@article {1188, title = {Candidate gene association resource (CARe): design, methods, and proof of concept.}, journal = {Circ Cardiovasc Genet}, volume = {3}, year = {2010}, month = {2010 Jun}, pages = {267-75}, abstract = {

BACKGROUND: The National Heart, Lung, and Blood Institute{\textquoteright}s Candidate Gene Association Resource (CARe), a planned cross-cohort analysis of genetic variation in cardiovascular, pulmonary, hematologic, and sleep-related traits, comprises >40,000 participants representing 4 ethnic groups in 9 community-based cohorts. The goals of CARe include the discovery of new variants associated with traits using a candidate gene approach and the discovery of new variants using the genome-wide association mapping approach specifically in African Americans.

METHODS AND RESULTS: CARe has assembled DNA samples for >40,000 individuals self-identified as European American, African American, Hispanic, or Chinese American, with accompanying data on hundreds of phenotypes that have been standardized and deposited in the CARe Phenotype Database. All participants were genotyped for 7 single-nucleotide polymorphisms (SNPs) selected based on prior association evidence. We performed association analyses relating each of these SNPs to lipid traits, stratified by sex and ethnicity, and adjusted for age and age squared. In at least 2 of the ethnic groups, SNPs near CETP, LIPC, and LPL strongly replicated for association with high-density lipoprotein cholesterol concentrations, PCSK9 with low-density lipoprotein cholesterol levels, and LPL and APOA5 with serum triglycerides. Notably, some SNPs showed varying effect sizes and significance of association in different ethnic groups.

CONCLUSIONS: The CARe Pilot Study validates the operational framework for phenotype collection, SNP genotyping, and analytic pipeline of the CARe project and validates the planned candidate gene study of approximately 2000 biological candidate loci in all participants and genome-wide association study in approximately 8000 African American participants. CARe will serve as a valuable resource for the scientific community.

}, keywords = {African Americans, Cholesterol, HDL, Cholesterol, LDL, Cohort Studies, Databases, Genetic, European Continental Ancestry Group, Genetic Association Studies, Genotype, Humans, Phenotype, Pilot Projects, Polymorphism, Single Nucleotide, Research Design, Triglycerides}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.109.882696}, author = {Musunuru, Kiran and Lettre, Guillaume and Young, Taylor and Farlow, Deborah N and Pirruccello, James P and Ejebe, Kenechi G and Keating, Brendan J and Yang, Qiong and Chen, Ming-Huei and Lapchyk, Nina and Crenshaw, Andrew and Ziaugra, Liuda and Rachupka, Anthony and Benjamin, Emelia J and Cupples, L Adrienne and Fornage, Myriam and Fox, Ervin R and Heckbert, Susan R and Hirschhorn, Joel N and Newton-Cheh, Christopher and Nizzari, Marcia M and Paltoo, Dina N and Papanicolaou, George J and Patel, Sanjay R and Psaty, Bruce M and Rader, Daniel J and Redline, Susan and Rich, Stephen S and Rotter, Jerome I and Taylor, Herman A and Tracy, Russell P and Vasan, Ramachandran S and Wilson, James G and Kathiresan, Sekar and Fabsitz, Richard R and Boerwinkle, Eric and Gabriel, Stacey B} } @article {1273, title = {Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study.}, journal = {Hum Mol Genet}, volume = {20}, year = {2011}, month = {2011 Jun 01}, pages = {2273-84}, abstract = {

The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 {\texttimes} 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 {\texttimes} 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 {\texttimes} 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 {\texttimes} 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.

}, keywords = {Adult, African Americans, Aged, Blood Pressure, Cohort Studies, Diastole, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Humans, Hypertension, Male, Middle Aged, Phenotype, Polymorphism, Single Nucleotide, Systole}, issn = {1460-2083}, doi = {10.1093/hmg/ddr092}, author = {Fox, Ervin R and Young, J Hunter and Li, Yali and Dreisbach, Albert W and Keating, Brendan J and Musani, Solomon K and Liu, Kiang and Morrison, Alanna C and Ganesh, Santhi and Kutlar, Abdullah and Ramachandran, Vasan S and Polak, Josef F and Fabsitz, Richard R and Dries, Daniel L and Farlow, Deborah N and Redline, Susan and Adeyemo, Adebowale and Hirschorn, Joel N and Sun, Yan V and Wyatt, Sharon B and Penman, Alan D and Palmas, Walter and Rotter, Jerome I and Townsend, Raymond R and Doumatey, Ayo P and Tayo, Bamidele O and Mosley, Thomas H and Lyon, Helen N and Kang, Sun J and Rotimi, Charles N and Cooper, Richard S and Franceschini, Nora and Curb, J David and Martin, Lisa W and Eaton, Charles B and Kardia, Sharon L R and Taylor, Herman A and Caulfield, Mark J and Ehret, Georg B and Johnson, Toby and Chakravarti, Aravinda and Zhu, Xiaofeng and Levy, Daniel} } @article {1562, title = {Association of genomic loci from a cardiovascular gene SNP array with fibrinogen levels in European Americans and African-Americans from six cohort studies: the Candidate Gene Association Resource (CARe).}, journal = {Blood}, volume = {117}, year = {2011}, month = {2011 Jan 06}, pages = {268-75}, abstract = {

Several common genomic loci, involving various immunity- and metabolism-related genes, have been associated with plasma fibrinogen in European Americans (EAs). The genetic determinants of fibrinogen in African Americans (AAs) are poorly characterized. Using a vascular gene-centric array in 23,634 EA and 6657 AA participants from 6 studies comprising the Candidate Gene Association Resource project, we examined the association of 47,539 common and lower frequency variants with fibrinogen concentration. We identified a rare Pro265Leu variant in FGB (rs6054) associated with lower fibrinogen. Common fibrinogen gene single nucleotide polymorphisms (FGB rs1800787 and FGG rs2066861) significantly associated with fibrinogen in EAs were prevalent in AAs and showed consistent associations. Several fibrinogen locus single nucleotide polymorphism associated with lower fibrinogen were exclusive to AAs; these include a newly reported association with FGA rs10050257. For IL6R, IL1RN, and NLRP3 inflammatory gene loci, associations with fibrinogen were concordant between EAs and AAs, but not at other loci (CPS1, PCCB, and SCL22A5-IRF1). The association of FGG rs2066861 with fibrinogen differed according to assay type used to measure fibrinogen. Further characterization of common and lower-frequency genetic variants that contribute to interpopulation differences in fibrinogen phenotype may help refine our understanding of the contribution of hemostasis and inflammation to atherothrombotic risk.

