@article {1183, title = {New loci associated with kidney function and chronic kidney disease.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 May}, pages = {376-84}, abstract = {

Chronic kidney disease (CKD) is a significant public health problem, and recent genetic studies have identified common CKD susceptibility variants. The CKDGen consortium performed a meta-analysis of genome-wide association data in 67,093 individuals of European ancestry from 20 predominantly population-based studies in order to identify new susceptibility loci for reduced renal function as estimated by serum creatinine (eGFRcrea), serum cystatin c (eGFRcys) and CKD (eGFRcrea < 60 ml/min/1.73 m(2); n = 5,807 individuals with CKD (cases)). Follow-up of the 23 new genome-wide-significant loci (P < 5 x 10(-8)) in 22,982 replication samples identified 13 new loci affecting renal function and CKD (in or near LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2, DACH1, UBE2Q2 and SLC7A9) and 7 loci suspected to affect creatinine production and secretion (CPS1, SLC22A2, TMEM60, WDR37, SLC6A13, WDR72 and BCAS3). These results further our understanding of the biologic mechanisms of kidney function by identifying loci that potentially influence nephrogenesis, podocyte function, angiogenesis, solute transport and metabolic functions of the kidney.

}, keywords = {Cohort Studies, Creatinine, Cystatin C, Diet, Europe, Genetic Markers, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Kidney, Kidney Failure, Chronic, Models, Genetic, Risk Factors}, issn = {1546-1718}, doi = {10.1038/ng.568}, author = {K{\"o}ttgen, Anna and Pattaro, Cristian and B{\"o}ger, Carsten A and Fuchsberger, Christian and Olden, Matthias and Glazer, Nicole L and Parsa, Afshin and Gao, Xiaoyi and Yang, Qiong and Smith, Albert V and O{\textquoteright}Connell, Jeffrey R and Li, Man and Schmidt, Helena and Tanaka, Toshiko and Isaacs, Aaron and Ketkar, Shamika and Hwang, Shih-Jen and Johnson, Andrew D and Dehghan, Abbas and Teumer, Alexander and Par{\'e}, Guillaume and Atkinson, Elizabeth J and Zeller, Tanja and Lohman, Kurt and Cornelis, Marilyn C and Probst-Hensch, Nicole M and Kronenberg, Florian and T{\"o}njes, Anke and Hayward, Caroline and Aspelund, Thor and Eiriksdottir, Gudny and Launer, Lenore J and Harris, Tamara B and Rampersaud, Evadnie and Mitchell, Braxton D and Arking, Dan E and Boerwinkle, Eric and Struchalin, Maksim and Cavalieri, Margherita and Singleton, Andrew and Giallauria, Francesco and Metter, Jeffrey and de Boer, Ian H and Haritunians, Talin and Lumley, Thomas and Siscovick, David and Psaty, Bruce M and Zillikens, M Carola and Oostra, Ben A and Feitosa, Mary and Province, Michael and de Andrade, Mariza and Turner, Stephen T and Schillert, Arne and Ziegler, Andreas and Wild, Philipp S and Schnabel, Renate B and Wilde, Sandra and Munzel, Thomas F and Leak, Tennille S and Illig, Thomas and Klopp, Norman and Meisinger, Christa and Wichmann, H-Erich and Koenig, Wolfgang and Zgaga, Lina and Zemunik, Tatijana and Kolcic, Ivana and Minelli, Cosetta and Hu, Frank B and Johansson, Asa and Igl, Wilmar and Zaboli, Ghazal and Wild, Sarah H and Wright, Alan F and Campbell, Harry and Ellinghaus, David and Schreiber, Stefan and Aulchenko, Yurii S and Felix, Janine F and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Hofman, Albert and Imboden, Medea and Nitsch, Dorothea and Brandst{\"a}tter, Anita and Kollerits, Barbara and Kedenko, Lyudmyla and M{\"a}gi, Reedik and Stumvoll, Michael and Kovacs, Peter and Boban, Mladen and Campbell, Susan and Endlich, Karlhans and V{\"o}lzke, Henry and Kroemer, Heyo K and Nauck, Matthias and V{\"o}lker, Uwe and Polasek, Ozren and Vitart, Veronique and Badola, Sunita and Parker, Alexander N and Ridker, Paul M and Kardia, Sharon L R and Blankenberg, Stefan and Liu, Yongmei and Curhan, Gary C and Franke, Andre and Rochat, Thierry and Paulweber, Bernhard and Prokopenko, Inga and Wang, Wei and Gudnason, Vilmundur and Shuldiner, Alan R and Coresh, Josef and Schmidt, Reinhold and Ferrucci, Luigi and Shlipak, Michael G and van Duijn, Cornelia M and Borecki, Ingrid and Kr{\"a}mer, Bernhard K and Rudan, Igor and Gyllensten, Ulf and Wilson, James F and Witteman, Jacqueline C and Pramstaller, Peter P and Rettig, Rainer and Hastie, Nick and Chasman, Daniel I and Kao, W H and Heid, Iris M and Fox, Caroline S} } @article {1336, title = {Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD.}, journal = {PLoS Genet}, volume = {7}, year = {2011}, month = {2011 Sep}, pages = {e1002292}, abstract = {

Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m(2) at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression.

}, keywords = {Adaptor Proteins, Signal Transducing, Adult, Aged, Chronic Disease, Creatinine, European Continental Ancestry Group, Female, Follow-Up Studies, Genetic Association Studies, Humans, Kidney Diseases, Kidney Failure, Chronic, Male, Middle Aged, Polymorphism, Single Nucleotide, Receptor, Epidermal Growth Factor, Uromodulin}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002292}, author = {B{\"o}ger, Carsten A and Gorski, Mathias and Li, Man and Hoffmann, Michael M and Huang, Chunmei and Yang, Qiong and Teumer, Alexander and Krane, Vera and O{\textquoteright}Seaghdha, Conall M and Kutalik, Zolt{\'a}n and Wichmann, H-Erich and Haak, Thomas and Boes, Eva and Coassin, Stefan and Coresh, Josef and Kollerits, Barbara and Haun, Margot and Paulweber, Bernhard and K{\"o}ttgen, Anna and Li, Guo and Shlipak, Michael G and Powe, Neil and Hwang, Shih-Jen and Dehghan, Abbas and Rivadeneira, Fernando and Uitterlinden, Andre and Hofman, Albert and Beckmann, Jacques S and Kr{\"a}mer, Bernhard K and Witteman, Jacqueline and Bochud, Murielle and Siscovick, David and Rettig, Rainer and Kronenberg, Florian and Wanner, Christoph and Thadhani, Ravi I and Heid, Iris M and Fox, Caroline S and Kao, W H} } @article {1271, title = {CUBN is a gene locus for albuminuria.}, journal = {J Am Soc Nephrol}, volume = {22}, year = {2011}, month = {2011 Mar}, pages = {555-70}, abstract = {

Identification of genetic risk factors for albuminuria may alter strategies for early prevention of CKD progression, particularly among patients with diabetes. Little is known about the influence of common genetic variants on albuminuria in both general and diabetic populations. We performed a meta-analysis of data from 63,153 individuals of European ancestry with genotype information from genome-wide association studies (CKDGen Consortium) and from a large candidate gene study (CARe Consortium) to identify susceptibility loci for the quantitative trait urinary albumin-to-creatinine ratio (UACR) and the clinical diagnosis microalbuminuria. We identified an association between a missense variant (I2984V) in the CUBN gene, which encodes cubilin, and both UACR (P = 1.1 {\texttimes} 10(-11)) and microalbuminuria (P = 0.001). We observed similar associations among 6981 African Americans in the CARe Consortium. The associations between this variant and both UACR and microalbuminuria were significant in individuals of European ancestry regardless of diabetes status. Finally, this variant associated with a 41\% increased risk for the development of persistent microalbuminuria during 20 years of follow-up among 1304 participants with type 1 diabetes in the prospective DCCT/EDIC Study. In summary, we identified a missense CUBN variant that associates with levels of albuminuria in both the general population and in individuals with diabetes.

