@article {1244, title = {Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Dec}, pages = {1068-76}, abstract = {

The QRS interval, from the beginning of the Q wave to the end of the S wave on an electrocardiogram, reflects ventricular depolarization and conduction time and is a risk factor for mortality, sudden death and heart failure. We performed a genome-wide association meta-analysis in 40,407 individuals of European descent from 14 studies, with further genotyping in 7,170 additional Europeans, and we identified 22 loci associated with QRS duration (P < 5 {\texttimes} 10(-8)). These loci map in or near genes in pathways with established roles in ventricular conduction such as sodium channels, transcription factors and calcium-handling proteins, but also point to previously unidentified biologic processes, such as kinase inhibitors and genes related to tumorigenesis. We demonstrate that SCN10A, a candidate gene at the most significantly associated locus in this study, is expressed in the mouse ventricular conduction system, and treatment with a selective SCN10A blocker prolongs QRS duration. These findings extend our current knowledge of ventricular depolarization and conduction.

}, keywords = {Animals, Animals, Newborn, Chromosomes, Human, Computational Biology, Electrocardiography, Genetic Loci, Genome-Wide Association Study, Heart Conduction System, Humans, Mice, Mice, Transgenic, Models, Animal, Myocytes, Cardiac, NAV1.8 Voltage-Gated Sodium Channel, Polymorphism, Single Nucleotide, Sodium Channels}, issn = {1546-1718}, doi = {10.1038/ng.716}, author = {Sotoodehnia, Nona and Isaacs, Aaron and de Bakker, Paul I W and D{\"o}rr, Marcus and Newton-Cheh, Christopher and Nolte, Ilja M and van der Harst, Pim and M{\"u}ller, Martina and Eijgelsheim, Mark and Alonso, Alvaro and Hicks, Andrew A and Padmanabhan, Sandosh and Hayward, Caroline and Smith, Albert Vernon and Polasek, Ozren and Giovannone, Steven and Fu, Jingyuan and Magnani, Jared W and Marciante, Kristin D and Pfeufer, Arne and Gharib, Sina A and Teumer, Alexander and Li, Man and Bis, Joshua C and Rivadeneira, Fernando and Aspelund, Thor and K{\"o}ttgen, Anna and Johnson, Toby and Rice, Kenneth and Sie, Mark P S and Wang, Ying A and Klopp, Norman and Fuchsberger, Christian and Wild, Sarah H and Mateo Leach, Irene and Estrada, Karol and V{\"o}lker, Uwe and Wright, Alan F and Asselbergs, Folkert W and Qu, Jiaxiang and Chakravarti, Aravinda and Sinner, Moritz F and Kors, Jan A and Petersmann, Astrid and Harris, Tamara B and Soliman, Elsayed Z and Munroe, Patricia B and Psaty, Bruce M and Oostra, Ben A and Cupples, L Adrienne and Perz, Siegfried and de Boer, Rudolf A and Uitterlinden, Andr{\'e} G and V{\"o}lzke, Henry and Spector, Timothy D and Liu, Fang-Yu and Boerwinkle, Eric and Dominiczak, Anna F and Rotter, Jerome I and van Herpen, G{\'e} and Levy, Daniel and Wichmann, H-Erich and van Gilst, Wiek H and Witteman, Jacqueline C M and Kroemer, Heyo K and Kao, W H Linda and Heckbert, Susan R and Meitinger, Thomas and Hofman, Albert and Campbell, Harry and Folsom, Aaron R and van Veldhuisen, Dirk J and Schwienbacher, Christine and O{\textquoteright}Donnell, Christopher J and Volpato, Claudia Beu and Caulfield, Mark J and Connell, John M and Launer, Lenore and Lu, Xiaowen and Franke, Lude and Fehrmann, Rudolf S N and te Meerman, Gerard and Groen, Harry J M and Weersma, Rinse K and van den Berg, Leonard H and Wijmenga, Cisca and Ophoff, Roel A and Navis, Gerjan and Rudan, Igor and Snieder, Harold and Wilson, James F and Pramstaller, Peter P and Siscovick, David S and Wang, Thomas J and Gudnason, Vilmundur and van Duijn, Cornelia M and Felix, Stephan B and Fishman, Glenn I and Jamshidi, Yalda and Stricker, Bruno H Ch and Samani, Nilesh J and K{\"a}{\"a}b, Stefan and Arking, Dan E} } @article {1271, title = {CUBN is a gene locus for albuminuria.}, journal = {J Am Soc Nephrol}, volume = {22}, year = {2011}, month = {2011 Mar}, pages = {555-70}, abstract = {

