doney, Alex and Robino, Antonietta and Giulianini, Franco and Kr{\"a}mer, Bernhard K and Portas, Laura and Ford, Ian and Buckley, Brendan M and Adam, Martin and Thun, Gian-Andri and Paulweber, Bernhard and Haun, Margot and Sala, Cinzia and Metzger, Marie and Mitchell, Paul and Ciullo, Marina and Kim, Stuart K and Vollenweider, Peter and Raitakari, Olli and Metspalu, Andres and Palmer, Colin and Gasparini, Paolo and Pirastu, Mario and Jukema, J Wouter and Probst-Hensch, Nicole M and Kronenberg, Florian and Toniolo, Daniela and Gudnason, Vilmundur and Shuldiner, Alan R and Coresh, Josef and Schmidt, Reinhold and Ferrucci, Luigi and Siscovick, David S and van Duijn, Cornelia M and Borecki, Ingrid and Kardia, Sharon L R and Liu, Yongmei and Curhan, Gary C and Rudan, Igor and Gyllensten, Ulf and Wilson, James F and Franke, Andre and Pramstaller, Peter P and Rettig, Rainer and Prokopenko, Inga and Witteman, Jacqueline C M and Hayward, Caroline and Ridker, Paul and Parsa, Afshin and Bochud, Murielle and Heid, Iris M and Goessling, Wolfram and Chasman, Daniel I and Kao, W H Linda and Fox, Caroline S} } @article {6179, title = {Impact of ancestry and common genetic variants on QT interval in African Americans.}, journal = {Circ Cardiovasc Genet}, volume = {5}, year = {2012}, month = {2012 Dec}, pages = {647-55}, abstract = {

BACKGROUND: Ethnic differences in cardiac arrhythmia incidence have been reported, with a particularly high incidence of sudden cardiac death and low incidence of atrial fibrillation in individuals of African ancestry. We tested the hypotheses that African ancestry and common genetic variants are associated with prolonged duration of cardiac repolarization, a central pathophysiological determinant of arrhythmia, as measured by the electrocardiographic QT interval.

METHODS AND RESULTS: First, individual estimates of African and European ancestry were inferred from genome-wide single-nucleotide polymorphism (SNP) data in 7 population-based cohorts of African Americans (n=12,097) and regressed on measured QT interval from ECGs. Second, imputation was performed for 2.8 million SNPs, and a genome-wide association study of QT interval was performed in 10 cohorts (n=13,105). There was no evidence of association between genetic ancestry and QT interval (P=0.94). Genome-wide significant associations (P<2.5 {\texttimes} 10(-8)) were identified with SNPs at 2 loci, upstream of the genes NOS1AP (rs12143842, P=2 {\texttimes} 10(-15)) and ATP1B1 (rs1320976, P=2 {\texttimes} 10(-10)). The most significant SNP in NOS1AP was the same as the strongest SNP previously associated with QT interval in individuals of European ancestry. Low probability values (P<10(-5)) were observed for SNPs at several other loci previously identified in genome-wide association studies in individuals of European ancestry, including KCNQ1, KCNH2, LITAF, and PLN.

CONCLUSIONS: We observed no difference in duration of cardiac repolarization with global genetic indices of African American ancestry. In addition, our genome-wide association study extends the association of polymorphisms at several loci associated with repolarization in individuals of European ancestry to include individuals of African ancestry.

}, keywords = {Adult, African Americans, Aged, Electrocardiography, European Continental Ancestry Group, Female, Genealogy and Heraldry, Genetic Variation, Genome, Human, Genome-Wide Association Study, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.112.962787}, author = {Smith, J Gustav and Avery, Christy L and Evans, Daniel S and Nalls, Michael A and Meng, Yan A and Smith, Erin N and Palmer, Cameron and Tanaka, Toshiko and Mehra, Reena and Butler, Anne M and Young, Taylor and Buxbaum, Sarah G and Kerr, Kathleen F and Berenson, Gerald S and Schnabel, Renate B and Li, Guo and Ellinor, Patrick T and Magnani, Jared W and Chen, Wei and Bis, Joshua C and Curb, J David and Hsueh, Wen-Chi and Rotter, Jerome I and Liu, Yongmei and Newman, Anne B and Limacher, Marian C and North, Kari E and Reiner, Alexander P and Quibrera, P Miguel and Schork, Nicholas J and Singleton, Andrew B and Psaty, Bruce M and Soliman, Elsayed Z and Solomon, Allen J and Srinivasan, Sathanur R and Alonso, Alvaro and Wallace, Robert and Redline, Susan and Zhang, Zhu-Ming and Post, Wendy S and Zonderman, Alan B and Taylor, Herman A and Murray, Sarah S and Ferrucci, Luigi and Arking, Dan E and Evans, Michele K and Fox, Ervin R and Sotoodehnia, Nona and Heckbert, Susan R and Whitsel, Eric A and Newton-Cheh, Christopher} } @article {6091, title = {Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.}, journal = {Nat Genet}, volume = {44}, year = {2012}, month = {2012 Sep}, pages = {991-1005}, abstract = {

Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.

}, keywords = {Adult, Animals, Blood Glucose, Fasting, Female, Gene Frequency, Genome-Wide Association Study, Humans, Insulin, Male, Metabolic Networks and Pathways, Mice, Osmolar Concentration, Quantitative Trait Loci}, issn = {1546-1718}, doi = {10.1038/ng.2385}, author = {Scott, Robert A and Lagou, Vasiliki and Welch, Ryan P and Wheeler, Eleanor and Montasser, May E and Luan, Jian{\textquoteright}an and M{\"a}gi, Reedik and Strawbridge, Rona J and Rehnberg, Emil and Gustafsson, Stefan and Kanoni, Stavroula and Rasmussen-Torvik, Laura J and Yengo, Loic and Lecoeur, C{\'e}cile and Shungin, Dmitry and Sanna, Serena and Sidore, Carlo and Johnson, Paul C D and Jukema, J Wouter and Johnson, Toby and Mahajan, Anubha and Verweij, Niek and Thorleifsson, Gudmar and Hottenga, Jouke-Jan and Shah, Sonia and Smith, Albert V and Sennblad, Bengt and Gieger, Christian and Salo, Perttu and Perola, Markus and Timpson, Nicholas J and Evans, David M and Pourcain, Beate St and Wu, Ying and Andrews, Jeanette S and Hui, Jennie and Bielak, Lawrence F and Zhao, Wei and Horikoshi, Momoko and Navarro, Pau and Isaacs, Aaron and O{\textquoteright}Connell, Jeffrey R and Stirrups, Kathleen and Vitart, Veronique and Hayward, Caroline and Esko, T{\~o}nu and Mihailov, Evelin and Fraser, Ross M and Fall, Tove and Voight, Benjamin F and Raychaudhuri, Soumya and Chen, Han and Lindgren, Cecilia M and Morris, Andrew P and Rayner, Nigel W and Robertson, Neil and Rybin, Denis and Liu, Ching-Ti and Beckmann, Jacques S and Willems, Sara M and Chines, Peter S and Jackson, Anne U and Kang, Hyun Min and Stringham, Heather M and Song, Kijoung and Tanaka, Toshiko and Peden, John F and Goel, Anuj and Hicks, Andrew A and An, Ping and M{\"u}ller-Nurasyid, Martina and Franco-Cereceda, Anders and Folkersen, Lasse and Marullo, Letizia and Jansen, Hanneke and Oldehinkel, Albertine J and Bruinenberg, Marcel and Pankow, James S and North, Kari E and Forouhi, Nita G and Loos, Ruth J F and Edkins, Sarah and Varga, Tibor V and Hallmans, G{\"o}ran and Oksa, Heikki and Antonella, Mulas and Nagaraja, Ramaiah and Trompet, Stella and Ford, Ian and Bakker, Stephan J L and Kong, Augustine and Kumari, Meena and Gigante, Bruna and Herder, Christian and Munroe, Patricia B and Caulfield, Mark and Antti, Jula and Mangino, Massimo and Small, Kerrin and Miljkovic, Iva and Liu, Yongmei and Atalay, Mustafa and Kiess, Wieland and James, Alan L and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Palmer, Colin N A and Doney, Alex S F and Willemsen, Gonneke and Smit, Johannes H and Campbell, Susan and Polasek, Ozren and Bonnycastle, Lori L and Hercberg, Serge and Dimitriou, Maria and Bolton, Jennifer L and Fowkes, Gerard R and Kovacs, Peter and Lindstr{\"o}m, Jaana and Zemunik, Tatijana and Bandinelli, Stefania and Wild, Sarah H and Basart, Hanneke V and Rathmann, Wolfgang and Grallert, Harald and Maerz, Winfried and Kleber, Marcus E and Boehm, Bernhard O and Peters, Annette and Pramstaller, Peter P and Province, Michael A and Borecki, Ingrid B and Hastie, Nicholas D and Rudan, Igor and Campbell, Harry and Watkins, Hugh and Farrall, Martin and Stumvoll, Michael and Ferrucci, Luigi and Waterworth, Dawn M and Bergman, Richard N and Collins, Francis S and Tuomilehto, Jaakko and Watanabe, Richard M and de Geus, Eco J C and Penninx, Brenda W and Hofman, Albert and Oostra, Ben A and Psaty, Bruce M and Vollenweider, Peter and Wilson, James F and Wright, Alan F and Hovingh, G Kees and Metspalu, Andres and Uusitupa, Matti and Magnusson, Patrik K E and Kyvik, Kirsten O and Kaprio, Jaakko and Price, Jackie F and Dedoussis, George V and Deloukas, Panos and Meneton, Pierre and Lind, Lars and Boehnke, Michael and Shuldiner, Alan R and van Duijn, Cornelia M and Morris, Andrew D and Toenjes, Anke and Peyser, Patricia A and Beilby, John P and K{\"o}rner, Antje and Kuusisto, Johanna and Laakso, Markku and Bornstein, Stefan R and Schwarz, Peter E H and Lakka, Timo A and Rauramaa, Rainer and Adair, Linda S and Smith, George Davey and Spector, Tim D and Illig, Thomas and de Faire, Ulf and Hamsten, Anders and Gudnason, Vilmundur and Kivimaki, Mika and Hingorani, Aroon and Keinanen-Kiukaanniemi, Sirkka M and Saaristo, Timo E and Boomsma, Dorret I and Stefansson, Kari and van der Harst, Pim and Dupuis, Jos{\'e}e and Pedersen, Nancy L and Sattar, Naveed and Harris, Tamara B and Cucca, Francesco and Ripatti, Samuli and Salomaa, Veikko and Mohlke, Karen L and Balkau, Beverley and Froguel, Philippe and Pouta, Anneli and Jarvelin, Marjo-Riitta and Wareham, Nicholas J and Bouatia-Naji, Nabila and McCarthy, Mark I and Franks, Paul W and Meigs, James B and Teslovich, Tanya M and Florez, Jose C and Langenberg, Claudia and Ingelsson, Erik and Prokopenko, Inga and Barroso, In{\^e}s} } @article {1360, title = {Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways.}, journal = {Nat Genet}, volume = {44}, year = {2012}, month = {2012 Jan 22}, pages = {260-8}, abstract = {

To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 {\texttimes} 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-κB signaling and mitochondrial dysfunction as biological processes related to timing of menopause.

}, keywords = {Age Factors, DNA Helicases, DNA Polymerase gamma, DNA Primase, DNA Repair, DNA Repair Enzymes, DNA-Directed DNA Polymerase, European Continental Ancestry Group, Exodeoxyribonucleases, Female, Genetic Loci, Genome-Wide Association Study, Humans, Immunity, Menopause, Polymorphism, Single Nucleotide, Proteins}, issn = {1546-1718}, doi = {10.1038/ng.1051}, author = {Stolk, Lisette and Perry, John R B and Chasman, Daniel I and He, Chunyan and Mangino, Massimo and Sulem, Patrick and Barbalic, Maja and Broer, Linda and Byrne, Enda M and Ernst, Florian and Esko, T{\~o}nu and Franceschini, Nora and Gudbjartsson, Daniel F and Hottenga, Jouke-Jan and Kraft, Peter and McArdle, Patrick F and Porcu, Eleonora and Shin, So-Youn and Smith, Albert V and van Wingerden, Sophie and Zhai, Guangju and Zhuang, Wei V and Albrecht, Eva and Alizadeh, Behrooz Z and Aspelund, Thor and Bandinelli, Stefania and Lauc, Lovorka Barac and Beckmann, Jacques S and Boban, Mladen and Boerwinkle, Eric and Broekmans, Frank J and Burri, Andrea and Campbell, Harry and Chanock, Stephen J and Chen, Constance and Cornelis, Marilyn C and Corre, Tanguy and Coviello, Andrea D and D{\textquoteright}Adamo, Pio and Davies, Gail and de Faire, Ulf and de Geus, Eco J C and Deary, Ian J and Dedoussis, George V Z and Deloukas, Panagiotis and Ebrahim, Shah and Eiriksdottir, Gudny and Emilsson, Valur and Eriksson, Johan G and Fauser, Bart C J M and Ferreli, Liana and Ferrucci, Luigi and Fischer, Krista and Folsom, Aaron R and Garcia, Melissa E and Gasparini, Paolo and Gieger, Christian and Glazer, Nicole and Grobbee, Diederick E and Hall, Per and Haller, Toomas and Hankinson, Susan E and Hass, Merli and Hayward, Caroline and Heath, Andrew C and Hofman, Albert and Ingelsson, Erik and Janssens, A Cecile J W and Johnson, Andrew D and Karasik, David and Kardia, Sharon L R and Keyzer, Jules and Kiel, Douglas P and Kolcic, Ivana and Kutalik, Zolt{\'a}n and Lahti, Jari and Lai, Sandra and Laisk, Triin and Laven, Joop S E and Lawlor, Debbie A and Liu, Jianjun and Lopez, Lorna M and Louwers, Yvonne V and Magnusson, Patrik K E and Marongiu, Mara and Martin, Nicholas G and Klaric, Irena Martinovic and Masciullo, Corrado and McKnight, Barbara and Medland, Sarah E and Melzer, David and Mooser, Vincent and Navarro, Pau and Newman, Anne B and Nyholt, Dale R and Onland-Moret, N Charlotte and Palotie, Aarno and Par{\'e}, Guillaume and Parker, Alex N and Pedersen, Nancy L and Peeters, Petra H M and Pistis, Giorgio and Plump, Andrew S and Polasek, Ozren and Pop, Victor J M and Psaty, Bruce M and R{\"a}ikk{\"o}nen, Katri and Rehnberg, Emil and Rotter, Jerome I and Rudan, Igor and Sala, Cinzia and Salumets, Andres and Scuteri, Angelo and Singleton, Andrew and Smith, Jennifer A and Snieder, Harold and Soranzo, Nicole and Stacey, Simon N and Starr, John M and Stathopoulou, Maria G and Stirrups, Kathleen and Stolk, Ronald P and Styrkarsdottir, Unnur and Sun, Yan V and Tenesa, Albert and Thorand, Barbara and Toniolo, Daniela and Tryggvadottir, Laufey and Tsui, Kim and Ulivi, Sheila and van Dam, Rob M and van der Schouw, Yvonne T and van Gils, Carla H and van Nierop, Peter and Vink, Jacqueline M and Visscher, Peter M and Voorhuis, Marlies and Waeber, G{\'e}rard and Wallaschofski, Henri and Wichmann, H Erich and Widen, Elisabeth and Wijnands-van Gent, Colette J M and Willemsen, Gonneke and Wilson, James F and Wolffenbuttel, Bruce H R and Wright, Alan F and Yerges-Armstrong, Laura M and Zemunik, Tatijana and Zgaga, Lina and Zillikens, M Carola and Zygmunt, Marek and Arnold, Alice M and Boomsma, Dorret I and Buring, Julie E and Crisponi, Laura and Demerath, Ellen W and Gudnason, Vilmundur and Harris, Tamara B and Hu, Frank B and Hunter, David J and Launer, Lenore J and Metspalu, Andres and Montgomery, Grant W and Oostra, Ben A and Ridker, Paul M and Sanna, Serena and Schlessinger, David and Spector, Tim D and Stefansson, Kari and Streeten, Elizabeth A and Thorsteinsdottir, Unnur and Uda, Manuela and Uitterlinden, Andr{\'e} G and van Duijn, Cornelia M and V{\"o}lzke, Henry and Murray, Anna and Murabito, Joanne M and Visser, Jenny A and Lunetta, Kathryn L} } @article {6084, title = {Novel loci associated with PR interval in a genome-wide association study of 10 African American cohorts.}, journal = {Circ Cardiovasc Genet}, volume = {5}, year = {2012}, month = {2012 Dec}, pages = {639-46}, abstract = {

BACKGROUND: The PR interval, as measured by the resting, standard 12-lead ECG, reflects the duration of atrial/atrioventricular nodal depolarization. Substantial evidence exists for a genetic contribution to PR, including genome-wide association studies that have identified common genetic variants at 9 loci influencing PR in populations of European and Asian descent. However, few studies have examined loci associated with PR in African Americans.

METHODS AND RESULTS: We present results from the largest genome-wide association study to date of PR in 13 415 adults of African descent from 10 cohorts. We tested for association between PR (ms) and ≈2.8 million genotyped and imputed single-nucleotide polymorphisms. Imputation was performed using HapMap 2 YRI and CEU panels. Study-specific results, adjusted for global ancestry and clinical correlates of PR, were meta-analyzed using the inverse variance method. Variation in genome-wide test statistic distributions was noted within studies (λ range: 0.9-1.1), although not after genomic control correction was applied to the overall meta-analysis (λ: 1.008). In addition to generalizing previously reported associations with MEIS1, SCN5A, ARHGAP24, CAV1, and TBX5 to African American populations at the genome-wide significance level (P<5.0 {\texttimes} 10(-8)), we also identified a novel locus: ITGA9, located in a region previously implicated in SCN5A expression. The 3p21 region harboring SCN5A also contained 2 additional independent secondary signals influencing PR (P<5.0 {\texttimes} 10(-8)).

CONCLUSIONS: This study demonstrates the ability to map novel loci in African Americans as well as the generalizability of loci associated with PR across populations of African, European, and Asian descent.

}, keywords = {Adult, African Americans, Cohort Studies, Electrocardiography, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.112.963991}, author = {Butler, Anne M and Yin, Xiaoyan and Evans, Daniel S and Nalls, Michael A and Smith, Erin N and Tanaka, Toshiko and Li, Guo and Buxbaum, Sarah G and Whitsel, Eric A and Alonso, Alvaro and Arking, Dan E and Benjamin, Emelia J and Berenson, Gerald S and Bis, Josh C and Chen, Wei and Deo, Rajat and Ellinor, Patrick T and Heckbert, Susan R and Heiss, Gerardo and Hsueh, Wen-Chi and Keating, Brendan J and Kerr, Kathleen F and Li, Yun and Limacher, Marian C and Liu, Yongmei and Lubitz, Steven A and Marciante, Kristin D and Mehra, Reena and Meng, Yan A and Newman, Anne B and Newton-Cheh, Christopher and North, Kari E and Palmer, Cameron D and Psaty, Bruce M and Quibrera, P Miguel and Redline, Susan and Reiner, Alex P and Rotter, Jerome I and Schnabel, Renate B and Schork, Nicholas J and Singleton, Andrew B and Smith, J Gustav and Soliman, Elsayed Z and Srinivasan, Sathanur R and Zhang, Zhu-Ming and Zonderman, Alan B and Ferrucci, Luigi and Murray, Sarah S and Evans, Michele K and Sotoodehnia, Nona and Magnani, Jared W and Avery, Christy L} } @article {1378, title = {Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1002607}, abstract = {

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5{\texttimes}10(-8)-1.2{\texttimes}10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3{\texttimes}10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3{\texttimes}10(-3), n = 22,044), increased triglycerides (p = 2.6{\texttimes}10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8{\texttimes}10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4{\texttimes}10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5{\texttimes}10(-13), n = 96,748) and decreased BMI (p = 1.4{\texttimes}10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

}, keywords = {Adiponectin, African Americans, Asian Continental Ancestry Group, Cholesterol, HDL, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Female, Gene Expression, Genetic Predisposition to Disease, Genome-Wide Association Study, Glucose Tolerance Test, Humans, Insulin Resistance, Male, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide, Waist-Hip Ratio}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002607}, author = {Dastani, Zari and Hivert, Marie-France and Timpson, Nicholas and Perry, John R B and Yuan, Xin and Scott, Robert A and Henneman, Peter and Heid, Iris M and Kizer, Jorge R and Lyytik{\"a}inen, Leo-Pekka and Fuchsberger, Christian and Tanaka, Toshiko and Morris, Andrew P and Small, Kerrin and Isaacs, Aaron and Beekman, Marian and Coassin, Stefan and Lohman, Kurt and Qi, Lu and Kanoni, Stavroula and Pankow, James S and Uh, Hae-Won and Wu, Ying and Bidulescu, Aurelian and Rasmussen-Torvik, Laura J and Greenwood, Celia M T and Ladouceur, Martin and Grimsby, Jonna and Manning, Alisa K and Liu, Ching-Ti and Kooner, Jaspal and Mooser, Vincent E and Vollenweider, Peter and Kapur, Karen A and Chambers, John and Wareham, Nicholas J and Langenberg, Claudia and Frants, Rune and Willems-Vandijk, Ko and Oostra, Ben A and Willems, Sara M and Lamina, Claudia and Winkler, Thomas W and Psaty, Bruce M and Tracy, Russell P and Brody, Jennifer and Chen, Ida and Viikari, Jorma and K{\"a}h{\"o}nen, Mika and Pramstaller, Peter P and Evans, David M and St Pourcain, Beate and Sattar, Naveed and Wood, Andrew R and Bandinelli, Stefania and Carlson, Olga D and Egan, Josephine M and B{\"o}hringer, Stefan and van Heemst, Diana and Kedenko, Lyudmyla and Kristiansson, Kati and Nuotio, Marja-Liisa and Loo, Britt-Marie and Harris, Tamara and Garcia, Melissa and Kanaya, Alka and Haun, Margot and Klopp, Norman and Wichmann, H-Erich and Deloukas, Panos and Katsareli, Efi and Couper, David J and Duncan, Bruce B and Kloppenburg, Margreet and Adair, Linda S and Borja, Judith B and Wilson, James G and Musani, Solomon and Guo, Xiuqing and Johnson, Toby and Semple, Robert and Teslovich, Tanya M and Allison, Matthew A and Redline, Susan and Buxbaum, Sarah G and Mohlke, Karen L and Meulenbelt, Ingrid and Ballantyne, Christie M and Dedoussis, George V and Hu, Frank B and Liu, Yongmei and Paulweber, Bernhard and Spector, Timothy D and Slagboom, P Eline and Ferrucci, Luigi and Jula, Antti and Perola, Markus and Raitakari, Olli and Florez, Jose C and Salomaa, Veikko and Eriksson, Johan G and Frayling, Timothy M and Hicks, Andrew A and Lehtim{\"a}ki, Terho and Smith, George Davey and Siscovick, David S and Kronenberg, Florian and van Duijn, Cornelia and Loos, Ruth J F and Waterworth, Dawn M and Meigs, James B and Dupuis, Jos{\'e}e and Richards, J Brent and Voight, Benjamin F and Scott, Laura J and Steinthorsdottir, Valgerdur and Dina, Christian and Welch, Ryan P and Zeggini, Eleftheria and Huth, Cornelia and Aulchenko, Yurii S and Thorleifsson, Gudmar and McCulloch, Laura J and Ferreira, Teresa and Grallert, Harald and Amin, Najaf and Wu, Guanming and Willer, Cristen J and Raychaudhuri, Soumya and McCarroll, Steve A and Hofmann, Oliver M and Segr{\`e}, Ayellet V and van Hoek, Mandy and Navarro, Pau and Ardlie, Kristin and Balkau, Beverley and Benediktsson, Rafn and Bennett, Amanda J and Blagieva, Roza and Boerwinkle, Eric and Bonnycastle, Lori L and Bostr{\"o}m, Kristina Bengtsson and Bravenboer, Bert and Bumpstead, Suzannah and Burtt, Noel P and Charpentier, Guillaume and Chines, Peter S and Cornelis, Marilyn and Crawford, Gabe and Doney, Alex S F and Elliott, Katherine S and Elliott, Amanda L and Erdos, Michael R and Fox, Caroline S and Franklin, Christopher S and Ganser, Martha and Gieger, Christian and Grarup, Niels and Green, Todd and Griffin, Simon and Groves, Christopher J and Guiducci, Candace and Hadjadj, Samy and Hassanali, Neelam and Herder, Christian and Isomaa, Bo and Jackson, Anne U and Johnson, Paul R V and J{\o}rgensen, Torben and Kao, Wen H L and Kong, Augustine and Kraft, Peter and Kuusisto, Johanna and Lauritzen, Torsten and Li, Man and Lieverse, Aloysius and Lindgren, Cecilia M and Lyssenko, Valeriya and Marre, Michel and Meitinger, Thomas and Midthjell, Kristian and Morken, Mario A and Narisu, Narisu and Nilsson, Peter and Owen, Katharine R and Payne, Felicity and Petersen, Ann-Kristin and Platou, Carl and Proen{\c c}a, Christine and Prokopenko, Inga and Rathmann, Wolfgang and Rayner, N William and Robertson, Neil R and Rocheleau, Ghislain and Roden, Michael and Sampson, Michael J and Saxena, Richa and Shields, Beverley M and Shrader, Peter and Sigurdsson, Gunnar and Spars{\o}, Thomas and Strassburger, Klaus and Stringham, Heather M and Sun, Qi and Swift, Amy J and Thorand, Barbara and Tichet, Jean and Tuomi, Tiinamaija and van Dam, Rob M and van Haeften, Timon W and van Herpt, Thijs and van Vliet-Ostaptchouk, Jana V and Walters, G Bragi and Weedon, Michael N and Wijmenga, Cisca and Witteman, Jacqueline and Bergman, Richard N and Cauchi, Stephane and Collins, Francis S and Gloyn, Anna L and Gyllensten, Ulf and Hansen, Torben and Hide, Winston A and Hitman, Graham A and Hofman, Albert and Hunter, David J and Hveem, Kristian and Laakso, Markku and Morris, Andrew D and Palmer, Colin N A and Rudan, Igor and Sijbrands, Eric and Stein, Lincoln D and Tuomilehto, Jaakko and Uitterlinden, Andre and Walker, Mark and Watanabe, Richard M and Abecasis, Goncalo R and Boehm, Bernhard O and Campbell, Harry and Daly, Mark J and Hattersley, Andrew T and Pedersen, Oluf and Barroso, In{\^e}s and Groop, Leif and Sladek, Rob and Thorsteinsdottir, Unnur and Wilson, James F and Illig, Thomas and Froguel, Philippe and van Duijn, Cornelia M and Stefansson, Kari and Altshuler, David and Boehnke, Michael and McCarthy, Mark I and Soranzo, Nicole and Wheeler, Eleanor and Glazer, Nicole L and Bouatia-Naji, Nabila and M{\"a}gi, Reedik and Randall, Joshua and Elliott, Paul and Rybin, Denis and Dehghan, Abbas and Hottenga, Jouke Jan and Song, Kijoung and Goel, Anuj and Lajunen, Taina and Doney, Alex and Cavalcanti-Proen{\c c}a, Christine and Kumari, Meena and Timpson, Nicholas J and Zabena, Carina and Ingelsson, Erik and An, Ping and O{\textquoteright}Connell, Jeffrey and Luan, Jian{\textquoteright}an and Elliott, Amanda and McCarroll, Steven A and Roccasecca, Rosa Maria and Pattou, Fran{\c c}ois and Sethupathy, Praveen and Ariyurek, Yavuz and Barter, Philip and Beilby, John P and Ben-Shlomo, Yoav and Bergmann, Sven and Bochud, Murielle and Bonnefond, Am{\'e}lie and Borch-Johnsen, Knut and B{\"o}ttcher, Yvonne and Brunner, Eric and Bumpstead, Suzannah J and Chen, Yii-Der Ida and Chines, Peter and Clarke, Robert and Coin, Lachlan J M and Cooper, Matthew N and Crisponi, Laura and Day, Ian N M and de Geus, Eco J C and Delplanque, Jerome and Fedson, Annette C and Fischer-Rosinsky, Antje and Forouhi, Nita G and Franzosi, Maria Grazia and Galan, Pilar and Goodarzi, Mark O and Graessler, J{\"u}rgen and Grundy, Scott and Gwilliam, Rhian and Hallmans, G{\"o}ran and Hammond, Naomi and Han, Xijing and Hartikainen, Anna-Liisa and Hayward, Caroline and Heath, Simon C and Hercberg, Serge and Hillman, David R and Hingorani, Aroon D and Hui, Jennie and Hung, Joe and Kaakinen, Marika and Kaprio, Jaakko and Kesaniemi, Y Antero and Kivimaki, Mika and Knight, Beatrice and Koskinen, Seppo and Kovacs, Peter and Kyvik, Kirsten Ohm and Lathrop, G Mark and Lawlor, Debbie A and Le Bacquer, Olivier and Lecoeur, C{\'e}cile and Li, Yun and Mahley, Robert and Mangino, Massimo and Mart{\'\i}nez-Larrad, Mar{\'\i}a Teresa and McAteer, Jarred B and McPherson, Ruth and Meisinger, Christa and Melzer, David and Meyre, David and Mitchell, Braxton D and Mukherjee, Sutapa and Naitza, Silvia and Neville, Matthew J and Orr{\`u}, Marco and Pakyz, Ruth and Paolisso, Giuseppe and Pattaro, Cristian and Pearson, Daniel and Peden, John F and Pedersen, Nancy L and Pfeiffer, Andreas F H and Pichler, Irene and Polasek, Ozren and Posthuma, Danielle and Potter, Simon C and Pouta, Anneli and Province, Michael A and Rayner, Nigel W and Rice, Kenneth and Ripatti, Samuli and Rivadeneira, Fernando and Rolandsson, Olov and Sandbaek, Annelli and Sandhu, Manjinder and Sanna, Serena and Sayer, Avan Aihie and Scheet, Paul and Seedorf, Udo and Sharp, Stephen J and Shields, Beverley and Sigur{\dh}sson, Gunnar and Sijbrands, Eric J G and Silveira, Angela and Simpson, Laila and Singleton, Andrew and Smith, Nicholas L and Sovio, Ulla and Swift, Amy and Syddall, Holly and Syv{\"a}nen, Ann-Christine and T{\"o}njes, Anke and Uitterlinden, Andr{\'e} G and van Dijk, Ko Willems and Varma, Dhiraj and Visvikis-Siest, Sophie and Vitart, Veronique and Vogelzangs, Nicole and Waeber, G{\'e}rard and Wagner, Peter J and Walley, Andrew and Ward, Kim L and Watkins, Hugh and Wild, Sarah H and Willemsen, Gonneke and Witteman, Jaqueline C M and Yarnell, John W G and Zelenika, Diana and Zethelius, Bj{\"o}rn and Zhai, Guangju and Zhao, Jing Hua and Zillikens, M Carola and Borecki, Ingrid B and Meneton, Pierre and Magnusson, Patrik K E and Nathan, David M and Williams, Gordon H and Silander, Kaisa and Bornstein, Stefan R and Schwarz, Peter and Spranger, Joachim and Karpe, Fredrik and Shuldiner, Alan R and Cooper, Cyrus and Serrano-R{\'\i}os, Manuel and Lind, Lars and Palmer, Lyle J and Hu, Frank B and Franks, Paul W and Ebrahim, Shah and Marmot, Michael and Kao, W H Linda and Pramstaller, Peter Paul and Wright, Alan F and Stumvoll, Michael and Hamsten, Anders and Buchanan, Thomas A and Valle, Timo T and Rotter, Jerome I and Penninx, Brenda W J H and Boomsma, Dorret I and Cao, Antonio and Scuteri, Angelo and Schlessinger, David and Uda, Manuela and Ruokonen, Aimo and Jarvelin, Marjo-Riitta and Peltonen, Leena and Mooser, Vincent and Sladek, Robert and Musunuru, Kiran and Smith, Albert V and Edmondson, Andrew C and Stylianou, Ioannis M and Koseki, Masahiro and Pirruccello, James P and Chasman, Daniel I and Johansen, Christopher T and Fouchier, Sigrid W and Peloso, Gina M and Barbalic, Maja and Ricketts, Sally L and Bis, Joshua C and Feitosa, Mary F and Orho-Melander, Marju and Melander, Olle and Li, Xiaohui and Li, Mingyao and Cho, Yoon Shin and Go, Min Jin and Kim, Young Jin and Lee, Jong-Young and Park, Taesung and Kim, Kyunga and Sim, Xueling and Ong, Rick Twee-Hee and Croteau-Chonka, Damien C and Lange, Leslie A and Smith, Joshua D and Ziegler, Andreas and Zhang, Weihua and Zee, Robert Y L and Whitfield, John B and Thompson, John R and Surakka, Ida and Spector, Tim D and Smit, Johannes H and Sinisalo, Juha and Scott, James and Saharinen, Juha and Sabatti, Chiara and Rose, Lynda M and Roberts, Robert and Rieder, Mark and Parker, Alex N and Par{\'e}, Guillaume and O{\textquoteright}Donnell, Christopher J and Nieminen, Markku S and Nickerson, Deborah A and Montgomery, Grant W and McArdle, Wendy and Masson, David and Martin, Nicholas G and Marroni, Fabio and Lucas, Gavin and Luben, Robert and Lokki, Marja-Liisa and Lettre, Guillaume and Launer, Lenore J and Lakatta, Edward G and Laaksonen, Reijo and Kyvik, Kirsten O and K{\"o}nig, Inke R and Khaw, Kay-Tee and Kaplan, Lee M and Johansson, Asa and Janssens, A Cecile J W and Igl, Wilmar and Hovingh, G Kees and Hengstenberg, Christian and Havulinna, Aki S and Hastie, Nicholas D and Harris, Tamara B and Haritunians, Talin and Hall, Alistair S and Groop, Leif C and Gonzalez, Elena and Freimer, Nelson B and Erdmann, Jeanette and Ejebe, Kenechi G and D{\"o}ring, Angela and Dominiczak, Anna F and Demissie, Serkalem and Deloukas, Panagiotis and de Faire, Ulf and Crawford, Gabriel and Chen, Yii-der I and Caulfield, Mark J and Boekholdt, S Matthijs and Assimes, Themistocles L and Quertermous, Thomas and Seielstad, Mark and Wong, Tien Y and Tai, E-Shyong and Feranil, Alan B and Kuzawa, Christopher W and Taylor, Herman A and Gabriel, Stacey B and Holm, Hilma and Gudnason, Vilmundur and Krauss, Ronald M and Ordovas, Jose M and Munroe, Patricia B and Kooner, Jaspal S and Tall, Alan R and Hegele, Robert A and Kastelein, John J P and Schadt, Eric E and Strachan, David P and Reilly, Muredach P and Samani, Nilesh J and Schunkert, Heribert and Cupples, L Adrienne and Sandhu, Manjinder S and Ridker, Paul M and Rader, Daniel J and Kathiresan, Sekar} } @article {6284, title = {Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease.}, journal = {Am J Clin Nutr}, volume = {98}, year = {2013}, month = {2013 Sep}, pages = {668-76}, abstract = {

BACKGROUND: The strong observational association between total homocysteine (tHcy) concentrations and risk of coronary artery disease (CAD) and the null associations in the homocysteine-lowering trials have prompted the need to identify genetic variants associated with homocysteine concentrations and risk of CAD.