}, keywords = {African Continental Ancestry Group, Albuminuria, European Continental Ancestry Group, Genetic Loci, Genetic Predisposition to Disease, Humans, Mutation, Missense, Receptors, Cell Surface}, issn = {1533-3450}, doi = {10.1681/ASN.2010060598}, author = {B{\"o}ger, Carsten A and Chen, Ming-Huei and Tin, Adrienne and Olden, Matthias and K{\"o}ttgen, Anna and de Boer, Ian H and Fuchsberger, Christian and O{\textquoteright}Seaghdha, Conall M and Pattaro, Cristian and Teumer, Alexander and Liu, Ching-Ti and Glazer, Nicole L and Li, Man and O{\textquoteright}Connell, Jeffrey R and Tanaka, Toshiko and Peralta, Carmen A and Kutalik, Zolt{\'a}n and Luan, Jian{\textquoteright}an and Zhao, Jing Hua and Hwang, Shih-Jen and Akylbekova, Ermeg and Kramer, Holly and van der Harst, Pim and Smith, Albert V and Lohman, Kurt and de Andrade, Mariza and Hayward, Caroline and Kollerits, Barbara and T{\"o}njes, Anke and Aspelund, Thor and Ingelsson, Erik and Eiriksdottir, Gudny and Launer, Lenore J and Harris, Tamara B and Shuldiner, Alan R and Mitchell, Braxton D and Arking, Dan E and Franceschini, Nora and Boerwinkle, Eric and Egan, Josephine and Hernandez, Dena and Reilly, Muredach and Townsend, Raymond R and Lumley, Thomas and Siscovick, David S and Psaty, Bruce M and Kestenbaum, Bryan and Haritunians, Talin and Bergmann, Sven and Vollenweider, Peter and Waeber, G{\'e}rard and Mooser, Vincent and Waterworth, Dawn and Johnson, Andrew D and Florez, Jose C and Meigs, James B and Lu, Xiaoning and Turner, Stephen T and Atkinson, Elizabeth J and Leak, Tennille S and Aasar{\o}d, Knut and Skorpen, Frank and Syv{\"a}nen, Ann-Christine and Illig, Thomas and Baumert, Jens and Koenig, Wolfgang and Kr{\"a}mer, Bernhard K and Devuyst, Olivier and Mychaleckyj, Josyf C and Minelli, Cosetta and Bakker, Stephan J L and Kedenko, Lyudmyla and Paulweber, Bernhard and Coassin, Stefan and Endlich, Karlhans and Kroemer, Heyo K and Biffar, Reiner and Stracke, Sylvia and V{\"o}lzke, Henry and Stumvoll, Michael and M{\"a}gi, Reedik and Campbell, Harry and Vitart, Veronique and Hastie, Nicholas D and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Polasek, Ozren and Curhan, Gary and Kronenberg, Florian and Prokopenko, Inga and Rudan, Igor and Arnl{\"o}v, Johan and Hallan, Stein and Navis, Gerjan and Parsa, Afshin and Ferrucci, Luigi and Coresh, Josef and Shlipak, Michael G and Bull, Shelley B and Paterson, Nicholas J and Wichmann, H-Erich and Wareham, Nicholas J and Loos, Ruth J F and Rotter, Jerome I and Pramstaller, Peter P and Cupples, L Adrienne and Beckmann, Jacques S and Yang, Qiong and Heid, Iris M and Rettig, Rainer and Dreisbach, Albert W and Bochud, Murielle and Fox, Caroline S and Kao, W H L} } @article {1359, title = {Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies.}, journal = {Circ Cardiovasc Genet}, volume = {5}, year = {2012}, month = {2012 Feb 01}, pages = {100-12}, abstract = {

BACKGROUND: Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based cohorts.