Identification of genetic risk factors for albuminuria may alter strategies for early prevention of CKD progression, particularly among patients with diabetes. Little is known about the influence of common genetic variants on albuminuria in both general and diabetic populations. We performed a meta-analysis of data from 63,153 individuals of European ancestry with genotype information from genome-wide association studies (CKDGen Consortium) and from a large candidate gene study (CARe Consortium) to identify susceptibility loci for the quantitative trait urinary albumin-to-creatinine ratio (UACR) and the clinical diagnosis microalbuminuria. We identified an association between a missense variant (I2984V) in the CUBN gene, which encodes cubilin, and both UACR (P = 1.1 {\texttimes} 10(-11)) and microalbuminuria (P = 0.001). We observed similar associations among 6981 African Americans in the CARe Consortium. The associations between this variant and both UACR and microalbuminuria were significant in individuals of European ancestry regardless of diabetes status. Finally, this variant associated with a 41\% increased risk for the development of persistent microalbuminuria during 20 years of follow-up among 1304 participants with type 1 diabetes in the prospective DCCT/EDIC Study. In summary, we identified a missense CUBN variant that associates with levels of albuminuria in both the general population and in individuals with diabetes.

}, keywords = {African Continental Ancestry Group, Albuminuria, European Continental Ancestry Group, Genetic Loci, Genetic Predisposition to Disease, Humans, Mutation, Missense, Receptors, Cell Surface}, issn = {1533-3450}, doi = {10.1681/ASN.2010060598}, author = {B{\"o}ger, Carsten A and Chen, Ming-Huei and Tin, Adrienne and Olden, Matthias and K{\"o}ttgen, Anna and de Boer, Ian H and Fuchsberger, Christian and O{\textquoteright}Seaghdha, Conall M and Pattaro, Cristian and Teumer, Alexander and Liu, Ching-Ti and Glazer, Nicole L and Li, Man and O{\textquoteright}Connell, Jeffrey R and Tanaka, Toshiko and Peralta, Carmen A and Kutalik, Zolt{\'a}n and Luan, Jian{\textquoteright}an and Zhao, Jing Hua and Hwang, Shih-Jen and Akylbekova, Ermeg and Kramer, Holly and van der Harst, Pim and Smith, Albert V and Lohman, Kurt and de Andrade, Mariza and Hayward, Caroline and Kollerits, Barbara and T{\"o}njes, Anke and Aspelund, Thor and Ingelsson, Erik and Eiriksdottir, Gudny and Launer, Lenore J and Harris, Tamara B and Shuldiner, Alan R and Mitchell, Braxton D and Arking, Dan E and Franceschini, Nora and Boerwinkle, Eric and Egan, Josephine and Hernandez, Dena and Reilly, Muredach and Townsend, Raymond R and Lumley, Thomas and Siscovick, David S and Psaty, Bruce M and Kestenbaum, Bryan and Haritunians, Talin and Bergmann, Sven and Vollenweider, Peter and Waeber, G{\'e}rard and Mooser, Vincent and Waterworth, Dawn and Johnson, Andrew D and Florez, Jose C and Meigs, James B and Lu, Xiaoning and Turner, Stephen T and Atkinson, Elizabeth J and Leak, Tennille S and Aasar{\o}d, Knut and Skorpen, Frank and Syv{\"a}nen, Ann-Christine and Illig, Thomas and Baumert, Jens and Koenig, Wolfgang and Kr{\"a}mer, Bernhard K and Devuyst, Olivier and Mychaleckyj, Josyf C and Minelli, Cosetta and Bakker, Stephan J L and Kedenko, Lyudmyla and Paulweber, Bernhard and Coassin, Stefan and Endlich, Karlhans and Kroemer, Heyo K and Biffar, Reiner and Stracke, Sylvia and V{\"o}lzke, Henry and Stumvoll, Michael and M{\"a}gi, Reedik and Campbell, Harry and Vitart, Veronique and Hastie, Nicholas D and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Polasek, Ozren and Curhan, Gary and Kronenberg, Florian and Prokopenko, Inga and Rudan, Igor and Arnl{\"o}v, Johan and Hallan, Stein and Navis, Gerjan and Parsa, Afshin and Ferrucci, Luigi and Coresh, Josef and Shlipak, Michael G and Bull, Shelley B and Paterson, Nicholas J and Wichmann, H-Erich and Wareham, Nicholas J and Loos, Ruth J F and Rotter, Jerome I and Pramstaller, Peter P and Cupples, L Adrienne and Beckmann, Jacques S and Yang, Qiong and Heid, Iris M and Rettig, Rainer and Dreisbach, Albert W and Bochud, Murielle and Fox, Caroline S and Kao, W H L} } @article {1325, title = {Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.}, journal = {Nature}, volume = {478}, year = {2011}, month = {2011 Sep 11}, pages = {103-9}, abstract = {

Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>=140 mm Hg systolic blood pressure or >=90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.