OBJECTIVE: We tested whether common genetic polymorphisms associated with variation in tHcy are also associated with CAD.

DESIGN: We conducted a meta-analysis of genome-wide association studies (GWAS) on tHcy concentrations in 44,147 individuals of European descent. Polymorphisms associated with tHcy (P < 10($^{-}$$^{8}$) were tested for association with CAD in 31,400 cases and 92,927 controls.

RESULTS: Common variants at 13 loci, explaining 5.9\% of the variation in tHcy, were associated with tHcy concentrations, including 6 novel loci in or near MMACHC (2.1 {\texttimes} 10$^{-}$$^{9}$), SLC17A3 (1.0 {\texttimes} 10$^{-}$$^{8}$), GTPB10 (1.7 {\texttimes} 10$^{-}$$^{8}$), CUBN (7.5 {\texttimes} 10$^{-}${\textonesuperior}$^{0}$), HNF1A (1.2 {\texttimes} 10$^{-}${\textonesuperior}{\texttwosuperior})), and FUT2 (6.6 {\texttimes} 10$^{-}$$^{9}$), and variants previously reported at or near the MTHFR, MTR, CPS1, MUT, NOX4, DPEP1, and CBS genes. Individuals within the highest 10\% of the genotype risk score (GRS) had 3-μmol/L higher mean tHcy concentrations than did those within the lowest 10\% of the GRS (P = 1 {\texttimes} 10$^{-}${\textthreesuperior}$^{6}$). The GRS was not associated with risk of CAD (OR: 1.01; 95\% CI: 0.98, 1.04; P = 0.49).

CONCLUSIONS: We identified several novel loci that influence plasma tHcy concentrations. Overall, common genetic variants that influence plasma tHcy concentrations are not associated with risk of CAD in white populations, which further refutes the causal relevance of moderately elevated tHcy concentrations and tHcy-related pathways for CAD.

}, keywords = {Coronary Artery Disease, Genes, Genetic Loci, Genetic Predisposition to Disease, Genotype, Homocysteine, Humans, Polymorphism, Genetic, Risk Factors}, issn = {1938-3207}, doi = {10.3945/ajcn.112.044545}, author = {van Meurs, Joyce B J and Par{\'e}, Guillaume and Schwartz, Stephen M and Hazra, Aditi and Tanaka, Toshiko and Vermeulen, Sita H and Cotlarciuc, Ioana and Yuan, Xin and M{\"a}larstig, Anders and Bandinelli, Stefania and Bis, Joshua C and Blom, Henk and Brown, Morris J and Chen, Constance and Chen, Yii-Der and Clarke, Robert J and Dehghan, Abbas and Erdmann, Jeanette and Ferrucci, Luigi and Hamsten, Anders and Hofman, Albert and Hunter, David J and Goel, Anuj and Johnson, Andrew D and Kathiresan, Sekar and Kampman, Ellen and Kiel, Douglas P and Kiemeney, Lambertus A L M and Chambers, John C and Kraft, Peter and Lindemans, Jan and McKnight, Barbara and Nelson, Christopher P and O{\textquoteright}Donnell, Christopher J and Psaty, Bruce M and Ridker, Paul M and Rivadeneira, Fernando and Rose, Lynda M and Seedorf, Udo and Siscovick, David S and Schunkert, Heribert and Selhub, Jacob and Ueland, Per M and Vollenweider, Peter and Waeber, G{\'e}rard and Waterworth, Dawn M and Watkins, Hugh and Witteman, Jacqueline C M and den Heijer, Martin and Jacques, Paul and Uitterlinden, Andr{\'e} G and Kooner, Jaspal S and Rader, Dan J and Reilly, Muredach P and Mooser, Vincent and Chasman, Daniel I and Samani, Nilesh J and Ahmadi, Kourosh R} } @article {8014, title = {Common variants associated with plasma triglycerides and risk for coronary artery disease.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 Nov}, pages = {1345-52}, abstract = {

Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 {\texttimes} 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism{\textquoteright}s effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.

}, keywords = {Biological Transport, Cholesterol, HDL, Cholesterol, LDL, Coronary Artery Disease, Humans, Polymorphism, Single Nucleotide, Risk Factors, Triglycerides}, issn = {1546-1718}, doi = {10.1038/ng.2795}, author = {Do, Ron and Willer, Cristen J and Schmidt, Ellen M and Sengupta, Sebanti and Gao, Chi and Peloso, Gina M and Gustafsson, Stefan and Kanoni, Stavroula and Ganna, Andrea and Chen, Jin and Buchkovich, Martin L and Mora, Samia and Beckmann, Jacques S and Bragg-Gresham, Jennifer L and Chang, Hsing-Yi and Demirkan, Ayse and Den Hertog, Heleen M and Donnelly, Louise A and Ehret, Georg B and Esko, T{\~o}nu and Feitosa, Mary F and Ferreira, Teresa and Fischer, Krista and Fontanillas, Pierre and Fraser, Ross M and Freitag, Daniel F and Gurdasani, Deepti and Heikkil{\"a}, Kauko and Hypp{\"o}nen, Elina and Isaacs, Aaron and Jackson, Anne U and Johansson, Asa and Johnson, Toby and Kaakinen, Marika and Kettunen, Johannes and Kleber, Marcus E and Li, Xiaohui and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Magnusson, Patrik K E and Mangino, Massimo and Mihailov, Evelin and Montasser, May E and M{\"u}ller-Nurasyid, Martina and Nolte, Ilja M and O{\textquoteright}Connell, Jeffrey R and Palmer, Cameron D and Perola, Markus and Petersen, Ann-Kristin and Sanna, Serena and Saxena, Richa and Service, Susan K and Shah, Sonia and Shungin, Dmitry and Sidore, Carlo and Song, Ci and Strawbridge, Rona J and Surakka, Ida and Tanaka, Toshiko and Teslovich, Tanya M and Thorleifsson, Gudmar and van den Herik, Evita G and Voight, Benjamin F and Volcik, Kelly A and Waite, Lindsay L and Wong, Andrew and Wu, Ying and Zhang, Weihua and Absher, Devin and Asiki, Gershim and Barroso, In{\^e}s and Been, Latonya F and Bolton, Jennifer L and Bonnycastle, Lori L and Brambilla, Paolo and Burnett, Mary S and Cesana, Giancarlo and Dimitriou, Maria and Doney, Alex S F and D{\"o}ring, Angela and Elliott, Paul and Epstein, Stephen E and Eyjolfsson, Gudmundur Ingi and Gigante, Bruna and Goodarzi, Mark O and Grallert, Harald and Gravito, Martha L and Groves, Christopher J and Hallmans, G{\"o}ran and Hartikainen, Anna-Liisa and Hayward, Caroline and Hernandez, Dena and Hicks, Andrew A and Holm, Hilma and Hung, Yi-Jen and Illig, Thomas and Jones, Michelle R and Kaleebu, Pontiano and Kastelein, John J P and Khaw, Kay-Tee and Kim, Eric and Klopp, Norman and Komulainen, Pirjo and Kumari, Meena and Langenberg, Claudia and Lehtim{\"a}ki, Terho and Lin, Shih-Yi and Lindstr{\"o}m, Jaana and Loos, Ruth J F and Mach, Fran{\c c}ois and McArdle, Wendy L and Meisinger, Christa and Mitchell, Braxton D and M{\"u}ller, Gabrielle and Nagaraja, Ramaiah and Narisu, Narisu and Nieminen, Tuomo V M and Nsubuga, Rebecca N and Olafsson, Isleifur and Ong, Ken K and Palotie, Aarno and Papamarkou, Theodore and Pomilla, Cristina and Pouta, Anneli and Rader, Daniel J and Reilly, Muredach P and Ridker, Paul M and Rivadeneira, Fernando and Rudan, Igor and Ruokonen, Aimo and Samani, Nilesh and Scharnagl, Hubert and Seeley, Janet and Silander, Kaisa and Stan{\v c}{\'a}kov{\'a}, Alena and Stirrups, Kathleen and Swift, Amy J and Tiret, Laurence and Uitterlinden, Andr{\'e} G and van Pelt, L Joost and Vedantam, Sailaja and Wainwright, Nicholas and Wijmenga, Cisca and Wild, Sarah H and Willemsen, Gonneke and Wilsgaard, Tom and Wilson, James F and Young, Elizabeth H and Zhao, Jing Hua and Adair, Linda S and Arveiler, Dominique and Assimes, Themistocles L and Bandinelli, Stefania and Bennett, Franklyn and Bochud, Murielle and Boehm, Bernhard O and Boomsma, Dorret I and Borecki, Ingrid B and Bornstein, Stefan R and Bovet, Pascal and Burnier, Michel and Campbell, Harry and Chakravarti, Aravinda and Chambers, John C and Chen, Yii-Der Ida and Collins, Francis S and Cooper, Richard S and Danesh, John and Dedoussis, George and de Faire, Ulf and Feranil, Alan B and Ferrieres, Jean and Ferrucci, Luigi and Freimer, Nelson B and Gieger, Christian and Groop, Leif C and Gudnason, Vilmundur and Gyllensten, Ulf and Hamsten, Anders and Harris, Tamara B and Hingorani, Aroon and Hirschhorn, Joel N and Hofman, Albert and Hovingh, G Kees and Hsiung, Chao Agnes and Humphries, Steve E and Hunt, Steven C and Hveem, Kristian and Iribarren, Carlos and Jarvelin, Marjo-Riitta and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kaprio, Jaakko and Kes{\"a}niemi, Antero and Kivimaki, Mika and Kooner, Jaspal S and Koudstaal, Peter J and Krauss, Ronald M and Kuh, Diana and Kuusisto, Johanna and Kyvik, Kirsten O and Laakso, Markku and Lakka, Timo A and Lind, Lars and Lindgren, Cecilia M and Martin, Nicholas G and M{\"a}rz, Winfried and McCarthy, Mark I and McKenzie, Colin A and Meneton, Pierre and Metspalu, Andres and Moilanen, Leena and Morris, Andrew D and Munroe, Patricia B and Nj{\o}lstad, Inger and Pedersen, Nancy L and Power, Chris and Pramstaller, Peter P and Price, Jackie F and Psaty, Bruce M and Quertermous, Thomas and Rauramaa, Rainer and Saleheen, Danish and Salomaa, Veikko and Sanghera, Dharambir K and Saramies, Jouko and Schwarz, Peter E H and Sheu, Wayne H-H and Shuldiner, Alan R and Siegbahn, Agneta and Spector, Tim D and Stefansson, Kari and Strachan, David P and Tayo, Bamidele O and Tremoli, Elena and Tuomilehto, Jaakko and Uusitupa, Matti and van Duijn, Cornelia M and Vollenweider, Peter and Wallentin, Lars and Wareham, Nicholas J and Whitfield, John B and Wolffenbuttel, Bruce H R and Altshuler, David and Ordovas, Jose M and Boerwinkle, Eric and Palmer, Colin N A and Thorsteinsdottir, Unnur and Chasman, Daniel I and Rotter, Jerome I and Franks, Paul W and Ripatti, Samuli and Cupples, L Adrienne and Sandhu, Manjinder S and Rich, Stephen S and Boehnke, Michael and Deloukas, Panos and Mohlke, Karen L and Ingelsson, Erik and Abecasis, Goncalo R and Daly, Mark J and Neale, Benjamin M and Kathiresan, Sekar} } @article {6288, title = {Common variants in Mendelian kidney disease genes and their association with renal function.}, journal = {J Am Soc Nephrol}, volume = {24}, year = {2013}, month = {2013 Dec}, pages = {2105-17}, abstract = {

Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5\%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

}, keywords = {Databases, Genetic, European Continental Ancestry Group, Gene Frequency, Genetic Variation, Genome-Wide Association Study, Humans, Kidney, Mendelian Randomization Analysis, Phenotype, Polymorphism, Single Nucleotide, Renal Insufficiency, Chronic}, issn = {1533-3450}, doi = {10.1681/ASN.2012100983}, author = {Parsa, Afshin and Fuchsberger, Christian and K{\"o}ttgen, Anna and O{\textquoteright}Seaghdha, Conall M and Pattaro, Cristian and de Andrade, Mariza and Chasman, Daniel I and Teumer, Alexander and Endlich, Karlhans and Olden, Matthias and Chen, Ming-Huei and Tin, Adrienne and Kim, Young J and Taliun, Daniel and Li, Man and Feitosa, Mary and Gorski, Mathias and Yang, Qiong and Hundertmark, Claudia and Foster, Meredith C and Glazer, Nicole and Isaacs, Aaron and Rao, Madhumathi and Smith, Albert V and O{\textquoteright}Connell, Jeffrey R and Struchalin, Maksim and Tanaka, Toshiko and Li, Guo and Hwang, Shih-Jen and Atkinson, Elizabeth J and Lohman, Kurt and Cornelis, Marilyn C and Johansson, Asa and T{\"o}njes, Anke and Dehghan, Abbas and Couraki, Vincent and Holliday, Elizabeth G and Sorice, Rossella and Kutalik, Zolt{\'a}n and Lehtim{\"a}ki, Terho and Esko, T{\~o}nu and Deshmukh, Harshal and Ulivi, Sheila and Chu, Audrey Y and Murgia, Federico and Trompet, Stella and Imboden, Medea and Kollerits, Barbara and Pistis, Giorgio and Harris, Tamara B and Launer, Lenore J and Aspelund, Thor and Eiriksdottir, Gudny and Mitchell, Braxton D and Boerwinkle, Eric and Schmidt, Helena and Hofer, Edith and Hu, Frank and Demirkan, Ayse and Oostra, Ben A and Turner, Stephen T and Ding, Jingzhong and Andrews, Jeanette S and Freedman, Barry I and Giulianini, Franco and Koenig, Wolfgang and Illig, Thomas and D{\"o}ring, Angela and Wichmann, H-Erich and Zgaga, Lina and Zemunik, Tatijana and Boban, Mladen and Minelli, Cosetta and Wheeler, Heather E and Igl, Wilmar and Zaboli, Ghazal and Wild, Sarah H and Wright, Alan F and Campbell, Harry and Ellinghaus, David and N{\"o}thlings, Ute and Jacobs, Gunnar and Biffar, Reiner and Ernst, Florian and Homuth, Georg and Kroemer, Heyo K and Nauck, Matthias and Stracke, Sylvia and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Kovacs, Peter and Stumvoll, Michael and M{\"a}gi, Reedik and Hofman, Albert and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Aulchenko, Yurii S and Polasek, Ozren and Hastie, Nick and Vitart, Veronique and Helmer, Catherine and Wang, Jie Jin and Stengel, B{\'e}n{\'e}dicte and Ruggiero, Daniela and Bergmann, Sven and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Nikopensius, Tiit and Province, Michael and Colhoun, Helen and Doney, Alex and Robino, Antonietta and Kr{\"a}mer, Bernhard K and Portas, Laura and Ford, Ian and Buckley, Brendan M and Adam, Martin and Thun, Gian-Andri and Paulweber, Bernhard and Haun, Margot and Sala, Cinzia and Mitchell, Paul and Ciullo, Marina and Vollenweider, Peter and Raitakari, Olli and Metspalu, Andres and Palmer, Colin and Gasparini, Paolo and Pirastu, Mario and Jukema, J Wouter and Probst-Hensch, Nicole M and Kronenberg, Florian and Toniolo, Daniela and Gudnason, Vilmundur and Shuldiner, Alan R and Coresh, Josef and Schmidt, Reinhold and Ferrucci, Luigi and van Duijn, Cornelia M and Borecki, Ingrid and Kardia, Sharon L R and Liu, Yongmei and Curhan, Gary C and Rudan, Igor and Gyllensten, Ulf and Wilson, James F and Franke, Andre and Pramstaller, Peter P and Rettig, Rainer and Prokopenko, Inga and Witteman, Jacqueline and Hayward, Caroline and Ridker, Paul M and Bochud, Murielle and Heid, Iris M and Siscovick, David S and Fox, Caroline S and Kao, W Linda and B{\"o}ger, Carsten A} } @article {6154, title = {Discovery and refinement of loci associated with lipid levels.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 Nov}, pages = {1274-1283}, abstract = {

Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 {\texttimes} 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.

}, keywords = {African Continental Ancestry Group, Asian Continental Ancestry Group, Cholesterol, HDL, Cholesterol, LDL, Coronary Artery Disease, European Continental Ancestry Group, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Lipids, Triglycerides}, issn = {1546-1718}, doi = {10.1038/ng.2797}, author = {Willer, Cristen J and Schmidt, Ellen M and Sengupta, Sebanti and Peloso, Gina M and Gustafsson, Stefan and Kanoni, Stavroula and Ganna, Andrea and Chen, Jin and Buchkovich, Martin L and Mora, Samia and Beckmann, Jacques S and Bragg-Gresham, Jennifer L and Chang, Hsing-Yi and Demirkan, Ayse and Den Hertog, Heleen M and Do, Ron and Donnelly, Louise A and Ehret, Georg B and Esko, T{\~o}nu and Feitosa, Mary F and Ferreira, Teresa and Fischer, Krista and Fontanillas, Pierre and Fraser, Ross M and Freitag, Daniel F and Gurdasani, Deepti and Heikkil{\"a}, Kauko and Hypp{\"o}nen, Elina and Isaacs, Aaron and Jackson, Anne U and Johansson, Asa and Johnson, Toby and Kaakinen, Marika and Kettunen, Johannes and Kleber, Marcus E and Li, Xiaohui and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Magnusson, Patrik K E and Mangino, Massimo and Mihailov, Evelin and Montasser, May E and M{\"u}ller-Nurasyid, Martina and Nolte, Ilja M and O{\textquoteright}Connell, Jeffrey R and Palmer, Cameron D and Perola, Markus and Petersen, Ann-Kristin and Sanna, Serena and Saxena, Richa and Service, Susan K and Shah, Sonia and Shungin, Dmitry and Sidore, Carlo and Song, Ci and Strawbridge, Rona J and Surakka, Ida and Tanaka, Toshiko and Teslovich, Tanya M and Thorleifsson, Gudmar and van den Herik, Evita G and Voight, Benjamin F and Volcik, Kelly A and Waite, Lindsay L and Wong, Andrew and Wu, Ying and Zhang, Weihua and Absher, Devin and Asiki, Gershim and Barroso, In{\^e}s and Been, Latonya F and Bolton, Jennifer L and Bonnycastle, Lori L and Brambilla, Paolo and Burnett, Mary S and Cesana, Giancarlo and Dimitriou, Maria and Doney, Alex S F and D{\"o}ring, Angela and Elliott, Paul and Epstein, Stephen E and Ingi Eyjolfsson, Gudmundur and Gigante, Bruna and Goodarzi, Mark O and Grallert, Harald and Gravito, Martha L and Groves, Christopher J and Hallmans, G{\"o}ran and Hartikainen, Anna-Liisa and Hayward, Caroline and Hernandez, Dena and Hicks, Andrew A and Holm, Hilma and Hung, Yi-Jen and Illig, Thomas and Jones, Michelle R and Kaleebu, Pontiano and Kastelein, John J P and Khaw, Kay-Tee and Kim, Eric and Klopp, Norman and Komulainen, Pirjo and Kumari, Meena and Langenberg, Claudia and Lehtim{\"a}ki, Terho and Lin, Shih-Yi and Lindstr{\"o}m, Jaana and Loos, Ruth J F and Mach, Fran{\c c}ois and McArdle, Wendy L and Meisinger, Christa and Mitchell, Braxton D and M{\"u}ller, Gabrielle and Nagaraja, Ramaiah and Narisu, Narisu and Nieminen, Tuomo V M and Nsubuga, Rebecca N and Olafsson, Isleifur and Ong, Ken K and Palotie, Aarno and Papamarkou, Theodore and Pomilla, Cristina and Pouta, Anneli and Rader, Daniel J and Reilly, Muredach P and Ridker, Paul M and Rivadeneira, Fernando and Rudan, Igor and Ruokonen, Aimo and Samani, Nilesh and Scharnagl, Hubert and Seeley, Janet and Silander, Kaisa and Stan{\v c}{\'a}kov{\'a}, Alena and Stirrups, Kathleen and Swift, Amy J and Tiret, Laurence and Uitterlinden, Andr{\'e} G and van Pelt, L Joost and Vedantam, Sailaja and Wainwright, Nicholas and Wijmenga, Cisca and Wild, Sarah H and Willemsen, Gonneke and Wilsgaard, Tom and Wilson, James F and Young, Elizabeth H and Zhao, Jing Hua and Adair, Linda S and Arveiler, Dominique and Assimes, Themistocles L and Bandinelli, Stefania and Bennett, Franklyn and Bochud, Murielle and Boehm, Bernhard O and Boomsma, Dorret I and Borecki, Ingrid B and Bornstein, Stefan R and Bovet, Pascal and Burnier, Michel and Campbell, Harry and Chakravarti, Aravinda and Chambers, John C and Chen, Yii-Der Ida and Collins, Francis S and Cooper, Richard S and Danesh, John and Dedoussis, George and de Faire, Ulf and Feranil, Alan B and Ferrieres, Jean and Ferrucci, Luigi and Freimer, Nelson B and Gieger, Christian and Groop, Leif C and Gudnason, Vilmundur and Gyllensten, Ulf and Hamsten, Anders and Harris, Tamara B and Hingorani, Aroon and Hirschhorn, Joel N and Hofman, Albert and Hovingh, G Kees and Hsiung, Chao Agnes and Humphries, Steve E and Hunt, Steven C and Hveem, Kristian and Iribarren, Carlos and Jarvelin, Marjo-Riitta and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kaprio, Jaakko and Kes{\"a}niemi, Antero and Kivimaki, Mika and Kooner, Jaspal S and Koudstaal, Peter J and Krauss, Ronald M and Kuh, Diana and Kuusisto, Johanna and Kyvik, Kirsten O and Laakso, Markku and Lakka, Timo A and Lind, Lars and Lindgren, Cecilia M and Martin, Nicholas G and M{\"a}rz, Winfried and McCarthy, Mark I and McKenzie, Colin A and Meneton, Pierre and Metspalu, Andres and Moilanen, Leena and Morris, Andrew D and Munroe, Patricia B and Nj{\o}lstad, Inger and Pedersen, Nancy L and Power, Chris and Pramstaller, Peter P and Price, Jackie F and Psaty, Bruce M and Quertermous, Thomas and Rauramaa, Rainer and Saleheen, Danish and Salomaa, Veikko and Sanghera, Dharambir K and Saramies, Jouko and Schwarz, Peter E H and Sheu, Wayne H-H and Shuldiner, Alan R and Siegbahn, Agneta and Spector, Tim D and Stefansson, Kari and Strachan, David P and Tayo, Bamidele O and Tremoli, Elena and Tuomilehto, Jaakko and Uusitupa, Matti and van Duijn, Cornelia M and Vollenweider, Peter and Wallentin, Lars and Wareham, Nicholas J and Whitfield, John B and Wolffenbuttel, Bruce H R and Ordovas, Jose M and Boerwinkle, Eric and Palmer, Colin N A and Thorsteinsdottir, Unnur and Chasman, Daniel I and Rotter, Jerome I and Franks, Paul W and Ripatti, Samuli and Cupples, L Adrienne and Sandhu, Manjinder S and Rich, Stephen S and Boehnke, Michael and Deloukas, Panos and Kathiresan, Sekar and Mohlke, Karen L and Ingelsson, Erik and Abecasis, Goncalo R} } @article {6075, title = {Genome-wide association analyses identify 18 new loci associated with serum urate concentrations.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 Feb}, pages = {145-54}, abstract = {

Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.

}, keywords = {Analysis of Variance, European Continental Ancestry Group, Gene Frequency, Genetic Loci, Genome-Wide Association Study, Glucose, Gout, Humans, Inhibins, Polymorphism, Single Nucleotide, Signal Transduction, Uric Acid}, issn = {1546-1718}, doi = {10.1038/ng.2500}, author = {K{\"o}ttgen, Anna and Albrecht, Eva and Teumer, Alexander and Vitart, Veronique and Krumsiek, Jan and Hundertmark, Claudia and Pistis, Giorgio and Ruggiero, Daniela and O{\textquoteright}Seaghdha, Conall M and Haller, Toomas and Yang, Qiong and Tanaka, Toshiko and Johnson, Andrew D and Kutalik, Zolt{\'a}n and Smith, Albert V and Shi, Julia and Struchalin, Maksim and Middelberg, Rita P S and Brown, Morris J and Gaffo, Angelo L and Pirastu, Nicola and Li, Guo and Hayward, Caroline and Zemunik, Tatijana and Huffman, Jennifer and Yengo, Loic and Zhao, Jing Hua and Demirkan, Ayse and Feitosa, Mary F and Liu, Xuan and Malerba, Giovanni and Lopez, Lorna M and van der Harst, Pim and Li, Xinzhong and Kleber, Marcus E and Hicks, Andrew A and Nolte, Ilja M and Johansson, Asa and Murgia, Federico and Wild, Sarah H and Bakker, Stephan J L and Peden, John F and Dehghan, Abbas and Steri, Maristella and Tenesa, Albert and Lagou, Vasiliki and Salo, Perttu and Mangino, Massimo and Rose, Lynda M and Lehtim{\"a}ki, Terho and Woodward, Owen M and Okada, Yukinori and Tin, Adrienne and M{\"u}ller, Christian and Oldmeadow, Christopher and Putku, Margus and Czamara, Darina and Kraft, Peter and Frogheri, Laura and Thun, Gian Andri and Grotevendt, Anne and Gislason, Gauti Kjartan and Harris, Tamara B and Launer, Lenore J and McArdle, Patrick and Shuldiner, Alan R and Boerwinkle, Eric and Coresh, Josef and Schmidt, Helena and Schallert, Michael and Martin, Nicholas G and Montgomery, Grant W and Kubo, Michiaki and Nakamura, Yusuke and Tanaka, Toshihiro and Munroe, Patricia B and Samani, Nilesh J and Jacobs, David R and Liu, Kiang and D{\textquoteright}Adamo, Pio and Ulivi, Sheila and Rotter, Jerome I and Psaty, Bruce M and Vollenweider, Peter and Waeber, G{\'e}rard and Campbell, Susan and Devuyst, Olivier and Navarro, Pau and Kolcic, Ivana and Hastie, Nicholas and Balkau, Beverley and Froguel, Philippe and Esko, T{\~o}nu and Salumets, Andres and Khaw, Kay Tee and Langenberg, Claudia and Wareham, Nicholas J and Isaacs, Aaron and Kraja, Aldi and Zhang, Qunyuan and Wild, Philipp S and Scott, Rodney J and Holliday, Elizabeth G and Org, Elin and Viigimaa, Margus and Bandinelli, Stefania and Metter, Jeffrey E and Lupo, Antonio and Trabetti, Elisabetta and Sorice, Rossella and D{\"o}ring, Angela and Lattka, Eva and Strauch, Konstantin and Theis, Fabian and Waldenberger, Melanie and Wichmann, H-Erich and Davies, Gail and Gow, Alan J and Bruinenberg, Marcel and Stolk, Ronald P and Kooner, Jaspal S and Zhang, Weihua and Winkelmann, Bernhard R and Boehm, Bernhard O and Lucae, Susanne and Penninx, Brenda W and Smit, Johannes H and Curhan, Gary and Mudgal, Poorva and Plenge, Robert M and Portas, Laura and Persico, Ivana and Kirin, Mirna and Wilson, James F and Mateo Leach, Irene and van Gilst, Wiek H and Goel, Anuj and Ongen, Halit and Hofman, Albert and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Imboden, Medea and von Eckardstein, Arnold and Cucca, Francesco and Nagaraja, Ramaiah and Piras, Maria Grazia and Nauck, Matthias and Schurmann, Claudia and Budde, Kathrin and Ernst, Florian and Farrington, Susan M and Theodoratou, Evropi and Prokopenko, Inga and Stumvoll, Michael and Jula, Antti and Perola, Markus and Salomaa, Veikko and Shin, So-Youn and Spector, Tim D and Sala, Cinzia and Ridker, Paul M and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Hengstenberg, Christian and Nelson, Christopher P and Meschia, James F and Nalls, Michael A and Sharma, Pankaj and Singleton, Andrew B and Kamatani, Naoyuki and Zeller, Tanja and Burnier, Michel and Attia, John and Laan, Maris and Klopp, Norman and Hillege, Hans L and Kloiber, Stefan and Choi, Hyon and Pirastu, Mario and Tore, Silvia and Probst-Hensch, Nicole M and V{\"o}lzke, Henry and Gudnason, Vilmundur and Parsa, Afshin and Schmidt, Reinhold and Whitfield, John B and Fornage, Myriam and Gasparini, Paolo and Siscovick, David S and Polasek, Ozren and Campbell, Harry and Rudan, Igor and Bouatia-Naji, Nabila and Metspalu, Andres and Loos, Ruth J F and van Duijn, Cornelia M and Borecki, Ingrid B and Ferrucci, Luigi and Gambaro, Giovanni and Deary, Ian J and Wolffenbuttel, Bruce H R and Chambers, John C and M{\"a}rz, Winfried and Pramstaller, Peter P and Snieder, Harold and Gyllensten, Ulf and Wright, Alan F and Navis, Gerjan and Watkins, Hugh and Witteman, Jacqueline C M and Sanna, Serena and Schipf, Sabine and Dunlop, Malcolm G and T{\"o}njes, Anke and Ripatti, Samuli and Soranzo, Nicole and Toniolo, Daniela and Chasman, Daniel I and Raitakari, Olli and Kao, W H Linda and Ciullo, Marina and Fox, Caroline S and Caulfield, Mark and Bochud, Murielle and Gieger, Christian} } @article {5880, title = {Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortiu}, journal = {Circ Cardiovasc Genet}, volume = {6}, year = {2013}, month = {2013 Apr}, pages = {171-83}, abstract = {

BACKGROUND- Palmitic acid (16:0), stearic acid (18:0), palmitoleic acid (16:1n-7), and oleic acid (18:1n-9) are major saturated and monounsaturated fatty acids that affect cellular signaling and metabolic pathways. They are synthesized via de novo lipogenesis and are the main saturated and monounsaturated fatty acids in the diet. Levels of these fatty acids have been linked to diseases including type 2 diabetes mellitus and coronary heart disease. METHODS AND RESULTS- Genome-wide association studies were conducted in 5 population-based cohorts comprising 8961 participants of European ancestry to investigate the association of common genetic variation with plasma levels of these 4 fatty acids. We identified polymorphisms in 7 novel loci associated with circulating levels of >=1 of these fatty acids. ALG14 (asparagine-linked glycosylation 14 homolog) polymorphisms were associated with higher 16:0 (P=2.7{\texttimes}10(-11)) and lower 18:0 (P=2.2{\texttimes}10(-18)). FADS1 and FADS2 (desaturases) polymorphisms were associated with higher 16:1n-7 (P=6.6{\texttimes}10(-13)) and 18:1n-9 (P=2.2{\texttimes}10(-32)) and lower 18:0 (P=1.3{\texttimes}10(-20)). LPGAT1 (lysophosphatidylglycerol acyltransferase) polymorphisms were associated with lower 18:0 (P=2.8{\texttimes}10(-9)). GCKR (glucokinase regulator; P=9.8{\texttimes}10(-10)) and HIF1AN (factor inhibiting hypoxia-inducible factor-1; P=5.7{\texttimes}10(-9)) polymorphisms were associated with higher 16:1n-7, whereas PKD2L1 (polycystic kidney disease 2-like 1; P=5.7{\texttimes}10(-15)) and a locus on chromosome 2 (not near known genes) were associated with lower 16:1n-7 (P=4.1{\texttimes}10(-8)). CONCLUSIONS- Our findings provide novel evidence that common variations in genes with diverse functions, including protein-glycosylation, polyunsaturated fatty acid metabolism, phospholipid modeling, and glucose- and oxygen-sensing pathways, are associated with circulating levels of 4 fatty acids in the de novo lipogenesis pathway. These results expand our knowledge of genetic factors relevant to de novo lipogenesis and fatty acid biology.