}, keywords = {Adult, African Americans, Aged, Cardiovascular Diseases, Cohort Studies, European Continental Ancestry Group, Female, Fibrinogen, Genetic Predisposition to Disease, Haplotypes, Humans, Male, Middle Aged, Phenotype, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1528-0020}, doi = {10.1182/blood-2010-06-289546}, author = {Wassel, Christina L and Lange, Leslie A and Keating, Brendan J and Taylor, Kira C and Johnson, Andrew D and Palmer, Cameron and Ho, Lindsey A and Smith, Nicholas L and Lange, Ethan M and Li, Yun and Yang, Qiong and Delaney, Joseph A and Tang, Weihong and Tofler, Geoffrey and Redline, Susan and Taylor, Herman A and Wilson, James G and Tracy, Russell P and Jacobs, David R and Folsom, Aaron R and Green, David and O{\textquoteright}Donnell, Christopher J and Reiner, Alexander P} } @article {1568, title = {A gene-centric association scan for Coagulation Factor VII levels in European and African Americans: the Candidate Gene Association Resource (CARe) Consortium.}, journal = {Hum Mol Genet}, volume = {20}, year = {2011}, month = {2011 Sep 01}, pages = {3525-34}, abstract = {

Polymorphisms in several distinct genomic regions, including the F7 gene, were recently associated with factor VII (FVII) levels in European Americans (EAs). The genetic determinants of FVII in African Americans (AAs) are unknown. We used a 50,000 single nucleotide polymorphism (SNP) gene-centric array having dense coverage of over 2,000 candidate genes for cardiovascular disease (CVD) pathways in a community-based sample of 16,324 EA and 3898 AA participants from the Candidate Gene Association Resource (CARe) consortium. Our aim was the discovery of new genomic loci and more detailed characterization of existing loci associated with FVII levels. In EAs, we identified three new loci associated with FVII, of which APOA5 on chromosome 11q23 and HNF4A on chromosome 20q12-13 were replicated in a sample of 4289 participants from the Whitehall II study. We confirmed four previously reported FVII-associated loci (GCKR, MS4A6A, F7 and PROCR) in CARe EA samples. In AAs, the F7 and PROCR regions were significantly associated with FVII. Several of the FVII-associated regions are known to be associated with lipids and other cardiovascular-related traits. At the F7 locus, there was evidence of at least five independently associated SNPs in EAs and three independent signals in AAs. Though the variance in FVII explained by the existing loci is substantial (20\% in EA and 10\% in AA), larger sample sizes and investigation of lower frequency variants may be required to identify additional FVII-associated loci in EAs and AAs and further clarify the relationship between FVII and other CVD risk factors.

}, keywords = {Adult, African Americans, Aged, Cardiovascular Diseases, European Continental Ancestry Group, Factor VII, Female, Genetic Predisposition to Disease, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1460-2083}, doi = {10.1093/hmg/ddr264}, author = {Taylor, Kira C and Lange, Leslie A and Zabaneh, Delilah and Lange, Ethan and Keating, Brendan J and Tang, Weihong and Smith, Nicholas L and Delaney, Joseph A and Kumari, Meena and Hingorani, Aroon and North, Kari E and Kivimaki, Mika and Tracy, Russell P and O{\textquoteright}Donnell, Christopher J and Folsom, Aaron R and Green, David and Humphries, Steve E and Reiner, Alexander P} } @article {6084, title = {Novel loci associated with PR interval in a genome-wide association study of 10 African American cohorts.}, journal = {Circ Cardiovasc Genet}, volume = {5}, year = {2012}, month = {2012 Dec}, pages = {639-46}, abstract = {

BACKGROUND: The PR interval, as measured by the resting, standard 12-lead ECG, reflects the duration of atrial/atrioventricular nodal depolarization. Substantial evidence exists for a genetic contribution to PR, including genome-wide association studies that have identified common genetic variants at 9 loci influencing PR in populations of European and Asian descent. However, few studies have examined loci associated with PR in African Americans.

METHODS AND RESULTS: We present results from the largest genome-wide association study to date of PR in 13 415 adults of African descent from 10 cohorts. We tested for association between PR (ms) and ≈2.8 million genotyped and imputed single-nucleotide polymorphisms. Imputation was performed using HapMap 2 YRI and CEU panels. Study-specific results, adjusted for global ancestry and clinical correlates of PR, were meta-analyzed using the inverse variance method. Variation in genome-wide test statistic distributions was noted within studies (λ range: 0.9-1.1), although not after genomic control correction was applied to the overall meta-analysis (λ: 1.008). In addition to generalizing previously reported associations with MEIS1, SCN5A, ARHGAP24, CAV1, and TBX5 to African American populations at the genome-wide significance level (P<5.0 {\texttimes} 10(-8)), we also identified a novel locus: ITGA9, located in a region previously implicated in SCN5A expression. The 3p21 region harboring SCN5A also contained 2 additional independent secondary signals influencing PR (P<5.0 {\texttimes} 10(-8)).

CONCLUSIONS: This study demonstrates the ability to map novel loci in African Americans as well as the generalizability of loci associated with PR across populations of African, European, and Asian descent.

}, keywords = {Adult, African Americans, Cohort Studies, Electrocardiography, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.112.963991}, author = {Butler, Anne M and Yin, Xiaoyan and Evans, Daniel S and Nalls, Michael A and Smith, Erin N and Tanaka, Toshiko and Li, Guo and Buxbaum, Sarah G and Whitsel, Eric A and Alonso, Alvaro and Arking, Dan E and Benjamin, Emelia J and Berenson, Gerald S and Bis, Josh C and Chen, Wei and Deo, Rajat and Ellinor, Patrick T and Heckbert, Susan R and Heiss, Gerardo and Hsueh, Wen-Chi and Keating, Brendan J and Kerr, Kathleen F and Li, Yun and Limacher, Marian C and Liu, Yongmei and Lubitz, Steven A and Marciante, Kristin D and Mehra, Reena and Meng, Yan A and Newman, Anne B and Newton-Cheh, Christopher and North, Kari E and Palmer, Cameron D and Psaty, Bruce M and Quibrera, P Miguel and Redline, Susan and Reiner, Alex P and Rotter, Jerome I and Schnabel, Renate B and Schork, Nicholas J and Singleton, Andrew B and Smith, J Gustav and Soliman, Elsayed Z and Srinivasan, Sathanur R and Zhang, Zhu-Ming and Zonderman, Alan B and Ferrucci, Luigi and Murray, Sarah S and Evans, Michele K and Sotoodehnia, Nona and Magnani, Jared W and Avery, Christy L} } @article {1544, title = {Ultraconserved elements in the human genome: association and transmission analyses of highly constrained single-nucleotide polymorphisms.}, journal = {Genetics}, volume = {192}, year = {2012}, month = {2012 Sep}, pages = {253-66}, abstract = {

Ultraconserved elements in the human genome likely harbor important biological functions as they are dosage sensitive and are able to direct tissue-specific expression. Because they are under purifying selection, variants in these elements may have a lower frequency in the population but a higher likelihood of association with complex traits. We tested a set of highly constrained SNPs (hcSNPs) distributed genome-wide among ultraconserved and nearly ultraconserved elements for association with seven traits related to reproductive (age at natural menopause, number of children, age at first child, and age at last child) and overall [longevity, body mass index (BMI), and height] fitness. Using up to 24,047 European-American samples from the National Heart, Lung, and Blood Institute Candidate Gene Association Resource (CARe), we observed an excess of associations with BMI and height. In an independent replication panel the most strongly associated SNPs showed an 8.4-fold enrichment of associations at the nominal level, including three variants in previously identified loci and one in a locus (DENND1A) previously shown to be associated with polycystic ovary syndrome. Finally, using 1430 family trios, we showed that the transmissions from heterozygous parents to offspring of the derived alleles of rare (frequency <= 0.5\%) hcSNPs are not biased, particularly after adjusting for the rates of genotype missingness and error in the data. The lack of transmission bias ruled out an immediately and strongly deleterious effect due to the rare derived alleles, consistent with the observation that mice homozygous for the deletion of ultraconserved elements showed no overt phenotype. Our study also illustrated the importance of carefully modeling potential technical confounders when analyzing genotype data of rare variants.