METHODS AND RESULTS: Continuous ABI and PAD (ABI <=0.9) phenotypes adjusted for age and sex were examined. Each study conducted genotyping and imputed data to the ≈2.5 million single nucleotide polymorphisms (SNPs) in HapMap. Linear and logistic regression models were used to test each SNP for association with ABI and PAD using additive genetic models. Study-specific data were combined using fixed effects inverse variance weighted meta-analyses. There were a total of 41 692 participants of European ancestry (≈60\% women, mean ABI 1.02 to 1.19), including 3409 participants with PAD and with genome-wide association study data available. In the discovery meta-analysis, rs10757269 on chromosome 9 near CDKN2B had the strongest association with ABI (β=-0.006, P=2.46{\texttimes}10(-8)). We sought replication of the 6 strongest SNP associations in 5 population-based studies and 3 clinical samples (n=16 717). The association for rs10757269 strengthened in the combined discovery and replication analysis (P=2.65{\texttimes}10(-9)). No other SNP associations for ABI or PAD achieved genome-wide significance. However, 2 previously reported candidate genes for PAD and 1 SNP associated with coronary artery disease were associated with ABI: DAB21P (rs13290547, P=3.6{\texttimes}10(-5)), CYBA (rs3794624, P=6.3{\texttimes}10(-5)), and rs1122608 (LDLR, P=0.0026).

CONCLUSIONS: Genome-wide association studies in more than 40 000 individuals identified 1 genome wide significant association on chromosome 9p21 with ABI. Two candidate genes for PAD and 1 SNP for coronary artery disease are associated with ABI.

}, keywords = {Adult, Age Factors, Aged, Aged, 80 and over, Alleles, Ankle Brachial Index, Chromosomes, Human, Pair 9, Cohort Studies, Cyclin-Dependent Kinase Inhibitor p15, Female, Genome-Wide Association Study, Genotype, HapMap Project, Humans, Logistic Models, Male, Middle Aged, Peripheral Vascular Diseases, Phenotype, Polymorphism, Single Nucleotide, Risk Factors, Sex Factors}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.111.961292}, author = {Murabito, Joanne M and White, Charles C and Kavousi, Maryam and Sun, Yan V and Feitosa, Mary F and Nambi, Vijay and Lamina, Claudia and Schillert, Arne and Coassin, Stefan and Bis, Joshua C and Broer, Linda and Crawford, Dana C and Franceschini, Nora and Frikke-Schmidt, Ruth and Haun, Margot and Holewijn, Suzanne and Huffman, Jennifer E and Hwang, Shih-Jen and Kiechl, Stefan and Kollerits, Barbara and Montasser, May E and Nolte, Ilja M and Rudock, Megan E and Senft, Andrea and Teumer, Alexander and van der Harst, Pim and Vitart, Veronique and Waite, Lindsay L and Wood, Andrew R and Wassel, Christina L and Absher, Devin M and Allison, Matthew A and Amin, Najaf and Arnold, Alice and Asselbergs, Folkert W and Aulchenko, Yurii and Bandinelli, Stefania and Barbalic, Maja and Boban, Mladen and Brown-Gentry, Kristin and Couper, David J and Criqui, Michael H and Dehghan, Abbas and den Heijer, Martin and Dieplinger, Benjamin and Ding, Jingzhong and D{\"o}rr, Marcus and Espinola-Klein, Christine and Felix, Stephan B and Ferrucci, Luigi and Folsom, Aaron R and Fraedrich, Gustav and Gibson, Quince and Goodloe, Robert and Gunjaca, Grgo and Haltmayer, Meinhard and Heiss, Gerardo and Hofman, Albert and Kieback, Arne and Kiemeney, Lambertus A and Kolcic, Ivana and Kullo, Iftikhar J and Kritchevsky, Stephen B and Lackner, Karl J and Li, Xiaohui and Lieb, Wolfgang and Lohman, Kurt and Meisinger, Christa and Melzer, David and Mohler, Emile R and Mudnic, Ivana and Mueller, Thomas and Navis, Gerjan and Oberhollenzer, Friedrich and Olin, Jeffrey W and O{\textquoteright}Connell, Jeff and O{\textquoteright}Donnell, Christopher J and Palmas, Walter and Penninx, Brenda W and Petersmann, Astrid and Polasek, Ozren and Psaty, Bruce M and Rantner, Barbara and Rice, Ken and Rivadeneira, Fernando and Rotter, Jerome I and Seldenrijk, Adrie and Stadler, Marietta and Summerer, Monika and Tanaka, Toshiko and Tybjaerg-Hansen, Anne and Uitterlinden, Andr{\'e} G and van Gilst, Wiek H and Vermeulen, Sita H and Wild, Sarah H and Wild, Philipp S and Willeit, Johann and Zeller, Tanja and Zemunik, Tatijana and Zgaga, Lina and Assimes, Themistocles L and Blankenberg, Stefan and Boerwinkle, Eric and Campbell, Harry and Cooke, John P and de Graaf, Jacqueline and Herrington, David and Kardia, Sharon L R and Mitchell, Braxton D and Murray, Anna and M{\"u}nzel, Thomas and Newman, Anne B and Oostra, Ben A and Rudan, Igor and Shuldiner, Alan R and Snieder, Harold and van Duijn, Cornelia M and V{\"o}lker, Uwe and Wright, Alan F and Wichmann, H-Erich and Wilson, James F and Witteman, Jacqueline C M and Liu, Yongmei and Hayward, Caroline and Borecki, Ingrid B and Ziegler, Andreas and North, Kari E and Cupples, L Adrienne and Kronenberg, Florian} } @article {5864, title = {Genetic determinants of the ankle-brachial index: a meta-analysis of a cardiovascular candidate gene 50K SNP panel in the candidate gene association resource (CARe) consortium.}, journal = {Atherosclerosis}, volume = {222}, year = {2012}, month = {2012 May}, pages = {138-47}, abstract = {