}, keywords = {Adult, Aged, Chromosomes, Human, Pair 2, Cohort Studies, Coronary Disease, Diabetes Mellitus, Type 2, Fatty Acids, Monounsaturated, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Humans, Linkage Disequilibrium, Lipogenesis, Male, Middle Aged, Oleic Acid, Palmitic Acid, Polymorphism, Single Nucleotide, Stearic Acids}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.112.964619}, author = {Wu, Jason H Y and Lemaitre, Rozenn N and Manichaikul, Ani and Guan, Weihua and Tanaka, Toshiko and Foy, Millennia and Kabagambe, Edmond K and Djouss{\'e}, Luc and Siscovick, David and Fretts, Amanda M and Johnson, Catherine and King, Irena B and Psaty, Bruce M and McKnight, Barbara and Rich, Stephen S and Chen, Yii-der I and Nettleton, Jennifer A and Tang, Weihong and Bandinelli, Stefania and Jacobs, David R and Browning, Brian L and Laurie, Cathy C and Gu, Xiangjun and Tsai, Michael Y and Steffen, Lyn M and Ferrucci, Luigi and Fornage, Myriam and Mozaffarian, Dariush} } @article {6070, title = {A genome-wide association study of depressive symptoms.}, journal = {Biol Psychiatry}, volume = {73}, year = {2013}, month = {2013 Apr 01}, pages = {667-78}, abstract = {

BACKGROUND: Depression is a heritable trait that exists on a continuum of varying severity and duration. Yet, the search for genetic variants associated with depression has had few successes. We exploit the entire continuum of depression to find common variants for depressive symptoms.

METHODS: In this genome-wide association study, we combined the results of 17 population-based studies assessing depressive symptoms with the Center for Epidemiological Studies Depression Scale. Replication of the independent top hits (p<1{\texttimes}10(-5)) was performed in five studies assessing depressive symptoms with other instruments. In addition, we performed a combined meta-analysis of all 22 discovery and replication studies.

RESULTS: The discovery sample comprised 34,549 individuals (mean age of 66.5) and no loci reached genome-wide significance (lowest p = 1.05{\texttimes}10(-7)). Seven independent single nucleotide polymorphisms were considered for replication. In the replication set (n = 16,709), we found suggestive association of one single nucleotide polymorphism with depressive symptoms (rs161645, 5q21, p = 9.19{\texttimes}10(-3)). This 5q21 region reached genome-wide significance (p = 4.78{\texttimes}10(-8)) in the overall meta-analysis combining discovery and replication studies (n = 51,258).

CONCLUSIONS: The results suggest that only a large sample comprising more than 50,000 subjects may be sufficiently powered to detect genes for depressive symptoms.

}, keywords = {Aged, Aged, 80 and over, Chromosomes, Human, Pair 5, Depression, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1873-2402}, doi = {10.1016/j.biopsych.2012.09.033}, author = {Hek, Karin and Demirkan, Ayse and Lahti, Jari and Terracciano, Antonio and Teumer, Alexander and Cornelis, Marilyn C and Amin, Najaf and Bakshis, Erin and Baumert, Jens and Ding, Jingzhong and Liu, Yongmei and Marciante, Kristin and Meirelles, Osorio and Nalls, Michael A and Sun, Yan V and Vogelzangs, Nicole and Yu, Lei and Bandinelli, Stefania and Benjamin, Emelia J and Bennett, David A and Boomsma, Dorret and Cannas, Alessandra and Coker, Laura H and de Geus, Eco and De Jager, Philip L and Diez-Roux, Ana V and Purcell, Shaun and Hu, Frank B and Rimma, Eric B and Hunter, David J and Jensen, Majken K and Curhan, Gary and Rice, Kenneth and Penman, Alan D and Rotter, Jerome I and Sotoodehnia, Nona and Emeny, Rebecca and Eriksson, Johan G and Evans, Denis A and Ferrucci, Luigi and Fornage, Myriam and Gudnason, Vilmundur and Hofman, Albert and Illig, Thomas and Kardia, Sharon and Kelly-Hayes, Margaret and Koenen, Karestan and Kraft, Peter and Kuningas, Maris and Massaro, Joseph M and Melzer, David and Mulas, Antonella and Mulder, Cornelis L and Murray, Anna and Oostra, Ben A and Palotie, Aarno and Penninx, Brenda and Petersmann, Astrid and Pilling, Luke C and Psaty, Bruce and Rawal, Rajesh and Reiman, Eric M and Schulz, Andrea and Shulman, Joshua M and Singleton, Andrew B and Smith, Albert V and Sutin, Angelina R and Uitterlinden, Andr{\'e} G and V{\"o}lzke, Henry and Widen, Elisabeth and Yaffe, Kristine and Zonderman, Alan B and Cucca, Francesco and Harris, Tamara and Ladwig, Karl-Heinz and Llewellyn, David J and R{\"a}ikk{\"o}nen, Katri and Tanaka, Toshiko and van Duijn, Cornelia M and Grabe, Hans J and Launer, Lenore J and Lunetta, Kathryn L and Mosley, Thomas H and Newman, Anne B and Tiemeier, Henning and Murabito, Joanne} } @article {6163, title = {Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake.}, journal = {Am J Clin Nutr}, volume = {97}, year = {2013}, month = {2013 Jun}, pages = {1395-402}, abstract = {

BACKGROUND: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants.

OBJECTIVE: The objective of the study was to identify common genetic variants that are associated with macronutrient intake.

DESIGN: We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 {\texttimes} 10(-6) were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n = 7724) provided additional replication data.

RESULTS: A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (β {\textpm} SE: 0.25 {\textpm} 0.04\%; P = 1.68 {\texttimes} 10(-8)) and lower fat (β {\textpm} SE: -0.21 {\textpm} 0.04\%; P = 1.57 {\texttimes} 10(-9)) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI)-increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (β {\textpm} SE: 0.10 {\textpm} 0.02\%; P = 9.96 {\texttimes} 10(-10)), independent of BMI (after adjustment for BMI, β {\textpm} SE: 0.08 {\textpm} 0.02\%; P = 3.15 {\texttimes} 10(-7)).

CONCLUSION: Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetic and Environmental Determinants of Triglycerides), NCT01331512 (InCHIANTI Study), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).

}, keywords = {Alleles, Atherosclerosis, Body Mass Index, Dietary Carbohydrates, Dietary Fats, Dietary Proteins, Energy Intake, European Continental Ancestry Group, Fibroblast Growth Factors, Follow-Up Studies, Gene-Environment Interaction, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Life Style, Obesity, Polymorphism, Single Nucleotide, Prospective Studies, Quantitative Trait Loci, Surveys and Questionnaires}, issn = {1938-3207}, doi = {10.3945/ajcn.112.052183}, author = {Tanaka, Toshiko and Ngwa, Julius S and van Rooij, Frank J A and Zillikens, M Carola and Wojczynski, Mary K and Frazier-Wood, Alexis C and Houston, Denise K and Kanoni, Stavroula and Lemaitre, Rozenn N and Luan, Jian{\textquoteright}an and Mikkil{\"a}, Vera and Renstrom, Frida and Sonestedt, Emily and Zhao, Jing Hua and Chu, Audrey Y and Qi, Lu and Chasman, Daniel I and de Oliveira Otto, Marcia C and Dhurandhar, Emily J and Feitosa, Mary F and Johansson, Ingegerd and Khaw, Kay-Tee and Lohman, Kurt K and Manichaikul, Ani and McKeown, Nicola M and Mozaffarian, Dariush and Singleton, Andrew and Stirrups, Kathleen and Viikari, Jorma and Ye, Zheng and Bandinelli, Stefania and Barroso, In{\^e}s and Deloukas, Panos and Forouhi, Nita G and Hofman, Albert and Liu, Yongmei and Lyytik{\"a}inen, Leo-Pekka and North, Kari E and Dimitriou, Maria and Hallmans, G{\"o}ran and K{\"a}h{\"o}nen, Mika and Langenberg, Claudia and Ordovas, Jose M and Uitterlinden, Andr{\'e} G and Hu, Frank B and Kalafati, Ioanna-Panagiota and Raitakari, Olli and Franco, Oscar H and Johnson, Andrew and Emilsson, Valur and Schrack, Jennifer A and Semba, Richard D and Siscovick, David S and Arnett, Donna K and Borecki, Ingrid B and Franks, Paul W and Kritchevsky, Stephen B and Lehtim{\"a}ki, Terho and Loos, Ruth J F and Orho-Melander, Marju and Rotter, Jerome I and Wareham, Nicholas J and Witteman, Jacqueline C M and Ferrucci, Luigi and Dedoussis, George and Cupples, L Adrienne and Nettleton, Jennifer A} } @article {6068, title = {Genome-wide study identifies two loci associated with lung function decline in mild to moderate COPD.}, journal = {Hum Genet}, volume = {132}, year = {2013}, month = {2013 Jan}, pages = {79-90}, abstract = {

Accelerated lung function decline is a key COPD phenotype; however, its genetic control remains largely unknown. We performed a genome-wide association study using the Illumina Human660W-Quad v.1_A BeadChip. Generalized estimation equations were used to assess genetic contributions to lung function decline over a 5-year period in 4,048 European American Lung Health Study participants with largely mild COPD. Genotype imputation was performed using reference HapMap II data. To validate regions meeting genome-wide significance, replication of top SNPs was attempted in independent cohorts. Three genes (TMEM26, ANK3 and FOXA1) within the regions of interest were selected for tissue expression studies using immunohistochemistry. Two intergenic SNPs (rs10761570, rs7911302) on chromosome 10 and one SNP on chromosome 14 (rs177852) met genome-wide significance after Bonferroni. Further support for the chromosome 10 region was obtained by imputation, the most significantly associated imputed SNPs (rs10761571, rs7896712) being flanked by observed markers rs10761570 and rs7911302. Results were not replicated in four general population cohorts or a smaller cohort of subjects with moderate to severe COPD; however, we show novel expression of genes near regions of significantly associated SNPS, including TMEM26 and FOXA1 in airway epithelium and lung parenchyma, and ANK3 in alveolar macrophages. Levels of expression were associated with lung function and COPD status. We identified two novel regions associated with lung function decline in mild COPD. Genes within these regions were expressed in relevant lung cells and their expression related to airflow limitation suggesting they may represent novel candidate genes for COPD susceptibility.

}, keywords = {Adult, Ankyrins, Chromosomes, Human, Pair 10, Chromosomes, Human, Pair 14, Cohort Studies, Female, Genome-Wide Association Study, Hepatocyte Nuclear Factor 3-alpha, Humans, Linkage Disequilibrium, Lung, Male, Membrane Proteins, Middle Aged, Polymorphism, Single Nucleotide, Pulmonary Disease, Chronic Obstructive}, issn = {1432-1203}, doi = {10.1007/s00439-012-1219-6}, author = {Hansel, Nadia N and Ruczinski, Ingo and Rafaels, Nicholas and Sin, Don D and Daley, Denise and Malinina, Alla and Huang, Lili and Sandford, Andrew and Murray, Tanda and Kim, Yoonhee and Vergara, Candelaria and Heckbert, Susan R and Psaty, Bruce M and Li, Guo and Elliott, W Mark and Aminuddin, Farzian and Dupuis, Jos{\'e}e and O{\textquoteright}Connor, George T and Doheny, Kimberly and Scott, Alan F and Boezen, H Marike and Postma, Dirkje S and Smolonska, Joanna and Zanen, Pieter and Mohamed Hoesein, Firdaus A and de Koning, Harry J and Crystal, Ronald G and Tanaka, Toshiko and Ferrucci, Luigi and Silverman, Edwin and Wan, Emily and Vestbo, Jorgen and Lomas, David A and Connett, John and Wise, Robert A and Neptune, Enid R and Mathias, Rasika A and Par{\'e}, Peter D and Beaty, Terri H and Barnes, Kathleen C} } @article {5879, title = {Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 CHARGE Consortium Studies.}, journal = {J Nutr}, volume = {143}, year = {2013}, month = {2013 Mar}, pages = {345-53}, abstract = {

Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (ln-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [β = -0.009 mmol/L (95\% CI: -0.013, -0.005), P < 0.0001] and insulin [-0.020 ln-pmol/L (95\% CI: -0.024, -0.017), P < 0.0001]. No magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P = 0.03) with glucose, and rs11558471 in SLC30A8 and rs3740393 near CNNM2 showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted.

}, keywords = {Blood Glucose, Female, Genetic Loci, Humans, Insulin, Magnesium, Male, Polymorphism, Single Nucleotide, Trace Elements, TRPM Cation Channels}, issn = {1541-6100}, doi = {10.3945/jn.112.172049}, author = {Hruby, Adela and Ngwa, Julius S and Renstrom, Frida and Wojczynski, Mary K and Ganna, Andrea and Hallmans, G{\"o}ran and Houston, Denise K and Jacques, Paul F and Kanoni, Stavroula and Lehtim{\"a}ki, Terho and Lemaitre, Rozenn N and Manichaikul, Ani and North, Kari E and Ntalla, Ioanna and Sonestedt, Emily and Tanaka, Toshiko and van Rooij, Frank J A and Bandinelli, Stefania and Djouss{\'e}, Luc and Grigoriou, Efi and Johansson, Ingegerd and Lohman, Kurt K and Pankow, James S and Raitakari, Olli T and Riserus, Ulf and Yannakoulia, Mary and Zillikens, M Carola and Hassanali, Neelam and Liu, Yongmei and Mozaffarian, Dariush and Papoutsakis, Constantina and Syv{\"a}nen, Ann-Christine and Uitterlinden, Andr{\'e} G and Viikari, Jorma and Groves, Christopher J and Hofman, Albert and Lind, Lars and McCarthy, Mark I and Mikkil{\"a}, Vera and Mukamal, Kenneth and Franco, Oscar H and Borecki, Ingrid B and Cupples, L Adrienne and Dedoussis, George V and Ferrucci, Luigi and Hu, Frank B and Ingelsson, Erik and K{\"a}h{\"o}nen, Mika and Kao, W H Linda and Kritchevsky, Stephen B and Orho-Melander, Marju and Prokopenko, Inga and Rotter, Jerome I and Siscovick, David S and Witteman, Jacqueline C M and Franks, Paul W and Meigs, James B and McKeown, Nicola M and Nettleton, Jennifer A} } @article {8015, title = {Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 Jun}, pages = {621-31}, abstract = {

Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate-increasing and heart rate-decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into the mechanisms regulating heart rate and identify new therapeutic targets.

}, keywords = {Animals, Arrhythmias, Cardiac, Gene Frequency, Genetic Loci, Genome-Wide Association Study, Heart Conduction System, Heart Rate, Humans, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide, Quantitative Trait Loci}, issn = {1546-1718}, doi = {10.1038/ng.2610}, author = {den Hoed, Marcel and Eijgelsheim, Mark and Esko, T{\~o}nu and Brundel, Bianca J J M and Peal, David S and Evans, David M and Nolte, Ilja M and Segr{\`e}, Ayellet V and Holm, Hilma and Handsaker, Robert E and Westra, Harm-Jan and Johnson, Toby and Isaacs, Aaron and Yang, Jian and Lundby, Alicia and Zhao, Jing Hua and Kim, Young Jin and Go, Min Jin and Almgren, Peter and Bochud, Murielle and Boucher, Gabrielle and Cornelis, Marilyn C and Gudbjartsson, Daniel and Hadley, David and van der Harst, Pim and Hayward, Caroline and den Heijer, Martin and Igl, Wilmar and Jackson, Anne U and Kutalik, Zolt{\'a}n and Luan, Jian{\textquoteright}an and Kemp, John P and Kristiansson, Kati and Ladenvall, Claes and Lorentzon, Mattias and Montasser, May E and Njajou, Omer T and O{\textquoteright}Reilly, Paul F and Padmanabhan, Sandosh and St Pourcain, Beate and Rankinen, Tuomo and Salo, Perttu and Tanaka, Toshiko and Timpson, Nicholas J and Vitart, Veronique and Waite, Lindsay and Wheeler, William and Zhang, Weihua and Draisma, Harmen H M and Feitosa, Mary F and Kerr, Kathleen F and Lind, Penelope A and Mihailov, Evelin and Onland-Moret, N Charlotte and Song, Ci and Weedon, Michael N and Xie, Weijia and Yengo, Loic and Absher, Devin and Albert, Christine M and Alonso, Alvaro and Arking, Dan E and de Bakker, Paul I W and Balkau, Beverley and Barlassina, Cristina and Benaglio, Paola and Bis, Joshua C and Bouatia-Naji, Nabila and Brage, S{\o}ren and Chanock, Stephen J and Chines, Peter S and Chung, Mina and Darbar, Dawood and Dina, Christian and D{\"o}rr, Marcus and Elliott, Paul and Felix, Stephan B and Fischer, Krista and Fuchsberger, Christian and de Geus, Eco J C and Goyette, Philippe and Gudnason, Vilmundur and Harris, Tamara B and Hartikainen, Anna-Liisa and Havulinna, Aki S and Heckbert, Susan R and Hicks, Andrew A and Hofman, Albert and Holewijn, Suzanne and Hoogstra-Berends, Femke and Hottenga, Jouke-Jan and Jensen, Majken K and Johansson, Asa and Junttila, Juhani and K{\"a}{\"a}b, Stefan and Kanon, Bart and Ketkar, Shamika and Khaw, Kay-Tee and Knowles, Joshua W and Kooner, Angrad S and Kors, Jan A and Kumari, Meena and Milani, Lili and Laiho, P{\"a}ivi and Lakatta, Edward G and Langenberg, Claudia and Leusink, Maarten and Liu, Yongmei and Luben, Robert N and Lunetta, Kathryn L and Lynch, Stacey N and Markus, Marcello R P and Marques-Vidal, Pedro and Mateo Leach, Irene and McArdle, Wendy L and McCarroll, Steven A and Medland, Sarah E and Miller, Kathryn A and Montgomery, Grant W and Morrison, Alanna C and M{\"u}ller-Nurasyid, Martina and Navarro, Pau and Nelis, Mari and O{\textquoteright}Connell, Jeffrey R and O{\textquoteright}Donnell, Christopher J and Ong, Ken K and Newman, Anne B and Peters, Annette and Polasek, Ozren and Pouta, Anneli and Pramstaller, Peter P and Psaty, Bruce M and Rao, Dabeeru C and Ring, Susan M and Rossin, Elizabeth J and Rudan, Diana and Sanna, Serena and Scott, Robert A and Sehmi, Jaban S and Sharp, Stephen and Shin, Jordan T and Singleton, Andrew B and Smith, Albert V and Soranzo, Nicole and Spector, Tim D and Stewart, Chip and Stringham, Heather M and Tarasov, Kirill V and Uitterlinden, Andr{\'e} G and Vandenput, Liesbeth and Hwang, Shih-Jen and Whitfield, John B and Wijmenga, Cisca and Wild, Sarah H and Willemsen, Gonneke and Wilson, James F and Witteman, Jacqueline C M and Wong, Andrew and Wong, Quenna and Jamshidi, Yalda and Zitting, Paavo and Boer, Jolanda M A and Boomsma, Dorret I and Borecki, Ingrid B and van Duijn, Cornelia M and Ekelund, Ulf and Forouhi, Nita G and Froguel, Philippe and Hingorani, Aroon and Ingelsson, Erik and Kivimaki, Mika and Kronmal, Richard A and Kuh, Diana and Lind, Lars and Martin, Nicholas G and Oostra, Ben A and Pedersen, Nancy L and Quertermous, Thomas and Rotter, Jerome I and van der Schouw, Yvonne T and Verschuren, W M Monique and Walker, Mark and Albanes, Demetrius and Arnar, David O and Assimes, Themistocles L and Bandinelli, Stefania and Boehnke, Michael and de Boer, Rudolf A and Bouchard, Claude and Caulfield, W L Mark and Chambers, John C and Curhan, Gary and Cusi, Daniele and Eriksson, Johan and Ferrucci, Luigi and van Gilst, Wiek H and Glorioso, Nicola and de Graaf, Jacqueline and Groop, Leif and Gyllensten, Ulf and Hsueh, Wen-Chi and Hu, Frank B and Huikuri, Heikki V and Hunter, David J and Iribarren, Carlos and Isomaa, Bo and Jarvelin, Marjo-Riitta and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kiemeney, Lambertus A and van der Klauw, Melanie M and Kooner, Jaspal S and Kraft, Peter and Iacoviello, Licia and Lehtim{\"a}ki, Terho and Lokki, Marja-Liisa L and Mitchell, Braxton D and Navis, Gerjan and Nieminen, Markku S and Ohlsson, Claes and Poulter, Neil R and Qi, Lu and Raitakari, Olli T and Rimm, Eric B and Rioux, John D and Rizzi, Federica and Rudan, Igor and Salomaa, Veikko and Sever, Peter S and Shields, Denis C and Shuldiner, Alan R and Sinisalo, Juha and Stanton, Alice V and Stolk, Ronald P and Strachan, David P and Tardif, Jean-Claude and Thorsteinsdottir, Unnur and Tuomilehto, Jaako and van Veldhuisen, Dirk J and Virtamo, Jarmo and Viikari, Jorma and Vollenweider, Peter and Waeber, G{\'e}rard and Widen, Elisabeth and Cho, Yoon Shin and Olsen, Jesper V and Visscher, Peter M and Willer, Cristen and Franke, Lude and Erdmann, Jeanette and Thompson, John R and Pfeufer, Arne and Sotoodehnia, Nona and Newton-Cheh, Christopher and Ellinor, Patrick T and Stricker, Bruno H Ch and Metspalu, Andres and Perola, Markus and Beckmann, Jacques S and Smith, George Davey and Stefansson, Kari and Wareham, Nicholas J and Munroe, Patricia B and Sibon, Ody C M and Milan, David J and Snieder, Harold and Samani, Nilesh J and Loos, Ruth J F} } @article {6291, title = {Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations.}, journal = {PLoS Genet}, volume = {9}, year = {2013}, month = {2013}, pages = {e1003796}, abstract = {

Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in <= 21,679 additional individuals. Seven loci (six new regions) in association with serum calcium were identified and replicated. Rs1570669 near CYP24A1 (P = 9.1E-12), rs10491003 upstream of GATA3 (P = 4.8E-09) and rs7481584 in CARS (P = 1.2E-10) implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11), also associated with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10) are near genes that encode distinct isoforms of diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on the genetics of calcium homeostasis.

}, keywords = {Animals, Bone and Bones, Bone Density, Calcium, European Continental Ancestry Group, Gene Expression Regulation, Genome-Wide Association Study, Homeostasis, Humans, Kidney, Mice, Polymorphism, Single Nucleotide}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003796}, author = {O{\textquoteright}Seaghdha, Conall M and Wu, Hongsheng and Yang, Qiong and Kapur, Karen and Guessous, Idris and Zuber, Annie Mercier and K{\"o}ttgen, Anna and Stoudmann, Candice and Teumer, Alexander and Kutalik, Zolt{\'a}n and Mangino, Massimo and Dehghan, Abbas and Zhang, Weihua and Eiriksdottir, Gudny and Li, Guo and Tanaka, Toshiko and Portas, Laura and Lopez, Lorna M and Hayward, Caroline and Lohman, Kurt and Matsuda, Koichi and Padmanabhan, Sandosh and Firsov, Dmitri and Sorice, Rossella and Ulivi, Sheila and Brockhaus, A Catharina and Kleber, Marcus E and Mahajan, Anubha and Ernst, Florian D and Gudnason, Vilmundur and Launer, Lenore J and Mace, Aurelien and Boerwinckle, Eric and Arking, Dan E and Tanikawa, Chizu and Nakamura, Yusuke and Brown, Morris J and Gaspoz, Jean-Michel and Theler, Jean-Marc and Siscovick, David S and Psaty, Bruce M and Bergmann, Sven and Vollenweider, Peter and Vitart, Veronique and Wright, Alan F and Zemunik, Tatijana and Boban, Mladen and Kolcic, Ivana and Navarro, Pau and Brown, Edward M and Estrada, Karol and Ding, Jingzhong and Harris, Tamara B and Bandinelli, Stefania and Hernandez, Dena and Singleton, Andrew B and Girotto, Giorgia and Ruggiero, Daniela and d{\textquoteright}Adamo, Adamo Pio and Robino, Antonietta and Meitinger, Thomas and Meisinger, Christa and Davies, Gail and Starr, John M and Chambers, John C and Boehm, Bernhard O and Winkelmann, Bernhard R and Huang, Jie and Murgia, Federico and Wild, Sarah H and Campbell, Harry and Morris, Andrew P and Franco, Oscar H and Hofman, Albert and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and V{\"o}lker, Uwe and Hannemann, Anke and Biffar, Reiner and Hoffmann, Wolfgang and Shin, So-Youn and Lescuyer, Pierre and Henry, Hughes and Schurmann, Claudia and Munroe, Patricia B and Gasparini, Paolo and Pirastu, Nicola and Ciullo, Marina and Gieger, Christian and M{\"a}rz, Winfried and Lind, Lars and Spector, Tim D and Smith, Albert V and Rudan, Igor and Wilson, James F and Polasek, Ozren and Deary, Ian J and Pirastu, Mario and Ferrucci, Luigi and Liu, Yongmei and Kestenbaum, Bryan and Kooner, Jaspal S and Witteman, Jacqueline C M and Nauck, Matthias and Kao, W H Linda and Wallaschofski, Henri and Bonny, Olivier and Fox, Caroline S and Bochud, Murielle} } @article {5877, title = {A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function.}, journal = {PLoS Genet}, volume = {9}, year = {2013}, month = {2013}, pages = {e1003266}, abstract = {

Thyroid hormone is essential for normal metabolism and development, and overt abnormalities in thyroid function lead to common endocrine disorders affecting approximately 10\% of individuals over their life span. In addition, even mild alterations in thyroid function are associated with weight changes, atrial fibrillation, osteoporosis, and psychiatric disorders. To identify novel variants underlying thyroid function, we performed a large meta-analysis of genome-wide association studies for serum levels of the highly heritable thyroid function markers TSH and FT4, in up to 26,420 and 17,520 euthyroid subjects, respectively. Here we report 26 independent associations, including several novel loci for TSH (PDE10A, VEGFA, IGFBP5, NFIA, SOX9, PRDM11, FGF7, INSR, ABO, MIR1179, NRG1, MBIP, ITPK1, SASH1, GLIS3) and FT4 (LHX3, FOXE1, AADAT, NETO1/FBXO15, LPCAT2/CAPNS2). Notably, only limited overlap was detected between TSH and FT4 associated signals, in spite of the feedback regulation of their circulating levels by the hypothalamic-pituitary-thyroid axis. Five of the reported loci (PDE8B, PDE10A, MAF/LOC440389, NETO1/FBXO15, and LPCAT2/CAPNS2) show strong gender-specific differences, which offer clues for the known sexual dimorphism in thyroid function and related pathologies. Importantly, the TSH-associated loci contribute not only to variation within the normal range, but also to TSH values outside the reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings explain, respectively, 5.64\% and 2.30\% of total TSH and FT4 trait variance, and they improve the current knowledge of the regulation of hypothalamic-pituitary-thyroid axis function and the consequences of genetic variation for hypo- or hyperthyroidism.

}, keywords = {Female, Genome-Wide Association Study, Humans, Hyperthyroidism, Hypothyroidism, Male, Phenotype, Polymorphism, Genetic, Polymorphism, Single Nucleotide, Sex Characteristics, Signal Transduction, Thyroid Gland, Thyrotropin, Thyroxine}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003266}, author = {Porcu, Eleonora and Medici, Marco and Pistis, Giorgio and Volpato, Claudia B and Wilson, Scott G and Cappola, Anne R and Bos, Steffan D and Deelen, Joris and den Heijer, Martin and Freathy, Rachel M and Lahti, Jari and Liu, Chunyu and Lopez, Lorna M and Nolte, Ilja M and O{\textquoteright}Connell, Jeffrey R and Tanaka, Toshiko and Trompet, Stella and Arnold, Alice and Bandinelli, Stefania and Beekman, Marian and B{\"o}hringer, Stefan and Brown, Suzanne J and Buckley, Brendan M and Camaschella, Clara and de Craen, Anton J M and Davies, Gail and de Visser, Marieke C H and Ford, Ian and Forsen, Tom and Frayling, Timothy M and Fugazzola, Laura and G{\"o}gele, Martin and Hattersley, Andrew T and Hermus, Ad R and Hofman, Albert and Houwing-Duistermaat, Jeanine J and Jensen, Richard A and Kajantie, Eero and Kloppenburg, Margreet and Lim, Ee M and Masciullo, Corrado and Mariotti, Stefano and Minelli, Cosetta and Mitchell, Braxton D and Nagaraja, Ramaiah and Netea-Maier, Romana T and Palotie, Aarno and Persani, Luca and Piras, Maria G and Psaty, Bruce M and R{\"a}ikk{\"o}nen, Katri and Richards, J Brent and Rivadeneira, Fernando and Sala, Cinzia and Sabra, Mona M and Sattar, Naveed and Shields, Beverley M and Soranzo, Nicole and Starr, John M and Stott, David J and Sweep, Fred C G J and Usala, Gianluca and van der Klauw, Melanie M and van Heemst, Diana and van Mullem, Alies and Vermeulen, Sita H and Visser, W Edward and Walsh, John P and Westendorp, Rudi G J and Widen, Elisabeth and Zhai, Guangju and Cucca, Francesco and Deary, Ian J and Eriksson, Johan G and Ferrucci, Luigi and Fox, Caroline S and Jukema, J Wouter and Kiemeney, Lambertus A and Pramstaller, Peter P and Schlessinger, David and Shuldiner, Alan R and Slagboom, Eline P and Uitterlinden, Andr{\'e} G and Vaidya, Bijay and Visser, Theo J and Wolffenbuttel, Bruce H R and Meulenbelt, Ingrid and Rotter, Jerome I and Spector, Tim D and Hicks, Andrew A and Toniolo, Daniela and Sanna, Serena and Peeters, Robin P and Naitza, Silvia} } @article {6155, title = {Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease.}, journal = {Circulation}, volume = {128}, year = {2013}, month = {2013 Sep 17}, pages = {1310-24}, abstract = {

BACKGROUND: Estimates of the heritability of plasma fibrinogen concentration, an established predictor of cardiovascular disease, range from 34\% to 50\%. Genetic variants so far identified by genome-wide association studies explain only a small proportion (<2\%) of its variation.

