@article {1234, title = {Hundreds of variants clustered in genomic loci and biological pathways affect human height.}, journal = {Nature}, volume = {467}, year = {2010}, month = {2010 Oct 14}, pages = {832-8}, abstract = {

Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10\% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16\% of phenotypic variation (approximately 20\% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

}, keywords = {Body Height, Chromosomes, Human, Pair 3, Genetic Loci, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Metabolic Networks and Pathways, Multifactorial Inheritance, Phenotype, Polymorphism, Single Nucleotide}, issn = {1476-4687}, doi = {10.1038/nature09410}, author = {Lango Allen, Hana and Estrada, Karol and Lettre, Guillaume and Berndt, Sonja I and Weedon, Michael N and Rivadeneira, Fernando and Willer, Cristen J and Jackson, Anne U and Vedantam, Sailaja and Raychaudhuri, Soumya and Ferreira, Teresa and Wood, Andrew R and Weyant, Robert J and Segr{\`e}, Ayellet V and Speliotes, Elizabeth K and Wheeler, Eleanor and Soranzo, Nicole and Park, Ju-Hyun and Yang, Jian and Gudbjartsson, Daniel and Heard-Costa, Nancy L and Randall, Joshua C and Qi, Lu and Vernon Smith, Albert and M{\"a}gi, Reedik and Pastinen, Tomi and Liang, Liming and Heid, Iris M and Luan, Jian{\textquoteright}an and Thorleifsson, Gudmar and Winkler, Thomas W and Goddard, Michael E and Sin Lo, Ken and Palmer, Cameron and Workalemahu, Tsegaselassie and Aulchenko, Yurii S and Johansson, Asa and Zillikens, M Carola and Feitosa, Mary F and Esko, T{\~o}nu and Johnson, Toby and Ketkar, Shamika and Kraft, Peter and Mangino, Massimo and Prokopenko, Inga and Absher, Devin and Albrecht, Eva and Ernst, Florian and Glazer, Nicole L and Hayward, Caroline and Hottenga, Jouke-Jan and Jacobs, Kevin B and Knowles, Joshua W and Kutalik, Zolt{\'a}n and Monda, Keri L and Polasek, Ozren and Preuss, Michael and Rayner, Nigel W and Robertson, Neil R and Steinthorsdottir, Valgerdur and Tyrer, Jonathan P and Voight, Benjamin F and Wiklund, Fredrik and Xu, Jianfeng and Zhao, Jing Hua and Nyholt, Dale R and Pellikka, Niina and Perola, Markus and Perry, John R B and Surakka, Ida and Tammesoo, Mari-Liis and Altmaier, Elizabeth L and Amin, Najaf and Aspelund, Thor and Bhangale, Tushar and Boucher, Gabrielle and Chasman, Daniel I and Chen, Constance and Coin, Lachlan and Cooper, Matthew N and Dixon, Anna L and Gibson, Quince and Grundberg, Elin and Hao, Ke and Juhani Junttila, M and Kaplan, Lee M and Kettunen, Johannes and K{\"o}nig, Inke R and Kwan, Tony and Lawrence, Robert W and Levinson, Douglas F and Lorentzon, Mattias and McKnight, Barbara and Morris, Andrew P and M{\"u}ller, Martina and Suh Ngwa, Julius and Purcell, Shaun and Rafelt, Suzanne and Salem, Rany M and Salvi, Erika and Sanna, Serena and Shi, Jianxin and Sovio, Ulla and Thompson, John R and Turchin, Michael C and Vandenput, Liesbeth and Verlaan, Dominique J and Vitart, Veronique and White, Charles C and Ziegler, Andreas and Almgren, Peter and Balmforth, Anthony J and Campbell, Harry and Citterio, Lorena and De Grandi, Alessandro and Dominiczak, Anna and Duan, Jubao and Elliott, Paul and Elosua, Roberto and Eriksson, Johan G and Freimer, Nelson B and Geus, Eco J C and Glorioso, Nicola and Haiqing, Shen and Hartikainen, Anna-Liisa and Havulinna, Aki S and Hicks, Andrew A and Hui, Jennie and Igl, Wilmar and Illig, Thomas and Jula, Antti and Kajantie, Eero and Kilpel{\"a}inen, Tuomas O and Koiranen, Markku and Kolcic, Ivana and Koskinen, Seppo and Kovacs, Peter and Laitinen, Jaana and Liu, Jianjun and Lokki, Marja-Liisa and Marusic, Ana