}, keywords = {Alleles, Animals, Body Height, Body Mass Index, Child, Conserved Sequence, Dogs, Evolution, Molecular, Female, Genetic Fitness, Genetic Variation, Genome, Human, Genotype, Humans, Inheritance Patterns, Male, Mice, Pedigree, Phenotype, Polymorphism, Single Nucleotide, Rats, Reproduction, Young Adult}, issn = {1943-2631}, doi = {10.1534/genetics.112.141945}, author = {Chiang, Charleston W K and Liu, Ching-Ti and Lettre, Guillaume and Lange, Leslie A and Jorgensen, Neal W and Keating, Brendan J and Vedantam, Sailaja and Nock, Nora L and Franceschini, Nora and Reiner, Alex P and Demerath, Ellen W and Boerwinkle, Eric and Rotter, Jerome I and Wilson, James G and North, Kari E and Papanicolaou, George J and Cupples, L Adrienne and Murabito, Joanne M and Hirschhorn, Joel N} } @article {1550, title = {Gene-centric meta-analyses of 108 912 individuals confirm known body mass index loci and reveal three novel signals.}, journal = {Hum Mol Genet}, volume = {22}, year = {2013}, month = {2013 Jan 01}, pages = {184-201}, abstract = {

Recent genetic association studies have made progress in uncovering components of the genetic architecture of the body mass index (BMI). We used the ITMAT-Broad-Candidate Gene Association Resource (CARe) (IBC) array comprising up to 49 320 single nucleotide polymorphisms (SNPs) across ~2100 metabolic and cardiovascular-related loci to genotype up to 108 912 individuals of European ancestry (EA), African-Americans, Hispanics and East Asians, from 46 studies, to provide additional insight into SNPs underpinning BMI. We used a five-phase study design: Phase I focused on meta-analysis of EA studies providing individual level genotype data; Phase II performed a replication of cohorts providing summary level EA data; Phase III meta-analyzed results from the first two phases; associated SNPs from Phase III were used for replication in Phase IV; finally in Phase V, a multi-ethnic meta-analysis of all samples from four ethnicities was performed. At an array-wide significance (P < 2.40E-06), we identify novel BMI associations in loci translocase of outer mitochondrial membrane 40 homolog (yeast) - apolipoprotein E - apolipoprotein C-I (TOMM40-APOE-APOC1) (rs2075650, P = 2.95E-10), sterol regulatory element binding transcription factor 2 (SREBF2, rs5996074, P = 9.43E-07) and neurotrophic tyrosine kinase, receptor, type 2 [NTRK2, a brain-derived neurotrophic factor (BDNF) receptor gene, rs1211166, P = 1.04E-06] in the Phase IV meta-analysis. Of 10 loci with previous evidence for BMI association represented on the IBC array, eight were replicated, with the remaining two showing nominal significance. Conditional analyses revealed two independent BMI-associated signals in BDNF and melanocortin 4 receptor (MC4R) regions. Of the 11 array-wide significant SNPs, three are associated with gene expression levels in both primary B-cells and monocytes; with rs4788099 in SH2B adaptor protein 1 (SH2B1) notably being associated with the expression of multiple genes in cis. These multi-ethnic meta-analyses expand our knowledge of BMI genetics.

}, keywords = {Body Mass Index, Cohort Studies, Ethnic Groups, Humans, Polymorphism, Single Nucleotide}, issn = {1460-2083}, doi = {10.1093/hmg/dds396}, author = {Guo, Yiran and Lanktree, Matthew B and Taylor, Kira C and Hakonarson, Hakon and Lange, Leslie A and Keating, Brendan J} } @article {6282, title = {Genome-wide and gene-centric analyses of circulating myeloperoxidase levels in the charge and care consortia.}, journal = {Hum Mol Genet}, volume = {22}, year = {2013}, month = {2013 Aug 15}, pages = {3381-93}, abstract = {

Increased systemic levels of myeloperoxidase (MPO) are associated with the risk of coronary artery disease (CAD). To identify the genetic factors that are associated with circulating MPO levels, we carried out a genome-wide association study (GWAS) and a gene-centric analysis in subjects of European ancestry and African Americans (AAs). A locus on chromosome 1q31.1 containing the complement factor H (CFH) gene was strongly associated with serum MPO levels in 9305 subjects of European ancestry (lead SNP rs800292; P = 4.89 {\texttimes} 10(-41)) and in 1690 AA subjects (rs505102; P = 1.05 {\texttimes} 10(-8)). Gene-centric analyses in 8335 subjects of European ancestry additionally identified two rare MPO coding sequence variants that were associated with serum MPO levels (rs28730837, P = 5.21 {\texttimes} 10(-12); rs35897051, P = 3.32 {\texttimes} 10(-8)). A GWAS for plasma MPO levels in 9260 European ancestry subjects identified a chromosome 17q22 region near MPO that was significantly associated (lead SNP rs6503905; P = 2.94 {\texttimes} 10(-12)), but the CFH locus did not exhibit evidence of association with plasma MPO levels. Functional analyses revealed that rs800292 was associated with levels of complement proteins in serum. Variants at chromosome 17q22 also had pleiotropic cis effects on gene expression. In a case-control analysis of \~{}80 000 subjects from CARDIoGRAM, none of the identified single-nucleotide polymorphisms (SNPs) were associated with CAD. These results suggest that distinct genetic factors regulate serum and plasma MPO levels, which may have relevance for various acute and chronic inflammatory disorders. The clinical implications for CAD and a better understanding of the functional basis for the association of CFH and MPO variants with circulating MPO levels require further study.

}, keywords = {Adult, African Americans, Aged, Case-Control Studies, Complement Factor H, Coronary Artery Disease, European Continental Ancestry Group, Female, Gene Expression Regulation, Enzymologic, Genetic Association Studies, Genetic Variation, Genome-Wide Association Study, Genotype, Humans, Male, Middle Aged, Peroxidase, Polymorphism, Single Nucleotide, Young Adult}, issn = {1460-2083}, doi = {10.1093/hmg/ddt189}, author = {Reiner, Alexander P and Hartiala, Jaana and Zeller, Tanja and Bis, Joshua C and Dupuis, Jos{\'e}e and Fornage, Myriam and Baumert, Jens and Kleber, Marcus E and Wild, Philipp S and Baldus, Stephan and Bielinski, Suzette J and Fontes, Jo{\~a}o D and Illig, Thomas and Keating, Brendan J and Lange, Leslie A and Ojeda, Francisco and M{\"u}ller-Nurasyid, Martina and Munzel, Thomas F and Psaty, Bruce M and Rice, Kenneth and Rotter, Jerome I and Schnabel, Renate B and Tang, W H Wilson and Thorand, Barbara and Erdmann, Jeanette and Jacobs, David R and Wilson, James G and Koenig, Wolfgang and Tracy, Russell P and Blankenberg, Stefan and M{\"a}rz, Winfried and Gross, Myron D and Benjamin, Emelia J and Hazen, Stanley L and Allayee, Hooman} } @article {6078, title = {A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 Jun}, pages = {690-6}, abstract = {

Genome-wide association studies (GWAS) have identified 36 loci associated with body mass index (BMI), predominantly in populations of European ancestry. We conducted a meta-analysis to examine the association of >3.2 million SNPs with BMI in 39,144 men and women of African ancestry and followed up the most significant associations in an additional 32,268 individuals of African ancestry. We identified one new locus at 5q33 (GALNT10, rs7708584, P = 3.4 {\texttimes} 10(-11)) and another at 7p15 when we included data from the GIANT consortium (MIR148A-NFE2L3, rs10261878, P = 1.2 {\texttimes} 10(-10)). We also found suggestive evidence of an association at a third locus at 6q16 in the African-ancestry sample (KLHL32, rs974417, P = 6.9 {\texttimes} 10(-8)). Thirty-two of the 36 previously established BMI variants showed directionally consistent effect estimates in our GWAS (binomial P = 9.7 {\texttimes} 10(-7)), five of which reached genome-wide significance. These findings provide strong support for shared BMI loci across populations, as well as for the utility of studying ancestrally diverse populations.