}, keywords = {Africa, Asia, Blood Pressure, Cardiovascular Diseases, Coronary Artery Disease, Europe, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hypertension, Kidney Diseases, Polymorphism, Single Nucleotide, Stroke}, issn = {1476-4687}, doi = {10.1038/nature10405}, author = {Ehret, Georg B and Munroe, Patricia B and Rice, Kenneth M and Bochud, Murielle and Johnson, Andrew D and Chasman, Daniel I and Smith, Albert V and Tobin, Martin D and Verwoert, Germaine C and Hwang, Shih-Jen and Pihur, Vasyl and Vollenweider, Peter and O{\textquoteright}Reilly, Paul F and Amin, Najaf and Bragg-Gresham, Jennifer L and Teumer, Alexander and Glazer, Nicole L and Launer, Lenore and Zhao, Jing Hua and Aulchenko, Yurii and Heath, Simon and S{\~o}ber, Siim and Parsa, Afshin and Luan, Jian{\textquoteright}an and Arora, Pankaj and Dehghan, Abbas and Zhang, Feng and Lucas, Gavin and Hicks, Andrew A and Jackson, Anne U and Peden, John F and Tanaka, Toshiko and Wild, Sarah H and Rudan, Igor and Igl, Wilmar and Milaneschi, Yuri and Parker, Alex N and Fava, Cristiano and Chambers, John C and Fox, Ervin R and Kumari, Meena and Go, Min Jin and van der Harst, Pim and Kao, Wen Hong Linda and Sj{\"o}gren, Marketa and Vinay, D G and Alexander, Myriam and Tabara, Yasuharu and Shaw-Hawkins, Sue and Whincup, Peter H and Liu, Yongmei and Shi, Gang and Kuusisto, Johanna and Tayo, Bamidele and Seielstad, Mark and Sim, Xueling and Nguyen, Khanh-Dung Hoang and Lehtim{\"a}ki, Terho and Matullo, Giuseppe and Wu, Ying and Gaunt, Tom R and Onland-Moret, N Charlotte and Cooper, Matthew N and Platou, Carl G P and Org, Elin and Hardy, Rebecca and Dahgam, Santosh and Palmen, Jutta and Vitart, Veronique and Braund, Peter S and Kuznetsova, Tatiana and Uiterwaal, Cuno S P M and Adeyemo, Adebowale and Palmas, Walter and Campbell, Harry and Ludwig, Barbara and Tomaszewski, Maciej and Tzoulaki, Ioanna and Palmer, Nicholette D and Aspelund, Thor and Garcia, Melissa and Chang, Yen-Pei C and O{\textquoteright}Connell, Jeffrey R and Steinle, Nanette I and Grobbee, Diederick E and Arking, Dan E and Kardia, Sharon L and Morrison, Alanna C and Hernandez, Dena and Najjar, Samer and McArdle, Wendy L and Hadley, David and Brown, Morris J and Connell, John M and Hingorani, Aroon D and Day, Ian N M and Lawlor, Debbie A and Beilby, John P and Lawrence, Robert W and Clarke, Robert and Hopewell, Jemma C and Ongen, Halit and Dreisbach, Albert W and Li, Yali and Young, J Hunter and Bis, Joshua C and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Adair, Linda S and Lee, Nanette R and Chen, Ming-Huei and Olden, Matthias and Pattaro, Cristian and Bolton, Judith A Hoffman and K{\"o}ttgen, Anna and Bergmann, Sven and Mooser, Vincent and Chaturvedi, Nish and Frayling, Timothy M and Islam, Muhammad and Jafar, Tazeen H and Erdmann, Jeanette and Kulkarni, Smita R and Bornstein, Stefan R and Gr{\"a}ssler, J{\"u}rgen and Groop, Leif and Voight, Benjamin F and Kettunen, Johannes and Howard, Philip and Taylor, Andrew and Guarrera, Simonetta and Ricceri, Fulvio and Emilsson, Valur and Plump, Andrew and Barroso, In{\^e}s and Khaw, Kay-Tee and Weder, Alan B and Hunt, Steven C and Sun, Yan V and Bergman, Richard N and Collins, Francis S and Bonnycastle, Lori L and Scott, Laura J and Stringham, Heather M and Peltonen, Leena and Perola, Markus and Vartiainen, Erkki and Brand, Stefan-Martin and