and Maschio, Andrea and Meitinger, Thomas and Mulas, Antonella and Par{\'e}, Guillaume and Parker, Alex N and Peden, John F and Petersmann, Astrid and Pichler, Irene and Pietil{\"a}inen, Kirsi H and Pouta, Anneli and Ridderstr{\r a}le, Martin and Rotter, Jerome I and Sambrook, Jennifer G and Sanders, Alan R and Schmidt, Carsten Oliver and Sinisalo, Juha and Smit, Jan H and Stringham, Heather M and Bragi Walters, G and Widen, Elisabeth and Wild, Sarah H and Willemsen, Gonneke and Zagato, Laura and Zgaga, Lina and Zitting, Paavo and Alavere, Helene and Farrall, Martin and McArdle, Wendy L and Nelis, Mari and Peters, Marjolein J and Ripatti, Samuli and van Meurs, Joyce B J and Aben, Katja K and Ardlie, Kristin G and Beckmann, Jacques S and Beilby, John P and Bergman, Richard N and Bergmann, Sven and Collins, Francis S and Cusi, Daniele and den Heijer, Martin and Eiriksdottir, Gudny and Gejman, Pablo V and Hall, Alistair S and Hamsten, Anders and Huikuri, Heikki V and Iribarren, Carlos and K{\"a}h{\"o}nen, Mika and Kaprio, Jaakko and Kathiresan, Sekar and Kiemeney, Lambertus and Kocher, Thomas and Launer, Lenore J and Lehtim{\"a}ki, Terho and Melander, Olle and Mosley, Tom H and Musk, Arthur W and Nieminen, Markku S and O{\textquoteright}Donnell, Christopher J and Ohlsson, Claes and Oostra, Ben and Palmer, Lyle J and Raitakari, Olli and Ridker, Paul M and Rioux, John D and Rissanen, Aila and Rivolta, Carlo and Schunkert, Heribert and Shuldiner, Alan R and Siscovick, David S and Stumvoll, Michael and T{\"o}njes, Anke and Tuomilehto, Jaakko and van Ommen, Gert-Jan and Viikari, Jorma and Heath, Andrew C and Martin, Nicholas G and Montgomery, Grant W and Province, Michael A and Kayser, Manfred and Arnold, Alice M and Atwood, Larry D and Boerwinkle, Eric and Chanock, Stephen J and Deloukas, Panos and Gieger, Christian and Gr{\"o}nberg, Henrik and Hall, Per and Hattersley, Andrew T and Hengstenberg, Christian and Hoffman, Wolfgang and Lathrop, G Mark and Salomaa, Veikko and Schreiber, Stefan and Uda, Manuela and Waterworth, Dawn and Wright, Alan F and Assimes, Themistocles L and Barroso, In{\^e}s and Hofman, Albert and Mohlke, Karen L and Boomsma, Dorret I and Caulfield, Mark J and Cupples, L Adrienne and Erdmann, Jeanette and Fox, Caroline S and Gudnason, Vilmundur and Gyllensten, Ulf and Harris, Tamara B and Hayes, Richard B and Jarvelin, Marjo-Riitta and Mooser, Vincent and Munroe, Patricia B and Ouwehand, Willem H and Penninx, Brenda W and Pramstaller, Peter P and Quertermous, Thomas and Rudan, Igor and Samani, Nilesh J and Spector, Timothy D and V{\"o}lzke, Henry and Watkins, Hugh and Wilson, James F and Groop, Leif C and Haritunians, Talin and Hu, Frank B and Kaplan, Robert C and Metspalu, Andres and North, Kari E and Schlessinger, David and Wareham, Nicholas J and Hunter, David J and O{\textquoteright}Connell, Jeffrey R and Strachan, David P and Wichmann, H-Erich and Borecki, Ingrid B and van Duijn, Cornelia M and Schadt, Eric E and Thorsteinsdottir, Unnur and Peltonen, Leena and Uitterlinden, Andr{\'e} G and Visscher, Peter M and Chatterjee, Nilanjan and Loos, Ruth J F and Boehnke, Michael and McCarthy, Mark I and Ingelsson, Erik and Lindgren, Cecilia M and Abecasis, Goncalo R and Stefansson, Kari and Frayling, Timothy M and Hirschhorn, Joel N} } @article {1562, title = {Association of genomic loci from a cardiovascular gene SNP array with fibrinogen levels in European Americans and African-Americans from six cohort studies: the Candidate Gene Association Resource (CARe).}, journal = {Blood}, volume = {117}, year = {2011}, month = {2011 Jan 06}, pages = {268-75}, abstract = {