}, keywords = {African Americans, Body Mass Index, Case-Control Studies, Gene Frequency, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Obesity, Polymorphism, Single Nucleotide}, issn = {1546-1718}, doi = {10.1038/ng.2608}, author = {Monda, Keri L and Chen, Gary K and Taylor, Kira C and Palmer, Cameron and Edwards, Todd L and Lange, Leslie A and Ng, Maggie C Y and Adeyemo, Adebowale A and Allison, Matthew A and Bielak, Lawrence F and Chen, Guanjie and Graff, Mariaelisa and Irvin, Marguerite R and Rhie, Suhn K and Li, Guo and Liu, Yongmei and Liu, Youfang and Lu, Yingchang and Nalls, Michael A and Sun, Yan V and Wojczynski, Mary K and Yanek, Lisa R and Aldrich, Melinda C and Ademola, Adeyinka and Amos, Christopher I and Bandera, Elisa V and Bock, Cathryn H and Britton, Angela and Broeckel, Ulrich and Cai, Quiyin and Caporaso, Neil E and Carlson, Chris S and Carpten, John and Casey, Graham and Chen, Wei-Min and Chen, Fang and Chen, Yii-der I and Chiang, Charleston W K and Coetzee, Gerhard A and Demerath, Ellen and Deming-Halverson, Sandra L and Driver, Ryan W and Dubbert, Patricia and Feitosa, Mary F and Feng, Ye and Freedman, Barry I and Gillanders, Elizabeth M and Gottesman, Omri and Guo, Xiuqing and Haritunians, Talin and Harris, Tamara and Harris, Curtis C and Hennis, Anselm J M and Hernandez, Dena G and McNeill, Lorna H and Howard, Timothy D and Howard, Barbara V and Howard, Virginia J and Johnson, Karen C and Kang, Sun J and Keating, Brendan J and Kolb, Suzanne and Kuller, Lewis H and Kutlar, Abdullah and Langefeld, Carl D and Lettre, Guillaume and Lohman, Kurt and Lotay, Vaneet and Lyon, Helen and Manson, JoAnn E and Maixner, William and Meng, Yan A and Monroe, Kristine R and Morhason-Bello, Imran and Murphy, Adam B and Mychaleckyj, Josyf C and Nadukuru, Rajiv and Nathanson, Katherine L and Nayak, Uma and N{\textquoteright}diaye, Amidou and Nemesure, Barbara and Wu, Suh-Yuh and Leske, M Cristina and Neslund-Dudas, Christine and Neuhouser, Marian and Nyante, Sarah and Ochs-Balcom, Heather and Ogunniyi, Adesola and Ogundiran, Temidayo O and Ojengbede, Oladosu and Olopade, Olufunmilayo I and Palmer, Julie R and Ruiz-Narvaez, Edward A and Palmer, Nicholette D and Press, Michael F and Rampersaud, Evandine and Rasmussen-Torvik, Laura J and Rodriguez-Gil, Jorge L and Salako, Babatunde and Schadt, Eric E and Schwartz, Ann G and Shriner, Daniel A and Siscovick, David and Smith, Shad B and Wassertheil-Smoller, Sylvia and Speliotes, Elizabeth K and Spitz, Margaret R and Sucheston, Lara and Taylor, Herman and Tayo, Bamidele O and Tucker, Margaret A and Van Den Berg, David J and Edwards, Digna R Velez and Wang, Zhaoming and Wiencke, John K and Winkler, Thomas W and Witte, John S and Wrensch, Margaret and Wu, Xifeng and Yang, James J and Levin, Albert M and Young, Taylor R and Zakai, Neil A and Cushman, Mary and Zanetti, Krista A and Zhao, Jing Hua and Zhao, Wei and Zheng, Yonglan and Zhou, Jie and Ziegler, Regina G and Zmuda, Joseph M and Fernandes, Jyotika K and Gilkeson, Gary S and Kamen, Diane L and Hunt, Kelly J and Spruill, Ida J and Ambrosone, Christine B and Ambs, Stefan and Arnett, Donna K and Atwood, Larry and Becker, Diane M and Berndt, Sonja I and Bernstein, Leslie and Blot, William J and Borecki, Ingrid B and Bottinger, Erwin P and Bowden, Donald W and Burke, Gregory and Chanock, Stephen J and Cooper, Richard S and Ding, Jingzhong and Duggan, David and Evans, Michele K and Fox, Caroline and Garvey, W Timothy and Bradfield, Jonathan P and Hakonarson, Hakon and Grant, Struan F A and Hsing, Ann and Chu, Lisa and Hu, Jennifer J and Huo, Dezheng and Ingles, Sue A and John, Esther M and Jordan, Joanne M and Kabagambe, Edmond K and Kardia, Sharon L R and Kittles, Rick A and Goodman, Phyllis J and Klein, Eric A and Kolonel, Laurence N and Le Marchand, Lo{\"\i}c and Liu, Simin and McKnight, Barbara and Millikan, Robert C and Mosley, Thomas H and Padhukasahasram, Badri and Williams, L Keoki and Patel, Sanjay R and Peters, Ulrike and Pettaway, Curtis A and Peyser, Patricia A and Psaty, Bruce M and Redline, Susan and Rotimi, Charles N and Rybicki, Benjamin A and Sale, Mich{\`e}le M and Schreiner, Pamela J and Signorello, Lisa B and Singleton, Andrew B and Stanford, Janet L and Strom, Sara S and Thun, Michael J and Vitolins, Mara and Zheng, Wei and Moore, Jason H and Williams, Scott M and Ketkar, Shamika and Zhu, Xiaofeng and Zonderman, Alan B and Kooperberg, Charles and Papanicolaou, George J and Henderson, Brian E and Reiner, Alex P and Hirschhorn, Joel N and Loos, Ruth J F and North, Kari E and Haiman, Christopher A} } @article {6569, title = {Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data.}, journal = {BMJ}, volume = {349}, year = {2014}, month = {2014 Jul 10}, pages = {g4164}, abstract = {

OBJECTIVE: To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease.

DESIGN: Mendelian randomisation meta-analysis of 56 epidemiological studies.

PARTICIPANTS: 261 991 individuals of European descent, including 20 259 coronary heart disease cases and 10 164 stroke events. Data were available on ADH1B rs1229984 variant, alcohol phenotypes, and cardiovascular biomarkers.

MAIN OUTCOME MEASURES: Odds ratio for coronary heart disease and stroke associated with the ADH1B variant in all individuals and by categories of alcohol consumption.

RESULTS: Carriers of the A-allele of ADH1B rs1229984 consumed 17.2\% fewer units of alcohol per week (95\% confidence interval 15.6\% to 18.9\%), had a lower prevalence of binge drinking (odds ratio 0.78 (95\% CI 0.73 to 0.84)), and had higher abstention (odds ratio 1.27 (1.21 to 1.34)) than non-carriers. Rs1229984 A-allele carriers had lower systolic blood pressure (-0.88 (-1.19 to -0.56) mm Hg), interleukin-6 levels (-5.2\% (-7.8 to -2.4\%)), waist circumference (-0.3 (-0.6 to -0.1) cm), and body mass index (-0.17 (-0.24 to -0.10) kg/m(2)). Rs1229984 A-allele carriers had lower odds of coronary heart disease (odds ratio 0.90 (0.84 to 0.96)). The protective association of the ADH1B rs1229984 A-allele variant remained the same across all categories of alcohol consumption (P=0.83 for heterogeneity). Although no association of rs1229984 was identified with the combined subtypes of stroke, carriers of the A-allele had lower odds of ischaemic stroke (odds ratio 0.83 (0.72 to 0.95)).

CONCLUSIONS: Individuals with a genetic variant associated with non-drinking and lower alcohol consumption had a more favourable cardiovascular profile and a reduced risk of coronary heart disease than those without the genetic variant. This suggests that reduction of alcohol consumption, even for light to moderate drinkers, is beneficial for cardiovascular health.