Staessen, Jan A and Wang, Thomas J and Burton, Paul R and Soler Artigas, Maria and Dong, Yanbin and Snieder, Harold and Wang, Xiaoling and Zhu, Haidong and Lohman, Kurt K and Rudock, Megan E and Heckbert, Susan R and Smith, Nicholas L and Wiggins, Kerri L and Doumatey, Ayo and Shriner, Daniel and Veldre, Gudrun and Viigimaa, Margus and Kinra, Sanjay and Prabhakaran, Dorairaj and Tripathy, Vikal and Langefeld, Carl D and Rosengren, Annika and Thelle, Dag S and Corsi, Anna Maria and Singleton, Andrew and Forrester, Terrence and Hilton, Gina and McKenzie, Colin A and Salako, Tunde and Iwai, Naoharu and Kita, Yoshikuni and Ogihara, Toshio and Ohkubo, Takayoshi and Okamura, Tomonori and Ueshima, Hirotsugu and Umemura, Satoshi and Eyheramendy, Susana and Meitinger, Thomas and Wichmann, H-Erich and Cho, Yoon Shin and Kim, Hyung-Lae and Lee, Jong-Young and Scott, James and Sehmi, Joban S and Zhang, Weihua and Hedblad, Bo and Nilsson, Peter and Smith, George Davey and Wong, Andrew and Narisu, Narisu and Stan{\v c}{\'a}kov{\'a}, Alena and Raffel, Leslie J and Yao, Jie and Kathiresan, Sekar and O{\textquoteright}Donnell, Christopher J and Schwartz, Stephen M and Ikram, M Arfan and Longstreth, W T and Mosley, Thomas H and Seshadri, Sudha and Shrine, Nick R G and Wain, Louise V and Morken, Mario A and Swift, Amy J and Laitinen, Jaana and Prokopenko, Inga and Zitting, Paavo and Cooper, Jackie A and Humphries, Steve E and Danesh, John and Rasheed, Asif and Goel, Anuj and Hamsten, Anders and Watkins, Hugh and Bakker, Stephan J L and van Gilst, Wiek H and Janipalli, Charles S and Mani, K Radha and Yajnik, Chittaranjan S and Hofman, Albert and Mattace-Raso, Francesco U S and Oostra, Ben A and Demirkan, Ayse and Isaacs, Aaron and Rivadeneira, Fernando and Lakatta, Edward G and Orr{\`u}, Marco and Scuteri, Angelo and Ala-Korpela, Mika and Kangas, Antti J and Lyytik{\"a}inen, Leo-Pekka and Soininen, Pasi and Tukiainen, Taru and W{\"u}rtz, Peter and Ong, Rick Twee-Hee and D{\"o}rr, Marcus and Kroemer, Heyo K and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Galan, Pilar and Hercberg, Serge and Lathrop, Mark and Zelenika, Diana and Deloukas, Panos and Mangino, Massimo and Spector, Tim D and Zhai, Guangju and Meschia, James F and Nalls, Michael A and Sharma, Pankaj and Terzic, Janos and Kumar, M V Kranthi and Denniff, Matthew and Zukowska-Szczechowska, Ewa and Wagenknecht, Lynne E and Fowkes, F Gerald R and Charchar, Fadi J and Schwarz, Peter E H and Hayward, Caroline and Guo, Xiuqing and Rotimi, Charles and Bots, Michiel L and Brand, Eva and Samani, Nilesh J and Polasek, Ozren and Talmud, Philippa J and Nyberg, Fredrik and Kuh, Diana and Laan, Maris and Hveem, Kristian and Palmer, Lyle J and van der Schouw, Yvonne T and Casas, Juan P and Mohlke, Karen L and Vineis, Paolo and Raitakari, Olli and Ganesh, Santhi K and Wong, Tien Y and Tai, E Shyong and Cooper, Richard S and Laakso, Markku and Rao, Dabeeru C and Harris, Tamara B and Morris, Richard W and Dominiczak, Anna F and Kivimaki, Mika and Marmot, Michael G and Miki, Tetsuro and Saleheen, Danish and Chandak, Giriraj R and Coresh, Josef and Navis, Gerjan and Salomaa, Veikko and Han, Bok-Ghee and Zhu, Xiaofeng and Kooner, Jaspal S and Melander, Olle and Ridker, Paul M and Bandinelli, Stefania and Gyllensten, Ulf B and Wright, Alan F and Wilson, James F and Ferrucci, Luigi and Farrall, Martin