Several common genomic loci, involving various immunity- and metabolism-related genes, have been associated with plasma fibrinogen in European Americans (EAs). The genetic determinants of fibrinogen in African Americans (AAs) are poorly characterized. Using a vascular gene-centric array in 23,634 EA and 6657 AA participants from 6 studies comprising the Candidate Gene Association Resource project, we examined the association of 47,539 common and lower frequency variants with fibrinogen concentration. We identified a rare Pro265Leu variant in FGB (rs6054) associated with lower fibrinogen. Common fibrinogen gene single nucleotide polymorphisms (FGB rs1800787 and FGG rs2066861) significantly associated with fibrinogen in EAs were prevalent in AAs and showed consistent associations. Several fibrinogen locus single nucleotide polymorphism associated with lower fibrinogen were exclusive to AAs; these include a newly reported association with FGA rs10050257. For IL6R, IL1RN, and NLRP3 inflammatory gene loci, associations with fibrinogen were concordant between EAs and AAs, but not at other loci (CPS1, PCCB, and SCL22A5-IRF1). The association of FGG rs2066861 with fibrinogen differed according to assay type used to measure fibrinogen. Further characterization of common and lower-frequency genetic variants that contribute to interpopulation differences in fibrinogen phenotype may help refine our understanding of the contribution of hemostasis and inflammation to atherothrombotic risk.

}, keywords = {Adult, African Americans, Aged, Cardiovascular Diseases, Cohort Studies, European Continental Ancestry Group, Female, Fibrinogen, Genetic Predisposition to Disease, Haplotypes, Humans, Male, Middle Aged, Phenotype, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1528-0020}, doi = {10.1182/blood-2010-06-289546}, author = {Wassel, Christina L and Lange, Leslie A and Keating, Brendan J and Taylor, Kira C and Johnson, Andrew D and Palmer, Cameron and Ho, Lindsey A and Smith, Nicholas L and Lange, Ethan M and Li, Yun and Yang, Qiong and Delaney, Joseph A and Tang, Weihong and Tofler, Geoffrey and Redline, Susan and Taylor, Herman A and Wilson, James G and Tracy, Russell P and Jacobs, David R and Folsom, Aaron R and Green, David and O{\textquoteright}Donnell, Christopher J and Reiner, Alexander P} } @article {1305, title = {Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele.}, journal = {Hum Mol Genet}, volume = {20}, year = {2011}, month = {2011 Oct 15}, pages = {4056-68}, abstract = {

Serum urate concentrations are highly heritable and elevated serum urate is a key risk factor for gout. Genome-wide association studies (GWAS) of serum urate in African American (AA) populations are lacking. We conducted a meta-analysis of GWAS of serum urate levels and gout among 5820 AA and a large candidate gene study among 6890 AA and 21 708 participants of European ancestry (EA) within the Candidate Gene Association Resource Consortium. Findings were tested for replication among 1996 independent AA individuals, and evaluated for their association among 28 283 EA participants of the CHARGE Consortium. Functional studies were conducted using (14)C-urate transport assays in mammalian Chinese hamster ovary cells. In the discovery GWAS of serum urate, three loci achieved genome-wide significance (P< 5.0 {\texttimes} 10(-8)): a novel locus near SGK1/SLC2A12 on chromosome 6 (rs9321453, P= 1.0 {\texttimes} 10(-9)), and two loci previously identified in EA participants, SLC2A9 (P= 3.8 {\texttimes} 10(-32)) and SLC22A12 (P= 2.1 {\texttimes} 10(-10)). A novel rare non-synonymous variant of large effect size in SLC22A12, rs12800450 (minor allele frequency 0.01, G65W), was identified and replicated (beta -1.19 mg/dl, P= 2.7 {\texttimes} 10(-16)). (14)C-urate transport assays showed reduced urate transport for the G65W URAT1 mutant. Finally, in analyses of 11 loci previously associated with serum urate in EA individuals, 10 of 11 lead single-nucleotide polymorphisms showed direction-consistent association with urate among AA. In summary, we identified and replicated one novel locus in association with serum urate levels and experimentally characterize the novel G65W variant in URAT1 as a functional allele. Our data support the importance of multi-ethnic GWAS in the identification of novel risk loci as well as functional variants.