METHODS AND RESULTS: We conducted a meta-analysis of 28 genome-wide association studies including >90 000 subjects of European ancestry, the first genome-wide association meta-analysis of fibrinogen levels in 7 studies in blacks totaling 8289 samples, and a genome-wide association study in Hispanics totaling 1366 samples. Evaluation for association of single-nucleotide polymorphisms with clinical outcomes included a total of 40 695 cases and 85 582 controls for coronary artery disease, 4752 cases and 24 030 controls for stroke, and 3208 cases and 46 167 controls for venous thromboembolism. Overall, we identified 24 genome-wide significant (P<5{\texttimes}10(-8)) independent signals in 23 loci, including 15 novel associations, together accounting for 3.7\% of plasma fibrinogen variation. Gene-set enrichment analysis highlighted key roles in fibrinogen regulation for the 3 structural fibrinogen genes and pathways related to inflammation, adipocytokines, and thyrotrophin-releasing hormone signaling. Whereas lead single-nucleotide polymorphisms in a few loci were significantly associated with coronary artery disease, the combined effect of all 24 fibrinogen-associated lead single-nucleotide polymorphisms was not significant for coronary artery disease, stroke, or venous thromboembolism.

CONCLUSIONS: We identify 23 robustly associated fibrinogen loci, 15 of which are new. Clinical outcome analysis of these loci does not support a causal relationship between circulating levels of fibrinogen and coronary artery disease, stroke, or venous thromboembolism.

}, keywords = {Adolescent, Adult, African Continental Ancestry Group, Aged, Aged, 80 and over, Cardiovascular Diseases, Coronary Artery Disease, European Continental Ancestry Group, Female, Fibrinogen, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Hispanic Americans, Humans, Male, Middle Aged, Myocardial Infarction, Polymorphism, Single Nucleotide, Risk Factors, Stroke, Venous Thromboembolism, Young Adult}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.113.002251}, author = {Sabater-Lleal, Maria and Huang, Jie and Chasman, Daniel and Naitza, Silvia and Dehghan, Abbas and Johnson, Andrew D and Teumer, Alexander and Reiner, Alex P and Folkersen, Lasse and Basu, Saonli and Rudnicka, Alicja R and Trompet, Stella and M{\"a}larstig, Anders and Baumert, Jens and Bis, Joshua C and Guo, Xiuqing and Hottenga, Jouke J and Shin, So-Youn and Lopez, Lorna M and Lahti, Jari and Tanaka, Toshiko and Yanek, Lisa R and Oudot-Mellakh, Tiphaine and Wilson, James F and Navarro, Pau and Huffman, Jennifer E and Zemunik, Tatijana and Redline, Susan and Mehra, Reena and Pulanic, Drazen and Rudan, Igor and Wright, Alan F and Kolcic, Ivana and Polasek, Ozren and Wild, Sarah H and Campbell, Harry and Curb, J David and Wallace, Robert and Liu, Simin and Eaton, Charles B and Becker, Diane M and Becker, Lewis C and Bandinelli, Stefania and R{\"a}ikk{\"o}nen, Katri and Widen, Elisabeth and Palotie, Aarno and Fornage, Myriam and Green, David and Gross, Myron and Davies, Gail and Harris, Sarah E and Liewald, David C and Starr, John M and Williams, Frances M K and Grant, Peter J and Spector, Timothy D and Strawbridge, Rona J and Silveira, Angela and Sennblad, Bengt and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Franco, Oscar H and Hofman, Albert and van Dongen, Jenny and Willemsen, Gonneke and Boomsma, Dorret I and Yao, Jie and Swords Jenny, Nancy and Haritunians, Talin and McKnight, Barbara and Lumley, Thomas and Taylor, Kent D and Rotter, Jerome I and Psaty, Bruce M and Peters, Annette and Gieger, Christian and Illig, Thomas and Grotevendt, Anne and Homuth, Georg and V{\"o}lzke, Henry and Kocher, Thomas and Goel, Anuj and Franzosi, Maria Grazia and Seedorf, Udo and Clarke, Robert and Steri, Maristella and Tarasov, Kirill V and Sanna, Serena and Schlessinger, David and Stott, David J and Sattar, Naveed and Buckley, Brendan M and Rumley, Ann and Lowe, Gordon D and McArdle, Wendy L and Chen, Ming-Huei and Tofler, Geoffrey H and Song, Jaejoon and Boerwinkle, Eric and Folsom, Aaron R and Rose, Lynda M and Franco-Cereceda, Anders and Teichert, Martina and Ikram, M Arfan and Mosley, Thomas H and Bevan, Steve and Dichgans, Martin and Rothwell, Peter M and Sudlow, Cathie L M and Hopewell, Jemma C and Chambers, John C and Saleheen, Danish and Kooner, Jaspal S and Danesh, John and Nelson, Christopher P and Erdmann, Jeanette and Reilly, Muredach P and Kathiresan, Sekar and Schunkert, Heribert and Morange, Pierre-Emmanuel and Ferrucci, Luigi and Eriksson, Johan G and Jacobs, David and Deary, Ian J and Soranzo, Nicole and Witteman, Jacqueline C M and de Geus, Eco J C and Tracy, Russell P and Hayward, Caroline and Koenig, Wolfgang and Cucca, Francesco and Jukema, J Wouter and Eriksson, Per and Seshadri, Sudha and Markus, Hugh S and Watkins, Hugh and Samani, Nilesh J and Wallaschofski, Henri and Smith, Nicholas L and Tregouet, David and Ridker, Paul M and Tang, Weihong and Strachan, David P and Hamsten, Anders and O{\textquoteright}Donnell, Christopher J} } @article {6938, title = {FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals.}, journal = {Hum Mol Genet}, volume = {23}, year = {2014}, month = {2014 Dec 20}, pages = {6961-72}, abstract = {

FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177,330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m(2), P = 1.9 {\texttimes} 10(-105)), and all participants (0.30 [0.30, 0.35] kg/m(2), P = 3.6 {\texttimes} 10(-107)). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] \%, P = 2.4 {\texttimes} 10(-16)), and relative weak associations with lower total energy intake (-6.4 [-10.1, -2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (-0.07 [-0.11, -0.02] \%, P = 0.004). The associations with protein (P = 7.5 {\texttimes} 10(-9)) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity.

}, keywords = {Adult, African Americans, Aged, Alleles, Asian Continental Ancestry Group, Body Mass Index, Dietary Carbohydrates, Dietary Fats, Dietary Proteins, Energy Intake, European Continental Ancestry Group, Female, Gene Frequency, Humans, Male, Middle Aged, Obesity, Polymorphism, Single Nucleotide, Proteins}, issn = {1460-2083}, doi = {10.1093/hmg/ddu411}, author = {Qi, Qibin and Kilpel{\"a}inen, Tuomas O and Downer, Mary K and Tanaka, Toshiko and Smith, Caren E and Sluijs, Ivonne and Sonestedt, Emily and Chu, Audrey Y and Renstrom, Frida and Lin, Xiaochen and {\"A}ngquist, Lars H and Huang, Jinyan and Liu, Zhonghua and Li, Yanping and Asif Ali, Muhammad and Xu, Min and Ahluwalia, Tarunveer Singh and Boer, Jolanda M A and Chen, Peng and Daimon, Makoto and Eriksson, Johan and Perola, Markus and Friedlander, Yechiel and Gao, Yu-Tang and Heppe, Denise H M and Holloway, John W and Houston, Denise K and Kanoni, Stavroula and Kim, Yu-Mi and Laaksonen, Maarit A and J{\"a}{\"a}skel{\"a}inen, Tiina and Lee, Nanette R and Lehtim{\"a}ki, Terho and Lemaitre, Rozenn N and Lu, Wei and Luben, Robert N and Manichaikul, Ani and M{\"a}nnist{\"o}, Satu and Marques-Vidal, Pedro and Monda, Keri L and Ngwa, Julius S and Perusse, Louis and van Rooij, Frank J A and Xiang, Yong-Bing and Wen, Wanqing and Wojczynski, Mary K and Zhu, Jingwen and Borecki, Ingrid B and Bouchard, Claude and Cai, Qiuyin and Cooper, Cyrus and Dedoussis, George V and Deloukas, Panos and Ferrucci, Luigi and Forouhi, Nita G and Hansen, Torben and Christiansen, Lene and Hofman, Albert and Johansson, Ingegerd and J{\o}rgensen, Torben and Karasawa, Shigeru and Khaw, Kay-Tee and Kim, Mi-Kyung and Kristiansson, Kati and Li, Huaixing and Lin, Xu and Liu, Yongmei and Lohman, Kurt K and Long, Jirong and Mikkil{\"a}, Vera and Mozaffarian, Dariush and North, Kari and Pedersen, Oluf and Raitakari, Olli and Rissanen, Harri and Tuomilehto, Jaakko and van der Schouw, Yvonne T and Uitterlinden, Andr{\'e} G and Zillikens, M Carola and Franco, Oscar H and Shyong Tai, E and Ou Shu, Xiao and Siscovick, David S and Toft, Ulla and Verschuren, W M Monique and Vollenweider, Peter and Wareham, Nicholas J and Witteman, Jacqueline C M and Zheng, Wei and Ridker, Paul M and Kang, Jae H and Liang, Liming and Jensen, Majken K and Curhan, Gary C and Pasquale, Louis R and Hunter, David J and Mohlke, Karen L and Uusitupa, Matti and Cupples, L Adrienne and Rankinen, Tuomo and Orho-Melander, Marju and Wang, Tao and Chasman, Daniel I and Franks, Paul W and S{\o}rensen, Thorkild I A and Hu, Frank B and Loos, Ruth J F and Nettleton, Jennifer A and Qi, Lu} } @article {6544, title = {Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.}, journal = {Nat Genet}, volume = {46}, year = {2014}, month = {2014 Aug}, pages = {826-36}, abstract = {

The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain \~{}8-10\% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.

}, keywords = {Adult, Aged, Arrhythmias, Cardiac, Calcium Signaling, Death, Sudden, Cardiac, Electrocardiography, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Heart Ventricles, Humans, Long QT Syndrome, Male, Middle Aged, Myocardium, Polymorphism, Single Nucleotide}, issn = {1546-1718}, doi = {10.1038/ng.3014}, author = {Arking, Dan E and Pulit, Sara L and Crotti, Lia and van der Harst, Pim and Munroe, Patricia B and Koopmann, Tamara T and Sotoodehnia, Nona and Rossin, Elizabeth J and Morley, Michael and Wang, Xinchen and Johnson, Andrew D and Lundby, Alicia and Gudbjartsson, Daniel F and Noseworthy, Peter A and Eijgelsheim, Mark and Bradford, Yuki and Tarasov, Kirill V and D{\"o}rr, Marcus and M{\"u}ller-Nurasyid, Martina and Lahtinen, Annukka M and Nolte, Ilja M and Smith, Albert Vernon and Bis, Joshua C and Isaacs, Aaron and Newhouse, Stephen J and Evans, Daniel S and Post, Wendy S and Waggott, Daryl and Lyytik{\"a}inen, Leo-Pekka and Hicks, Andrew A and Eisele, Lewin and Ellinghaus, David and Hayward, Caroline and Navarro, Pau and Ulivi, Sheila and Tanaka, Toshiko and Tester, David J and Chatel, St{\'e}phanie and Gustafsson, Stefan and Kumari, Meena and Morris, Richard W and Naluai, {\r A}sa T and Padmanabhan, Sandosh and Kluttig, Alexander and Strohmer, Bernhard and Panayiotou, Andrie G and Torres, Maria and Knoflach, Michael and Hubacek, Jaroslav A and Slowikowski, Kamil and Raychaudhuri, Soumya and Kumar, Runjun D and Harris, Tamara B and Launer, Lenore J and Shuldiner, Alan R and Alonso, Alvaro and Bader, Joel S and Ehret, Georg and Huang, Hailiang and Kao, W H Linda and Strait, James B and Macfarlane, Peter W and Brown, Morris and Caulfield, Mark J and Samani, Nilesh J and Kronenberg, Florian and Willeit, Johann and Smith, J Gustav and Greiser, Karin H and Meyer Zu Schwabedissen, Henriette and Werdan, Karl and Carella, Massimo and Zelante, Leopoldo and Heckbert, Susan R and Psaty, Bruce M and Rotter, Jerome I and Kolcic, Ivana and Polasek, Ozren and Wright, Alan F and Griffin, Maura and Daly, Mark J and Arnar, David O and Holm, Hilma and Thorsteinsdottir, Unnur and Denny, Joshua C and Roden, Dan M and Zuvich, Rebecca L and Emilsson, Valur and Plump, Andrew S and Larson, Martin G and O{\textquoteright}Donnell, Christopher J and Yin, Xiaoyan and Bobbo, Marco and D{\textquoteright}Adamo, Adamo P and Iorio, Annamaria and Sinagra, Gianfranco and Carracedo, Angel and Cummings, Steven R and Nalls, Michael A and Jula, Antti and Kontula, Kimmo K and Marjamaa, Annukka and Oikarinen, Lasse and Perola, Markus and Porthan, Kimmo and Erbel, Raimund and Hoffmann, Per and J{\"o}ckel, Karl-Heinz and K{\"a}lsch, Hagen and N{\"o}then, Markus M and den Hoed, Marcel and Loos, Ruth J F and Thelle, Dag S and Gieger, Christian and Meitinger, Thomas and Perz, Siegfried and Peters, Annette and Prucha, Hanna and Sinner, Moritz F and Waldenberger, Melanie and de Boer, Rudolf A and Franke, Lude and van der Vleuten, Pieter A and Beckmann, Britt Maria and Martens, Eimo and Bardai, Abdennasser and Hofman, Nynke and Wilde, Arthur A M and Behr, Elijah R and Dalageorgou, Chrysoula and Giudicessi, John R and Medeiros-Domingo, Argelia and Barc, Julien and Kyndt, Florence and Probst, Vincent and Ghidoni, Alice and Insolia, Roberto and Hamilton, Robert M and Scherer, Stephen W and Brandimarto, Jeffrey and Margulies, Kenneth and Moravec, Christine E and del Greco M, Fabiola and Fuchsberger, Christian and O{\textquoteright}Connell, Jeffrey R and Lee, Wai K and Watt, Graham C M and Campbell, Harry and Wild, Sarah H and El Mokhtari, Nour E and Frey, Norbert and Asselbergs, Folkert W and Mateo Leach, Irene and Navis, Gerjan and van den Berg, Maarten P and van Veldhuisen, Dirk J and Kellis, Manolis and Krijthe, Bouwe P and Franco, Oscar H and Hofman, Albert and Kors, Jan A and Uitterlinden, Andr{\'e} G and Witteman, Jacqueline C M and Kedenko, Lyudmyla and Lamina, Claudia and Oostra, Ben A and Abecasis, Goncalo R and Lakatta, Edward G and Mulas, Antonella and Orr{\`u}, Marco and Schlessinger, David and Uda, Manuela and Markus, Marcello R P and V{\"o}lker, Uwe and Snieder, Harold and Spector, Timothy D and Arnl{\"o}v, Johan and Lind, Lars and Sundstr{\"o}m, Johan and Syv{\"a}nen, Ann-Christine and Kivimaki, Mika and K{\"a}h{\"o}nen, Mika and Mononen, Nina and Raitakari, Olli T and Viikari, Jorma S and Adamkova, Vera and Kiechl, Stefan and Brion, Maria and Nicolaides, Andrew N and Paulweber, Bernhard and Haerting, Johannes and Dominiczak, Anna F and Nyberg, Fredrik and Whincup, Peter H and Hingorani, Aroon D and Schott, Jean-Jacques and Bezzina, Connie R and Ingelsson, Erik and Ferrucci, Luigi and Gasparini, Paolo and Wilson, James F and Rudan, Igor and Franke, Andre and M{\"u}hleisen, Thomas W and Pramstaller, Peter P and Lehtim{\"a}ki, Terho J and Paterson, Andrew D and Parsa, Afshin and Liu, Yongmei and van Duijn, Cornelia M and Siscovick, David S and Gudnason, Vilmundur and Jamshidi, Yalda and Salomaa, Veikko and Felix, Stephan B and Sanna, Serena and Ritchie, Marylyn D and Stricker, Bruno H and Stefansson, Kari and Boyer, Laurie A and Cappola, Thomas P and Olsen, Jesper V and Lage, Kasper and Schwartz, Peter J and K{\"a}{\"a}b, Stefan and Chakravarti, Aravinda and Ackerman, Michael J and Pfeufer, Arne and de Bakker, Paul I W and Newton-Cheh, Christopher} } @article {6690, title = {Genetic diversity is a predictor of mortality in humans.}, journal = {BMC Genet}, volume = {15}, year = {2014}, month = {2014}, pages = {159}, abstract = {

BACKGROUND: It has been well-established, both by population genetics theory and direct observation in many organisms, that increased genetic diversity provides a survival advantage. However, given the limitations of both sample size and genome-wide metrics, this hypothesis has not been comprehensively tested in human populations. Moreover, the presence of numerous segregating small effect alleles that influence traits that directly impact health directly raises the question as to whether global measures of genomic variation are themselves associated with human health and disease.

RESULTS: We performed a meta-analysis of 17 cohorts followed prospectively, with a combined sample size of 46,716 individuals, including a total of 15,234 deaths. We find a significant association between increased heterozygosity and survival (P = 0.03). We estimate that within a single population, every standard deviation of heterozygosity an individual has over the mean decreases that person{\textquoteright}s risk of death by 1.57\%.

CONCLUSIONS: This effect was consistent between European and African ancestry cohorts, men and women, and major causes of death (cancer and cardiovascular disease), demonstrating the broad positive impact of genomic diversity on human survival.

}, keywords = {Genome-Wide Association Study, Heterozygote, Humans, Mortality, Polymorphism, Single Nucleotide, Proportional Hazards Models}, issn = {1471-2156}, doi = {10.1186/s12863-014-0159-7}, author = {Bihlmeyer, Nathan A and Brody, Jennifer A and Smith, Albert Vernon and Lunetta, Kathryn L and Nalls, Mike and Smith, Jennifer A and Tanaka, Toshiko and Davies, Gail and Yu, Lei and Mirza, Saira Saeed and Teumer, Alexander and Coresh, Josef and Pankow, James S and Franceschini, Nora and Scaria, Anish and Oshima, Junko and Psaty, Bruce M and Gudnason, Vilmundur and Eiriksdottir, Gudny and Harris, Tamara B and Li, Hanyue and Karasik, David and Kiel, Douglas P and Garcia, Melissa and Liu, Yongmei and Faul, Jessica D and Kardia, Sharon Lr and Zhao, Wei and Ferrucci, Luigi and Allerhand, Michael and Liewald, David C and Redmond, Paul and Starr, John M and De Jager, Philip L and Evans, Denis A and Direk, Nese and Ikram, Mohammed Arfan and Uitterlinden, Andre and Homuth, Georg and Lorbeer, Roberto and Grabe, Hans J and Launer, Lenore and Murabito, Joanne M and Singleton, Andrew B and Weir, David R and Bandinelli, Stefania and Deary, Ian J and Bennett, David A and Tiemeier, Henning and Kocher, Thomas and Lumley, Thomas and Arking, Dan E} } @article {6567, title = {Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {321-331}, abstract = {

BACKGROUND: Omega6 (n6) polyunsaturated fatty acids (PUFAs) and their metabolites are involved in cell signaling, inflammation, clot formation, and other crucial biological processes. Genetic components, such as variants of fatty acid desaturase (FADS) genes, determine the composition of n6 PUFAs.

METHODS AND RESULTS: To elucidate undiscovered biological pathways that may influence n6 PUFA composition, we conducted genome-wide association studies and meta-analyses of associations of common genetic variants with 6 plasma n6 PUFAs in 8631 white adults (55\% women) across 5 prospective studies. Plasma phospholipid or total plasma fatty acids were analyzed by similar gas chromatography techniques. The n6 fatty acids linoleic acid (LA), γ-linolenic acid (GLA), dihomo-GLA, arachidonic acid, and adrenic acid were expressed as percentage of total fatty acids. We performed linear regression with robust SEs to test for single-nucleotide polymorphism-fatty acid associations, with pooling using inverse-variance-weighted meta-analysis. Novel regions were identified on chromosome 10 associated with LA (rs10740118; P=8.1{\texttimes}10(-9); near NRBF2), on chromosome 16 with LA, GLA, dihomo-GLA, and arachidonic acid (rs16966952; P=1.2{\texttimes}10(-15), 5.0{\texttimes}10(-11), 7.6{\texttimes}10(-65), and 2.4{\texttimes}10(-10), respectively; NTAN1), and on chromosome 6 with adrenic acid after adjustment for arachidonic acid (rs3134950; P=2.1{\texttimes}10(-10); AGPAT1). We confirmed previous findings of the FADS cluster on chromosome 11 with LA and arachidonic acid, and further observed novel genome-wide significant association of this cluster with GLA, dihomo-GLA, and adrenic acid (P=2.3{\texttimes}10(-72), 2.6{\texttimes}10(-151), and 6.3{\texttimes}10(-140), respectively).

CONCLUSIONS: Our findings suggest that along with the FADS gene cluster, additional genes may influence n6 PUFA composition.

}, keywords = {Adult, Aged, Aged, 80 and over, Aging, Chromosomes, Human, Pair 10, Chromosomes, Human, Pair 16, Chromosomes, Human, Pair 6, Fatty Acid Desaturases, Fatty Acids, Omega-6, Female, Genome-Wide Association Study, Genomics, Heart Diseases, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Prospective Studies, Sequence Analysis, DNA}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000208}, author = {Guan, Weihua and Steffen, Brian T and Lemaitre, Rozenn N and Wu, Jason H Y and Tanaka, Toshiko and Manichaikul, Ani and Foy, Millennia and Rich, Stephen S and Wang, Lu and Nettleton, Jennifer A and Tang, Weihong and Gu, Xiangjun and Bandinelli, Stafania and King, Irena B and McKnight, Barbara and Psaty, Bruce M and Siscovick, David and Djouss{\'e}, Luc and Chen, Yii-Der Ida and Ferrucci, Luigi and Fornage, Myriam and Mozafarrian, Dariush and Tsai, Michael Y and Steffen, Lyn M} } @article {6667, title = {No evidence for genome-wide interactions on plasma fibrinogen by smoking, alcohol consumption and body mass index: results from meta-analyses of 80,607 subjects.}, journal = {PLoS One}, volume = {9}, year = {2014}, month = {2014}, pages = {e111156}, abstract = {

Plasma fibrinogen is an acute phase protein playing an important role in the blood coagulation cascade having strong associations with smoking, alcohol consumption and body mass index (BMI). Genome-wide association studies (GWAS) have identified a variety of gene regions associated with elevated plasma fibrinogen concentrations. However, little is yet known about how associations between environmental factors and fibrinogen might be modified by genetic variation. Therefore, we conducted large-scale meta-analyses of genome-wide interaction studies to identify possible interactions of genetic variants and smoking status, alcohol consumption or BMI on fibrinogen concentration. The present study included 80,607 subjects of European ancestry from 22 studies. Genome-wide interaction analyses were performed separately in each study for about 2.6 million single nucleotide polymorphisms (SNPs) across the 22 autosomal chromosomes. For each SNP and risk factor, we performed a linear regression under an additive genetic model including an interaction term between SNP and risk factor. Interaction estimates were meta-analysed using a fixed-effects model. No genome-wide significant interaction with smoking status, alcohol consumption or BMI was observed in the meta-analyses. The most suggestive interaction was found for smoking and rs10519203, located in the LOC123688 region on chromosome 15, with a p value of 6.2 {\texttimes} 10(-8). This large genome-wide interaction study including 80,607 participants found no strong evidence of interaction between genetic variants and smoking status, alcohol consumption or BMI on fibrinogen concentrations. Further studies are needed to yield deeper insight in the interplay between environmental factors and gene variants on the regulation of fibrinogen concentrations.

}, keywords = {Alcohol Drinking, Body Mass Index, Fibrinogen, Gene-Environment Interaction, Genomics, Humans, Smoking}, issn = {1932-6203}, doi = {10.1371/journal.pone.0111156}, author = {Baumert, Jens and Huang, Jie and McKnight, Barbara and Sabater-Lleal, Maria and Steri, Maristella and Chu, Audrey Y and Trompet, Stella and Lopez, Lorna M and Fornage, Myriam and Teumer, Alexander and Tang, Weihong and Rudnicka, Alicja R and M{\"a}larstig, Anders and Hottenga, Jouke-Jan and Kavousi, Maryam and Lahti, Jari and Tanaka, Toshiko and Hayward, Caroline and Huffman, Jennifer E and Morange, Pierre-Emmanuel and Rose, Lynda M and Basu, Saonli and Rumley, Ann and Stott, David J and Buckley, Brendan M and de Craen, Anton J M and Sanna, Serena and Masala, Marco and Biffar, Reiner and Homuth, Georg and Silveira, Angela and Sennblad, Bengt and Goel, Anuj and Watkins, Hugh and M{\"u}ller-Nurasyid, Martina and R{\"u}ckerl, Regina and Taylor, Kent and Chen, Ming-Huei and de Geus, Eco J C and Hofman, Albert and Witteman, Jacqueline C M and de Maat, Moniek P M and Palotie, Aarno and Davies, Gail and Siscovick, David S and Kolcic, Ivana and Wild, Sarah H and Song, Jaejoon and McArdle, Wendy L and Ford, Ian and Sattar, Naveed and Schlessinger, David and Grotevendt, Anne and Franzosi, Maria Grazia and Illig, Thomas and Waldenberger, Melanie and Lumley, Thomas and Tofler, Geoffrey H and Willemsen, Gonneke and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and R{\"a}ikk{\"o}nen, Katri and Chasman, Daniel I and Folsom, Aaron R and Lowe, Gordon D and Westendorp, Rudi G J and Slagboom, P Eline and Cucca, Francesco and Wallaschofski, Henri and Strawbridge, Rona J and Seedorf, Udo and Koenig, Wolfgang and Bis, Joshua C and Mukamal, Kenneth J and van Dongen, Jenny and Widen, Elisabeth and Franco, Oscar H and Starr, John M and Liu, Kiang and Ferrucci, Luigi and Polasek, Ozren and Wilson, James F and Oudot-Mellakh, Tiphaine and Campbell, Harry and Navarro, Pau and Bandinelli, Stefania and Eriksson, Johan and Boomsma, Dorret I and Dehghan, Abbas and Clarke, Robert and Hamsten, Anders and Boerwinkle, Eric and Jukema, J Wouter and Naitza, Silvia and Ridker, Paul M and V{\"o}lzke, Henry and Deary, Ian J and Reiner, Alexander P and Tr{\'e}gou{\"e}t, David-Alexandre and O{\textquoteright}Donnell, Christopher J and Strachan, David P and Peters, Annette and Smith, Nicholas L} } @article {6608, title = {Simple biologically informed inflammatory index of two serum cytokines predicts 10 year all-cause mortality in older adults.}, journal = {J Gerontol A Biol Sci Med Sci}, volume = {69}, year = {2014}, month = {2014 Feb}, pages = {165-73}, abstract = {

BACKGROUND: Individual measurements of inflammation have been utilized to assess adverse outcomes risk in older adults with varying degrees of success. This study was designed to identify biologically informed, aggregate measures of inflammation for optimal risk assessment and to inform further biological study of inflammatory pathways.

METHODS: In total, 15 nuclear factor-kappa B-mediated pathway markers of inflammation were first measured in baseline serum samples of 1,155 older participants in the InCHIANTI population. Of these, C-reactive protein, interleukin-1-receptor antagonist, interleukin-6, interleukin-18, and soluble tumor necrosis factor-α receptor-1 were independent predictors of 5-year mortality. These five inflammatory markers were measured in baseline serum samples of 5,600 Cardiovascular Health Study participants. A weighted summary score, the first principal component summary score, and an inflammation index score were developed from these five log-transformed inflammatory markers, and their prediction of 10-year all-cause mortality was evaluated in Cardiovascular Health Study and then validated in InCHIANTI.

RESULTS: The inflammation index score that included interleukin-6 and soluble tumor necrosis factor-α receptor-1 was the best predictor of 10-year all-cause mortality in Cardiovascular Health Study, after adjusting for age, sex, education, race, smoking, and body mass index (hazards ratio = 1.62; 95\% CI: 1.54, 1.70) compared with all other single and combined measures. The inflammation index score was also the best predictor of mortality in the InCHIANTI validation study (hazards ratio 1.33; 95\% CI: 1.17-1.52). Stratification by sex and CVD status further strengthened the association of inflammation index score with mortality.

CONCLUSION: A simple additive index of serum interleukin-6 and soluble tumor necrosis factor-α receptor-1 best captures the effect of chronic inflammation on mortality in older adults among the 15 biomarkers measured.

}, keywords = {Aged, Aged, 80 and over, Biomarkers, C-Reactive Protein, Cohort Studies, Female, Humans, Inflammation, Interleukin 1 Receptor Antagonist Protein, Interleukin-18, Interleukin-6, Longevity, Male, Receptors, Tumor Necrosis Factor, Type I, Risk Factors}, issn = {1758-535X}, doi = {10.1093/gerona/glt023}, author = {Varadhan, Ravi and Yao, Wenliang and Matteini, Amy and Beamer, Brock A and Xue, Qian-Li and Yang, Huanle and Manwani, Bhavish and Reiner, Alexander and Jenny, Nancy and Parekh, Neel and Fallin, M Daniele and Newman, Anne and Bandeen-Roche, Karen and Tracy, Russell and Ferrucci, Luigi and Walston, Jeremy} } @article {6573, title = {Trans-ethnic meta-analysis of white blood cell phenotypes.}, journal = {Hum Mol Genet}, volume = {23}, year = {2014}, month = {2014 Dec 20}, pages = {6944-60}, abstract = {

White blood cell (WBC) count is a common clinical measure used as a predictor of certain aspects of human health, including immunity and infection status. WBC count is also a complex trait that varies among individuals and ancestry groups. Differences in linkage disequilibrium structure and heterogeneity in allelic effects are expected to play a role in the associations observed between populations. Prior genome-wide association study (GWAS) meta-analyses have identified genomic loci associated with WBC and its subtypes, but much of the heritability of these phenotypes remains unexplained. Using GWAS summary statistics for over 50 000 individuals from three diverse populations (Japanese, African-American and European ancestry), a Bayesian model methodology was employed to account for heterogeneity between ancestry groups. This approach was used to perform a trans-ethnic meta-analysis of total WBC, neutrophil and monocyte counts. Ten previously known associations were replicated and six new loci were identified, including several regions harboring genes related to inflammation and immune cell function. Ninety-five percent credible interval regions were calculated to narrow the association signals and fine-map the putatively causal variants within loci. Finally, a conditional analysis was performed on the most significant SNPs identified by the trans-ethnic meta-analysis (MA), and nine secondary signals within loci previously associated with WBC or its subtypes were identified. This work illustrates the potential of trans-ethnic analysis and ascribes a critical role to multi-ethnic cohorts and consortia in exploring complex phenotypes with respect to variants that lie outside the European-biased GWAS pool.