and Tuomilehto, Jaakko and Pramstaller, Peter P and Elosua, Roberto and Soranzo, Nicole and Sijbrands, Eric J G and Altshuler, David and Loos, Ruth J F and Shuldiner, Alan R and Gieger, Christian and Meneton, Pierre and Uitterlinden, Andr{\'e} G and Wareham, Nicholas J and Gudnason, Vilmundur and Rotter, Jerome I and Rettig, Rainer and Uda, Manuela and Strachan, David P and Witteman, Jacqueline C M and Hartikainen, Anna-Liisa and Beckmann, Jacques S and Boerwinkle, Eric and Vasan, Ramachandran S and Boehnke, Michael and Larson, Martin G and Jarvelin, Marjo-Riitta and Psaty, Bruce M and Abecasis, Goncalo R and Chakravarti, Aravinda and Elliott, Paul and van Duijn, Cornelia M and Newton-Cheh, Christopher and Levy, Daniel and Caulfield, Mark J and Johnson, Toby} } @article {1355, title = {New gene functions in megakaryopoiesis and platelet formation.}, journal = {Nature}, volume = {480}, year = {2011}, month = {2011 Nov 30}, pages = {201-8}, abstract = {

Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.

}, keywords = {Animals, Blood Platelets, Cell Size, Drosophila melanogaster, Drosophila Proteins, Europe, Gene Expression Profiling, Gene Silencing, Genome, Human, Genome-Wide Association Study, Hematopoiesis, Humans, Megakaryocytes, Platelet Count, Protein Interaction Maps, Transcription, Genetic, Zebrafish, Zebrafish Proteins}, issn = {1476-4687}, doi = {10.1038/nature10659}, author = {Gieger, Christian and Radhakrishnan, Aparna and Cvejic, Ana and Tang, Weihong and Porcu, Eleonora and Pistis, Giorgio and Serbanovic-Canic, Jovana and Elling, Ulrich and Goodall, Alison H and Labrune, Yann and Lopez, Lorna M and M{\"a}gi, Reedik and Meacham, Stuart and Okada, Yukinori and Pirastu, Nicola and Sorice, Rossella and Teumer, Alexander and Voss, Katrin and Zhang, Weihua and Ramirez-Solis, Ramiro and Bis, Joshua C and Ellinghaus, David and G{\"o}gele, Martin and Hottenga, Jouke-Jan and Langenberg, Claudia and Kovacs, Peter and O{\textquoteright}Reilly, Paul F and Shin, So-Youn and Esko, T{\~o}nu and Hartiala, Jaana and Kanoni, Stavroula and Murgia, Federico and Parsa, Afshin and Stephens, Jonathan and van der Harst, Pim and Ellen van der Schoot, C and Allayee, Hooman and Attwood, Antony and Balkau, Beverley and Bastardot, Fran{\c c}ois and Basu, Saonli and Baumeister, Sebastian E and Biino, Ginevra and Bomba, Lorenzo and Bonnefond, Am{\'e}lie and Cambien, Francois and Chambers, John C and Cucca, Francesco and D{\textquoteright}Adamo, Pio and Davies, Gail and de Boer, Rudolf A and de Geus, Eco J C and D{\"o}ring, Angela and Elliott, Paul and Erdmann, Jeanette and Evans, David M and Falchi, Mario and Feng, Wei and Folsom, Aaron R and Frazer, Ian H and Gibson, Quince D and Glazer, Nicole L and Hammond, Chris and Hartikainen, Anna-Liisa and Heckbert, Susan R and Hengstenberg, Christian and Hersch, Micha and Illig, Thomas and Loos, Ruth J F and Jolley, Jennifer and Khaw, Kay Tee and Kuhnel, Brigitte and Kyrtsonis, Marie-Christine and Lagou, Vasiliki and Lloyd-Jones, Heather and Lumley, Thomas and Mangino, Massimo and Maschio, Andrea and Mateo Leach, Irene and McKnight, Barbara and Memari, Yasin and Mitchell, Braxton D and Montgomery, Grant W and Nakamura, Yusuke and Nauck, Matthias and Navis, Gerjan and N{\"o}thlings, Ute and Nolte, Ilja M and Porteous, David J and Pouta, Anneli and Pramstaller, Peter P and Pullat, Janne