}, keywords = {Adult, African Americans, Aged, Animals, CHO Cells, Cricetinae, European Continental Ancestry Group, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Gout, Humans, Loss of Heterozygosity, Male, Middle Aged, Organic Anion Transporters, Organic Cation Transport Proteins, Polymorphism, Single Nucleotide, Uric Acid, Young Adult}, issn = {1460-2083}, doi = {10.1093/hmg/ddr307}, author = {Tin, Adrienne and Woodward, Owen M and Kao, Wen Hong Linda and Liu, Ching-Ti and Lu, Xiaoning and Nalls, Michael A and Shriner, Daniel and Semmo, Mariam and Akylbekova, Ermeg L and Wyatt, Sharon B and Hwang, Shih-Jen and Yang, Qiong and Zonderman, Alan B and Adeyemo, Adebowale A and Palmer, Cameron and Meng, Yan and Reilly, Muredach and Shlipak, Michael G and Siscovick, David and Evans, Michele K and Rotimi, Charles N and Flessner, Michael F and K{\"o}ttgen, Michael and Cupples, L Adrienne and Fox, Caroline S and K{\"o}ttgen, Anna} } @article {6175, title = {FTO genotype is associated with phenotypic variability of body mass index.}, journal = {Nature}, volume = {490}, year = {2012}, month = {2012 Oct 11}, pages = {267-72}, abstract = {

There is evidence across several species for genetic control of phenotypic variation of complex traits, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using \~{}170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7\%, corresponding to a difference of \~{}0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI, possibly mediated by DNA methylation. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.