}, keywords = {African Americans, Asian Continental Ancestry Group, Bayes Theorem, European Continental Ancestry Group, Genome, Human, Genome-Wide Association Study, Genotype, Humans, Leukocyte Count, Leukocytes, Linkage Disequilibrium, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci}, issn = {1460-2083}, doi = {10.1093/hmg/ddu401}, author = {Keller, Margaux F and Reiner, Alexander P and Okada, Yukinori and van Rooij, Frank J A and Johnson, Andrew D and Chen, Ming-Huei and Smith, Albert V and Morris, Andrew P and Tanaka, Toshiko and Ferrucci, Luigi and Zonderman, Alan B and Lettre, Guillaume and Harris, Tamara and Garcia, Melissa and Bandinelli, Stefania and Qayyum, Rehan and Yanek, Lisa R and Becker, Diane M and Becker, Lewis C and Kooperberg, Charles and Keating, Brendan and Reis, Jared and Tang, Hua and Boerwinkle, Eric and Kamatani, Yoichiro and Matsuda, Koichi and Kamatani, Naoyuki and Nakamura, Yusuke and Kubo, Michiaki and Liu, Simin and Dehghan, Abbas and Felix, Janine F and Hofman, Albert and Uitterlinden, Andr{\'e} G and van Duijn, Cornelia M and Franco, Oscar H and Longo, Dan L and Singleton, Andrew B and Psaty, Bruce M and Evans, Michelle K and Cupples, L Adrienne and Rotter, Jerome I and O{\textquoteright}Donnell, Christopher J and Takahashi, Atsushi and Wilson, James G and Ganesh, Santhi K and Nalls, Mike A} } @article {6802, title = {Gene {\texttimes} dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry.}, journal = {Hum Mol Genet}, volume = {24}, year = {2015}, month = {2015 Aug 15}, pages = {4728-38}, abstract = {

Obesity is highly heritable. Genetic variants showing robust associations with obesity traits have been identified through genome-wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist-hip ratio (WHR)-associated single nucleotide polymorphisms were genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjusted WHR~and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006-0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjusted WHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.

}, keywords = {Adult, Body Mass Index, Case-Control Studies, Diet, Western, Epistasis, Genetic, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Obesity, Polymorphism, Single Nucleotide}, issn = {1460-2083}, doi = {10.1093/hmg/ddv186}, author = {Nettleton, Jennifer A and Follis, Jack L and Ngwa, Julius S and Smith, Caren E and Ahmad, Shafqat and Tanaka, Toshiko and Wojczynski, Mary K and Voortman, Trudy and Lemaitre, Rozenn N and Kristiansson, Kati and Nuotio, Marja-Liisa and Houston, Denise K and Per{\"a}l{\"a}, Mia-Maria and Qi, Qibin and Sonestedt, Emily and Manichaikul, Ani and Kanoni, Stavroula and Ganna, Andrea and Mikkil{\"a}, Vera and North, Kari E and Siscovick, David S and Harald, Kennet and McKeown, Nicola M and Johansson, Ingegerd and Rissanen, Harri and Liu, Yongmei and Lahti, Jari and Hu, Frank B and Bandinelli, Stefania and Rukh, Gull and Rich, Stephen and Booij, Lisanne and Dmitriou, Maria and Ax, Erika and Raitakari, Olli and Mukamal, Kenneth and M{\"a}nnist{\"o}, Satu and Hallmans, G{\"o}ran and Jula, Antti and Ericson, Ulrika and Jacobs, David R and van Rooij, Frank J A and Deloukas, Panos and Sjogren, Per and K{\"a}h{\"o}nen, Mika and Djouss{\'e}, Luc and Perola, Markus and Barroso, In{\^e}s and Hofman, Albert and Stirrups, Kathleen and Viikari, Jorma and Uitterlinden, Andr{\'e} G and Kalafati, Ioanna P and Franco, Oscar H and Mozaffarian, Dariush and Salomaa, Veikko and Borecki, Ingrid B and Knekt, Paul and Kritchevsky, Stephen B and Eriksson, Johan G and Dedoussis, George V and Qi, Lu and Ferrucci, Luigi and Orho-Melander, Marju and Zillikens, M Carola and Ingelsson, Erik and Lehtim{\"a}ki, Terho and Renstrom, Frida and Cupples, L Adrienne and Loos, Ruth J F and Franks, Paul W} } @article {6684, title = {Genome-wide studies of verbal declarative memory in nondemented older people: the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium.}, journal = {Biol Psychiatry}, volume = {77}, year = {2015}, month = {2015 Apr 15}, pages = {749-63}, abstract = {

BACKGROUND: Memory performance in older persons can reflect genetic influences on cognitive function and dementing processes. We aimed to identify genetic contributions to verbal declarative memory in a community setting.

METHODS: We conducted genome-wide association studies for paragraph or word list delayed recall in 19 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, comprising 29,076 dementia- and stroke-free individuals of European descent, aged >=45 years. Replication of suggestive associations (p < 5 {\texttimes} 10(-6)) was sought in 10,617 participants of European descent, 3811 African-Americans, and 1561 young adults.

RESULTS: rs4420638, near APOE, was associated with poorer delayed recall performance in discovery (p = 5.57 {\texttimes} 10(-10)) and replication cohorts (p = 5.65 {\texttimes} 10(-8)). This association was stronger for paragraph than word list delayed recall and in the oldest persons. Two associations with specific tests, in subsets of the total sample, reached genome-wide significance in combined analyses of discovery and replication (rs11074779 [HS3ST4], p = 3.11 {\texttimes} 10(-8), and rs6813517 [SPOCK3], p = 2.58 {\texttimes} 10(-8)) near genes involved in immune response. A genetic score combining 58 independent suggestive memory risk variants was associated with increasing Alzheimer disease pathology in 725 autopsy samples. Association of memory risk loci with gene expression in 138 human hippocampus samples showed cis-associations with WDR48 and CLDN5, both related to ubiquitin metabolism.

CONCLUSIONS: This largest study to date exploring the genetics of memory function in ~40,000 older individuals revealed genome-wide associations and suggested an involvement of immune and ubiquitin pathways.

}, keywords = {Aged, Aged, 80 and over, Aging, Apolipoproteins E, Claudin-5, Cohort Studies, Female, Genome-Wide Association Study, Genotype, Humans, Male, Memory Disorders, Middle Aged, Polymorphism, Single Nucleotide, Proteins, Proteoglycans, Regression Analysis, Sulfotransferases, Verbal Learning}, issn = {1873-2402}, doi = {10.1016/j.biopsych.2014.08.027}, author = {Debette, Stephanie and Ibrahim Verbaas, Carla A and Bressler, Jan and Schuur, Maaike and Smith, Albert and Bis, Joshua C and Davies, Gail and Wolf, Christiane and Gudnason, Vilmundur and Chibnik, Lori B and Yang, Qiong and DeStefano, Anita L and de Quervain, Dominique J F and Srikanth, Velandai and Lahti, Jari and Grabe, Hans J and Smith, Jennifer A and Priebe, Lutz and Yu, Lei and Karbalai, Nazanin and Hayward, Caroline and Wilson, James F and Campbell, Harry and Petrovic, Katja and Fornage, Myriam and Chauhan, Ganesh and Yeo, Robin and Boxall, Ruth and Becker, James and Stegle, Oliver and Mather, Karen A and Chouraki, Vincent and Sun, Qi and Rose, Lynda M and Resnick, Susan and Oldmeadow, Christopher and Kirin, Mirna and Wright, Alan F and Jonsdottir, Maria K and Au, Rhoda and Becker, Albert and Amin, Najaf and Nalls, Mike A and Turner, Stephen T and Kardia, Sharon L R and Oostra, Ben and Windham, Gwen and Coker, Laura H and Zhao, Wei and Knopman, David S and Heiss, Gerardo and Griswold, Michael E and Gottesman, Rebecca F and Vitart, Veronique and Hastie, Nicholas D and Zgaga, Lina and Rudan, Igor and Polasek, Ozren and Holliday, Elizabeth G and Schofield, Peter and Choi, Seung Hoan and Tanaka, Toshiko and An, Yang and Perry, Rodney T and Kennedy, Richard E and Sale, Mich{\`e}le M and Wang, Jing and Wadley, Virginia G and Liewald, David C and Ridker, Paul M and Gow, Alan J and Pattie, Alison and Starr, John M and Porteous, David and Liu, Xuan and Thomson, Russell and Armstrong, Nicola J and Eiriksdottir, Gudny and Assareh, Arezoo A and Kochan, Nicole A and Widen, Elisabeth and Palotie, Aarno and Hsieh, Yi-Chen and Eriksson, Johan G and Vogler, Christian and van Swieten, John C and Shulman, Joshua M and Beiser, Alexa and Rotter, Jerome and Schmidt, Carsten O and Hoffmann, Wolfgang and N{\"o}then, Markus M and Ferrucci, Luigi and Attia, John and Uitterlinden, Andr{\'e} G and Amouyel, Philippe and Dartigues, Jean-Fran{\c c}ois and Amieva, H{\'e}l{\`e}ne and R{\"a}ikk{\"o}nen, Katri and Garcia, Melissa and Wolf, Philip A and Hofman, Albert and Longstreth, W T and Psaty, Bruce M and Boerwinkle, Eric and DeJager, Philip L and Sachdev, Perminder S and Schmidt, Reinhold and Breteler, Monique M B and Teumer, Alexander and Lopez, Oscar L and Cichon, Sven and Chasman, Daniel I and Grodstein, Francine and M{\"u}ller-Myhsok, Bertram and Tzourio, Christophe and Papassotiropoulos, Andreas and Bennett, David A and Ikram, M Arfan and Deary, Ian J and van Duijn, Cornelia M and Launer, Lenore and Fitzpatrick, Annette L and Seshadri, Sudha and Mosley, Thomas H} } @article {6550, title = {GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy.}, journal = {J Gerontol A Biol Sci Med Sci}, volume = {70}, year = {2015}, month = {2015 Jan}, pages = {110-8}, abstract = {

BACKGROUND: The genetic contribution to longevity in humans has been estimated to range from 15\% to 25\%. Only two genes, APOE and FOXO3, have shown association with longevity in multiple independent studies.

METHODS: We conducted a meta-analysis of genome-wide association studies including 6,036 longevity cases, age >=90 years, and 3,757 controls that died between ages 55 and 80 years. We additionally attempted to replicate earlier identified single nucleotide polymorphism (SNP) associations with longevity.

RESULTS: In our meta-analysis, we found suggestive evidence for the association of SNPs near CADM2 (odds ratio [OR] = 0.81; p value = 9.66 {\texttimes} 10(-7)) and GRIK2 (odds ratio = 1.24; p value = 5.09 {\texttimes} 10(-8)) with longevity. When attempting to replicate findings earlier identified in genome-wide association studies, only the APOE locus consistently replicated. In an additional look-up of the candidate gene FOXO3, we found that an earlier identified variant shows a highly significant association with longevity when including published data with our meta-analysis (odds ratio = 1.17; p value = 1.85{\texttimes}10(-10)).

CONCLUSIONS: We did not identify new genome-wide significant associations with longevity and did not replicate earlier findings except for APOE and FOXO3. Our inability to find new associations with survival to ages >=90 years because longevity represents multiple complex traits with heterogeneous genetic underpinnings, or alternatively, that longevity may be regulated by rare variants that are not captured by standard genome-wide genotyping and imputation of common variants.

}, keywords = {Aged, Aged, 80 and over, Apolipoproteins E, Cell Adhesion Molecules, Cohort Studies, Female, Forkhead Box Protein O3, Forkhead Transcription Factors, Genome-Wide Association Study, Humans, Longevity, Male, Middle Aged, Polymorphism, Single Nucleotide, Receptors, Kainic Acid}, issn = {1758-535X}, doi = {10.1093/gerona/glu166}, author = {Broer, Linda and Buchman, Aron S and Deelen, Joris and Evans, Daniel S and Faul, Jessica D and Lunetta, Kathryn L and Sebastiani, Paola and Smith, Jennifer A and Smith, Albert V and Tanaka, Toshiko and Yu, Lei and Arnold, Alice M and Aspelund, Thor and Benjamin, Emelia J and De Jager, Philip L and Eirkisdottir, Gudny and Evans, Denis A and Garcia, Melissa E and Hofman, Albert and Kaplan, Robert C and Kardia, Sharon L R and Kiel, Douglas P and Oostra, Ben A and Orwoll, Eric S and Parimi, Neeta and Psaty, Bruce M and Rivadeneira, Fernando and Rotter, Jerome I and Seshadri, Sudha and Singleton, Andrew and Tiemeier, Henning and Uitterlinden, Andr{\'e} G and Zhao, Wei and Bandinelli, Stefania and Bennett, David A and Ferrucci, Luigi and Gudnason, Vilmundur and Harris, Tamara B and Karasik, David and Launer, Lenore J and Perls, Thomas T and Slagboom, P Eline and Tranah, Gregory J and Weir, David R and Newman, Anne B and van Duijn, Cornelia M and Murabito, Joanne M} } @article {6614, title = {Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants.}, journal = {Am J Clin Nutr}, volume = {101}, year = {2015}, month = {2015 Jan}, pages = {135-43}, abstract = {

BACKGROUND: Short sleep duration has been associated with greater risks of obesity, hypertension, diabetes, and cardiovascular disease. Also, common genetic variants in the human Circadian Locomotor Output Cycles Kaput (CLOCK) show associations with ghrelin and total energy intake.

OBJECTIVES: We examined associations between habitual sleep duration, body mass index (BMI), and macronutrient intake and assessed whether CLOCK variants modify these associations.

DESIGN: We conducted inverse-variance weighted, fixed-effect meta-analyses of results of adjusted associations of sleep duration and BMI and macronutrient intake as percentages of total energy as well as interactions with CLOCK variants from 9 cohort studies including up to 14,906 participants of European descent from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium.

RESULTS: We observed a significant association between sleep duration and lower BMI (β {\textpm} SE = 0.16 {\textpm} 0.04, P < 0.0001) in the overall sample; however, associations between sleep duration and relative macronutrient intake were evident in age- and sex-stratified analyses only. We observed a significant association between sleep duration and lower saturated fatty acid intake in younger (aged 20-64 y) adults (men: 0.11 {\textpm} 0.06\%, P = 0.03; women: 0.10 {\textpm} 0.05\%, P = 0.04) and with lower carbohydrate (-0.31 {\textpm} 0.12\%, P < 0.01), higher total fat (0.18 {\textpm} 0.09\%, P = 0.05), and higher PUFA (0.05 {\textpm} 0.02\%, P = 0.02) intakes in older (aged 65-80 y) women. In addition, the following 2 nominally significant interactions were observed: between sleep duration and rs12649507 on PUFA intake and between sleep duration and rs6858749 on protein intake.

CONCLUSIONS: Our results indicate that longer habitual sleep duration is associated with lower BMI and age- and sex-specific favorable dietary behaviors. Differences in the relative intake of specific macronutrients associated with short sleep duration could, at least in part, explain previously reported associations between short sleep duration and chronic metabolic abnormalities. In addition, the influence of obesity-associated CLOCK variants on the association between sleep duration and macronutrient intake suggests that longer habitual sleep duration could ameliorate the genetic predisposition to obesity via a favorable dietary profile.

}, keywords = {Adult, Body Mass Index, CLOCK Proteins, Cohort Studies, Cross-Sectional Studies, Diet, Dietary Proteins, Energy Intake, European Continental Ancestry Group, Fatty Acids, Unsaturated, Female, Gene-Environment Interaction, Genetic Predisposition to Disease, Humans, Male, Middle Aged, Obesity, Polymorphism, Single Nucleotide, Sleep, Young Adult}, issn = {1938-3207}, doi = {10.3945/ajcn.114.095026}, author = {Dashti, Hassan S and Follis, Jack L and Smith, Caren E and Tanaka, Toshiko and Cade, Brian E and Gottlieb, Daniel J and Hruby, Adela and Jacques, Paul F and Lamon-Fava, Stefania and Richardson, Kris and Saxena, Richa and Scheer, Frank A J L and Kovanen, Leena and Bartz, Traci M and Per{\"a}l{\"a}, Mia-Maria and Jonsson, Anna and Frazier-Wood, Alexis C and Kalafati, Ioanna-Panagiota and Mikkil{\"a}, Vera and Partonen, Timo and Lemaitre, Rozenn N and Lahti, Jari and Hernandez, Dena G and Toft, Ulla and Johnson, W Craig and Kanoni, Stavroula and Raitakari, Olli T and Perola, Markus and Psaty, Bruce M and Ferrucci, Luigi and Grarup, Niels and Highland, Heather M and Rallidis, Loukianos and K{\"a}h{\"o}nen, Mika and Havulinna, Aki S and Siscovick, David S and R{\"a}ikk{\"o}nen, Katri and J{\o}rgensen, Torben and Rotter, Jerome I and Deloukas, Panos and Viikari, Jorma S A and Mozaffarian, Dariush and Linneberg, Allan and Sepp{\"a}l{\"a}, Ilkka and Hansen, Torben and Salomaa, Veikko and Gharib, Sina A and Eriksson, Johan G and Bandinelli, Stefania and Pedersen, Oluf and Rich, Stephen S and Dedoussis, George and Lehtim{\"a}ki, Terho and Ordovas, Jose M} } @article {6800, title = {Subclinical Hypothyroidism and the Risk of Stroke Events and Fatal Stroke: An Individual Participant Data Analysis.}, journal = {J Clin Endocrinol Metab}, volume = {100}, year = {2015}, month = {2015 Jun}, pages = {2181-91}, abstract = {

OBJECTIVE: The objective was to determine the risk of stroke associated with subclinical hypothyroidism.

DATA SOURCES AND STUDY SELECTION: Published prospective cohort studies were identified through a systematic search through November 2013 without restrictions in several databases. Unpublished studies were identified through the Thyroid Studies Collaboration. We collected individual participant data on thyroid function and stroke outcome. Euthyroidism was defined as TSH levels of 0.45-4.49 mIU/L, and subclinical hypothyroidism was defined as TSH levels of 4.5-19.9 mIU/L with normal T4 levels.

DATA EXTRACTION AND SYNTHESIS: We collected individual participant data on 47 573 adults (3451 subclinical hypothyroidism) from 17 cohorts and followed up from 1972-2014 (489 192 person-years). Age- and sex-adjusted pooled hazard ratios (HRs) for participants with subclinical hypothyroidism compared to euthyroidism were 1.05 (95\% confidence interval [CI], 0.91-1.21) for stroke events (combined fatal and nonfatal stroke) and 1.07 (95\% CI, 0.80-1.42) for fatal stroke. Stratified by age, the HR for stroke events was 3.32 (95\% CI, 1.25-8.80) for individuals aged 18-49 years. There was an increased risk of fatal stroke in the age groups 18-49 and 50-64 years, with a HR of 4.22 (95\% CI, 1.08-16.55) and 2.86 (95\% CI, 1.31-6.26), respectively (p trend 0.04). We found no increased risk for those 65-79 years old (HR, 1.00; 95\% CI, 0.86-1.18) or >= 80 years old (HR, 1.31; 95\% CI, 0.79-2.18). There was a pattern of increased risk of fatal stroke with higher TSH concentrations.

CONCLUSIONS: Although no overall effect of subclinical hypothyroidism on stroke could be demonstrated, an increased risk in subjects younger than 65 years and those with higher TSH concentrations was observed.

}, keywords = {Adult, Asymptomatic Diseases, Female, Humans, Hypothyroidism, Incidence, Male, Risk Factors, Stroke, Thyrotropin}, issn = {1945-7197}, doi = {10.1210/jc.2015-1438}, author = {Chaker, Layal and Baumgartner, Christine and den Elzen, Wendy P J and Ikram, M Arfan and Blum, Manuel R and Collet, Tinh-Hai and Bakker, Stephan J L and Dehghan, Abbas and Drechsler, Christiane and Luben, Robert N and Hofman, Albert and Portegies, Marileen L P and Medici, Marco and Iervasi, Giorgio and Stott, David J and Ford, Ian and Bremner, Alexandra and Wanner, Christoph and Ferrucci, Luigi and Newman, Anne B and Dullaart, Robin P and Sgarbi, Jos{\'e} A and Ceresini, Graziano and Maciel, Rui M B and Westendorp, Rudi G and Jukema, J Wouter and Imaizumi, Misa and Franklyn, Jayne A and Bauer, Douglas C and Walsh, John P and Razvi, Salman and Khaw, Kay-Tee and Cappola, Anne R and V{\"o}lzke, Henry and Franco, Oscar H and Gussekloo, Jacobijn and Rodondi, Nicolas and Peeters, Robin P} } @article {6795, title = {Subclinical thyroid dysfunction and fracture risk: a meta-analysis.}, journal = {JAMA}, volume = {313}, year = {2015}, month = {2015 May 26}, pages = {2055-65}, abstract = {

IMPORTANCE: Associations between subclinical thyroid dysfunction and fractures are unclear and clinical trials are lacking.

OBJECTIVE: To assess the association of subclinical thyroid dysfunction with hip, nonspine, spine, or any fractures.

DATA SOURCES AND STUDY SELECTION: The databases of MEDLINE and EMBASE (inception to March 26, 2015) were searched without language restrictions for prospective cohort studies with thyroid function data and subsequent fractures.

DATA EXTRACTION: Individual participant data were obtained from 13 prospective cohorts in the United States, Europe, Australia, and Japan. Levels of thyroid function were defined as euthyroidism (thyroid-stimulating hormone [TSH], 0.45-4.49 mIU/L), subclinical hyperthyroidism (TSH <0.45 mIU/L), and subclinical hypothyroidism (TSH >=4.50-19.99 mIU/L) with normal thyroxine concentrations.

MAIN OUTCOME AND MEASURES: The primary outcome was hip fracture. Any fractures, nonspine fractures, and clinical spine fractures were secondary outcomes.

RESULTS: Among 70,298 participants, 4092 (5.8\%) had subclinical hypothyroidism and 2219 (3.2\%) had subclinical hyperthyroidism. During 762,401 person-years of follow-up, hip fracture occurred in 2975 participants (4.6\%; 12 studies), any fracture in 2528 participants (9.0\%; 8 studies), nonspine fracture in 2018 participants (8.4\%; 8 studies), and spine fracture in 296 participants (1.3\%; 6 studies). In age- and sex-adjusted analyses, the hazard ratio (HR) for subclinical hyperthyroidism vs euthyroidism was 1.36 for hip fracture (95\% CI, 1.13-1.64; 146 events in 2082 participants vs 2534 in 56,471); for any fracture, HR was 1.28 (95\% CI, 1.06-1.53; 121 events in 888 participants vs 2203 in 25,901); for nonspine fracture, HR was 1.16 (95\% CI, 0.95-1.41; 107 events in 946 participants vs 1745 in 21,722); and for spine fracture, HR was 1.51 (95\% CI, 0.93-2.45; 17 events in 732 participants vs 255 in 20,328). Lower TSH was associated with higher fracture rates: for TSH of less than 0.10 mIU/L, HR was 1.61 for hip fracture (95\% CI, 1.21-2.15; 47 events in 510 participants); for any fracture, HR was 1.98 (95\% CI, 1.41-2.78; 44 events in 212 participants); for nonspine fracture, HR was 1.61 (95\% CI, 0.96-2.71; 32 events in 185 participants); and for spine fracture, HR was 3.57 (95\% CI, 1.88-6.78; 8 events in 162 participants). Risks were similar after adjustment for other fracture risk factors. Endogenous subclinical hyperthyroidism (excluding thyroid medication users) was associated with HRs of 1.52 (95\% CI, 1.19-1.93) for hip fracture, 1.42 (95\% CI, 1.16-1.74) for any fracture, and 1.74 (95\% CI, 1.01-2.99) for spine fracture. No association was found between subclinical hypothyroidism and fracture risk.

CONCLUSIONS AND RELEVANCE: Subclinical hyperthyroidism was associated with an increased risk of hip and other fractures, particularly among those with TSH levels of less than 0.10 mIU/L and those with endogenous subclinical hyperthyroidism. Further study is needed to determine whether treating subclinical hyperthyroidism can prevent fractures.

}, keywords = {Adolescent, Adult, Aged, Aged, 80 and over, Female, Fractures, Bone, Hip Fractures, Humans, Hyperthyroidism, Hypothyroidism, Male, Middle Aged, Risk Factors, Spinal Fractures, Thyrotropin, Young Adult}, issn = {1538-3598}, doi = {10.1001/jama.2015.5161}, author = {Blum, Manuel R and Bauer, Douglas C and Collet, Tinh-Hai and Fink, Howard A and Cappola, Anne R and da Costa, Bruno R and Wirth, Christina D and Peeters, Robin P and Asvold, Bj{\o}rn O and den Elzen, Wendy P J and Luben, Robert N and Imaizumi, Misa and Bremner, Alexandra P and Gogakos, Apostolos and Eastell, Richard and Kearney, Patricia M and Strotmeyer, Elsa S and Wallace, Erin R and Hoff, Mari and Ceresini, Graziano and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Stott, David J and Westendorp, Rudi G J and Khaw, Kay-Tee and Langhammer, Arnuf and Ferrucci, Luigi and Gussekloo, Jacobijn and Williams, Graham R and Walsh, John P and J{\"u}ni, Peter and Aujesky, Drahomir and Rodondi, Nicolas} } @article {6798, title = {Thyroid function within the normal range and risk of coronary heart disease: an individual participant data analysis of 14 cohorts.}, journal = {JAMA Intern Med}, volume = {175}, year = {2015}, month = {2015 Jun}, pages = {1037-47}, abstract = {

IMPORTANCE: Some experts suggest that serum thyrotropin levels in the upper part of the current reference range should be considered abnormal, an approach that would reclassify many individuals as having mild hypothyroidism. Health hazards associated with such thyrotropin levels are poorly documented, but conflicting evidence suggests that thyrotropin levels in the upper part of the reference range may be associated with an increased risk of coronary heart disease (CHD).

OBJECTIVE: To assess the association between differences in thyroid function within the reference range and CHD risk.

DESIGN, SETTING, AND PARTICIPANTS: Individual participant data analysis of 14 cohorts with baseline examinations between July 1972 and April 2002 and with median follow-up ranging from 3.3 to 20.0 years. Participants included 55,412 individuals with serum thyrotropin levels of 0.45 to 4.49 mIU/L and no previously known thyroid or cardiovascular disease at baseline.

EXPOSURES: Thyroid function as expressed by serum thyrotropin levels at baseline.

MAIN OUTCOMES AND MEASURES: Hazard ratios (HRs) of CHD mortality and CHD events according to thyrotropin levels after adjustment for age, sex, and smoking status.

RESULTS: Among 55,412 individuals, 1813 people (3.3\%) died of CHD during 643,183 person-years of follow-up. In 10 cohorts with information on both nonfatal and fatal CHD events, 4666 of 48,875 individuals (9.5\%) experienced a first-time CHD event during 533,408 person-years of follow-up. For each 1-mIU/L higher thyrotropin level, the HR was 0.97 (95\% CI, 0.90-1.04) for CHD mortality and 1.00 (95\% CI, 0.97-1.03) for a first-time CHD event. Similarly, in analyses by categories of thyrotropin, the HRs of CHD mortality (0.94 [95\% CI, 0.74-1.20]) and CHD events (0.97 [95\% CI, 0.83-1.13]) were similar among participants with the highest (3.50-4.49 mIU/L) compared with the lowest (0.45-1.49 mIU/L) thyrotropin levels. Subgroup analyses by sex and age group yielded similar results.

CONCLUSIONS AND RELEVANCE: Thyrotropin levels within the reference range are not associated with risk of CHD events or CHD mortality. This finding suggests that differences in thyroid function within the population reference range do not influence the risk of CHD. Increased CHD risk does not appear to be a reason for lowering the upper thyrotropin reference limit.

}, keywords = {Cohort Studies, Coronary Disease, Humans, Hypothyroidism, Thyrotropin}, issn = {2168-6114}, doi = {10.1001/jamainternmed.2015.0930}, author = {Asvold, Bj{\o}rn O and Vatten, Lars J and Bj{\o}ro, Trine and Bauer, Douglas C and Bremner, Alexandra and Cappola, Anne R and Ceresini, Graziano and den Elzen, Wendy P J and Ferrucci, Luigi and Franco, Oscar H and Franklyn, Jayne A and Gussekloo, Jacobijn and Iervasi, Giorgio and Imaizumi, Misa and Kearney, Patricia M and Khaw, Kay-Tee and Maciel, Rui M B and Newman, Anne B and Peeters, Robin P and Psaty, Bruce M and Razvi, Salman and Sgarbi, Jos{\'e} A and Stott, David J and Trompet, Stella and Vanderpump, Mark P J and V{\"o}lzke, Henry and Walsh, John P and Westendorp, Rudi G J and Rodondi, Nicolas} } @article {7262, title = {52 Genetic Loci Influencing Myocardial~Mass.}, journal = {J Am Coll Cardiol}, volume = {68}, year = {2016}, month = {2016 Sep 27}, pages = {1435-48}, abstract = {

BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death.

OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass.

METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment.

RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p~< 1~{\texttimes} 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67~candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in~vitro and in~vivo.

CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets.

}, issn = {1558-3597}, doi = {10.1016/j.jacc.2016.07.729}, author = {van der Harst, Pim and van Setten, Jessica and Verweij, Niek and Vogler, Georg and Franke, Lude and Maurano, Matthew T and Wang, Xinchen and Mateo Leach, Irene and Eijgelsheim, Mark and Sotoodehnia, Nona and Hayward, Caroline and Sorice, Rossella and Meirelles, Osorio and Lyytik{\"a}inen, Leo-Pekka and Polasek, Ozren and Tanaka, Toshiko and Arking, Dan E and Ulivi, Sheila and Trompet, Stella and M{\"u}ller-Nurasyid, Martina and Smith, Albert V and D{\"o}rr, Marcus and Kerr, Kathleen F and Magnani, Jared W and del Greco M, Fabiola and Zhang, Weihua and Nolte, Ilja M and Silva, Claudia T and Padmanabhan, Sandosh and Tragante, Vinicius and Esko, T{\~o}nu and Abecasis, Goncalo R and Adriaens, Michiel E and Andersen, Karl and Barnett, Phil and Bis, Joshua C and Bodmer, Rolf and Buckley, Brendan M and Campbell, Harry and Cannon, Megan V and Chakravarti, Aravinda and Chen, Lin Y and Delitala, Alessandro and Devereux, Richard B and Doevendans, Pieter A and Dominiczak, Anna F and Ferrucci, Luigi and Ford, Ian and Gieger, Christian and Harris, Tamara B and Haugen, Eric and Heinig, Matthias and Hernandez, Dena G and Hillege, Hans L and Hirschhorn, Joel N and Hofman, Albert and Hubner, Norbert and Hwang, Shih-Jen and Iorio, Annamaria and K{\"a}h{\"o}nen, Mika and Kellis, Manolis and Kolcic, Ivana and Kooner, Ishminder K and Kooner, Jaspal S and Kors, Jan A and Lakatta, Edward G and Lage, Kasper and Launer, Lenore J and Levy, Daniel and Lundby, Alicia and Macfarlane, Peter W and May, Dalit and Meitinger, Thomas and Metspalu, Andres and Nappo, Stefania and Naitza, Silvia and Neph, Shane and Nord, Alex S and Nutile, Teresa and Okin, Peter M and Olsen, Jesper V and Oostra, Ben A and Penninger, Josef M and Pennacchio, Len A and Pers, Tune H and Perz, Siegfried and Peters, Annette and Pinto, Yigal M and Pfeufer, Arne and Pilia, Maria Grazia and Pramstaller, Peter P and Prins, Bram P and Raitakari, Olli T and Raychaudhuri, Soumya and Rice, Ken M and Rossin, Elizabeth J and Rotter, Jerome I and Schafer, Sebastian and Schlessinger, David and Schmidt, Carsten O and Sehmi, Jobanpreet and Sillj{\'e}, Herman H W and Sinagra, Gianfranco and Sinner, Moritz F and Slowikowski, Kamil and Soliman, Elsayed Z and Spector, Timothy D and Spiering, Wilko and Stamatoyannopoulos, John A and Stolk, Ronald P and Strauch, Konstantin and Tan, Sian-Tsung and Tarasov, Kirill V and Trinh, Bosco and Uitterlinden, Andr{\'e} G and van den Boogaard, Malou and van Duijn, Cornelia M and van Gilst, Wiek H and Viikari, Jorma S and Visscher, Peter M and Vitart, Veronique and V{\"o}lker, Uwe and Waldenberger, Melanie and Weichenberger, Christian X and Westra, Harm-Jan and Wijmenga, Cisca and Wolffenbuttel, Bruce H and Yang, Jian and Bezzina, Connie R and Munroe, Patricia B and Snieder, Harold and Wright, Alan F and Rudan, Igor and Boyer, Laurie A and Asselbergs, Folkert W and van Veldhuisen, Dirk J and Stricker, Bruno H and Psaty, Bruce M and Ciullo, Marina and Sanna, Serena and Lehtim{\"a}ki, Terho and Wilson, James F and Bandinelli, Stefania and Alonso, Alvaro and Gasparini, Paolo and Jukema, J Wouter and K{\"a}{\"a}b, Stefan and Gudnason, Vilmundur and Felix, Stephan B and Heckbert, Susan R and de Boer, Rudolf A and Newton-Cheh, Christopher and Hicks, Andrew A and Chambers, John C and Jamshidi, Yalda and Visel, Axel and Christoffels, Vincent M and Isaacs, Aaron and Samani, Nilesh J and de Bakker, Paul I W} } @article {7349, title = {DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases.}, journal = {Genome Biol}, volume = {17}, year = {2016}, month = {2016 Dec 12}, pages = {255}, abstract = {

BACKGROUND: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation.