BACKGROUND: Candidate gene association studies for peripheral artery disease (PAD), including subclinical disease assessed with the ankle-brachial index (ABI), have been limited by the modest number of genes examined. We conducted a two stage meta-analysis of \~{}50,000 SNPs across \~{}2100 candidate genes to identify genetic variants for ABI.

METHODS AND RESULTS: We studied subjects of European ancestry from 8 studies (n=21,547, 55\% women, mean age 44-73 years) and African American ancestry from 5 studies (n=7267, 60\% women, mean age 41-73 years) involved in the candidate gene association resource (CARe) consortium. In each ethnic group, additive genetic models were used (with each additional copy of the minor allele corresponding to the given beta) to test each SNP for association with continuous ABI (excluding ABI>1.40) and PAD (defined as ABI<0.90) using linear or logistic regression with adjustment for known PAD risk factors and population stratification. We then conducted a fixed-effects inverse-variance weighted meta-analyses considering a p<2{\texttimes}10(-6) to denote statistical significance.

RESULTS: In the European ancestry discovery meta-analyses, rs2171209 in SYTL3 (β=-0.007, p=6.02{\texttimes}10(-7)) and rs290481 in TCF7L2 (β=-0.008, p=7.01{\texttimes}10(-7)) were significantly associated with ABI. None of the SNP associations for PAD were significant, though a SNP in CYP2B6 (p=4.99{\texttimes}10(-5)) was among the strongest associations. These 3 genes are linked to key PAD risk factors (lipoprotein(a), type 2 diabetes, and smoking behavior, respectively). We sought replication in 6 population-based and 3 clinical samples (n=15,440) for rs290481 and rs2171209. However, in the replication stage (rs2171209, p=0.75; rs290481, p=0.19) and in the combined discovery and replication analysis the SNP-ABI associations were no longer significant (rs2171209, p=1.14{\texttimes}10(-3); rs290481, p=8.88{\texttimes}10(-5)). In African Americans, none of the SNP associations for ABI or PAD achieved an experiment-wide level of significance.

CONCLUSIONS: Genetic determinants of ABI and PAD remain elusive. Follow-up of these preliminary findings may uncover important biology given the known gene-risk factor associations. New and more powerful approaches to PAD gene discovery are warranted.