}, keywords = {Alpha-Ketoglutarate-Dependent Dioxygenase FTO, Body Height, Body Mass Index, Co-Repressor Proteins, Female, Genetic Variation, Genome-Wide Association Study, Humans, Male, Nerve Tissue Proteins, Phenotype, Polymorphism, Single Nucleotide, Proteins, Repressor Proteins}, issn = {1476-4687}, doi = {10.1038/nature11401}, author = {Yang, Jian and Loos, Ruth J F and Powell, Joseph E and Medland, Sarah E and Speliotes, Elizabeth K and Chasman, Daniel I and Rose, Lynda M and Thorleifsson, Gudmar and Steinthorsdottir, Valgerdur and M{\"a}gi, Reedik and Waite, Lindsay and Smith, Albert Vernon and Yerges-Armstrong, Laura M and Monda, Keri L and Hadley, David and Mahajan, Anubha and Li, Guo and Kapur, Karen and Vitart, Veronique and Huffman, Jennifer E and Wang, Sophie R and Palmer, Cameron and Esko, T{\~o}nu and Fischer, Krista and Zhao, Jing Hua and Demirkan, Ayse and Isaacs, Aaron and Feitosa, Mary F and Luan, Jian{\textquoteright}an and Heard-Costa, Nancy L and White, Charles and Jackson, Anne U and Preuss, Michael and Ziegler, Andreas and Eriksson, Joel and Kutalik, Zolt{\'a}n and Frau, Francesca and Nolte, Ilja M and van Vliet-Ostaptchouk, Jana V and Hottenga, Jouke-Jan and Jacobs, Kevin B and Verweij, Niek and Goel, Anuj and Medina-G{\'o}mez, Carolina and Estrada, Karol and Bragg-Gresham, Jennifer Lynn and Sanna, Serena and Sidore, Carlo and Tyrer, Jonathan and Teumer, Alexander and Prokopenko, Inga and Mangino, Massimo and Lindgren, Cecilia M and Assimes, Themistocles L and Shuldiner, Alan R and Hui, Jennie and Beilby, John P and McArdle, Wendy L and Hall, Per and Haritunians, Talin and Zgaga, Lina and Kolcic, Ivana and Polasek, Ozren and Zemunik, Tatijana and Oostra, Ben A and Junttila, M Juhani and Gr{\"o}nberg, Henrik and Schreiber, Stefan and Peters, Annette and Hicks, Andrew A and Stephens, Jonathan and Foad, Nicola S and Laitinen, Jaana and Pouta, Anneli and Kaakinen, Marika and Willemsen, Gonneke and Vink, Jacqueline M and Wild, Sarah H and Navis, Gerjan and Asselbergs, Folkert W and Homuth, Georg and John, Ulrich and Iribarren, Carlos and Harris, Tamara and Launer, Lenore and Gudnason, Vilmundur and O{\textquoteright}Connell, Jeffrey R and Boerwinkle, Eric and Cadby, Gemma and Palmer, Lyle J and James, Alan L and Musk, Arthur W and Ingelsson, Erik and Psaty, Bruce M and Beckmann, Jacques S and Waeber, G{\'e}rard and Vollenweider, Peter and Hayward, Caroline and Wright, Alan F and Rudan, Igor and Groop, Leif C and Metspalu, Andres and Khaw, Kay Tee and van Duijn, Cornelia M and Borecki, Ingrid B and Province, Michael A and Wareham, Nicholas J and Tardif, Jean-Claude and Huikuri, Heikki V and Cupples, L Adrienne and Atwood, Larry D and Fox, Caroline S and Boehnke, Michael and Collins, Francis S and Mohlke, Karen L and Erdmann, Jeanette and Schunkert, Heribert and Hengstenberg, Christian and Stark, Klaus and Lorentzon, Mattias and Ohlsson, Claes and Cusi, Daniele and Staessen, Jan A and van der Klauw, Melanie M and Pramstaller, Peter P and Kathiresan, Sekar and Jolley, Jennifer D and Ripatti, Samuli and Jarvelin, Marjo-Riitta and de Geus, Eco J C and Boomsma, Dorret I and Penninx, Brenda and Wilson, James F and Campbell, Harry and Chanock, Stephen J and van der Harst, Pim and Hamsten, Anders and Watkins, Hugh and Hofman, Albert and Witteman, Jacqueline C and Zillikens, M Carola and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Zillikens, M Carola and Kiemeney, Lambertus A and Vermeulen, Sita H and Abecasis, Goncalo R and Schlessinger, David and Schipf, Sabine and Stumvoll, Michael and T{\"o}njes, Anke and Spector, Tim D and North, Kari E and Lettre, Guillaume and McCarthy, Mark I and Berndt, Sonja I and Heath, Andrew C and Madden, Pamela A F and Nyholt, Dale R and Montgomery, Grant W and Martin, Nicholas G and McKnight, Barbara and Strachan, David P and Hill, William G and Snieder, Harold and Ridker, Paul M and Thorsteinsdottir, Unnur and Stefansson, Kari and Frayling, Timothy M and Hirschhorn, Joel N and Goddard, Michael E and Visscher, Peter M} } @article {6179, title = {Impact of ancestry and common genetic variants on QT interval in African Americans.}, journal = {Circ Cardiovasc Genet}, volume = {5}, year = {2012}, month = {2012 Dec}, pages = {647-55}, abstract = {

BACKGROUND: Ethnic differences in cardiac arrhythmia incidence have been reported, with a particularly high incidence of sudden cardiac death and low incidence of atrial fibrillation in individuals of African ancestry. We tested the hypotheses that African ancestry and common genetic variants are associated with prolonged duration of cardiac repolarization, a central pathophysiological determinant of arrhythmia, as measured by the electrocardiographic QT interval.

METHODS AND RESULTS: First, individual estimates of African and European ancestry were inferred from genome-wide single-nucleotide polymorphism (SNP) data in 7 population-based cohorts of African Americans (n=12,097) and regressed on measured QT interval from ECGs. Second, imputation was performed for 2.8 million SNPs, and a genome-wide association study of QT interval was performed in 10 cohorts (n=13,105). There was no evidence of association between genetic ancestry and QT interval (P=0.94). Genome-wide significant associations (P<2.5 {\texttimes} 10(-8)) were identified with SNPs at 2 loci, upstream of the genes NOS1AP (rs12143842, P=2 {\texttimes} 10(-15)) and ATP1B1 (rs1320976, P=2 {\texttimes} 10(-10)). The most significant SNP in NOS1AP was the same as the strongest SNP previously associated with QT interval in individuals of European ancestry. Low probability values (P<10(-5)) were observed for SNPs at several other loci previously identified in genome-wide association studies in individuals of European ancestry, including KCNQ1, KCNH2, LITAF, and PLN.