RESULTS: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 {\texttimes} 10(-7)) in the discovery panel of European ancestry and replicated (P < 2.29 {\texttimes} 10(-4)) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16\%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 {\texttimes} 10(-5)), ten (17\%) CpG sites were associated with a nearby genetic variant (P < 2.50 {\texttimes} 10(-3)), and 51 (88\%) were also associated with at least one related cardiometabolic entity (P < 9.58 {\texttimes} 10(-5)). An additive weighted score of replicated CpG sites accounted for up to 6\% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants.

CONCLUSION: We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.

}, issn = {1474-760X}, doi = {10.1186/s13059-016-1119-5}, author = {Ligthart, Symen and Marzi, Carola and Aslibekyan, Stella and Mendelson, Michael M and Conneely, Karen N and Tanaka, Toshiko and Colicino, Elena and Waite, Lindsay L and Joehanes, Roby and Guan, Weihua and Brody, Jennifer A and Elks, Cathy and Marioni, Riccardo and Jhun, Min A and Agha, Golareh and Bressler, Jan and Ward-Caviness, Cavin K and Chen, Brian H and Huan, Tianxiao and Bakulski, Kelly and Salfati, Elias L and Fiorito, Giovanni and Wahl, Simone and Schramm, Katharina and Sha, Jin and Hernandez, Dena G and Just, Allan C and Smith, Jennifer A and Sotoodehnia, Nona and Pilling, Luke C and Pankow, James S and Tsao, Phil S and Liu, Chunyu and Zhao, Wei and Guarrera, Simonetta and Michopoulos, Vasiliki J and Smith, Alicia K and Peters, Marjolein J and Melzer, David and Vokonas, Pantel and Fornage, Myriam and Prokisch, Holger and Bis, Joshua C and Chu, Audrey Y and Herder, Christian and Grallert, Harald and Yao, Chen and Shah, Sonia and McRae, Allan F and Lin, Honghuang and Horvath, Steve and Fallin, Daniele and Hofman, Albert and Wareham, Nicholas J and Wiggins, Kerri L and Feinberg, Andrew P and Starr, John M and Visscher, Peter M and Murabito, Joanne M and Kardia, Sharon L R and Absher, Devin M and Binder, Elisabeth B and Singleton, Andrew B and Bandinelli, Stefania and Peters, Annette and Waldenberger, Melanie and Matullo, Giuseppe and Schwartz, Joel D and Demerath, Ellen W and Uitterlinden, Andr{\'e} G and van Meurs, Joyce B J and Franco, Oscar H and Chen, Yii-Der Ida and Levy, Daniel and Turner, Stephen T and Deary, Ian J and Ressler, Kerry J and Dupuis, Jos{\'e}e and Ferrucci, Luigi and Ong, Ken K and Assimes, Themistocles L and Boerwinkle, Eric and Koenig, Wolfgang and Arnett, Donna K and Baccarelli, Andrea A and Benjamin, Emelia J and Dehghan, Abbas} } @article {7261, title = {Epigenetic Signatures of Cigarette Smoking.}, journal = {Circ Cardiovasc Genet}, volume = {9}, year = {2016}, month = {2016 Oct}, pages = {436-447}, abstract = {

BACKGROUND: DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders.

METHODS AND RESULTS: To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine-phosphate-guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1{\texttimes}10(-7) (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1{\texttimes}10(-7) (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs.

CONCLUSIONS: Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.116.001506}, author = {Joehanes, Roby and Just, Allan C and Marioni, Riccardo E and Pilling, Luke C and Reynolds, Lindsay M and Mandaviya, Pooja R and Guan, Weihua and Xu, Tao and Elks, Cathy E and Aslibekyan, Stella and Moreno-Macias, Hortensia and Smith, Jennifer A and Brody, Jennifer A and Dhingra, Radhika and Yousefi, Paul and Pankow, James S and Kunze, Sonja and Shah, Sonia H and McRae, Allan F and Lohman, Kurt and Sha, Jin and Absher, Devin M and Ferrucci, Luigi and Zhao, Wei and Demerath, Ellen W and Bressler, Jan and Grove, Megan L and Huan, Tianxiao and Liu, Chunyu and Mendelson, Michael M and Yao, Chen and Kiel, Douglas P and Peters, Annette and Wang-Sattler, Rui and Visscher, Peter M and Wray, Naomi R and Starr, John M and Ding, Jingzhong and Rodriguez, Carlos J and Wareham, Nicholas J and Irvin, Marguerite R and Zhi, Degui and Barrdahl, Myrto and Vineis, Paolo and Ambatipudi, Srikant and Uitterlinden, Andr{\'e} G and Hofman, Albert and Schwartz, Joel and Colicino, Elena and Hou, Lifang and Vokonas, Pantel S and Hernandez, Dena G and Singleton, Andrew B and Bandinelli, Stefania and Turner, Stephen T and Ware, Erin B and Smith, Alicia K and Klengel, Torsten and Binder, Elisabeth B and Psaty, Bruce M and Taylor, Kent D and Gharib, Sina A and Swenson, Brenton R and Liang, Liming and DeMeo, Dawn L and O{\textquoteright}Connor, George T and Herceg, Zdenko and Ressler, Kerry J and Conneely, Karen N and Sotoodehnia, Nona and Kardia, Sharon L R and Melzer, David and Baccarelli, Andrea A and van Meurs, Joyce B J and Romieu, Isabelle and Arnett, Donna K and Ong, Ken K and Liu, Yongmei and Waldenberger, Melanie and Deary, Ian J and Fornage, Myriam and Levy, Daniel and London, Stephanie J} } @article {7259, title = {Fine-mapping, novel loci identification, and SNP association transferability in a genome-wide association study of QRS duration in African Americans.}, journal = {Hum Mol Genet}, year = {2016}, month = {2016 Aug 29}, abstract = {

The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 {\texttimes} 10(-14)) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 {\texttimes} 10(-4)). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 {\texttimes} 10(-8)) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 {\texttimes} 10(-9)). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 {\texttimes} 10(-7)), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddw284}, author = {Evans, Daniel S and Avery, Christy L and Nalls, Mike A and Li, Guo and Barnard, John and Smith, Erin N and Tanaka, Toshiko and Butler, Anne M and Buxbaum, Sarah G and Alonso, Alvaro and Arking, Dan E and Berenson, Gerald S and Bis, Joshua C and Buyske, Steven and Carty, Cara L and Chen, Wei and Chung, Mina K and Cummings, Steven R and Deo, Rajat and Eaton, Charles B and Fox, Ervin R and Heckbert, Susan R and Heiss, Gerardo and Hindorff, Lucia A and Hsueh, Wen-Chi and Isaacs, Aaron and Jamshidi, Yalda and Kerr, Kathleen F and Liu, Felix and Liu, Yongmei and Lohman, Kurt K and Magnani, Jared W and Maher, Joseph F and Mehra, Reena and Meng, Yan A and Musani, Solomon K and Newton-Cheh, Christopher and North, Kari E and Psaty, Bruce M and Redline, Susan and Rotter, Jerome I and Schnabel, Renate B and Schork, Nicholas J and Shohet, Ralph V and Singleton, Andrew B and Smith, Jonathan D and Soliman, Elsayed Z and Srinivasan, Sathanur R and Taylor, Herman A and Van Wagoner, David R and Wilson, James G and Young, Taylor and Zhang, Zhu-Ming and Zonderman, Alan B and Evans, Michele K and Ferrucci, Luigi and Murray, Sarah S and Tranah, Gregory J and Whitsel, Eric A and Reiner, Alex P and Sotoodehnia, Nona} } @article {7161, title = {Gait Speed Predicts Incident Disability: A Pooled Analysis.}, journal = {J Gerontol A Biol Sci Med Sci}, volume = {71}, year = {2016}, month = {2016 Jan}, pages = {63-71}, abstract = {

BACKGROUND: Functional independence with aging is an important goal for individuals and society. Simple prognostic indicators can inform health promotion and care planning, but evidence is limited by heterogeneity in measures of function.

METHODS: We performed a pooled analysis of data from seven studies of 27,220 community-dwelling older adults aged 65 or older with baseline gait speed, followed for disability and mortality. Outcomes were incident inability or dependence on another person in bathing or dressing; and difficulty walking {\textonequarter} - {\textonehalf} mile or climbing 10 steps within 3 years.

RESULTS: Participants with faster baseline gait had lower rates of incident disability. In subgroups (defined by 0.2 m/s-wide intervals from <0.4 to >= 1.4 m/s) with increasingly greater gait speed, 3-year rates of bathing or dressing dependence trended from 10\% to 1\% in men, and from 15\% to 1\% in women, while mobility difficulty trended from 47\% to 4\% in men and 40\% to 6\% in women. The age-adjusted relative risk ratio per 0.1 m/s greater speed for bathing or dressing dependence in men was 0.68 (0.57-0.81) and in women: 0.74 (0.66-0.82); for mobility difficulty, men: 0.75 (0.68-0.82), women: 0.73 (0.67-0.80). Results were similar for combined disability and mortality. Effects were largely consistent across subgroups based on age, gender, race, body mass index, prior hospitalization, and selected chronic conditions. In the presence of multiple other risk factors for disability, gait speed significantly increased the area under the receiver operator characteristic curve.

CONCLUSION: In older adults, gait speed predicts 3 year incidence of bathing or dressing dependence, mobility difficulty, and a composite outcome of disability and mortality.

}, keywords = {Activities of Daily Living, Aged, Aged, 80 and over, Aging, Cohort Studies, Disability Evaluation, Disabled Persons, Female, Gait, Geriatric Assessment, Humans, Independent Living, Male, Mobility Limitation, Predictive Value of Tests, Prognosis, Psychomotor Performance, Risk Assessment, Risk Factors, ROC Curve, Survival Analysis, United States}, issn = {1758-535X}, doi = {10.1093/gerona/glv126}, author = {Perera, Subashan and Patel, Kushang V and Rosano, Caterina and Rubin, Susan M and Satterfield, Suzanne and Harris, Tamara and Ensrud, Kristine and Orwoll, Eric and Lee, Christine G and Chandler, Julie M and Newman, Anne B and Cauley, Jane A and Guralnik, Jack M and Ferrucci, Luigi and Studenski, Stephanie A} } @article {7147, title = {Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits.}, journal = {Aging Cell}, volume = {15}, year = {2016}, month = {2016 Oct}, pages = {811-24}, abstract = {

The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30~884 adults of European ancestry from 21 studies, we confirmed and extended the list of previously identified loci associated with circulating IGF-I and IGFBP-3 concentrations (IGF1, IGFBP3, GCKR, TNS3, GHSR, FOXO3, ASXL2, NUBP2/IGFALS, SORCS2, and CELSR2). Significant sex interactions, which were characterized by different genotype-phenotype associations between men and women, were found only for associations of IGFBP-3 concentrations with SNPs at the loci IGFBP3 and SORCS2. Analyses of SNPs, gene expression, and protein levels suggested that interplay between IGFBP3 and genes within the NUBP2 locus (IGFALS and HAGH) may affect circulating IGF-I and IGFBP-3 concentrations. The IGF-I-decreasing allele of SNP rs934073, which is an eQTL of ASXL2, was associated with lower adiposity and higher likelihood of survival beyond 90~years. The known longevity-associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF-I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF-I- and IGFBP-3-associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several loci associated with circulating IGF-I and IGFBP-3 concentrations and provides clues to the potential role of the IGF axis in mediating effects of known (FOXO3) and novel (ASXL2) longevity-associated loci.

}, issn = {1474-9726}, doi = {10.1111/acel.12490}, author = {Teumer, Alexander and Qi, Qibin and Nethander, Maria and Aschard, Hugues and Bandinelli, Stefania and Beekman, Marian and Berndt, Sonja I and Bidlingmaier, Martin and Broer, Linda and Cappola, Anne and Ceda, Gian Paolo and Chanock, Stephen and Chen, Ming-Huei and Chen, Tai C and Chen, Yii-Der Ida and Chung, Jonathan and Del Greco Miglianico, Fabiola and Eriksson, Joel and Ferrucci, Luigi and Friedrich, Nele and Gnewuch, Carsten and Goodarzi, Mark O and Grarup, Niels and Guo, Tingwei and Hammer, Elke and Hayes, Richard B and Hicks, Andrew A and Hofman, Albert and Houwing-Duistermaat, Jeanine J and Hu, Frank and Hunter, David J and Husemoen, Lise L and Isaacs, Aaron and Jacobs, Kevin B and Janssen, Joop A M J L and Jansson, John-Olov and Jehmlich, Nico and Johnson, Simon and Juul, Anders and Karlsson, Magnus and Kilpel{\"a}inen, Tuomas O and Kovacs, Peter and Kraft, Peter and Li, Chao and Linneberg, Allan and Liu, Yongmei and Loos, Ruth J F and Lorentzon, Mattias and Lu, Yingchang and Maggio, Marcello and M{\"a}gi, Reedik and Meigs, James and Mellstr{\"o}m, Dan and Nauck, Matthias and Newman, Anne B and Pollak, Michael N and Pramstaller, Peter P and Prokopenko, Inga and Psaty, Bruce M and Reincke, Martin and Rimm, Eric B and Rotter, Jerome I and Saint Pierre, Aude and Schurmann, Claudia and Seshadri, Sudha and Sj{\"o}gren, Klara and Slagboom, P Eline and Strickler, Howard D and Stumvoll, Michael and Suh, Yousin and Sun, Qi and Zhang, Cuilin and Svensson, Johan and Tanaka, Toshiko and Tare, Archana and T{\"o}njes, Anke and Uh, Hae-Won and van Duijn, Cornelia M and van Heemst, Diana and Vandenput, Liesbeth and Vasan, Ramachandran S and V{\"o}lker, Uwe and Willems, Sara M and Ohlsson, Claes and Wallaschofski, Henri and Kaplan, Robert C} } @article {7142, title = {GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium.}, journal = {Aging Cell}, volume = {15}, year = {2016}, month = {2016 Oct}, pages = {792-800}, abstract = {

Decline in muscle strength with aging is an important predictor of health trajectory in the elderly. Several factors, including genetics, are proposed contributors to variability in muscle strength. To identify genetic contributors to muscle strength, a meta-analysis of genomewide association studies of handgrip was conducted. Grip strength was measured using a handheld dynamometer in 27~581 individuals of European descent over 65~years of age from 14 cohort studies. Genomewide association analysis was conducted on ~2.7 million imputed and genotyped variants (SNPs). Replication of the most significant findings was conducted using data from 6393 individuals from three cohorts. GWAS of lower body strength was also characterized in a subset of cohorts. Two genomewide significant (P-value< 5~{\texttimes}~10(-8) ) and 39 suggestive (P-value< 5~{\texttimes}~10(-5) ) associations were observed from meta-analysis of the discovery cohorts. After meta-analysis with replication cohorts, genomewide significant association was observed for rs752045 on chromosome 8 (β~=~0.47, SE~=~0.08, P-value~=~5.20~{\texttimes}~10(-10) ). This SNP is mapped to an intergenic region and is located within an accessible chromatin region (DNase hypersensitivity site) in skeletal muscle myotubes differentiated from the human skeletal muscle myoblasts cell line. This locus alters a binding motif of the CCAAT/enhancer-binding protein-β (CEBPB) that is implicated in muscle repair mechanisms. GWAS of lower body strength did not yield significant results. A common genetic variant in a chromosomal region that regulates myotube differentiation and muscle repair may contribute to variability in grip strength in the elderly. Further studies are needed to uncover the mechanisms that link this genetic variant with muscle strength.

}, issn = {1474-9726}, doi = {10.1111/acel.12468}, author = {Matteini, Amy M and Tanaka, Toshiko and Karasik, David and Atzmon, Gil and Chou, Wen-Chi and Eicher, John D and Johnson, Andrew D and Arnold, Alice M and Callisaya, Michele L and Davies, Gail and Evans, Daniel S and Holtfreter, Birte and Lohman, Kurt and Lunetta, Kathryn L and Mangino, Massimo and Smith, Albert V and Smith, Jennifer A and Teumer, Alexander and Yu, Lei and Arking, Dan E and Buchman, Aron S and Chibinik, Lori B and De Jager, Philip L and Evans, Denis A and Faul, Jessica D and Garcia, Melissa E and Gillham-Nasenya, Irina and Gudnason, Vilmundur and Hofman, Albert and Hsu, Yi-Hsiang and Ittermann, Till and Lahousse, Lies and Liewald, David C and Liu, Yongmei and Lopez, Lorna and Rivadeneira, Fernando and Rotter, Jerome I and Siggeirsdottir, Kristin and Starr, John M and Thomson, Russell and Tranah, Gregory J and Uitterlinden, Andr{\'e} G and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Weir, David R and Yaffe, Kristine and Zhao, Wei and Zhuang, Wei Vivian and Zmuda, Joseph M and Bennett, David A and Cummings, Steven R and Deary, Ian J and Ferrucci, Luigi and Harris, Tamara B and Kardia, Sharon L R and Kocher, Thomas and Kritchevsky, Stephen B and Psaty, Bruce M and Seshadri, Sudha and Spector, Timothy D and Srikanth, Velandai K and Windham, B Gwen and Zillikens, M Carola and Newman, Anne B and Walston, Jeremy D and Kiel, Douglas P and Murabito, Joanne M} } @article {6951, title = {Interaction of methylation-related genetic variants with circulating fatty acids on plasma lipids: a meta-analysis of 7 studies and methylation analysis of 3 studies in the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium.}, journal = {Am J Clin Nutr}, volume = {103}, year = {2016}, month = {2016 Feb}, pages = {567-78}, abstract = {

BACKGROUND: DNA methylation is influenced by diet and single nucleotide polymorphisms (SNPs), and methylation modulates gene expression.

OBJECTIVE: We aimed to explore whether the gene-by-diet interactions on blood lipids act through DNA methylation.

DESIGN: We selected 7 SNPs on the basis of predicted relations in fatty acids, methylation, and lipids. We conducted a meta-analysis and a methylation and mediation analysis with the use of data from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) consortium and the ENCODE (Encyclopedia of DNA Elements) consortium.

RESULTS: On the basis of the meta-analysis of 7 cohorts in the CHARGE consortium, higher plasma HDL cholesterol was associated with fewer C alleles at ATP-binding cassette subfamily A member 1 (ABCA1) rs2246293 (β = -0.6 mg/dL, P = 0.015) and higher circulating eicosapentaenoic acid (EPA) (β = 3.87 mg/dL, P = 5.62 {\texttimes} 10(21)). The difference in HDL cholesterol associated with higher circulating EPA was dependent on genotypes at rs2246293, and it was greater for each additional C allele (β = 1.69 mg/dL, P = 0.006). In the GOLDN (Genetics of Lipid Lowering Drugs and Diet Network) study, higher ABCA1 promoter cg14019050 methylation was associated with more C alleles at rs2246293 (β = 8.84\%, P = 3.51 {\texttimes} 10(18)) and lower circulating EPA (β = -1.46\%, P = 0.009), and the mean difference in methylation of cg14019050 that was associated with higher EPA was smaller with each additional C allele of rs2246293 (β = -2.83\%, P = 0.007). Higher ABCA1 cg14019050 methylation was correlated with lower ABCA1 expression (r = -0.61, P = 0.009) in the ENCODE consortium and lower plasma HDL cholesterol in the GOLDN study (r = -0.12, P = 0.0002). An additional mediation analysis was meta-analyzed across the GOLDN study, Cardiovascular Health Study, and the Multi-Ethnic Study of Atherosclerosis. Compared with the model without the adjustment of cg14019050 methylation, the model with such adjustment provided smaller estimates of the mean plasma HDL cholesterol concentration in association with both the rs2246293 C allele and EPA and a smaller difference by rs2246293 genotypes in the EPA-associated HDL cholesterol. However, the differences between 2 nested models were NS (P > 0.05).

CONCLUSION: We obtained little evidence that the gene-by-fatty acid interactions on blood lipids act through DNA methylation.

}, keywords = {Apolipoproteins E, ATP Binding Cassette Transporter 1, Cholesterol, HDL, Cohort Studies, Diet, DNA Methylation, Eicosapentaenoic Acid, Epigenesis, Genetic, Fatty Acids, Gene Expression Regulation, Humans, Lipids, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, Triglycerides}, issn = {1938-3207}, doi = {10.3945/ajcn.115.112987}, author = {Ma, Yiyi and Follis, Jack L and Smith, Caren E and Tanaka, Toshiko and Manichaikul, Ani W and Chu, Audrey Y and Samieri, Cecilia and Zhou, Xia and Guan, Weihua and Wang, Lu and Biggs, Mary L and Chen, Yii-der I and Hernandez, Dena G and Borecki, Ingrid and Chasman, Daniel I and Rich, Stephen S and Ferrucci, Luigi and Irvin, Marguerite Ryan and Aslibekyan, Stella and Zhi, Degui and Tiwari, Hemant K and Claas, Steven A and Sha, Jin and Kabagambe, Edmond K and Lai, Chao-Qiang and Parnell, Laurence D and Lee, Yu-Chi and Amouyel, Philippe and Lambert, Jean-Charles and Psaty, Bruce M and King, Irena B and Mozaffarian, Dariush and McKnight, Barbara and Bandinelli, Stefania and Tsai, Michael Y and Ridker, Paul M and Ding, Jingzhong and Mstat, Kurt Lohmant and Liu, Yongmei and Sotoodehnia, Nona and Barberger-Gateau, Pascale and Steffen, Lyn M and Siscovick, David S and Absher, Devin and Arnett, Donna K and Ordovas, Jose M and Lemaitre, Rozenn N} } @article {6936, title = {A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration.}, journal = {Hum Mol Genet}, volume = {25}, year = {2016}, month = {2016 Jan 15}, pages = {358-70}, abstract = {

Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including \~{}120 000 participants of European ancestry (95 806 participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million indels were examined. We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. There were no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1. Together the 41 loci explain 3\% of the variance in plasma fibrinogen concentration.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddv454}, author = {de Vries, Paul S and Chasman, Daniel I and Sabater-Lleal, Maria and Chen, Ming-Huei and Huffman, Jennifer E and Steri, Maristella and Tang, Weihong and Teumer, Alexander and Marioni, Riccardo E and Grossmann, Vera and Hottenga, Jouke J and Trompet, Stella and M{\"u}ller-Nurasyid, Martina and Zhao, Jing Hua and Brody, Jennifer A and Kleber, Marcus E and Guo, Xiuqing and Wang, Jie Jin and Auer, Paul L and Attia, John R and Yanek, Lisa R and Ahluwalia, Tarunveer S and Lahti, Jari and Venturini, Cristina and Tanaka, Toshiko and Bielak, Lawrence F and Joshi, Peter K and Rocanin-Arjo, Ares and Kolcic, Ivana and Navarro, Pau and Rose, Lynda M and Oldmeadow, Christopher and Riess, Helene and Mazur, Johanna and Basu, Saonli and Goel, Anuj and Yang, Qiong and Ghanbari, Mohsen and Willemsen, Gonneke and Rumley, Ann and Fiorillo, Edoardo and de Craen, Anton J M and Grotevendt, Anne and Scott, Robert and Taylor, Kent D and Delgado, Graciela E and Yao, Jie and Kifley, Annette and Kooperberg, Charles and Qayyum, Rehan and Lopez, Lorna M and Berentzen, Tina L and R{\"a}ikk{\"o}nen, Katri and Mangino, Massimo and Bandinelli, Stefania and Peyser, Patricia A and Wild, Sarah and Tr{\'e}gou{\"e}t, David-Alexandre and Wright, Alan F and Marten, Jonathan and Zemunik, Tatijana and Morrison, Alanna C and Sennblad, Bengt and Tofler, Geoffrey and de Maat, Moniek P M and de Geus, Eco J C and Lowe, Gordon D and Zoledziewska, Magdalena and Sattar, Naveed and Binder, Harald and V{\"o}lker, Uwe and Waldenberger, Melanie and Khaw, Kay-Tee and McKnight, Barbara and Huang, Jie and Jenny, Nancy S and Holliday, Elizabeth G and Qi, Lihong and Mcevoy, Mark G and Becker, Diane M and Starr, John M and Sarin, Antti-Pekka and Hysi, Pirro G and Hernandez, Dena G and Jhun, Min A and Campbell, Harry and Hamsten, Anders and Rivadeneira, Fernando and McArdle, Wendy L and Slagboom, P Eline and Zeller, Tanja and Koenig, Wolfgang and Psaty, Bruce M and Haritunians, Talin and Liu, Jingmin and Palotie, Aarno and Uitterlinden, Andr{\'e} G and Stott, David J and Hofman, Albert and Franco, Oscar H and Polasek, Ozren and Rudan, Igor and Morange, Pierre-Emmanuel and Wilson, James F and Kardia, Sharon L R and Ferrucci, Luigi and Spector, Tim D and Eriksson, Johan G and Hansen, Torben and Deary, Ian J and Becker, Lewis C and Scott, Rodney J and Mitchell, Paul and M{\"a}rz, Winfried and Wareham, Nick J and Peters, Annette and Greinacher, Andreas and Wild, Philipp S and Jukema, J Wouter and Boomsma, Dorret I and Hayward, Caroline and Cucca, Francesco and Tracy, Russell and Watkins, Hugh and Reiner, Alex P and Folsom, Aaron R and Ridker, Paul M and O{\textquoteright}Donnell, Christopher J and Smith, Nicholas L and Strachan, David P and Dehghan, Abbas} } @article {7238, title = {Thyroid Function Within the Reference Range and the Risk of Stroke: An Individual Participant Data Analysis.}, journal = {J Clin Endocrinol Metab}, volume = {101}, year = {2016}, month = {2016 Nov}, pages = {4270-4282}, abstract = {

CONTEXT: The currently applied reference ranges for thyroid function are under debate. Despite evidence that thyroid function within the reference range is related with several cardiovascular disorders, its association with the risk of stroke has not been evaluated previously.

DESIGN AND SETTING: We identified studies through a systematic literature search and the Thyroid Studies Collaboration, a collaboration of prospective cohort studies. Studies measuring baseline TSH, free T4, and stroke outcomes were included, and we collected individual participant data from each study, including thyroid function measurements and incident all stroke (combined fatal and nonfatal) and fatal stroke. The applied reference range for TSH levels was between 0.45 and 4.49 mIU/L.

RESULTS: We collected individual participant data on 43 598 adults with TSH within the reference range from 17 cohorts, with a median follow-up of 11.6 years (interquartile range 5.1-13.9), including 449 908 person-years. Age- and sex-adjusted pooled hazard ratio for TSH was 0.78 (95\% confidence interval [CI] 0.65-0.95 across the reference range of TSH) for all stroke and 0.83 (95\% CI 0.62-1.09) for fatal stroke. For the free T4 analyses, the hazard ratio was 1.08 (95\% CI 0.99-1.15 per SD increase) for all stroke and 1.10 (95\% CI 1.04-1.19) for fatal stroke. This was independent of cardiovascular risk factors including systolic blood pressure, total cholesterol, smoking, and prevalent diabetes.

CONCLUSION: Higher levels of TSH within the reference range may decrease the risk of stroke, highlighting the need for further research focusing on the clinical consequences associated with differences within the reference range of thyroid function.

}, issn = {1945-7197}, doi = {10.1210/jc.2016-2255}, author = {Chaker, Layal and Baumgartner, Christine and den Elzen, Wendy P J and Collet, Tinh-Hai and Ikram, M Arfan and Blum, Manuel R and Dehghan, Abbas and Drechsler, Christiane and Luben, Robert N and Portegies, Marileen L P and Iervasi, Giorgio and Medici, Marco and Stott, David J and Dullaart, Robin P and Ford, Ian and Bremner, Alexandra and Newman, Anne B and Wanner, Christoph and Sgarbi, Jos{\'e} A and D{\"o}rr, Marcus and Longstreth, W T and Psaty, Bruce M and Ferrucci, Luigi and Maciel, Rui M B and Westendorp, Rudi G and Jukema, J Wouter and Ceresini, Graziano and Imaizumi, Misa and Hofman, Albert and Bakker, Stephan J L and Franklyn, Jayne A and Khaw, Kay-Tee and Bauer, Douglas C and Walsh, John P and Razvi, Salman and Gussekloo, Jacobijn and V{\"o}lzke, Henry and Franco, Oscar H and Cappola, Anne R and Rodondi, Nicolas and Peeters, Robin P} } @article {7141, title = {Trans-ethnic Meta-analysis and Functional Annotation Illuminates the~Genetic Architecture of Fasting Glucose and Insulin.}, journal = {Am J Hum Genet}, volume = {99}, year = {2016}, month = {2016 Jul 7}, pages = {56-75}, abstract = {

Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2016.05.006}, author = {Liu, Ching-Ti and Raghavan, Sridharan and Maruthur, Nisa and Kabagambe, Edmond Kato and Hong, Jaeyoung and Ng, Maggie C Y and Hivert, Marie-France and Lu, Yingchang and An, Ping and Bentley, Amy R and Drolet, Anne M and Gaulton, Kyle J and Guo, Xiuqing and Armstrong, Loren L and Irvin, Marguerite R and Li, Man and Lipovich, Leonard and Rybin, Denis V and Taylor, Kent D and Agyemang, Charles and Palmer, Nicholette D and Cade, Brian E and Chen, Wei-Min and Dauriz, Marco and Delaney, Joseph A C and Edwards, Todd L and Evans, Daniel S and Evans, Michele K and Lange, Leslie A and Leong, Aaron and Liu, Jingmin and Liu, Yongmei and Nayak, Uma and Patel, Sanjay R and Porneala, Bianca C and Rasmussen-Torvik, Laura J and Snijder, Marieke B and Stallings, Sarah C and Tanaka, Toshiko and Yanek, Lisa R and Zhao, Wei and Becker, Diane M and Bielak, Lawrence F and Biggs, Mary L and Bottinger, Erwin P and Bowden, Donald W and Chen, Guanjie and Correa, Adolfo and Couper, David J and Crawford, Dana C and Cushman, Mary and Eicher, John D and Fornage, Myriam and Franceschini, Nora and Fu, Yi-Ping and Goodarzi, Mark O and Gottesman, Omri and Hara, Kazuo and Harris, Tamara B and Jensen, Richard A and Johnson, Andrew D and Jhun, Min A and Karter, Andrew J and Keller, Margaux F and Kho, Abel N and Kizer, Jorge R and Krauss, Ronald M and Langefeld, Carl D and Li, Xiaohui and Liang, Jingling and Liu, Simin and Lowe, William L and Mosley, Thomas H and North, Kari E and Pacheco, Jennifer A and Peyser, Patricia A and Patrick, Alan L and Rice, Kenneth M and Selvin, Elizabeth and Sims, Mario and Smith, Jennifer A and Tajuddin, Salman M and Vaidya, Dhananjay and Wren, Mary P and Yao, Jie and Zhu, Xiaofeng and Ziegler, Julie T and Zmuda, Joseph M and Zonderman, Alan B and Zwinderman, Aeilko H and Adeyemo, Adebowale and Boerwinkle, Eric and Ferrucci, Luigi and Hayes, M Geoffrey and Kardia, Sharon L R and Miljkovic, Iva and Pankow, James S and Rotimi, Charles N and Sale, Mich{\`e}le M and Wagenknecht, Lynne E and Arnett, Donna K and Chen, Yii-Der Ida and Nalls, Michael A and Province, Michael A and Kao, W H Linda and Siscovick, David S and Psaty, Bruce M and Wilson, James G and Loos, Ruth J F and Dupuis, Jos{\'e}e and Rich, Stephen S and Florez, Jose C and Rotter, Jerome I and Morris, Andrew P and Meigs, James B} } @article {7343, title = {Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study.}, journal = {PLoS One}, volume = {12}, year = {2017}, month = {2017}, pages = {e0167742}, abstract = {

An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5{\texttimes}10-8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5{\texttimes}10-8), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20\% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development.