}, keywords = {Adult, African Americans, Aged, Ankle Brachial Index, Aryl Hydrocarbon Hydroxylases, Cytochrome P-450 CYP2B6, European Continental Ancestry Group, Female, Humans, Male, Middle Aged, Oxidoreductases, N-Demethylating, Peripheral Arterial Disease, Polymorphism, Single Nucleotide, Risk Factors, Transcription Factor 7-Like 2 Protein}, issn = {1879-1484}, doi = {10.1016/j.atherosclerosis.2012.01.039}, author = {Wassel, Christina L and Lamina, Claudia and Nambi, Vijay and Coassin, Stefan and Mukamal, Kenneth J and Ganesh, Santhi K and Jacobs, David R and Franceschini, Nora and Papanicolaou, George J and Gibson, Quince and Yanek, Lisa R and van der Harst, Pim and Ferguson, Jane F and Crawford, Dana C and Waite, Lindsay L and Allison, Matthew A and Criqui, Michael H and McDermott, Mary M and Mehra, Reena and Cupples, L Adrienne and Hwang, Shih-Jen and Redline, Susan and Kaplan, Robert C and Heiss, Gerardo and Rotter, Jerome I and Boerwinkle, Eric and Taylor, Herman A and Eraso, Luis H and Haun, Margot and Li, Mingyao and Meisinger, Christa and O{\textquoteright}Connell, Jeffrey R and Shuldiner, Alan R and Tybj{\ae}rg-Hansen, Anne and Frikke-Schmidt, Ruth and Kollerits, Barbara and Rantner, Barbara and Dieplinger, Benjamin and Stadler, Marietta and Mueller, Thomas and Haltmayer, Meinhard and Klein-Weigel, Peter and Summerer, Monika and Wichmann, H-Erich and Asselbergs, Folkert W and Navis, Gerjan and Mateo Leach, Irene and Brown-Gentry, Kristin and Goodloe, Robert and Assimes, Themistocles L and Becker, Diane M and Cooke, John P and Absher, Devin M and Olin, Jeffrey W and Mitchell, Braxton D and Reilly, Muredach P and Mohler, Emile R and North, Kari E and Reiner, Alexander P and Kronenberg, Florian and Murabito, Joanne M} } @article {1377, title = {Genome-wide association and functional follow-up reveals new loci for kidney function.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1002584}, abstract = {

Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

}, keywords = {African Americans, Aged, Animals, Caspase 9, Cyclin-Dependent Kinases, DEAD-box RNA Helicases, DNA Helicases, European Continental Ancestry Group, Female, Follow-Up Studies, Gene Knockdown Techniques, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Kidney, Kidney Failure, Chronic, Male, Middle Aged, Phosphoric Diester Hydrolases, Zebrafish}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002584}, author = {Pattaro, Cristian and K{\"o}ttgen, Anna and Teumer, Alexander and Garnaas, Maija and B{\"o}ger, Carsten A and Fuchsberger, Christian and Olden, Matthias and Chen, Ming-Huei and Tin, Adrienne and Taliun, Daniel and Li, Man and Gao, Xiaoyi and Gorski, Mathias and Yang, Qiong and Hundertmark, Claudia and Foster, Meredith C and O{\textquoteright}Seaghdha, Conall M and Glazer, Nicole and Isaacs, Aaron and Liu, Ching-Ti and Smith, Albert V and O{\textquoteright}Connell, Jeffrey R and Struchalin, Maksim and Tanaka, Toshiko and Li, Guo and Johnson, Andrew D and Gierman, Hinco J and Feitosa, Mary and Hwang, Shih-Jen and Atkinson, Elizabeth J and Lohman, Kurt and Cornelis, Marilyn C and Johansson, Asa and T{\"o}njes, Anke and Dehghan, Abbas and Chouraki, Vincent and Holliday, Elizabeth G and Sorice, Rossella and Kutalik, Zolt{\'a}n and Lehtim{\"a}ki, Terho and Esko, T{\~o}nu and Deshmukh, Harshal and Ulivi, Sheila and Chu, Audrey Y and Murgia, Federico and Trompet, Stella and Imboden, Medea and Kollerits, Barbara and Pistis, Giorgio and Harris, Tamara B and Launer, Lenore J and Aspelund, Thor and Eiriksdottir, Gudny and Mitchell, Braxton D and Boerwinkle, Eric and Schmidt, Helena and Cavalieri, Margherita and Rao, Madhumathi and Hu, Frank B and Demirkan, Ayse and Oostra, Ben A and de Andrade, Mariza and Turner, Stephen T and Ding, Jingzhong and Andrews, Jeanette S and Freedman, Barry I and Koenig, Wolfgang and Illig, Thomas and D{\"o}ring, Angela and Wichmann, H-Erich and Kolcic, Ivana and Zemunik, Tatijana and Boban, Mladen and Minelli, Cosetta and Wheeler, Heather E and Igl, Wilmar and Zaboli, Ghazal and Wild, Sarah H and Wright, Alan F and Campbell, Harry and Ellinghaus, David and N{\"o}thlings, Ute and Jacobs, Gunnar and Biffar, Reiner and Endlich, Karlhans and Ernst, Florian and Homuth, Georg and Kroemer, Heyo K and Nauck, Matthias and Stracke, Sylvia and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Kovacs, Peter and Stumvoll, Michael and M{\"a}gi, Reedik and Hofman, Albert and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Aulchenko, Yurii S and Polasek, Ozren and Hastie, Nick and Vitart, Veronique and Helmer, Catherine and Wang, Jie Jin and Ruggiero, Daniela and Bergmann, Sven and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Nikopensius, Tiit and Province, Michael and Ketkar, Shamika and Colhoun, Helen and Doney, Alex and Robino, Antonietta and Giulianini, Franco and Kr{\"a}mer, Bernhard K and Portas, Laura and Ford, Ian and Buckley, Brendan M and Adam, Martin and Thun, Gian-Andri and Paulweber, Bernhard and Haun, Margot and Sala, Cinzia and Metzger, Marie and Mitchell, Paul and Ciullo, Marina and Kim, Stuart K and Vollenweider, Peter and Raitakari, Olli and Metspalu, Andres and Palmer, Colin and Gasparini, Paolo and Pirastu, Mario and Jukema, J Wouter and Probst-Hensch, Nicole M and Kronenberg, Florian and Toniolo, Daniela and Gudnason, Vilmundur and Shuldiner, Alan R and Coresh, Josef and Schmidt, Reinhold and Ferrucci, Luigi and Siscovick, David S and van Duijn, Cornelia M and Borecki, Ingrid and Kardia, Sharon L R and Liu, Yongmei and Curhan, Gary C and Rudan, Igor and Gyllensten, Ulf and Wilson, James F and Franke, Andre and Pramstaller, Peter P and Rettig, Rainer and Prokopenko, Inga and Witteman, Jacqueline C M and Hayward, Caroline and Ridker, Paul and Parsa, Afshin and Bochud, Murielle and Heid, Iris M and Goessling, Wolfram and Chasman, Daniel I and Kao, W H Linda and Fox, Caroline S} } @article {6288, title = {Common variants in Mendelian kidney disease genes and their association with renal function.}, journal = {J Am Soc Nephrol}, volume = {24}, year = {2013}, month = {2013 Dec}, pages = {2105-17}, abstract = {

Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5\%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