CONCLUSIONS: We observed no difference in duration of cardiac repolarization with global genetic indices of African American ancestry. In addition, our genome-wide association study extends the association of polymorphisms at several loci associated with repolarization in individuals of European ancestry to include individuals of African ancestry.

}, keywords = {Adult, African Americans, Aged, Electrocardiography, European Continental Ancestry Group, Female, Genealogy and Heraldry, Genetic Variation, Genome, Human, Genome-Wide Association Study, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.112.962787}, author = {Smith, J Gustav and Avery, Christy L and Evans, Daniel S and Nalls, Michael A and Meng, Yan A and Smith, Erin N and Palmer, Cameron and Tanaka, Toshiko and Mehra, Reena and Butler, Anne M and Young, Taylor and Buxbaum, Sarah G and Kerr, Kathleen F and Berenson, Gerald S and Schnabel, Renate B and Li, Guo and Ellinor, Patrick T and Magnani, Jared W and Chen, Wei and Bis, Joshua C and Curb, J David and Hsueh, Wen-Chi and Rotter, Jerome I and Liu, Yongmei and Newman, Anne B and Limacher, Marian C and North, Kari E and Reiner, Alexander P and Quibrera, P Miguel and Schork, Nicholas J and Singleton, Andrew B and Psaty, Bruce M and Soliman, Elsayed Z and Solomon, Allen J and Srinivasan, Sathanur R and Alonso, Alvaro and Wallace, Robert and Redline, Susan and Zhang, Zhu-Ming and Post, Wendy S and Zonderman, Alan B and Taylor, Herman A and Murray, Sarah S and Ferrucci, Luigi and Arking, Dan E and Evans, Michele K and Fox, Ervin R and Sotoodehnia, Nona and Heckbert, Susan R and Whitsel, Eric A and Newton-Cheh, Christopher} } @article {6078, title = {A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 Jun}, pages = {690-6}, abstract = {

Genome-wide association studies (GWAS) have identified 36 loci associated with body mass index (BMI), predominantly in populations of European ancestry. We conducted a meta-analysis to examine the association of >3.2 million SNPs with BMI in 39,144 men and women of African ancestry and followed up the most significant associations in an additional 32,268 individuals of African ancestry. We identified one new locus at 5q33 (GALNT10, rs7708584, P = 3.4 {\texttimes} 10(-11)) and another at 7p15 when we included data from the GIANT consortium (MIR148A-NFE2L3, rs10261878, P = 1.2 {\texttimes} 10(-10)). We also found suggestive evidence of an association at a third locus at 6q16 in the African-ancestry sample (KLHL32, rs974417, P = 6.9 {\texttimes} 10(-8)). Thirty-two of the 36 previously established BMI variants showed directionally consistent effect estimates in our GWAS (binomial P = 9.7 {\texttimes} 10(-7)), five of which reached genome-wide significance. These findings provide strong support for shared BMI loci across populations, as well as for the utility of studying ancestrally diverse populations.