}, issn = {1932-6203}, doi = {10.1371/journal.pone.0167742}, author = {de Vries, Paul S and Sabater-Lleal, Maria and Chasman, Daniel I and Trompet, Stella and Ahluwalia, Tarunveer S and Teumer, Alexander and Kleber, Marcus E and Chen, Ming-Huei and Wang, Jie Jin and Attia, John R and Marioni, Riccardo E and Steri, Maristella and Weng, Lu-Chen and Pool, Rene and Grossmann, Vera and Brody, Jennifer A and Venturini, Cristina and Tanaka, Toshiko and Rose, Lynda M and Oldmeadow, Christopher and Mazur, Johanna and Basu, Saonli and Fr{\r a}nberg, Mattias and Yang, Qiong and Ligthart, Symen and Hottenga, Jouke J and Rumley, Ann and Mulas, Antonella and de Craen, Anton J M and Grotevendt, Anne and Taylor, Kent D and Delgado, Graciela E and Kifley, Annette and Lopez, Lorna M and Berentzen, Tina L and Mangino, Massimo and Bandinelli, Stefania and Morrison, Alanna C and Hamsten, Anders and Tofler, Geoffrey and de Maat, Moniek P M and Draisma, Harmen H M and Lowe, Gordon D and Zoledziewska, Magdalena and Sattar, Naveed and Lackner, Karl J and V{\"o}lker, Uwe and McKnight, Barbara and Huang, Jie and Holliday, Elizabeth G and McEvoy, Mark A and Starr, John M and Hysi, Pirro G and Hernandez, Dena G and Guan, Weihua and Rivadeneira, Fernando and McArdle, Wendy L and Slagboom, P Eline and Zeller, Tanja and Psaty, Bruce M and Uitterlinden, Andr{\'e} G and de Geus, Eco J C and Stott, David J and Binder, Harald and Hofman, Albert and Franco, Oscar H and Rotter, Jerome I and Ferrucci, Luigi and Spector, Tim D and Deary, Ian J and M{\"a}rz, Winfried and Greinacher, Andreas and Wild, Philipp S and Cucca, Francesco and Boomsma, Dorret I and Watkins, Hugh and Tang, Weihong and Ridker, Paul M and Jukema, Jan W and Scott, Rodney J and Mitchell, Paul and Hansen, Torben and O{\textquoteright}Donnell, Christopher J and Smith, Nicholas L and Strachan, David P and Dehghan, Abbas} } @article {7340, title = {The complex genetics of gait speed: genome-wide meta-analysis approach.}, journal = {Aging (Albany NY)}, volume = {9}, year = {2017}, month = {2017 Jan 10}, pages = {209-246}, abstract = {

Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.

}, issn = {1945-4589}, doi = {10.18632/aging.101151}, author = {Ben-Avraham, Dan and Karasik, David and Verghese, Joe and Lunetta, Kathryn L and Smith, Jennifer A and Eicher, John D and Vered, Rotem and Deelen, Joris and Arnold, Alice M and Buchman, Aron S and Tanaka, Toshiko and Faul, Jessica D and Nethander, Maria and Fornage, Myriam and Adams, Hieab H and Matteini, Amy M and Callisaya, Michele L and Smith, Albert V and Yu, Lei and De Jager, Philip L and Evans, Denis A and Gudnason, Vilmundur and Hofman, Albert and Pattie, Alison and Corley, Janie and Launer, Lenore J and Knopman, Davis S and Parimi, Neeta and Turner, Stephen T and Bandinelli, Stefania and Beekman, Marian and Gutman, Danielle and Sharvit, Lital and Mooijaart, Simon P and Liewald, David C and Houwing-Duistermaat, Jeanine J and Ohlsson, Claes and Moed, Matthijs and Verlinden, Vincent J and Mellstr{\"o}m, Dan and van der Geest, Jos N and Karlsson, Magnus and Hernandez, Dena and McWhirter, Rebekah and Liu, Yongmei and Thomson, Russell and Tranah, Gregory J and Uitterlinden, Andr{\'e} G and Weir, David R and Zhao, Wei and Starr, John M and Johnson, Andrew D and Ikram, M Arfan and Bennett, David A and Cummings, Steven R and Deary, Ian J and Harris, Tamara B and Kardia, Sharon L R and Mosley, Thomas H and Srikanth, Velandai K and Windham, Beverly G and Newman, Ann B and Walston, Jeremy D and Davies, Gail and Evans, Daniel S and Slagboom, Eline P and Ferrucci, Luigi and Kiel, Douglas P and Murabito, Joanne M and Atzmon, Gil} } @article {7346, title = {Discovery and fine-mapping of loci associated with monounsaturated fatty acids through trans-ethnic meta-analysis in Chinese and European populations.}, journal = {J Lipid Res}, year = {2017}, month = {2017 Mar 15}, abstract = {

Monounsaturated fatty acids (MUFAs) are unsaturated fatty acids with one double bond and are derived from endogenous synthesis and dietary intake. Accumulating evidence has suggested that plasma and erythrocyte MUFA levels were associated with cardiometabolic disorders including cardiovascular disease (CVD), type 2 diabetes (T2D) and metabolic syndrome (MS). Previous genome-wide association studies (GWAS) have identified seven loci for plasma and erythrocyte palmitoleic acid and oleic acid levels in populations of European origin. To identify additional MUFA-associated loci and the potential causal variant at each locus, we performed ethnic-specific GWAS meta-analyses and trans-ethnic meta-analyses in over 15,000 participants of Chinese- and European-ancestry. We identified novel genome-wide significant associations for vaccenic acid at FADS1/2 and PKD2L1 [log10(Bayes factor)>=8.07] and for gondoic acid at FADS1/2 and GCKR [log10(Bayes factor)>=61619;6.22], and also observed improved fine-mapping resolutions at FADS1/2 and GCKR loci. The greatest improvement was observed at GCKR, where the number of variants in the 99\% credible set was reduced from 16 (covering ~95kb) to five (covering ~20kb, including a missense variant rs1260326) after trans-ethnic meta-analysis. We also confirmed the previously reported associations of PKD2L1, FADS1/2, GCKR and HIF1AN with palmitoleic acid and of FADS1/2 and LPCAT3 with oleic acid in the Chinese-specific GWAS and trans-ethnic meta-analyses. Pathway-based analyses suggested that the identified loci were enriched in unsaturated fatty acids metabolism and signaling pathways. Our findings provided novel insight into the genetic basis relevant to MUFA metabolism and biology.

}, issn = {1539-7262}, doi = {10.1194/jlr.P071860}, author = {Hu, Yao and Tanaka, Toshiko and Zhu, Jingwen and Guan, Weihua and Wu, Jason H Y and Psaty, Bruce M and McKnight, Barbara and King, Irena B and Sun, Qi and Richard, Melissa and Manichaikul, Ani and Frazier-Wood, Alexis C and Kabagambe, Edmond K and Hopkins, Paul N and Ordovas, Jose M and Ferrucci, Luigi and Bandinelli, Stefania and Arnett, Donna K and Chen, Yii-der I and Liang, Shuang and Siscovick, David S and Tsai, Michael Y and Rich, Stephen S and Fornage, Myriam and Hu, Frank B and Rimm, Eric B and Jensen, Majken K and Lemaitre, Rozenn N and Mozaffarian, Dariush and Steffen, Lyn M and Morris, Andrew P and Li, Huaixing and Lin, Xu} } @article {7578, title = {Genome-wide association meta-analysis of fish and EPA+DHA consumption in 17 US and European cohorts.}, journal = {PLoS One}, volume = {12}, year = {2017}, month = {2017}, pages = {e0186456}, abstract = {

BACKGROUND: Regular fish and omega-3 consumption may have several health benefits and are recommended by major dietary guidelines. Yet, their intakes remain remarkably variable both within and across populations, which could partly owe to genetic influences.

OBJECTIVE: To identify common genetic variants that influence fish and dietary eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA) consumption.

DESIGN: We conducted genome-wide association (GWA) meta-analysis of fish (n = 86,467) and EPA+DHA (n = 62,265) consumption in 17 cohorts of European descent from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium Nutrition Working Group. Results from cohort-specific GWA analyses (additive model) for fish and EPA+DHA consumption were adjusted for age, sex, energy intake, and population stratification, and meta-analyzed separately using fixed-effect meta-analysis with inverse variance weights (METAL software). Additionally, heritability was estimated in 2 cohorts.

RESULTS: Heritability estimates for fish and EPA+DHA consumption ranged from 0.13-0.24 and 0.12-0.22, respectively. A significant GWA for fish intake was observed for rs9502823 on chromosome 6: each copy of the minor allele (FreqA = 0.015) was associated with 0.029 servings/day (~1 serving/month) lower fish consumption (P = 1.96x10-8). No significant association was observed for EPA+DHA, although rs7206790 in the obesity-associated FTO gene was among top hits (P = 8.18x10-7). Post-hoc calculations demonstrated 95\% statistical power to detect a genetic variant associated with effect size of 0.05\% for fish and 0.08\% for EPA+DHA.

CONCLUSIONS: These novel findings suggest that non-genetic personal and environmental factors are principal determinants of the remarkable variation in fish consumption, representing modifiable targets for increasing intakes among all individuals. Genes underlying the signal at rs72838923 and mechanisms for the association warrant further investigation.

}, keywords = {Adult, Aged, Cohort Studies, Docosahexaenoic Acids, Eicosapentaenoic Acid, Europe, European Continental Ancestry Group, Female, Genome-Wide Association Study, Humans, Male, Middle Aged, Seafood, United States}, issn = {1932-6203}, doi = {10.1371/journal.pone.0186456}, author = {Mozaffarian, Dariush and Dashti, Hassan S and Wojczynski, Mary K and Chu, Audrey Y and Nettleton, Jennifer A and M{\"a}nnist{\"o}, Satu and Kristiansson, Kati and Reedik, M{\"a}gi and Lahti, Jari and Houston, Denise K and Cornelis, Marilyn C and van Rooij, Frank J A and Dimitriou, Maria and Kanoni, Stavroula and Mikkil{\"a}, Vera and Steffen, Lyn M and de Oliveira Otto, Marcia C and Qi, Lu and Psaty, Bruce and Djouss{\'e}, Luc and Rotter, Jerome I and Harald, Kennet and Perola, Markus and Rissanen, Harri and Jula, Antti and Krista, Fischer and Mihailov, Evelin and Feitosa, Mary F and Ngwa, Julius S and Xue, Luting and Jacques, Paul F and Per{\"a}l{\"a}, Mia-Maria and Palotie, Aarno and Liu, Yongmei and Nalls, Nike A and Ferrucci, Luigi and Hernandez, Dena and Manichaikul, Ani and Tsai, Michael Y and Kiefte-de Jong, Jessica C and Hofman, Albert and Uitterlinden, Andr{\'e} G and Rallidis, Loukianos and Ridker, Paul M and Rose, Lynda M and Buring, Julie E and Lehtim{\"a}ki, Terho and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Lemaitre, Rozenn and Salomaa, Veikko and Knekt, Paul and Metspalu, Andres and Borecki, Ingrid B and Cupples, L Adrienne and Eriksson, Johan G and Kritchevsky, Stephen B and Bandinelli, Stefania and Siscovick, David and Franco, Oscar H and Deloukas, Panos and Dedoussis, George and Chasman, Daniel I and Raitakari, Olli and Tanaka, Toshiko} } @article {7364, title = {Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis.}, journal = {Am J Hum Genet}, volume = {100}, year = {2017}, month = {2017 Jan 05}, pages = {51-63}, abstract = {

Genome-wide association studies (GWASs) have identified loci for erythrocyte traits in primarily European ancestry populations. We conducted GWAS meta-analyses of six erythrocyte traits in 71,638 individuals from European, East Asian, and African ancestries using a Bayesian approach to account for heterogeneity in allelic effects and variation in the structure of linkage disequilibrium between ethnicities. We identified seven loci for erythrocyte traits including a locus (RBPMS/GTF2E2) associated with mean corpuscular hemoglobin and mean corpuscular volume. Statistical fine-mapping at this locus pointed to RBPMS at this locus and excluded nearby GTF2E2. Using zebrafish morpholino to evaluate loss of function, we observed a strong in~vivo erythropoietic effect for RBPMS but not for GTF2E2, supporting the statistical fine-mapping at this locus and demonstrating that RBPMS is a regulator of erythropoiesis. Our findings show the utility of trans-ethnic GWASs for discovery and characterization of genetic loci influencing hematologic traits.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2016.11.016}, author = {van Rooij, Frank J A and Qayyum, Rehan and Smith, Albert V and Zhou, Yi and Trompet, Stella and Tanaka, Toshiko and Keller, Margaux F and Chang, Li-Ching and Schmidt, Helena and Yang, Min-Lee and Chen, Ming-Huei and Hayes, James and Johnson, Andrew D and Yanek, Lisa R and Mueller, Christian and Lange, Leslie and Floyd, James S and Ghanbari, Mohsen and Zonderman, Alan B and Jukema, J Wouter and Hofman, Albert and van Duijn, Cornelia M and Desch, Karl C and Saba, Yasaman and Ozel, Ayse B and Snively, Beverly M and Wu, Jer-Yuarn and Schmidt, Reinhold and Fornage, Myriam and Klein, Robert J and Fox, Caroline S and Matsuda, Koichi and Kamatani, Naoyuki and Wild, Philipp S and Stott, David J and Ford, Ian and Slagboom, P Eline and Yang, Jaden and Chu, Audrey Y and Lambert, Amy J and Uitterlinden, Andr{\'e} G and Franco, Oscar H and Hofer, Edith and Ginsburg, David and Hu, Bella and Keating, Brendan and Schick, Ursula M and Brody, Jennifer A and Li, Jun Z and Chen, Zhao and Zeller, Tanja and Guralnik, Jack M and Chasman, Daniel I and Peters, Luanne L and Kubo, Michiaki and Becker, Diane M and Li, Jin and Eiriksdottir, Gudny and Rotter, Jerome I and Levy, Daniel and Grossmann, Vera and Patel, Kushang V and Chen, Chien-Hsiun and Ridker, Paul M and Tang, Hua and Launer, Lenore J and Rice, Kenneth M and Li-Gao, Ruifang and Ferrucci, Luigi and Evans, Michelle K and Choudhuri, Avik and Trompouki, Eirini and Abraham, Brian J and Yang, Song and Takahashi, Atsushi and Kamatani, Yoichiro and Kooperberg, Charles and Harris, Tamara B and Jee, Sun Ha and Coresh, Josef and Tsai, Fuu-Jen and Longo, Dan L and Chen, Yuan-Tsong and Felix, Janine F and Yang, Qiong and Psaty, Bruce M and Boerwinkle, Eric and Becker, Lewis C and Mook-Kanamori, Dennis O and Wilson, James G and Gudnason, Vilmundur and O{\textquoteright}Donnell, Christopher J and Dehghan, Abbas and Cupples, L Adrienne and Nalls, Michael A and Morris, Andrew P and Okada, Yukinori and Reiner, Alexander P and Zon, Leonard I and Ganesh, Santhi K} } @article {7596, title = {Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis.}, journal = {PLoS Med}, volume = {14}, year = {2017}, month = {2017 Sep}, pages = {e1002383}, abstract = {

BACKGROUND: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.

METHODS \& FINDINGS: Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95\% CI 1.04-1.06, per HbA1c-raising allele, p = 3 {\texttimes} 10-29); whereas GS-E was not (OR = 1.00, 95\% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11\%) was associated with an absolute decrease in HbA1c of 0.81\%-units (95\% CI 0.66-0.96) per allele in hemizygous men, and 0.68\%-units (95\% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2\% (N = 0.65 million, 95\% CI 0.55-0.74) of African American adults with T2D to remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants.

CONCLUSIONS: As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.

}, keywords = {Diabetes Mellitus, Type 2, Genetic Variation, Genome-Wide Association Study, Glycated Hemoglobin A, Humans, Phenotype, Risk}, issn = {1549-1676}, doi = {10.1371/journal.pmed.1002383}, author = {Wheeler, Eleanor and Leong, Aaron and Liu, Ching-Ti and Hivert, Marie-France and Strawbridge, Rona J and Podmore, Clara and Li, Man and Yao, Jie and Sim, Xueling and Hong, Jaeyoung and Chu, Audrey Y and Zhang, Weihua and Wang, Xu and Chen, Peng and Maruthur, Nisa M and Porneala, Bianca C and Sharp, Stephen J and Jia, Yucheng and Kabagambe, Edmond K and Chang, Li-Ching and Chen, Wei-Min and Elks, Cathy E and Evans, Daniel S and Fan, Qiao and Giulianini, Franco and Go, Min Jin and Hottenga, Jouke-Jan and Hu, Yao and Jackson, Anne U and Kanoni, Stavroula and Kim, Young Jin and Kleber, Marcus E and Ladenvall, Claes and Lecoeur, C{\'e}cile and Lim, Sing-Hui and Lu, Yingchang and Mahajan, Anubha and Marzi, Carola and Nalls, Mike A and Navarro, Pau and Nolte, Ilja M and Rose, Lynda M and Rybin, Denis V and Sanna, Serena and Shi, Yuan and Stram, Daniel O and Takeuchi, Fumihiko and Tan, Shu Pei and van der Most, Peter J and van Vliet-Ostaptchouk, Jana V and Wong, Andrew and Yengo, Loic and Zhao, Wanting and Goel, Anuj and Martinez Larrad, Maria Teresa and Radke, D{\"o}rte and Salo, Perttu and Tanaka, Toshiko and van Iperen, Erik P A and Abecasis, Goncalo and Afaq, Saima and Alizadeh, Behrooz Z and Bertoni, Alain G and Bonnefond, Am{\'e}lie and B{\"o}ttcher, Yvonne and Bottinger, Erwin P and Campbell, Harry and Carlson, Olga D and Chen, Chien-Hsiun and Cho, Yoon Shin and Garvey, W Timothy and Gieger, Christian and Goodarzi, Mark O and Grallert, Harald and Hamsten, Anders and Hartman, Catharina A and Herder, Christian and Hsiung, Chao Agnes and Huang, Jie and Igase, Michiya and Isono, Masato and Katsuya, Tomohiro and Khor, Chiea-Chuen and Kiess, Wieland and Kohara, Katsuhiko and Kovacs, Peter and Lee, Juyoung and Lee, Wen-Jane and Lehne, Benjamin and Li, Huaixing and Liu, Jianjun and Lobbens, Stephane and Luan, Jian{\textquoteright}an and Lyssenko, Valeriya and Meitinger, Thomas and Miki, Tetsuro and Miljkovic, Iva and Moon, Sanghoon and Mulas, Antonella and M{\"u}ller, Gabriele and M{\"u}ller-Nurasyid, Martina and Nagaraja, Ramaiah and Nauck, Matthias and Pankow, James S and Polasek, Ozren and Prokopenko, Inga and Ramos, Paula S and Rasmussen-Torvik, Laura and Rathmann, Wolfgang and Rich, Stephen S and Robertson, Neil R and Roden, Michael and Roussel, Ronan and Rudan, Igor and Scott, Robert A and Scott, William R and Sennblad, Bengt and Siscovick, David S and Strauch, Konstantin and Sun, Liang and Swertz, Morris and Tajuddin, Salman M and Taylor, Kent D and Teo, Yik-Ying and Tham, Yih Chung and T{\"o}njes, Anke and Wareham, Nicholas J and Willemsen, Gonneke and Wilsgaard, Tom and Hingorani, Aroon D and Egan, Josephine and Ferrucci, Luigi and Hovingh, G Kees and Jula, Antti and Kivimaki, Mika and Kumari, Meena and Nj{\o}lstad, Inger and Palmer, Colin N A and Serrano R{\'\i}os, Manuel and Stumvoll, Michael and Watkins, Hugh and Aung, Tin and Bl{\"u}her, Matthias and Boehnke, Michael and Boomsma, Dorret I and Bornstein, Stefan R and Chambers, John C and Chasman, Daniel I and Chen, Yii-Der Ida and Chen, Yduan-Tsong and Cheng, Ching-Yu and Cucca, Francesco and de Geus, Eco J C and Deloukas, Panos and Evans, Michele K and Fornage, Myriam and Friedlander, Yechiel and Froguel, Philippe and Groop, Leif and Gross, Myron D and Harris, Tamara B and Hayward, Caroline and Heng, Chew-Kiat and Ingelsson, Erik and Kato, Norihiro and Kim, Bong-Jo and Koh, Woon-Puay and Kooner, Jaspal S and K{\"o}rner, Antje and Kuh, Diana and Kuusisto, Johanna and Laakso, Markku and Lin, Xu and Liu, Yongmei and Loos, Ruth J F and Magnusson, Patrik K E and M{\"a}rz, Winfried and McCarthy, Mark I and Oldehinkel, Albertine J and Ong, Ken K and Pedersen, Nancy L and Pereira, Mark A and Peters, Annette and Ridker, Paul M and Sabanayagam, Charumathi and Sale, Michele and Saleheen, Danish and Saltevo, Juha and Schwarz, Peter Eh and Sheu, Wayne H H and Snieder, Harold and Spector, Timothy D and Tabara, Yasuharu and Tuomilehto, Jaakko and van Dam, Rob M and Wilson, James G and Wilson, James F and Wolffenbuttel, Bruce H R and Wong, Tien Yin and Wu, Jer-Yuarn and Yuan, Jian-Min and Zonderman, Alan B and Soranzo, Nicole and Guo, Xiuqing and Roberts, David J and Florez, Jose C and Sladek, Robert and Dupuis, Jos{\'e}e and Morris, Andrew P and Tai, E-Shyong and Selvin, Elizabeth and Rotter, Jerome I and Langenberg, Claudia and Barroso, In{\^e}s and Meigs, James B} } @article {7920, title = {Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders.}, journal = {Am J Hum Genet}, volume = {103}, year = {2018}, month = {2018 Nov 01}, pages = {691-706}, abstract = {

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5~{\texttimes} 10). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0\% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2018.09.009}, author = {Ligthart, Symen and Vaez, Ahmad and V{\~o}sa, Urmo and Stathopoulou, Maria G and de Vries, Paul S and Prins, Bram P and van der Most, Peter J and Tanaka, Toshiko and Naderi, Elnaz and Rose, Lynda M and Wu, Ying and Karlsson, Robert and Barbalic, Maja and Lin, Honghuang and Pool, Rene and Zhu, Gu and Mace, Aurelien and Sidore, Carlo and Trompet, Stella and Mangino, Massimo and Sabater-Lleal, Maria and Kemp, John P and Abbasi, Ali and Kacprowski, Tim and Verweij, Niek and Smith, Albert V and Huang, Tao and Marzi, Carola and Feitosa, Mary F and Lohman, Kurt K and Kleber, Marcus E and Milaneschi, Yuri and Mueller, Christian and Huq, Mahmudul and Vlachopoulou, Efthymia and Lyytik{\"a}inen, Leo-Pekka and Oldmeadow, Christopher and Deelen, Joris and Perola, Markus and Zhao, Jing Hua and Feenstra, Bjarke and Amini, Marzyeh and Lahti, Jari and Schraut, Katharina E and Fornage, Myriam and Suktitipat, Bhoom and Chen, Wei-Min and Li, Xiaohui and Nutile, Teresa and Malerba, Giovanni and Luan, Jian{\textquoteright}an and Bak, Tom and Schork, Nicholas and del Greco M, Fabiola and Thiering, Elisabeth and Mahajan, Anubha and Marioni, Riccardo E and Mihailov, Evelin and Eriksson, Joel and Ozel, Ayse Bilge and Zhang, Weihua and Nethander, Maria and Cheng, Yu-Ching and Aslibekyan, Stella and Ang, Wei and Gandin, Ilaria and Yengo, Loic and Portas, Laura and Kooperberg, Charles and Hofer, Edith and Rajan, Kumar B and Schurmann, Claudia and den Hollander, Wouter and Ahluwalia, Tarunveer S and Zhao, Jing and Draisma, Harmen H M and Ford, Ian and Timpson, Nicholas and Teumer, Alexander and Huang, Hongyan and Wahl, Simone and Liu, Yongmei and Huang, Jie and Uh, Hae-Won and Geller, Frank and Joshi, Peter K and Yanek, Lisa R and Trabetti, Elisabetta and Lehne, Benjamin and Vozzi, Diego and Verbanck, Marie and Biino, Ginevra and Saba, Yasaman and Meulenbelt, Ingrid and O{\textquoteright}Connell, Jeff R and Laakso, Markku and Giulianini, Franco and Magnusson, Patrik K E and Ballantyne, Christie M and Hottenga, Jouke Jan and Montgomery, Grant W and Rivadineira, Fernando and Rueedi, Rico and Steri, Maristella and Herzig, Karl-Heinz and Stott, David J and Menni, Cristina and Fr{\r a}nberg, Mattias and St Pourcain, Beate and Felix, Stephan B and Pers, Tune H and Bakker, Stephan J L and Kraft, Peter and Peters, Annette and Vaidya, Dhananjay and Delgado, Graciela and Smit, Johannes H and Gro{\ss}mann, Vera and Sinisalo, Juha and Sepp{\"a}l{\"a}, Ilkka and Williams, Stephen R and Holliday, Elizabeth G and Moed, Matthijs and Langenberg, Claudia and R{\"a}ikk{\"o}nen, Katri and Ding, Jingzhong and Campbell, Harry and Sale, Mich{\`e}le M and Chen, Yii-der I and James, Alan L and Ruggiero, Daniela and Soranzo, Nicole and Hartman, Catharina A and Smith, Erin N and Berenson, Gerald S and Fuchsberger, Christian and Hernandez, Dena and Tiesler, Carla M T and Giedraitis, Vilmantas and Liewald, David and Fischer, Krista and Mellstr{\"o}m, Dan and Larsson, Anders and Wang, Yunmei and Scott, William R and Lorentzon, Matthias and Beilby, John and Ryan, Kathleen A and Pennell, Craig E and Vuckovic, Dragana and Balkau, Beverly and Concas, Maria Pina and Schmidt, Reinhold and Mendes de Leon, Carlos F and Bottinger, Erwin P and Kloppenburg, Margreet and Paternoster, Lavinia and Boehnke, Michael and Musk, A W and Willemsen, Gonneke and Evans, David M and Madden, Pamela A F and K{\"a}h{\"o}nen, Mika and Kutalik, Zolt{\'a}n and Zoledziewska, Magdalena and Karhunen, Ville and Kritchevsky, Stephen B and Sattar, Naveed and Lachance, Genevieve and Clarke, Robert and Harris, Tamara B and Raitakari, Olli T and Attia, John R and van Heemst, Diana and Kajantie, Eero and Sorice, Rossella and Gambaro, Giovanni and Scott, Robert A and Hicks, Andrew A and Ferrucci, Luigi and Standl, Marie and Lindgren, Cecilia M and Starr, John M and Karlsson, Magnus and Lind, Lars and Li, Jun Z and Chambers, John C and Mori, Trevor A and de Geus, Eco J C N and Heath, Andrew C and Martin, Nicholas G and Auvinen, Juha and Buckley, Brendan M and de Craen, Anton J M and Waldenberger, Melanie and Strauch, Konstantin and Meitinger, Thomas and Scott, Rodney J and McEvoy, Mark and Beekman, Marian and Bombieri, Cristina and Ridker, Paul M and Mohlke, Karen L and Pedersen, Nancy L and Morrison, Alanna C and Boomsma, Dorret I and Whitfield, John B and Strachan, David P and Hofman, Albert and Vollenweider, Peter and Cucca, Francesco and Jarvelin, Marjo-Riitta and Jukema, J Wouter and Spector, Tim D and Hamsten, Anders and Zeller, Tanja and Uitterlinden, Andr{\'e} G and Nauck, Matthias and Gudnason, Vilmundur and Qi, Lu and Grallert, Harald and Borecki, Ingrid B and Rotter, Jerome I and M{\"a}rz, Winfried and Wild, Philipp S and Lokki, Marja-Liisa and Boyle, Michael and Salomaa, Veikko and Melbye, Mads and Eriksson, Johan G and Wilson, James F and Penninx, Brenda W J H and Becker, Diane M and Worrall, Bradford B and Gibson, Greg and Krauss, Ronald M and Ciullo, Marina and Zaza, Gianluigi and Wareham, Nicholas J and Oldehinkel, Albertine J and Palmer, Lyle J and Murray, Sarah S and Pramstaller, Peter P and Bandinelli, Stefania and Heinrich, Joachim and Ingelsson, Erik and Deary, Ian J and M{\"a}gi, Reedik and Vandenput, Liesbeth and van der Harst, Pim and Desch, Karl C and Kooner, Jaspal S and Ohlsson, Claes and Hayward, Caroline and Lehtim{\"a}ki, Terho and Shuldiner, Alan R and Arnett, Donna K and Beilin, Lawrence J and Robino, Antonietta and Froguel, Philippe and Pirastu, Mario and Jess, Tine and Koenig, Wolfgang and Loos, Ruth J F and Evans, Denis A and Schmidt, Helena and Smith, George Davey and Slagboom, P Eline and Eiriksdottir, Gudny and Morris, Andrew P and Psaty, Bruce M and Tracy, Russell P and Nolte, Ilja M and Boerwinkle, Eric and Visvikis-Siest, Sophie and Reiner, Alex P and Gross, Myron and Bis, Joshua C and Franke, Lude and Franco, Oscar H and Benjamin, Emelia J and Chasman, Daniel I and Dupuis, Jos{\'e}e and Snieder, Harold and Dehghan, Abbas and Alizadeh, Behrooz Z} } @article {7667, title = {Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Jan 17}, pages = {260}, abstract = {

Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7{\texttimes}10 at rs8018720 in SEC23A, and P = 1.9{\texttimes}10 at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5\%, with statistically significant loci explaining 38\% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.