}, keywords = {Databases, Genetic, European Continental Ancestry Group, Gene Frequency, Genetic Variation, Genome-Wide Association Study, Humans, Kidney, Mendelian Randomization Analysis, Phenotype, Polymorphism, Single Nucleotide, Renal Insufficiency, Chronic}, issn = {1533-3450}, doi = {10.1681/ASN.2012100983}, author = {Parsa, Afshin and Fuchsberger, Christian and K{\"o}ttgen, Anna and O{\textquoteright}Seaghdha, Conall M and Pattaro, Cristian and de Andrade, Mariza and Chasman, Daniel I and Teumer, Alexander and Endlich, Karlhans and Olden, Matthias and Chen, Ming-Huei and Tin, Adrienne and Kim, Young J and Taliun, Daniel and Li, Man and Feitosa, Mary and Gorski, Mathias and Yang, Qiong and Hundertmark, Claudia and Foster, Meredith C and Glazer, Nicole and Isaacs, Aaron and Rao, Madhumathi and Smith, Albert V and O{\textquoteright}Connell, Jeffrey R and Struchalin, Maksim and Tanaka, Toshiko and Li, Guo and Hwang, Shih-Jen and Atkinson, Elizabeth J and Lohman, Kurt and Cornelis, Marilyn C and Johansson, Asa and T{\"o}njes, Anke and Dehghan, Abbas and Couraki, Vincent and Holliday, Elizabeth G and Sorice, Rossella and Kutalik, Zolt{\'a}n and Lehtim{\"a}ki, Terho and Esko, T{\~o}nu and Deshmukh, Harshal and Ulivi, Sheila and Chu, Audrey Y and Murgia, Federico and Trompet, Stella and Imboden, Medea and Kollerits, Barbara and Pistis, Giorgio and Harris, Tamara B and Launer, Lenore J and Aspelund, Thor and Eiriksdottir, Gudny and Mitchell, Braxton D and Boerwinkle, Eric and Schmidt, Helena and Hofer, Edith and Hu, Frank and Demirkan, Ayse and Oostra, Ben A and Turner, Stephen T and Ding, Jingzhong and Andrews, Jeanette S and Freedman, Barry I and Giulianini, Franco and Koenig, Wolfgang and Illig, Thomas and D{\"o}ring, Angela and Wichmann, H-Erich and Zgaga, Lina and Zemunik, Tatijana and Boban, Mladen and Minelli, Cosetta and Wheeler, Heather E and Igl, Wilmar and Zaboli, Ghazal and Wild, Sarah H and Wright, Alan F and Campbell, Harry and Ellinghaus, David and N{\"o}thlings, Ute and Jacobs, Gunnar and Biffar, Reiner and Ernst, Florian and Homuth, Georg and Kroemer, Heyo K and Nauck, Matthias and Stracke, Sylvia and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Kovacs, Peter and Stumvoll, Michael and M{\"a}gi, Reedik and Hofman, Albert and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Aulchenko, Yurii S and Polasek, Ozren and Hastie, Nick and Vitart, Veronique and Helmer, Catherine and Wang, Jie Jin and Stengel, B{\'e}n{\'e}dicte and Ruggiero, Daniela and Bergmann, Sven and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Nikopensius, Tiit and Province, Michael and Colhoun, Helen and Doney, Alex and Robino, Antonietta and Kr{\"a}mer, Bernhard K and Portas, Laura and Ford, Ian and Buckley, Brendan M and Adam, Martin and Thun, Gian-Andri and Paulweber, Bernhard and Haun, Margot and Sala, Cinzia and Mitchell, Paul and Ciullo, Marina and Vollenweider, Peter and Raitakari, Olli and Metspalu, Andres and Palmer, Colin and Gasparini, Paolo and Pirastu, Mario and Jukema, J Wouter and Probst-Hensch, Nicole M and Kronenberg, Florian and Toniolo, Daniela and Gudnason, Vilmundur and Shuldiner, Alan R and Coresh, Josef and Schmidt, Reinhold and Ferrucci, Luigi and van Duijn, Cornelia M and Borecki, Ingrid and Kardia, Sharon L R and Liu, Yongmei and Curhan, Gary C and Rudan, Igor and Gyllensten, Ulf and Wilson, James F and Franke, Andre and Pramstaller, Peter P and Rettig, Rainer and Prokopenko, Inga and Witteman, Jacqueline and Hayward, Caroline and Ridker, Paul M and Bochud, Murielle and Heid, Iris M and Siscovick, David S and Fox, Caroline S and Kao, W Linda and B{\"o}ger, Carsten A} }