}, keywords = {African Americans, Body Mass Index, Case-Control Studies, Gene Frequency, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Obesity, Polymorphism, Single Nucleotide}, issn = {1546-1718}, doi = {10.1038/ng.2608}, author = {Monda, Keri L and Chen, Gary K and Taylor, Kira C and Palmer, Cameron and Edwards, Todd L and Lange, Leslie A and Ng, Maggie C Y and Adeyemo, Adebowale A and Allison, Matthew A and Bielak, Lawrence F and Chen, Guanjie and Graff, Mariaelisa and Irvin, Marguerite R and Rhie, Suhn K and Li, Guo and Liu, Yongmei and Liu, Youfang and Lu, Yingchang and Nalls, Michael A and Sun, Yan V and Wojczynski, Mary K and Yanek, Lisa R and Aldrich, Melinda C and Ademola, Adeyinka and Amos, Christopher I and Bandera, Elisa V and Bock, Cathryn H and Britton, Angela and Broeckel, Ulrich and Cai, Quiyin and Caporaso, Neil E and Carlson, Chris S and Carpten, John and Casey, Graham and Chen, Wei-Min and Chen, Fang and Chen, Yii-der I and Chiang, Charleston W K and Coetzee, Gerhard A and Demerath, Ellen and Deming-Halverson, Sandra L and Driver, Ryan W and Dubbert, Patricia and Feitosa, Mary F and Feng, Ye and Freedman, Barry I and Gillanders, Elizabeth M and Gottesman, Omri and Guo, Xiuqing and Haritunians, Talin and Harris, Tamara and Harris, Curtis C and Hennis, Anselm J M and Hernandez, Dena G and McNeill, Lorna H and Howard, Timothy D and Howard, Barbara V and Howard, Virginia J and Johnson, Karen C and Kang, Sun J and Keating, Brendan J and Kolb, Suzanne and Kuller, Lewis H and Kutlar, Abdullah and Langefeld, Carl D and Lettre, Guillaume and Lohman, Kurt and Lotay, Vaneet and Lyon, Helen and Manson, JoAnn E and Maixner, William and Meng, Yan A and Monroe, Kristine R and Morhason-Bello, Imran and Murphy, Adam B and Mychaleckyj, Josyf C and Nadukuru, Rajiv and Nathanson, Katherine L and Nayak, Uma and N{\textquoteright}diaye, Amidou and Nemesure, Barbara and Wu, Suh-Yuh and Leske, M Cristina and Neslund-Dudas, Christine and Neuhouser, Marian and Nyante, Sarah and Ochs-Balcom, Heather and Ogunniyi, Adesola and Ogundiran, Temidayo O and Ojengbede, Oladosu and Olopade, Olufunmilayo I and Palmer, Julie R and Ruiz-Narvaez, Edward A and Palmer, Nicholette D and Press, Michael F and Rampersaud, Evandine and Rasmussen-Torvik, Laura J and Rodriguez-Gil, Jorge L and Salako, Babatunde and Schadt, Eric E and Schwartz, Ann G and Shriner, Daniel A and Siscovick, David and Smith, Shad B and Wassertheil-Smoller, Sylvia and Speliotes, Elizabeth K and Spitz, Margaret R and Sucheston, Lara and Taylor, Herman and Tayo, Bamidele O and Tucker, Margaret A and Van Den Berg, David J and Edwards, Digna R Velez and Wang, Zhaoming and Wiencke, John K and Winkler, Thomas W and Witte, John S and Wrensch, Margaret and Wu, Xifeng and Yang, James J and Levin, Albert M and Young, Taylor R and Zakai, Neil A and Cushman, Mary and Zanetti, Krista A and Zhao, Jing Hua and Zhao, Wei and Zheng, Yonglan and Zhou, Jie and Ziegler, Regina G and Zmuda, Joseph M and Fernandes, Jyotika K and Gilkeson, Gary S and Kamen, Diane L and Hunt, Kelly J and Spruill, Ida J and Ambrosone, Christine B and Ambs, Stefan and Arnett, Donna K and Atwood, Larry and Becker, Diane M and Berndt, Sonja I and Bernstein, Leslie and Blot, William J and Borecki, Ingrid B and Bottinger, Erwin P and Bowden, Donald W and Burke, Gregory and Chanock, Stephen J and Cooper, Richard S and Ding, Jingzhong and Duggan, David and Evans, Michele K and Fox, Caroline and Garvey, W Timothy and Bradfield, Jonathan P and Hakonarson, Hakon and Grant, Struan F A and Hsing, Ann and Chu, Lisa and Hu, Jennifer J and Huo, Dezheng and Ingles, Sue A and John, Esther M and Jordan, Joanne M and Kabagambe, Edmond K and Kardia, Sharon L R and Kittles, Rick A and Goodman, Phyllis J and Klein, Eric A and Kolonel, Laurence N and Le Marchand, Lo{\"\i}c and Liu, Simin and McKnight, Barbara and Millikan, Robert C and Mosley, Thomas H and Padhukasahasram, Badri and Williams, L Keoki and Patel, Sanjay R and Peters, Ulrike and Pettaway, Curtis A and Peyser, Patricia A and Psaty, Bruce M and Redline, Susan and Rotimi, Charles N and Rybicki, Benjamin A and Sale, Mich{\`e}le M and Schreiner, Pamela J and Signorello, Lisa B and Singleton, Andrew B and Stanford, Janet L and Strom, Sara S and Thun, Michael J and Vitolins, Mara and Zheng, Wei and Moore, Jason H and Williams, Scott M and Ketkar, Shamika and Zhu, Xiaofeng and Zonderman, Alan B and Kooperberg, Charles and Papanicolaou, George J and Henderson, Brian E and Reiner, Alex P and Hirschhorn, Joel N and Loos, Ruth J F and North, Kari E and Haiman, Christopher A} }