}, issn = {2041-1723}, doi = {10.1038/s41467-017-02662-2}, author = {Jiang, Xia and O{\textquoteright}Reilly, Paul F and Aschard, Hugues and Hsu, Yi-Hsiang and Richards, J Brent and Dupuis, Jos{\'e}e and Ingelsson, Erik and Karasik, David and Pilz, Stefan and Berry, Diane and Kestenbaum, Bryan and Zheng, Jusheng and Luan, Jianan and Sofianopoulou, Eleni and Streeten, Elizabeth A and Albanes, Demetrius and Lutsey, Pamela L and Yao, Lu and Tang, Weihong and Econs, Michael J and Wallaschofski, Henri and V{\"o}lzke, Henry and Zhou, Ang and Power, Chris and McCarthy, Mark I and Michos, Erin D and Boerwinkle, Eric and Weinstein, Stephanie J and Freedman, Neal D and Huang, Wen-Yi and van Schoor, Natasja M and van der Velde, Nathalie and Groot, Lisette C P G M de and Enneman, Anke and Cupples, L Adrienne and Booth, Sarah L and Vasan, Ramachandran S and Liu, Ching-Ti and Zhou, Yanhua and Ripatti, Samuli and Ohlsson, Claes and Vandenput, Liesbeth and Lorentzon, Mattias and Eriksson, Johan G and Shea, M Kyla and Houston, Denise K and Kritchevsky, Stephen B and Liu, Yongmei and Lohman, Kurt K and Ferrucci, Luigi and Peacock, Munro and Gieger, Christian and Beekman, Marian and Slagboom, Eline and Deelen, Joris and Heemst, Diana van and Kleber, Marcus E and M{\"a}rz, Winfried and de Boer, Ian H and Wood, Alexis C and Rotter, Jerome I and Rich, Stephen S and Robinson-Cohen, Cassianne and den Heijer, Martin and Jarvelin, Marjo-Riitta and Cavadino, Alana and Joshi, Peter K and Wilson, James F and Hayward, Caroline and Lind, Lars and Micha{\"e}lsson, Karl and Trompet, Stella and Zillikens, M Carola and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Broer, Linda and Zgaga, Lina and Campbell, Harry and Theodoratou, Evropi and Farrington, Susan M and Timofeeva, Maria and Dunlop, Malcolm G and Valdes, Ana M and Tikkanen, Emmi and Lehtim{\"a}ki, Terho and Lyytik{\"a}inen, Leo-Pekka and K{\"a}h{\"o}nen, Mika and Raitakari, Olli T and Mikkil{\"a}, Vera and Ikram, M Arfan and Sattar, Naveed and Jukema, J Wouter and Wareham, Nicholas J and Langenberg, Claudia and Forouhi, Nita G and Gundersen, Thomas E and Khaw, Kay-Tee and Butterworth, Adam S and Danesh, John and Spector, Timothy and Wang, Thomas J and Hypp{\"o}nen, Elina and Kraft, Peter and Kiel, Douglas P} } @article {7805, title = {Low thyroid function is not associated with an accelerated deterioration in renal function.}, journal = {Nephrol Dial Transplant}, year = {2018}, month = {2018 Apr 18}, abstract = {

Background: Chronic kidney disease (CKD) is frequently accompanied by thyroid hormone dysfunction. It is currently unclear whether these alterations are the cause or consequence of CKD. This study aimed at studying the effect of thyroid hormone alterations on renal function in cross-sectional and longitudinal analyses in individuals from all adult age groups.

Methods: Individual participant data (IPD) from 16 independent cohorts having measured thyroid stimulating hormone, free thyroxine levels and creatinine levels were included. Thyroid hormone status was defined using clinical cut-off values. Estimated glomerular filtration rates (eGFR) were calculated by means of the four-variable Modification of Diet in Renal Disease (MDRD) formula. For this IPD meta-analysis, eGFR at baseline and eGFR change during follow-up were computed by fitting linear regression models and linear mixed models in each cohort separately. Effect estimates were pooled using random effects models.

Results: A total of 72~856 individuals from 16 different cohorts were included. At baseline, individuals with overt hypothyroidism (n = 704) and subclinical hypothyroidism (n = 3356) had a average (95\% confidence interval) -4.07 (-6.37 to -1.78) and -2.40 (-3.78 to -1.02) mL/min/1.73 m2 lower eGFR as compared with euthyroid subjects (n = 66~542). In (subclinical) hyperthyroid subjects (n = 2254), average eGFR was 3.01 (1.50-4.52) mL/min/1.73 m2 higher. During 329~713 patient years of follow-up, eGFR did not decline more rapidly in individuals with low thyroid function compared with individuals with normal thyroid function.

Conclusions: Low thyroid function is not associated with a deterioration of renal function. The cross-sectional association may be explained by renal dysfunction causing thyroid hormone alterations.

}, issn = {1460-2385}, doi = {10.1093/ndt/gfy071}, author = {Meuwese, Christiaan L and van Diepen, Merel and Cappola, Anne R and Sarnak, Mark J and Shlipak, Michael G and Bauer, Douglas C and Fried, Linda P and Iacoviello, Massimo and Vaes, Bert and Degryse, Jean and Khaw, Kay-Tee and Luben, Robert N and Asvold, Bj{\o}rn O and Bj{\o}ro, Trine and Vatten, Lars J and de Craen, Anton J M and Trompet, Stella and Iervasi, Giorgio and Molinaro, Sabrina and Ceresini, Graziano and Ferrucci, Luigi and Dullaart, Robin P F and Bakker, Stephan J L and Jukema, J Wouter and Kearney, Patricia M and Stott, David J and Peeters, Robin P and Franco, Oscar H and V{\"o}lzke, Henry and Walsh, John P and Bremner, Alexandra and Sgarbi, Jos{\'e} A and Maciel, Rui M B and Imaizumi, Misa and Ohishi, Waka and Dekker, Friedo W and Rodondi, Nicolas and Gussekloo, Jacobijn and den Elzen, Wendy P J} } @article {7815, title = {PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Jul 25}, pages = {2904}, abstract = {

Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genome-wide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity. Genes in these loci are over-represented in cardiac disease processes including heart block and atrial fibrillation. Variants in over half of the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with missense variants. Six additional loci were identified either by meta-analysis of ~105,000 African and European-descent individuals and/or by pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation. These findings implicate developmental pathways, and identify transcription factors, ion-channel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction, identifying potential targets for drug development.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-04766-9}, author = {van Setten, Jessica and Brody, Jennifer A and Jamshidi, Yalda and Swenson, Brenton R and Butler, Anne M and Campbell, Harry and Del Greco, Fabiola M and Evans, Daniel S and Gibson, Quince and Gudbjartsson, Daniel F and Kerr, Kathleen F and Krijthe, Bouwe P and Lyytik{\"a}inen, Leo-Pekka and M{\"u}ller, Christian and M{\"u}ller-Nurasyid, Martina and Nolte, Ilja M and Padmanabhan, Sandosh and Ritchie, Marylyn D and Robino, Antonietta and Smith, Albert V and Steri, Maristella and Tanaka, Toshiko and Teumer, Alexander and Trompet, Stella and Ulivi, Sheila and Verweij, Niek and Yin, Xiaoyan and Arnar, David O and Asselbergs, Folkert W and Bader, Joel S and Barnard, John and Bis, Josh and Blankenberg, Stefan and Boerwinkle, Eric and Bradford, Yuki and Buckley, Brendan M and Chung, Mina K and Crawford, Dana and den Hoed, Marcel and Denny, Josh C and Dominiczak, Anna F and Ehret, Georg B and Eijgelsheim, Mark and Ellinor, Patrick T and Felix, Stephan B and Franco, Oscar H and Franke, Lude and Harris, Tamara B and Holm, Hilma and Ilaria, Gandin and Iorio, Annamaria and K{\"a}h{\"o}nen, Mika and Kolcic, Ivana and Kors, Jan A and Lakatta, Edward G and Launer, Lenore J and Lin, Honghuang and Lin, Henry J and Loos, Ruth J F and Lubitz, Steven A and Macfarlane, Peter W and Magnani, Jared W and Leach, Irene Mateo and Meitinger, Thomas and Mitchell, Braxton D and M{\"u}nzel, Thomas and Papanicolaou, George J and Peters, Annette and Pfeufer, Arne and Pramstaller, Peter P and Raitakari, Olli T and Rotter, Jerome I and Rudan, Igor and Samani, Nilesh J and Schlessinger, David and Silva Aldana, Claudia T and Sinner, Moritz F and Smith, Jonathan D and Snieder, Harold and Soliman, Elsayed Z and Spector, Timothy D and Stott, David J and Strauch, Konstantin and Tarasov, Kirill V and Thorsteinsdottir, Unnur and Uitterlinden, Andr{\'e} G and Van Wagoner, David R and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Waldenberger, Melanie and Jan Westra, Harm and Wild, Philipp S and Zeller, Tanja and Alonso, Alvaro and Avery, Christy L and Bandinelli, Stefania and Benjamin, Emelia J and Cucca, Francesco and D{\"o}rr, Marcus and Ferrucci, Luigi and Gasparini, Paolo and Gudnason, Vilmundur and Hayward, Caroline and Heckbert, Susan R and Hicks, Andrew A and Jukema, J Wouter and K{\"a}{\"a}b, Stefan and Lehtim{\"a}ki, Terho and Liu, Yongmei and Munroe, Patricia B and Parsa, Afshin and Polasek, Ozren and Psaty, Bruce M and Roden, Dan M and Schnabel, Renate B and Sinagra, Gianfranco and Stefansson, Kari and Stricker, Bruno H and van der Harst, Pim and van Duijn, Cornelia M and Wilson, James F and Gharib, Sina A and de Bakker, Paul I W and Isaacs, Aaron and Arking, Dan E and Sotoodehnia, Nona} } @article {7817, title = {The relation between thyroid function and anemia: a pooled analysis of individual participant data.}, journal = {J Clin Endocrinol Metab}, year = {2018}, month = {2018 Aug 02}, abstract = {

Context: Anemia and thyroid dysfunction often co-occur and both increase with age. Human data on the relationship between thyroid disease and anemia are scarce.

Objective: To investigate the cross-sectional and longitudinal associations between clinical thyroid status and anemia.

Design: Individual participant data meta-analysis.

Setting: Sixteen cohorts participating in the Thyroid Studies Collaboration (n=42 162).

Main outcome measures: Primary outcome measure was anemia (hemoglobin <130 g/L in men and <120 g/L in women).

Results: Cross-sectionally, participants with abnormal thyroid status had an increased risk of having anemia compared with euthyroid participants (overt hypothyroidism, pooled odds ratio 1.84 [95\% CI: 1.35-2.50], subclinical hypothyroidism 1.21 [1.02-1.43], subclinical hyperthyroidism 1.27 [1.03-1.57], overt hyperthyroidism 1.69 [1.00-2.87]). Hemoglobin levels were lower in all groups compared to participants with euthyroidism. In the longitudinal analyses (n=25,466 from 14 cohorts), the pooled hazard ratio for the risk of development of anemia was 1.38 [95\% CI: 0.86-2.20] for overt hypothyroidism, 1.18 [1.00-1.38] for subclinical hypothyroidism, 1.15 [0.94-1.42] for subclinical hyperthyroidism and 1.47 [0.91-2.38] for overt hyperthyroidism. Sensitivity analyses excluding thyroid medication or high levels of C-reactive protein yielded similar results. No differences in mean annual change in hemoglobin levels were observed between the thyroid hormone status groups.

Conclusion: Higher odds of having anemia were observed in both participants with hypothyroid function and hyperthyroid function. In addition, reduced thyroid function at baseline showed a trend of increased risk of developing anemia during follow-up. It remains to be assessed in a randomized controlled trial whether treatment is effective in reducing anemia.

}, issn = {1945-7197}, doi = {10.1210/jc.2018-00481}, author = {Wopereis, Daisy M and Du Puy, Robert S and van Heemst, Diana and Walsh, John P and Bremner, Alexandra and Bakker, Stephan J L and Bauer, Douglas C and Cappola, Anne R and Ceresini, Graziano and Degryse, Jean and Dullaart, Robin P F and Feller, Martin and Ferrucci, Luigi and Floriani, Carmen and Franco, Oscar H and Iacoviello, Massimo and Iervasi, Georgio and Imaizumi, Misa and Jukema, J Wouter and Khaw, Kay-Tee and Luben, Robert N and Molinaro, Sabrina and Nauck, Matthias and Patel, Kushang V and Peeters, Robin P and Psaty, Bruce M and Razvi, Salman and Schindhelm, Roger K and van Schoor, Natasja M and Stott, David J and Vaes, Bert and Vanderpump, Mark P J and V{\"o}lzke, Henry and Westendorp, Rudi G J and Rodondi, Nicolas and Cobbaert, Christa M and Gussekloo, Jacobijn and den Elzen, Wendy P J} } @article {8507, title = {Blood Leukocyte DNA Methylation Predicts Risk of Future Myocardial Infarction and Coronary Heart Disease.}, journal = {Circulation}, volume = {140}, year = {2019}, month = {2019 08 20}, pages = {645-657}, abstract = {

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts.

METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts.

RESULTS: Among 11 461 individuals (mean age 64 years, 67\% women, 35\% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts.

CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.

}, keywords = {Adult, Aged, Cohort Studies, Coronary Disease, CpG Islands, DNA Methylation, Europe, Female, Genome-Wide Association Study, Humans, Incidence, Leukocytes, Male, Middle Aged, Myocardial Infarction, Population Groups, Prognosis, Prospective Studies, Risk, United States}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.118.039357}, author = {Agha, Golareh and Mendelson, Michael M and Ward-Caviness, Cavin K and Joehanes, Roby and Huan, Tianxiao and Gondalia, Rahul and Salfati, Elias and Brody, Jennifer A and Fiorito, Giovanni and Bressler, Jan and Chen, Brian H and Ligthart, Symen and Guarrera, Simonetta and Colicino, Elena and Just, Allan C and Wahl, Simone and Gieger, Christian and Vandiver, Amy R and Tanaka, Toshiko and Hernandez, Dena G and Pilling, Luke C and Singleton, Andrew B and Sacerdote, Carlotta and Krogh, Vittorio and Panico, Salvatore and Tumino, Rosario and Li, Yun and Zhang, Guosheng and Stewart, James D and Floyd, James S and Wiggins, Kerri L and Rotter, Jerome I and Multhaup, Michael and Bakulski, Kelly and Horvath, Steven and Tsao, Philip S and Absher, Devin M and Vokonas, Pantel and Hirschhorn, Joel and Fallin, M Daniele and Liu, Chunyu and Bandinelli, Stefania and Boerwinkle, Eric and Dehghan, Abbas and Schwartz, Joel D and Psaty, Bruce M and Feinberg, Andrew P and Hou, Lifang and Ferrucci, Luigi and Sotoodehnia, Nona and Matullo, Giuseppe and Peters, Annette and Fornage, Myriam and Assimes, Themistocles L and Whitsel, Eric A and Levy, Daniel and Baccarelli, Andrea A} } @article {8835, title = {Genetic insights into biological mechanisms governing human ovarian ageing.}, journal = {Nature}, volume = {596}, year = {2021}, month = {2021 Aug}, pages = {393-397}, abstract = {

Reproductive longevity is essential for fertility and influences healthy ageing in women, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1\% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.

}, issn = {1476-4687}, doi = {10.1038/s41586-021-03779-7}, author = {Ruth, Katherine S and Day, Felix R and Hussain, Jazib and Mart{\'\i}nez-Marchal, Ana and Aiken, Catherine E and Azad, Ajuna and Thompson, Deborah J and Knoblochova, Lucie and Abe, Hironori and Tarry-Adkins, Jane L and Gonzalez, Javier Martin and Fontanillas, Pierre and Claringbould, Annique and Bakker, Olivier B and Sulem, Patrick and Walters, Robin G and Terao, Chikashi and Turon, Sandra and Horikoshi, Momoko and Lin, Kuang and Onland-Moret, N Charlotte and Sankar, Aditya and Hertz, Emil Peter Thrane and Timshel, Pascal N and Shukla, Vallari and Borup, Rehannah and Olsen, Kristina W and Aguilera, Paula and Ferrer-Roda, M{\`o}nica and Huang, Yan and Stankovic, Stasa and Timmers, Paul R H J and Ahearn, Thomas U and Alizadeh, Behrooz Z and Naderi, Elnaz and Andrulis, Irene L and Arnold, Alice M and Aronson, Kristan J and Augustinsson, Annelie and Bandinelli, Stefania and Barbieri, Caterina M and Beaumont, Robin N and Becher, Heiko and Beckmann, Matthias W and Benonisdottir, Stefania and Bergmann, Sven and Bochud, Murielle and Boerwinkle, Eric and Bojesen, Stig E and Bolla, Manjeet K and Boomsma, Dorret I and Bowker, Nicholas and Brody, Jennifer A and Broer, Linda and Buring, Julie E and Campbell, Archie and Campbell, Harry and Castelao, Jose E and Catamo, Eulalia and Chanock, Stephen J and Chenevix-Trench, Georgia and Ciullo, Marina and Corre, Tanguy and Couch, Fergus J and Cox, Angela and Crisponi, Laura and Cross, Simon S and Cucca, Francesco and Czene, Kamila and Smith, George Davey and de Geus, Eco J C N and de Mutsert, Ren{\'e}e and De Vivo, Immaculata and Demerath, Ellen W and Dennis, Joe and Dunning, Alison M and Dwek, Miriam and Eriksson, Mikael and Esko, T{\~o}nu and Fasching, Peter A and Faul, Jessica D and Ferrucci, Luigi and Franceschini, Nora and Frayling, Timothy M and Gago-Dominguez, Manuela and Mezzavilla, Massimo and Garc{\'\i}a-Closas, Montserrat and Gieger, Christian and Giles, Graham G and Grallert, Harald and Gudbjartsson, Daniel F and Gudnason, Vilmundur and Gu{\'e}nel, Pascal and Haiman, Christopher A and H{\r a}kansson, Niclas and Hall, Per and Hayward, Caroline and He, Chunyan and He, Wei and Heiss, Gerardo and H{\o}ffding, Miya K and Hopper, John L and Hottenga, Jouke J and Hu, Frank and Hunter, David and Ikram, Mohammad A and Jackson, Rebecca D and Joaquim, Micaella D R and John, Esther M and Joshi, Peter K and Karasik, David and Kardia, Sharon L R and Kartsonaki, Christiana and Karlsson, Robert and Kitahara, Cari M and Kolcic, Ivana and Kooperberg, Charles and Kraft, Peter and Kurian, Allison W and Kutalik, Zolt{\'a}n and La Bianca, Martina and Lachance, Genevieve and Langenberg, Claudia and Launer, Lenore J and Laven, Joop S E and Lawlor, Deborah A and Le Marchand, Lo{\"\i}c and Li, Jingmei and Lindblom, Annika and Lindstr{\"o}m, Sara and Lindstrom, Tricia and Linet, Martha and Liu, Yongmei and Liu, Simin and Luan, Jian{\textquoteright}an and M{\"a}gi, Reedik and Magnusson, Patrik K E and Mangino, Massimo and Mannermaa, Arto and Marco, Brumat and Marten, Jonathan and Martin, Nicholas G and Mbarek, Hamdi and McKnight, Barbara and Medland, Sarah E and Meisinger, Christa and Meitinger, Thomas and Menni, Cristina and Metspalu, Andres and Milani, Lili and Milne, Roger L and Montgomery, Grant W and Mook-Kanamori, Dennis O and Mulas, Antonella and Mulligan, Anna M and Murray, Alison and Nalls, Mike A and Newman, Anne and Noordam, Raymond and Nutile, Teresa and Nyholt, Dale R and Olshan, Andrew F and Olsson, H{\r a}kan and Painter, Jodie N and Patel, Alpa V and Pedersen, Nancy L and Perjakova, Natalia and Peters, Annette and Peters, Ulrike and Pharoah, Paul D P and Polasek, Ozren and Porcu, Eleonora and Psaty, Bruce M and Rahman, Iffat and Rennert, Gad and Rennert, Hedy S and Ridker, Paul M and Ring, Susan M and Robino, Antonietta and Rose, Lynda M and Rosendaal, Frits R and Rossouw, Jacques and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Sala, Cinzia F and Saloustros, Emmanouil and Sandler, Dale P and Sanna, Serena and Sawyer, Elinor J and Sarnowski, Chloe and Schlessinger, David and Schmidt, Marjanka K and Schoemaker, Minouk J and Schraut, Katharina E and Scott, Christopher and Shekari, Saleh and Shrikhande, Amruta and Smith, Albert V and Smith, Blair H and Smith, Jennifer A and Sorice, Rossella and Southey, Melissa C and Spector, Tim D and Spinelli, John J and Stampfer, Meir and St{\"o}ckl, Doris and van Meurs, Joyce B J and Strauch, Konstantin and Styrkarsdottir, Unnur and Swerdlow, Anthony J and Tanaka, Toshiko and Teras, Lauren R and Teumer, Alexander and {\TH}orsteinsdottir, Unnur and Timpson, Nicholas J and Toniolo, Daniela and Traglia, Michela and Troester, Melissa A and Truong, Th{\'e}r{\`e}se and Tyrrell, Jessica and Uitterlinden, Andr{\'e} G and Ulivi, Sheila and Vachon, Celine M and Vitart, Veronique and V{\"o}lker, Uwe and Vollenweider, Peter and V{\"o}lzke, Henry and Wang, Qin and Wareham, Nicholas J and Weinberg, Clarice R and Weir, David R and Wilcox, Amber N and van Dijk, Ko Willems and Willemsen, Gonneke and Wilson, James F and Wolffenbuttel, Bruce H R and Wolk, Alicja and Wood, Andrew R and Zhao, Wei and Zygmunt, Marek and Chen, Zhengming and Li, Liming and Franke, Lude and Burgess, Stephen and Deelen, Patrick and Pers, Tune H and Gr{\o}ndahl, Marie Louise and Andersen, Claus Yding and Pujol, Anna and Lopez-Contreras, Andres J and Daniel, Jeremy A and Stefansson, Kari and Chang-Claude, Jenny and van der Schouw, Yvonne T and Lunetta, Kathryn L and Chasman, Daniel I and Easton, Douglas F and Visser, Jenny A and Ozanne, Susan E and Namekawa, Satoshi H and Solc, Petr and Murabito, Joanne M and Ong, Ken K and Hoffmann, Eva R and Murray, Anna and Roig, Ignasi and Perry, John R B} } @article {9094, title = {Integrative analysis of clinical and epigenetic biomarkers of mortality.}, journal = {Aging Cell}, volume = {21}, year = {2022}, month = {2022 Jun}, pages = {e13608}, abstract = {

DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome-wide association study of whole blood DNAm in relation to mortality in 15 cohorts (n~=~15,013). During a mean follow-up of 10~years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry-stratified meta-analysis of all-cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at p~<~1~{\texttimes}~10 , of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm-based prediction models for all-cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5\% increase in the C-index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta~=~1.2, P ~=~4.1~{\texttimes}~10 ) and negatively associated with longevity (Beta~=~-1.9, P ~=~0.02). Pathway analysis revealed that genes associated with mortality-related CpGs are enriched for immune- and cancer-related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.

}, keywords = {Biomarkers, Cardiovascular Diseases, DNA Methylation, Epigenesis, Genetic, Epigenomics, Humans, Male, Neoplasms}, issn = {1474-9726}, doi = {10.1111/acel.13608}, author = {Huan, Tianxiao and Nguyen, Steve and Colicino, Elena and Ochoa-Rosales, Carolina and Hill, W David and Brody, Jennifer A and Soerensen, Mette and Zhang, Yan and Baldassari, Antoine and Elhadad, Mohamed Ahmed and Toshiko, Tanaka and Zheng, Yinan and Domingo-Relloso, Arce and Lee, Dong Heon and Ma, Jiantao and Yao, Chen and Liu, Chunyu and Hwang, Shih-Jen and Joehanes, Roby and Fornage, Myriam and Bressler, Jan and van Meurs, Joyce B J and Debrabant, Birgit and Mengel-From, Jonas and Hjelmborg, Jacob and Christensen, Kaare and Vokonas, Pantel and Schwartz, Joel and Gahrib, Sina A and Sotoodehnia, Nona and Sitlani, Colleen M and Kunze, Sonja and Gieger, Christian and Peters, Annette and Waldenberger, Melanie and Deary, Ian J and Ferrucci, Luigi and Qu, Yishu and Greenland, Philip and Lloyd-Jones, Donald M and Hou, Lifang and Bandinelli, Stefania and Voortman, Trudy and Hermann, Brenner and Baccarelli, Andrea and Whitsel, Eric and Pankow, James S and Levy, Daniel} } @article {9456, title = {Association of omega 3 polyunsaturated fatty acids with incident chronic kidney disease: pooled analysis of 19 cohorts.}, journal = {BMJ}, volume = {380}, year = {2023}, month = {2023 Jan 18}, pages = {e072909}, abstract = {

OBJECTIVE: To assess the prospective associations of circulating levels of omega 3 polyunsaturated fatty acid (n-3 PUFA) biomarkers (including plant derived α linolenic acid and seafood derived eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) with incident chronic kidney disease (CKD).

DESIGN: Pooled analysis.

DATA SOURCES: A consortium of 19 studies from 12 countries identified up to May 2020.

STUDY SELECTION: Prospective studies with measured n-3 PUFA biomarker data and incident CKD based on estimated glomerular filtration rate.

DATA EXTRACTION AND SYNTHESIS: Each participating cohort conducted de novo analysis with prespecified and consistent exposures, outcomes, covariates, and models. The results were pooled across cohorts using inverse variance weighted meta-analysis.

MAIN OUTCOME MEASURES: Primary outcome of incident CKD was defined as new onset estimated glomerular filtration rate <60 mL/min/1.73 m. In a sensitivity analysis, incident CKD was defined as new onset estimated glomerular filtration rate <60 mL/min/1.73 m and <75\% of baseline rate.

RESULTS: 25 570 participants were included in the primary outcome analysis and 4944 (19.3\%) developed incident CKD during follow-up (weighted median 11.3 years). In multivariable adjusted models, higher levels of total seafood n-3 PUFAs were associated with a lower incident CKD risk (relative risk per interquintile range 0.92, 95\% confidence interval 0.86 to 0.98; P=0.009, I=9.9\%). In categorical analyses, participants with total seafood n-3 PUFA level in the highest fifth had 13\% lower risk of incident CKD compared with those in the lowest fifth (0.87, 0.80 to 0.96; P=0.005, I=0.0\%). Plant derived α linolenic acid levels were not associated with incident CKD (1.00, 0.94 to 1.06; P=0.94, I=5.8\%). Similar results were obtained in the sensitivity analysis. The association appeared consistent across subgroups by age (>=60 <60 years), estimated glomerular filtration rate (60-89 >=90 mL/min/1.73 m), hypertension, diabetes, and coronary heart disease at baseline.

CONCLUSIONS: Higher seafood derived n-3 PUFA levels were associated with lower risk of incident CKD, although this association was not found for plant derived n-3 PUFAs. These results support a favourable role for seafood derived n-3 PUFAs in preventing CKD.

}, keywords = {alpha-Linolenic Acid, Fatty Acids, Omega-3, Fatty Acids, Unsaturated, Humans, Middle Aged, Prospective Studies, Renal Insufficiency, Chronic, Risk Factors}, issn = {1756-1833}, doi = {10.1136/bmj-2022-072909}, author = {Ong, Kwok Leung and Marklund, Matti and Huang, Liping and Rye, Kerry-Anne and Hui, Nicholas and Pan, Xiong-Fei and Rebholz, Casey M and Kim, Hyunju and Steffen, Lyn M and van Westing, Anniek C and Geleijnse, Johanna M and Hoogeveen, Ellen K and Chen, Yun-Yu and Chien, Kuo-Liong and Fretts, Amanda M and Lemaitre, Rozenn N and Imamura, Fumiaki and Forouhi, Nita G and Wareham, Nicholas J and Birukov, Anna and J{\"a}ger, Susanne and Kuxhaus, Olga and Schulze, Matthias B and de Mello, Vanessa Derenji and Tuomilehto, Jaakko and Uusitupa, Matti and Lindstr{\"o}m, Jaana and Tintle, Nathan and Harris, William S and Yamasaki, Keisuke and Hirakawa, Yoichiro and Ninomiya, Toshiharu and Tanaka, Toshiko and Ferrucci, Luigi and Bandinelli, Stefania and Virtanen, Jyrki K and Voutilainen, Ari and Jayasena, Tharusha and Thalamuthu, Anbupalam and Poljak, Anne and Bustamante, Sonia and Sachdev, Perminder S and Senn, Mackenzie K and Rich, Stephen S and Tsai, Michael Y and Wood, Alexis C and Laakso, Markku and Lankinen, Maria and Yang, Xiaowei and Sun, Liang and Li, Huaixing and Lin, Xu and Nowak, Christoph and Arnl{\"o}v, Johan and Riserus, Ulf and Lind, Lars and Le Goff, M{\'e}lanie and Samieri, Cecilia and Helmer, Catherine and Qian, Frank and Micha, Renata and Tin, Adrienne and K{\"o}ttgen, Anna and de Boer, Ian H and Siscovick, David S and Mozaffarian, Dariush and Wu, Jason HY} } @article {9587, title = {Role of Polyunsaturated Fat in Modifying Cardiovascular Risk Associated With Family History of Cardiovascular Disease: Pooled De Novo Results From 15 Observational Studies.}, journal = {Circulation}, volume = {149}, year = {2024}, month = {2024 Jan 23}, pages = {305-316}, abstract = {

BACKGROUND: It is unknown whether dietary intake of polyunsaturated fatty acids (PUFA) modifies the cardiovascular disease (CVD) risk associated with a family history of CVD. We assessed interactions between biomarkers of low PUFA intake and a family history in relation to long-term CVD risk in a large consortium.

METHODS: Blood and tissue PUFA data from 40 885 CVD-free adults were assessed. PUFA levels <=25th percentile were considered to reflect low intake of linoleic, alpha-linolenic, and eicosapentaenoic/docosahexaenoic acids (EPA/DHA). Family history was defined as having >=1 first-degree relative who experienced a CVD event. Relative risks with 95\% CI of CVD were estimated using Cox regression and meta-analyzed. Interactions were assessed by analyzing product terms and calculating relative excess risk due to interaction.

RESULTS: After multivariable adjustments, a significant interaction between low EPA/DHA and family history was observed (product term pooled RR, 1.09 [95\% CI, 1.02-1.16]; =0.01). The pooled relative risk of CVD associated with the combined exposure to low EPA/DHA, and family history was 1.41 (95\% CI, 1.30-1.54), whereas it was 1.25 (95\% CI, 1.16-1.33) for family history alone and 1.06 (95\% CI, 0.98-1.14) for EPA/DHA alone, compared with those with neither exposure. The relative excess risk due to interaction results indicated no interactions.

CONCLUSIONS: A significant interaction between biomarkers of low EPA/DHA intake, but not the other PUFA, and a family history was observed. This novel finding might suggest a need to emphasize the benefit of consuming oily fish for individuals with a family history of CVD.

}, keywords = {Animals, Biomarkers, Cardiovascular Diseases, Docosahexaenoic Acids, Fatty Acids, Omega-3, Risk Factors}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.123.065530}, author = {Laguzzi, Federica and {\r A}kesson, Agneta and Marklund, Matti and Qian, Frank and Gigante, Bruna and Bartz, Traci M and Bassett, Julie K and Birukov, Anna and Campos, Hannia and Hirakawa, Yoichiro and Imamura, Fumiaki and J{\"a}ger, Susanne and Lankinen, Maria and Murphy, Rachel A and Senn, Mackenzie and Tanaka, Toshiko and Tintle, Nathan and Virtanen, Jyrki K and Yamagishi, Kazumasa and Allison, Matthew and Brouwer, Ingeborg A and de Faire, Ulf and Eiriksdottir, Gudny and Ferrucci, Luigi and Forouhi, Nita G and Geleijnse, Johanna M and Hodge, Allison M and Kimura, Hitomi and Laakso, Markku and Riserus, Ulf and van Westing, Anniek C and Bandinelli, Stefania and Baylin, Ana and Giles, Graham G and Gudnason, Vilmundur and Iso, Hiroyasu and Lemaitre, Rozenn N and Ninomiya, Toshiharu and Post, Wendy S and Psaty, Bruce M and Salonen, Jukka T and Schulze, Matthias B and Tsai, Michael Y and Uusitupa, Matti and Wareham, Nicholas J and Oh, Seung-Won and Wood, Alexis C and Harris, William S and Siscovick, David and Mozaffarian, Dariush and Leander, Karin} }