and Ring, Susan M and Rotter, Jerome I and Ruggiero, Daniela and Ruokonen, Aimo and Sala, Cinzia and Samani, Nilesh J and Sambrook, Jennifer and Schlessinger, David and Schreiber, Stefan and Schunkert, Heribert and Scott, James and Smith, Nicholas L and Snieder, Harold and Starr, John M and Stumvoll, Michael and Takahashi, Atsushi and Tang, W H Wilson and Taylor, Kent and Tenesa, Albert and Lay Thein, Swee and T{\"o}njes, Anke and Uda, Manuela and Ulivi, Sheila and van Veldhuisen, Dirk J and Visscher, Peter M and V{\"o}lker, Uwe and Wichmann, H-Erich and Wiggins, Kerri L and Willemsen, Gonneke and Yang, Tsun-Po and Hua Zhao, Jing and Zitting, Paavo and Bradley, John R and Dedoussis, George V and Gasparini, Paolo and Hazen, Stanley L and Metspalu, Andres and Pirastu, Mario and Shuldiner, Alan R and Joost van Pelt, L and Zwaginga, Jaap-Jan and Boomsma, Dorret I and Deary, Ian J and Franke, Andre and Froguel, Philippe and Ganesh, Santhi K and Jarvelin, Marjo-Riitta and Martin, Nicholas G and Meisinger, Christa and Psaty, Bruce M and Spector, Timothy D and Wareham, Nicholas J and Akkerman, Jan-Willem N and Ciullo, Marina and Deloukas, Panos and Greinacher, Andreas and Jupe, Steve and Kamatani, Naoyuki and Khadake, Jyoti and Kooner, Jaspal S and Penninger, Josef and Prokopenko, Inga and Stemple, Derek and Toniolo, Daniela and Wernisch, Lorenz and Sanna, Serena and Hicks, Andrew A and Rendon, Augusto and Ferreira, Manuel A and Ouwehand, Willem H and Soranzo, Nicole} } @article {1359, title = {Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies.}, journal = {Circ Cardiovasc Genet}, volume = {5}, year = {2012}, month = {2012 Feb 01}, pages = {100-12}, abstract = {

BACKGROUND: Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based cohorts.

METHODS AND RESULTS: Continuous ABI and PAD (ABI <=0.9) phenotypes adjusted for age and sex were examined. Each study conducted genotyping and imputed data to the ≈2.5 million single nucleotide polymorphisms (SNPs) in HapMap. Linear and logistic regression models were used to test each SNP for association with ABI and PAD using additive genetic models. Study-specific data were combined using fixed effects inverse variance weighted meta-analyses. There were a total of 41 692 participants of European ancestry (≈60\% women, mean ABI 1.02 to 1.19), including 3409 participants with PAD and with genome-wide association study data available. In the discovery meta-analysis, rs10757269 on chromosome 9 near CDKN2B had the strongest association with ABI (β=-0.006, P=2.46{\texttimes}10(-8)). We sought replication of the 6 strongest SNP associations in 5 population-based studies and 3 clinical samples (n=16 717). The association for rs10757269 strengthened in the combined discovery and replication analysis (P=2.65{\texttimes}10(-9)). No other SNP associations for ABI or PAD achieved genome-wide significance. However, 2 previously reported candidate genes for PAD and 1 SNP associated with coronary artery disease were associated with ABI: DAB21P (rs13290547, P=3.6{\texttimes}10(-5)), CYBA (rs3794624, P=6.3{\texttimes}10(-5)), and rs1122608 (LDLR, P=0.0026).

CONCLUSIONS: Genome-wide association studies in more than 40 000 individuals identified 1 genome wide significant association on chromosome 9p21 with ABI. Two candidate genes for PAD and 1 SNP for coronary artery disease are associated with ABI.