}, keywords = {Adult, Aged, Alcohol Dehydrogenase, Alcohol Drinking, Biomarkers, Coronary Disease, Female, Genetic Markers, Genotype, Humans, Male, Mendelian Randomization Analysis, Middle Aged, Models, Statistical, Polymorphism, Single Nucleotide, Stroke}, issn = {1756-1833}, doi = {10.1136/bmj.g4164}, author = {Holmes, Michael V and Dale, Caroline E and Zuccolo, Luisa and Silverwood, Richard J and Guo, Yiran and Ye, Zheng and Prieto-Merino, David and Dehghan, Abbas and Trompet, Stella and Wong, Andrew and Cavadino, Alana and Drogan, Dagmar and Padmanabhan, Sandosh and Li, Shanshan and Yesupriya, Ajay and Leusink, Maarten and Sundstr{\"o}m, Johan and Hubacek, Jaroslav A and Pikhart, Hynek and Swerdlow, Daniel I and Panayiotou, Andrie G and Borinskaya, Svetlana A and Finan, Chris and Shah, Sonia and Kuchenbaecker, Karoline B and Shah, Tina and Engmann, Jorgen and Folkersen, Lasse and Eriksson, Per and Ricceri, Fulvio and Melander, Olle and Sacerdote, Carlotta and Gamble, Dale M and Rayaprolu, Sruti and Ross, Owen A and McLachlan, Stela and Vikhireva, Olga and Sluijs, Ivonne and Scott, Robert A and Adamkova, Vera and Flicker, Leon and Bockxmeer, Frank M van and Power, Christine and Marques-Vidal, Pedro and Meade, Tom and Marmot, Michael G and Ferro, Jose M and Paulos-Pinheiro, Sofia and Humphries, Steve E and Talmud, Philippa J and Mateo Leach, Irene and Verweij, Niek and Linneberg, Allan and Skaaby, Tea and Doevendans, Pieter A and Cramer, Maarten J and van der Harst, Pim and Klungel, Olaf H and Dowling, Nicole F and Dominiczak, Anna F and Kumari, Meena and Nicolaides, Andrew N and Weikert, Cornelia and Boeing, Heiner and Ebrahim, Shah and Gaunt, Tom R and Price, Jackie F and Lannfelt, Lars and Peasey, Anne and Kubinova, Ruzena and Pajak, Andrzej and Malyutina, Sofia and Voevoda, Mikhail I and Tamosiunas, Abdonas and Maitland-van der Zee, Anke H and Norman, Paul E and Hankey, Graeme J and Bergmann, Manuela M and Hofman, Albert and Franco, Oscar H and Cooper, Jackie and Palmen, Jutta and Spiering, Wilko and de Jong, Pim A and Kuh, Diana and Hardy, Rebecca and Uitterlinden, Andr{\'e} G and Ikram, M Arfan and Ford, Ian and Hypp{\"o}nen, Elina and Almeida, Osvaldo P and Wareham, Nicholas J and Khaw, Kay-Tee and Hamsten, Anders and Husemoen, Lise Lotte N and Tj{\o}nneland, Anne and Tolstrup, Janne S and Rimm, Eric and Beulens, Joline W J and Verschuren, W M Monique and Onland-Moret, N Charlotte and Hofker, Marten H and Wannamethee, S Goya and Whincup, Peter H and Morris, Richard and Vicente, Astrid M and Watkins, Hugh and Farrall, Martin and Jukema, J Wouter and Meschia, James and Cupples, L Adrienne and Sharp, Stephen J and Fornage, Myriam and Kooperberg, Charles and LaCroix, Andrea Z and Dai, James Y and Lanktree, Matthew B and Siscovick, David S and Jorgenson, Eric and Spring, Bonnie and Coresh, Josef and Li, Yun R and Buxbaum, Sarah G and Schreiner, Pamela J and Ellison, R Curtis and Tsai, Michael Y and Patel, Sanjay R and Redline, Susan and Johnson, Andrew D and Hoogeveen, Ron C and Hakonarson, Hakon and Rotter, Jerome I and Boerwinkle, Eric and de Bakker, Paul I W and Kivimaki, Mika and Asselbergs, Folkert W and Sattar, Naveed and Lawlor, Debbie A and Whittaker, John and Davey Smith, George and Mukamal, Kenneth and Psaty, Bruce M and Wilson, James G and Lange, Leslie A and Hamidovic, Ajna and Hingorani, Aroon D and Nordestgaard, B{\o}rge G and Bobak, Martin and Leon, David A and Langenberg, Claudia and Palmer, Tom M and Reiner, Alex P and Keating, Brendan J and Dudbridge, Frank and Casas, Juan P} } @article {6558, title = {Large multiethnic Candidate Gene Study for C-reactive protein levels: identification of a novel association at CD36 in African Americans.}, journal = {Hum Genet}, volume = {133}, year = {2014}, month = {2014 Aug}, pages = {985-95}, abstract = {

C-reactive protein (CRP) is a heritable biomarker of systemic inflammation and a predictor of cardiovascular disease (CVD). Large-scale genetic association studies for CRP have largely focused on individuals of European descent. We sought to uncover novel genetic variants for CRP in a multiethnic sample using the ITMAT Broad-CARe (IBC) array, a custom 50,000 SNP gene-centric array having dense coverage of over 2,000 candidate CVD genes. We performed analyses on 7,570 African Americans (AA) from the Candidate gene Association Resource (CARe) study and race-combined meta-analyses that included 29,939 additional individuals of European descent from CARe, the Women{\textquoteright}s Health Initiative (WHI) and KORA studies. We observed array-wide significance (p < 2.2 {\texttimes} 10(-6)) for four loci in AA, three of which have been reported previously in individuals of European descent (IL6R, p = 2.0 {\texttimes} 10(-6); CRP, p = 4.2 {\texttimes} 10(-71); APOE, p = 1.6 {\texttimes} 10(-6)). The fourth significant locus, CD36 (p = 1.6 {\texttimes} 10(-6)), was observed at a functional variant (rs3211938) that is extremely rare in individuals of European descent. We replicated the CD36 finding (p = 1.8 {\texttimes} 10(-5)) in an independent sample of 8,041 AA women from WHI; a meta-analysis combining the CARe and WHI AA results at rs3211938 reached genome-wide significance (p = 1.5 {\texttimes} 10(-10)). In the race-combined meta-analyses, 13 loci reached significance, including ten (CRP, TOMM40/APOE/APOC1, HNF1A, LEPR, GCKR, IL6R, IL1RN, NLRP3, HNF4A and BAZ1B/BCL7B) previously associated with CRP, and one (ARNTL) previously reported to be nominally associated with CRP. Two novel loci were also detected (RPS6KB1, p = 2.0 {\texttimes} 10(-6); CD36, p = 1.4 {\texttimes} 10(-6)). These results highlight both shared and unique genetic risk factors for CRP in AA compared to populations of European descent.