}, keywords = {Adult, Age Factors, Aged, Aged, 80 and over, Alleles, Ankle Brachial Index, Chromosomes, Human, Pair 9, Cohort Studies, Cyclin-Dependent Kinase Inhibitor p15, Female, Genome-Wide Association Study, Genotype, HapMap Project, Humans, Logistic Models, Male, Middle Aged, Peripheral Vascular Diseases, Phenotype, Polymorphism, Single Nucleotide, Risk Factors, Sex Factors}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.111.961292}, author = {Murabito, Joanne M and White, Charles C and Kavousi, Maryam and Sun, Yan V and Feitosa, Mary F and Nambi, Vijay and Lamina, Claudia and Schillert, Arne and Coassin, Stefan and Bis, Joshua C and Broer, Linda and Crawford, Dana C and Franceschini, Nora and Frikke-Schmidt, Ruth and Haun, Margot and Holewijn, Suzanne and Huffman, Jennifer E and Hwang, Shih-Jen and Kiechl, Stefan and Kollerits, Barbara and Montasser, May E and Nolte, Ilja M and Rudock, Megan E and Senft, Andrea and Teumer, Alexander and van der Harst, Pim and Vitart, Veronique and Waite, Lindsay L and Wood, Andrew R and Wassel, Christina L and Absher, Devin M and Allison, Matthew A and Amin, Najaf and Arnold, Alice and Asselbergs, Folkert W and Aulchenko, Yurii and Bandinelli, Stefania and Barbalic, Maja and Boban, Mladen and Brown-Gentry, Kristin and Couper, David J and Criqui, Michael H and Dehghan, Abbas and den Heijer, Martin and Dieplinger, Benjamin and Ding, Jingzhong and D{\"o}rr, Marcus and Espinola-Klein, Christine and Felix, Stephan B and Ferrucci, Luigi and Folsom, Aaron R and Fraedrich, Gustav and Gibson, Quince and Goodloe, Robert and Gunjaca, Grgo and Haltmayer, Meinhard and Heiss, Gerardo and Hofman, Albert and Kieback, Arne and Kiemeney, Lambertus A and Kolcic, Ivana and Kullo, Iftikhar J and Kritchevsky, Stephen B and Lackner, Karl J and Li, Xiaohui and Lieb, Wolfgang and Lohman, Kurt and Meisinger, Christa and Melzer, David and Mohler, Emile R and Mudnic, Ivana and Mueller, Thomas and Navis, Gerjan and Oberhollenzer, Friedrich and Olin, Jeffrey W and O{\textquoteright}Connell, Jeff and O{\textquoteright}Donnell, Christopher J and Palmas, Walter and Penninx, Brenda W and Petersmann, Astrid and Polasek, Ozren and Psaty, Bruce M and Rantner, Barbara and Rice, Ken and Rivadeneira, Fernando and Rotter, Jerome I and Seldenrijk, Adrie and Stadler, Marietta and Summerer, Monika and Tanaka, Toshiko and Tybjaerg-Hansen, Anne and Uitterlinden, Andr{\'e} G and van Gilst, Wiek H and Vermeulen, Sita H and Wild, Sarah H and Wild, Philipp S and Willeit, Johann and Zeller, Tanja and Zemunik, Tatijana and Zgaga, Lina and Assimes, Themistocles L and Blankenberg, Stefan and Boerwinkle, Eric and Campbell, Harry and Cooke, John P and de Graaf, Jacqueline and Herrington, David and Kardia, Sharon L R and Mitchell, Braxton D and Murray, Anna and M{\"u}nzel, Thomas and Newman, Anne B and Oostra, Ben A and Rudan, Igor and Shuldiner, Alan R and Snieder, Harold and van Duijn, Cornelia M and V{\"o}lker, Uwe and Wright, Alan F and Wichmann, H-Erich and Wilson, James F and Witteman, Jacqueline C M and Liu, Yongmei and Hayward, Caroline and Borecki, Ingrid B and Ziegler, Andreas and North, Kari E and Cupples, L Adrienne and Kronenberg, Florian} } @article {6175, title = {FTO genotype is associated with phenotypic variability of body mass index.}, journal = {Nature}, volume = {490}, year = {2012}, month = {2012 Oct 11}, pages = {267-72}, abstract = {

There is evidence across several species for genetic control of phenotypic variation of complex traits, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using \~{}170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7\%, corresponding to a difference of \~{}0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI, possibly mediated by DNA methylation. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.