}, keywords = {Adult, African Americans, Aged, Biomarkers, C-Reactive Protein, Cardiovascular Diseases, CD36 Antigens, Female, Genetic Loci, Genetic Predisposition to Disease, Genetics, Population, Genome-Wide Association Study, Humans, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1432-1203}, doi = {10.1007/s00439-014-1439-z}, author = {Ellis, Jaclyn and Lange, Ethan M and Li, Jin and Dupuis, Jos{\'e}e and Baumert, Jens and Walston, Jeremy D and Keating, Brendan J and Durda, Peter and Fox, Ervin R and Palmer, Cameron D and Meng, Yan A and Young, Taylor and Farlow, Deborah N and Schnabel, Renate B and Marzi, Carola S and Larkin, Emma and Martin, Lisa W and Bis, Joshua C and Auer, Paul and Ramachandran, Vasan S and Gabriel, Stacey B and Willis, Monte S and Pankow, James S and Papanicolaou, George J and Rotter, Jerome I and Ballantyne, Christie M and Gross, Myron D and Lettre, Guillaume and Wilson, James G and Peters, Ulrike and Koenig, Wolfgang and Tracy, Russell P and Redline, Susan and Reiner, Alex P and Benjamin, Emelia J and Lange, Leslie A} } @article {7376, title = {Gene-centric approach identifies new and known loci for FVIII activity and VWF antigen levels in European Americans and African Americans.}, journal = {Am J Hematol}, volume = {90}, year = {2015}, month = {2015 Jun}, pages = {534-40}, abstract = {

Coagulation factor VIII and von Willebrand factor (VWF) are key proteins in procoagulant activation. Higher FVIII coagulant activity (FVIII :C) and VWF antigen (VWF :Ag) are risk factors for cardiovascular disease and venous thromboembolism. Beyond associations with ABO blood group, genetic determinants of FVIII and VWF are not well understood, especially in non European-American populations. We performed a genetic association study of FVIII :C and VWF:Ag that assessed 50,000 gene-centric single nucleotide polymorphisms (SNPs) in 18,556 European Americans (EAs) and 5,047 African Americans (AAs) from five population-based cohorts. Previously unreported associations for FVIII :C were identified in both AAs and EAs with KNG1 (most significantly associated SNP rs710446, Ile581Thr, Ile581Thr, P = 5.10 {\texttimes} 10(-7) in EAs and P = 3.88 {\texttimes} 10(-3) in AAs) and VWF rs7962217 (Gly2705Arg,P = 6.30 {\texttimes} 10(-9) in EAs and P = 2.98 {\texttimes} 10(-2) in AAs. Significant associations for FVIII :C were also observed with F8/TMLHE region SNP rs12557310 in EAs (P = 8.02 {\texttimes} 10(-10) ), with VWF rs1800380 in AAs (P = 5.62 {\texttimes} 10(-11) ), and with MAT1A rs2236568 in AAs (P51.69 {\texttimes} 10(-6) ). We replicated previously reported associations of FVIII :C and VWF :Ag with the ABO blood group, VWF rs1063856(Thr789Ala), rs216321 (Ala852Gln), and VWF rs2229446 (Arg2185Gln). Findings from this study expand our understanding of genetic influences for FVIII :C and VWF :Ag in both EAs and AAs.

}, keywords = {Adult, African Americans, Aged, European Continental Ancestry Group, Factor VIII, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Methionine Adenosyltransferase, Middle Aged, Polymorphism, Single Nucleotide, Venous Thromboembolism, von Willebrand Factor}, issn = {1096-8652}, doi = {10.1002/ajh.24005}, author = {Tang, Weihong and Cushman, Mary and Green, David and Rich, Stephen S and Lange, Leslie A and Yang, Qiong and Tracy, Russell P and Tofler, Geoffrey H and Basu, Saonli and Wilson, James G and Keating, Brendan J and Weng, Lu-Chen and Taylor, Herman A and Jacobs, David R and Delaney, Joseph A and Palmer, Cameron D and Young, Taylor and Pankow, James S and O{\textquoteright}Donnell, Christopher J and Smith, Nicholas L and Reiner, Alexander P and Folsom, Aaron R} } @article {6863, title = {HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials.}, journal = {Lancet}, volume = {385}, year = {2015}, month = {2015 Jan 24}, pages = {351-61}, abstract = {

BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target.

METHODS: We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis.

FINDINGS: Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0{\textperiodcentered}06 mmol/L (95\% CI 0{\textperiodcentered}05-0{\textperiodcentered}07) lower LDL cholesterol and higher body weight (0{\textperiodcentered}30 kg, 0{\textperiodcentered}18-0{\textperiodcentered}43), waist circumference (0{\textperiodcentered}32 cm, 0{\textperiodcentered}16-0{\textperiodcentered}47), plasma insulin concentration (1{\textperiodcentered}62\%, 0{\textperiodcentered}53-2{\textperiodcentered}72), and plasma glucose concentration (0{\textperiodcentered}23\%, 0{\textperiodcentered}02-0{\textperiodcentered}44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1{\textperiodcentered}02, 95\% CI 1{\textperiodcentered}00-1{\textperiodcentered}05); the rs12916-T allele association was consistent (1{\textperiodcentered}06, 1{\textperiodcentered}03-1{\textperiodcentered}09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0{\textperiodcentered}92 mmol/L (95\% CI 0{\textperiodcentered}18-1{\textperiodcentered}67) at 1-year of follow-up, increased bodyweight by 0{\textperiodcentered}24 kg (95\% CI 0{\textperiodcentered}10-0{\textperiodcentered}38 in all trials; 0{\textperiodcentered}33 kg, 95\% CI 0{\textperiodcentered}24-0{\textperiodcentered}42 in placebo or standard care controlled trials and -0{\textperiodcentered}15 kg, 95\% CI -0{\textperiodcentered}39 to 0{\textperiodcentered}08 in intensive-dose vs moderate-dose trials) at a mean of 4{\textperiodcentered}2 years (range 1{\textperiodcentered}9-6{\textperiodcentered}7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1{\textperiodcentered}12, 95\% CI 1{\textperiodcentered}06-1{\textperiodcentered}18 in all trials; 1{\textperiodcentered}11, 95\% CI 1{\textperiodcentered}03-1{\textperiodcentered}20 in placebo or standard care controlled trials and 1{\textperiodcentered}12, 95\% CI 1{\textperiodcentered}04-1{\textperiodcentered}22 in intensive-dose vs moderate dose trials).

INTERPRETATION: The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition.

FUNDING: The funding sources are cited at the end of the paper.

}, keywords = {Aged, Body Mass Index, Body Weight, Cholesterol, HDL, Cholesterol, LDL, Diabetes Mellitus, Type 2, Female, Genetic Testing, Humans, Hydroxymethylglutaryl CoA Reductases, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Male, Middle Aged, Polymorphism, Single Nucleotide, Randomized Controlled Trials as Topic, Risk Factors}, issn = {1474-547X}, doi = {10.1016/S0140-6736(14)61183-1}, author = {Swerdlow, Daniel I and Preiss, David and Kuchenbaecker, Karoline B and Holmes, Michael V and Engmann, Jorgen E L and Shah, Tina and Sofat, Reecha and Stender, Stefan and Johnson, Paul C D and Scott, Robert A and Leusink, Maarten and Verweij, Niek and Sharp, Stephen J and Guo, Yiran and Giambartolomei, Claudia and Chung, Christina and Peasey, Anne and Amuzu, Antoinette and Li, KaWah and Palmen, Jutta and Howard, Philip and Cooper, Jackie A and Drenos, Fotios and Li, Yun R and Lowe, Gordon and Gallacher, John and Stewart, Marlene C W and Tzoulaki, Ioanna and Buxbaum, Sarah G and van der A, Daphne L and Forouhi, Nita G and Onland-Moret, N Charlotte and van der Schouw, Yvonne T and Schnabel, Renate B and Hubacek, Jaroslav A and Kubinova, Ruzena and Baceviciene, Migle and Tamosiunas, Abdonas and Pajak, Andrzej and Topor-Madry, Roman and Stepaniak, Urszula and Malyutina, Sofia and Baldassarre, Damiano and Sennblad, Bengt and Tremoli, Elena and de Faire, Ulf and Veglia, Fabrizio and Ford, Ian and Jukema, J Wouter and Westendorp, Rudi G J and de Borst, Gert Jan and de Jong, Pim A and Algra, Ale and Spiering, Wilko and Maitland-van der Zee, Anke H and Klungel, Olaf H and de Boer, Anthonius and Doevendans, Pieter A and Eaton, Charles B and Robinson, Jennifer G and Duggan, David and Kjekshus, John and Downs, John R and Gotto, Antonio M and Keech, Anthony C and Marchioli, Roberto and Tognoni, Gianni and Sever, Peter S and Poulter, Neil R and Waters, David D and Pedersen, Terje R and Amarenco, Pierre and Nakamura, Haruo and McMurray, John J V and Lewsey, James D and Chasman, Daniel I and Ridker, Paul M and Maggioni, Aldo P and Tavazzi, Luigi and Ray, Kausik K and Seshasai, Sreenivasa Rao Kondapally and Manson, JoAnn E and Price, Jackie F and Whincup, Peter H and Morris, Richard W and Lawlor, Debbie A and Smith, George Davey and Ben-Shlomo, Yoav and Schreiner, Pamela J and Fornage, Myriam and Siscovick, David S and Cushman, Mary and Kumari, Meena and Wareham, Nick J and Verschuren, W M Monique and Redline, Susan and Patel, Sanjay R and Whittaker, John C and Hamsten, Anders and Delaney, Joseph A and Dale, Caroline and Gaunt, Tom R and Wong, Andrew and Kuh, Diana and Hardy, Rebecca and Kathiresan, Sekar and Castillo, Berta A and van der Harst, Pim and Brunner, Eric J and Tybjaerg-Hansen, Anne and Marmot, Michael G and Krauss, Ronald M and Tsai, Michael and Coresh, Josef and Hoogeveen, Ronald C and Psaty, Bruce M and Lange, Leslie A and Hakonarson, Hakon and Dudbridge, Frank and Humphries, Steve E and Talmud, Philippa J and Kivimaki, Mika and Timpson, Nicholas J and Langenberg, Claudia and Asselbergs, Folkert W and Voevoda, Mikhail and Bobak, Martin and Pikhart, Hynek and Wilson, James G and Reiner, Alex P and Keating, Brendan J and Hingorani, Aroon D and Sattar, Naveed} } @article {6568, title = {Mendelian randomization of blood lipids for coronary heart disease.}, journal = {Eur Heart J}, volume = {36}, year = {2015}, month = {2015 Mar 01}, pages = {539-50}, abstract = {

AIMS: To investigate the causal role of high-density lipoprotein cholesterol (HDL-C) and triglycerides in coronary heart disease (CHD) using multiple instrumental variables for Mendelian randomization.

METHODS AND RESULTS: We developed weighted allele scores based on single nucleotide polymorphisms (SNPs) with established associations with HDL-C, triglycerides, and low-density lipoprotein cholesterol (LDL-C). For each trait, we constructed two scores. The first was unrestricted, including all independent SNPs associated with the lipid trait identified from a prior meta-analysis (threshold P < 2 {\texttimes} 10(-6)); and the second a restricted score, filtered to remove any SNPs also associated with either of the other two lipid traits at P <= 0.01. Mendelian randomization meta-analyses were conducted in 17 studies including 62,199 participants and 12,099 CHD events. Both the unrestricted and restricted allele scores for LDL-C (42 and 19 SNPs, respectively) associated with CHD. For HDL-C, the unrestricted allele score (48 SNPs) was associated with CHD (OR: 0.53; 95\% CI: 0.40, 0.70), per 1 mmol/L higher HDL-C, but neither the restricted allele score (19 SNPs; OR: 0.91; 95\% CI: 0.42, 1.98) nor the unrestricted HDL-C allele score adjusted for triglycerides, LDL-C, or statin use (OR: 0.81; 95\% CI: 0.44, 1.46) showed a robust association. For triglycerides, the unrestricted allele score (67 SNPs) and the restricted allele score (27 SNPs) were both associated with CHD (OR: 1.62; 95\% CI: 1.24, 2.11 and 1.61; 95\% CI: 1.00, 2.59, respectively) per 1-log unit increment. However, the unrestricted triglyceride score adjusted for HDL-C, LDL-C, and statin use gave an OR for CHD of 1.01 (95\% CI: 0.59, 1.75).

CONCLUSION: The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible, remains less certain.

}, keywords = {Case-Control Studies, Cholesterol, HDL, Coronary Artery Disease, Female, Gene Frequency, Genotype, Genotyping Techniques, Humans, Male, Mendelian Randomization Analysis, Middle Aged, Polymorphism, Single Nucleotide, Risk Assessment, Triglycerides}, issn = {1522-9645}, doi = {10.1093/eurheartj/eht571}, author = {Holmes, Michael V and Asselbergs, Folkert W and Palmer, Tom M and Drenos, Fotios and Lanktree, Matthew B and Nelson, Christopher P and Dale, Caroline E and Padmanabhan, Sandosh and Finan, Chris and Swerdlow, Daniel I and Tragante, Vinicius and van Iperen, Erik P A and Sivapalaratnam, Suthesh and Shah, Sonia and Elbers, Clara C and Shah, Tina and Engmann, Jorgen and Giambartolomei, Claudia and White, Jon and Zabaneh, Delilah and Sofat, Reecha and McLachlan, Stela and Doevendans, Pieter A and Balmforth, Anthony J and Hall, Alistair S and North, Kari E and Almoguera, Berta and Hoogeveen, Ron C and Cushman, Mary and Fornage, Myriam and Patel, Sanjay R and Redline, Susan and Siscovick, David S and Tsai, Michael Y and Karczewski, Konrad J and Hofker, Marten H and Verschuren, W Monique and Bots, Michiel L and van der Schouw, Yvonne T and Melander, Olle and Dominiczak, Anna F and Morris, Richard and Ben-Shlomo, Yoav and Price, Jackie and Kumari, Meena and Baumert, Jens and Peters, Annette and Thorand, Barbara and Koenig, Wolfgang and Gaunt, Tom R and Humphries, Steve E and Clarke, Robert and Watkins, Hugh and Farrall, Martin and Wilson, James G and Rich, Stephen S and de Bakker, Paul I W and Lange, Leslie A and Davey Smith, George and Reiner, Alex P and Talmud, Philippa J and Kivimaki, Mika and Lawlor, Debbie A and Dudbridge, Frank and Samani, Nilesh J and Keating, Brendan J and Hingorani, Aroon D and Casas, Juan P} } @article {7566, title = {Discovery and replication of SNP-SNP interactions for quantitative lipid traits in over 60,000 individuals.}, journal = {BioData Min}, volume = {10}, year = {2017}, month = {2017}, pages = {25}, abstract = {

BACKGROUND: The genetic etiology of human lipid quantitative traits is not fully elucidated, and interactions between variants may play a role. We performed a gene-centric interaction study for four different lipid traits: low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglycerides (TG).

RESULTS: Our analysis consisted of a discovery phase using a merged dataset of five different cohorts (n~=~12,853 to n~=~16,849 depending on lipid phenotype) and a replication phase with ten independent cohorts totaling up to 36,938 additional samples. Filters are often applied before interaction testing to correct for the burden of testing all pairwise interactions. We used two different filters: 1. A filter that tested only single nucleotide polymorphisms (SNPs) with a main effect of p~<~0.001 in a previous association study. 2. A filter that only tested interactions identified by Biofilter 2.0. Pairwise models that reached an interaction significance level of p~<~0.001 in the discovery dataset were tested for replication. We identified thirteen SNP-SNP models that were significant in more than one replication cohort after accounting for multiple testing.

CONCLUSIONS: These results may reveal novel insights into the genetic etiology of lipid levels. Furthermore, we developed a pipeline to perform a computationally efficient interaction analysis with multi-cohort replication.

}, issn = {1756-0381}, doi = {10.1186/s13040-017-0145-5}, author = {Holzinger, Emily R and Verma, Shefali S and Moore, Carrie B and Hall, Molly and De, Rishika and Gilbert-Diamond, Diane and Lanktree, Matthew B and Pankratz, Nathan and Amuzu, Antoinette and Burt, Amber and Dale, Caroline and Dudek, Scott and Furlong, Clement E and Gaunt, Tom R and Kim, Daniel Seung and Riess, Helene and Sivapalaratnam, Suthesh and Tragante, Vinicius and van Iperen, Erik P A and Brautbar, Ariel and Carrell, David S and Crosslin, David R and Jarvik, Gail P and Kuivaniemi, Helena and Kullo, Iftikhar J and Larson, Eric B and Rasmussen-Torvik, Laura J and Tromp, Gerard and Baumert, Jens and Cruickshanks, Karen J and Farrall, Martin and Hingorani, Aroon D and Hovingh, G K and Kleber, Marcus E and Klein, Barbara E and Klein, Ronald and Koenig, Wolfgang and Lange, Leslie A and Mӓrz, Winfried and North, Kari E and Charlotte Onland-Moret, N and Reiner, Alex P and Talmud, Philippa J and van der Schouw, Yvonne T and Wilson, James G and Kivimaki, Mika and Kumari, Meena and Moore, Jason H and Drenos, Fotios and Asselbergs, Folkert W and Keating, Brendan J and Ritchie, Marylyn D} } @article {8705, title = {Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry.}, journal = {Am J Hum Genet}, volume = {108}, year = {2021}, month = {2021 Apr 01}, pages = {564-582}, abstract = {

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5\%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained <=20 variants in the credible sets that jointly account for 99\% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2021.02.011}, author = {Graff, Mariaelisa and Justice, Anne E and Young, Kristin L and Marouli, Eirini and Zhang, Xinruo and Fine, Rebecca S and Lim, Elise and Buchanan, Victoria and Rand, Kristin and Feitosa, Mary F and Wojczynski, Mary K and Yanek, Lisa R and Shao, Yaming and Rohde, Rebecca and Adeyemo, Adebowale A and Aldrich, Melinda C and Allison, Matthew A and Ambrosone, Christine B and Ambs, Stefan and Amos, Christopher and Arnett, Donna K and Atwood, Larry and Bandera, Elisa V and Bartz, Traci and Becker, Diane M and Berndt, Sonja I and Bernstein, Leslie and Bielak, Lawrence F and Blot, William J and Bottinger, Erwin P and Bowden, Donald W and Bradfield, Jonathan P and Brody, Jennifer A and Broeckel, Ulrich and Burke, Gregory and Cade, Brian E and Cai, Qiuyin and Caporaso, Neil and Carlson, Chris and Carpten, John and Casey, Graham and Chanock, Stephen J and Chen, Guanjie and Chen, Minhui and Chen, Yii-der I and Chen, Wei-Min and Chesi, Alessandra and Chiang, Charleston W K and Chu, Lisa and Coetzee, Gerry A and Conti, David V and Cooper, Richard S and Cushman, Mary and Demerath, Ellen and Deming, Sandra L and Dimitrov, Latchezar and Ding, Jingzhong and Diver, W Ryan and Duan, Qing and Evans, Michele K and Falusi, Adeyinka G and Faul, Jessica D and Fornage, Myriam and Fox, Caroline and Freedman, Barry I and Garcia, Melissa and Gillanders, Elizabeth M and Goodman, Phyllis and Gottesman, Omri and Grant, Struan F A and Guo, Xiuqing and Hakonarson, Hakon and Haritunians, Talin and Harris, Tamara B and Harris, Curtis C and Henderson, Brian E and Hennis, Anselm and Hernandez, Dena G and Hirschhorn, Joel N and McNeill, Lorna Haughton and Howard, Timothy D and Howard, Barbara and Hsing, Ann W and Hsu, Yu-Han H and Hu, Jennifer J and Huff, Chad D and Huo, Dezheng and Ingles, Sue A and Irvin, Marguerite R and John, Esther M and Johnson, Karen C and Jordan, Joanne M and Kabagambe, Edmond K and Kang, Sun J and Kardia, Sharon L and Keating, Brendan J and Kittles, Rick A and Klein, Eric A and Kolb, Suzanne and Kolonel, Laurence N and Kooperberg, Charles and Kuller, Lewis and Kutlar, Abdullah and Lange, Leslie and Langefeld, Carl D and Le Marchand, Lo{\"\i}c and Leonard, Hampton and Lettre, Guillaume and Levin, Albert M and Li, Yun and Li, Jin and Liu, Yongmei and Liu, Youfang and Liu, Simin and Lohman, Kurt and Lotay, Vaneet and Lu, Yingchang and Maixner, William and Manson, JoAnn E and McKnight, Barbara and Meng, Yan and Monda, Keri L and Monroe, Kris and Moore, Jason H and Mosley, Thomas H and Mudgal, Poorva and Murphy, Adam B and Nadukuru, Rajiv and Nalls, Mike A and Nathanson, Katherine L and Nayak, Uma and N{\textquoteright}diaye, Amidou and Nemesure, Barbara and Neslund-Dudas, Christine and Neuhouser, Marian L and Nyante, Sarah and Ochs-Balcom, Heather and Ogundiran, Temidayo O and Ogunniyi, Adesola and Ojengbede, Oladosu and Okut, Hayrettin and Olopade, Olufunmilayo I and Olshan, Andrew and Padhukasahasram, Badri and Palmer, Julie and Palmer, Cameron D and Palmer, Nicholette D and Papanicolaou, George and Patel, Sanjay R and Pettaway, Curtis A and Peyser, Patricia A and Press, Michael F and Rao, D C and Rasmussen-Torvik, Laura J and Redline, Susan and Reiner, Alex P and Rhie, Suhn K and Rodriguez-Gil, Jorge L and Rotimi, Charles N and Rotter, Jerome I and Ruiz-Narvaez, Edward A and Rybicki, Benjamin A and Salako, Babatunde and Sale, Mich{\`e}le M and Sanderson, Maureen and Schadt, Eric and Schreiner, Pamela J and Schurmann, Claudia and Schwartz, Ann G and Shriner, Daniel A and Signorello, Lisa B and Singleton, Andrew B and Siscovick, David S and Smith, Jennifer A and Smith, Shad and Speliotes, Elizabeth and Spitz, Margaret and Stanford, Janet L and Stevens, Victoria L and Stram, Alex and Strom, Sara S and Sucheston, Lara and Sun, Yan V and Tajuddin, Salman M and Taylor, Herman and Taylor, Kira and Tayo, Bamidele O and Thun, Michael J and Tucker, Margaret A and Vaidya, Dhananjay and Van Den Berg, David J and Vedantam, Sailaja and Vitolins, Mara and Wang, Zhaoming and Ware, Erin B and Wassertheil-Smoller, Sylvia and Weir, David R and Wiencke, John K and Williams, Scott M and Williams, L Keoki and Wilson, James G and Witte, John S and Wrensch, Margaret and Wu, Xifeng and Yao, Jie and Zakai, Neil and Zanetti, Krista and Zemel, Babette S and Zhao, Wei and Zhao, Jing Hua and Zheng, Wei and Zhi, Degui and Zhou, Jie and Zhu, Xiaofeng and Ziegler, Regina G and Zmuda, Joe and Zonderman, Alan B and Psaty, Bruce M and Borecki, Ingrid B and Cupples, L Adrienne and Liu, Ching-Ti and Haiman, Christopher A and Loos, Ruth and Ng, Maggie C Y and North, Kari E} }