}, keywords = {Alpha-Ketoglutarate-Dependent Dioxygenase FTO, Body Height, Body Mass Index, Co-Repressor Proteins, Female, Genetic Variation, Genome-Wide Association Study, Humans, Male, Nerve Tissue Proteins, Phenotype, Polymorphism, Single Nucleotide, Proteins, Repressor Proteins}, issn = {1476-4687}, doi = {10.1038/nature11401}, author = {Yang, Jian and Loos, Ruth J F and Powell, Joseph E and Medland, Sarah E and Speliotes, Elizabeth K and Chasman, Daniel I and Rose, Lynda M and Thorleifsson, Gudmar and Steinthorsdottir, Valgerdur and M{\"a}gi, Reedik and Waite, Lindsay and Smith, Albert Vernon and Yerges-Armstrong, Laura M and Monda, Keri L and Hadley, David and Mahajan, Anubha and Li, Guo and Kapur, Karen and Vitart, Veronique and Huffman, Jennifer E and Wang, Sophie R and Palmer, Cameron and Esko, T{\~o}nu and Fischer, Krista and Zhao, Jing Hua and Demirkan, Ayse and Isaacs, Aaron and Feitosa, Mary F and Luan, Jian{\textquoteright}an and Heard-Costa, Nancy L and White, Charles and Jackson, Anne U and Preuss, Michael and Ziegler, Andreas and Eriksson, Joel and Kutalik, Zolt{\'a}n and Frau, Francesca and Nolte, Ilja M and van Vliet-Ostaptchouk, Jana V and Hottenga, Jouke-Jan and Jacobs, Kevin B and Verweij, Niek and Goel, Anuj and Medina-G{\'o}mez, Carolina and Estrada, Karol and Bragg-Gresham, Jennifer Lynn and Sanna, Serena and Sidore, Carlo and Tyrer, Jonathan and Teumer, Alexander and Prokopenko, Inga and Mangino, Massimo and Lindgren, Cecilia M and Assimes, Themistocles L and Shuldiner, Alan R and Hui, Jennie and Beilby, John P and McArdle, Wendy L and Hall, Per and Haritunians, Talin and Zgaga, Lina and Kolcic, Ivana and Polasek, Ozren and Zemunik, Tatijana and Oostra, Ben A and Junttila, M Juhani and Gr{\"o}nberg, Henrik and Schreiber, Stefan and Peters, Annette and Hicks, Andrew A and Stephens, Jonathan and Foad, Nicola S and Laitinen, Jaana and Pouta, Anneli and Kaakinen, Marika and Willemsen, Gonneke and Vink, Jacqueline M and Wild, Sarah H and Navis, Gerjan and Asselbergs, Folkert W and Homuth, Georg and John, Ulrich and Iribarren, Carlos and Harris, Tamara and Launer, Lenore and Gudnason, Vilmundur and O{\textquoteright}Connell, Jeffrey R and Boerwinkle, Eric and Cadby, Gemma and Palmer, Lyle J and James, Alan L and Musk, Arthur W and Ingelsson, Erik and Psaty, Bruce M and Beckmann, Jacques S and Waeber, G{\'e}rard and Vollenweider, Peter and Hayward, Caroline and Wright, Alan F and Rudan, Igor and Groop, Leif C and Metspalu, Andres and Khaw, Kay Tee and van Duijn, Cornelia M and Borecki, Ingrid B and Province, Michael A and Wareham, Nicholas J and Tardif, Jean-Claude and Huikuri, Heikki V and Cupples, L Adrienne and Atwood, Larry D and Fox, Caroline S and Boehnke, Michael and Collins, Francis S and Mohlke, Karen L and Erdmann, Jeanette and Schunkert, Heribert and Hengstenberg, Christian and Stark, Klaus and Lorentzon, Mattias and Ohlsson, Claes and Cusi, Daniele and Staessen, Jan A and van der Klauw, Melanie M and Pramstaller, Peter P and Kathiresan, Sekar and Jolley, Jennifer D and Ripatti, Samuli and Jarvelin, Marjo-Riitta and de Geus, Eco J C and Boomsma, Dorret I and Penninx, Brenda and Wilson, James F and Campbell, Harry and Chanock, Stephen J and van der Harst, Pim and Hamsten, Anders and Watkins, Hugh and Hofman, Albert and Witteman, Jacqueline C and Zillikens, M Carola and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Zillikens, M Carola and Kiemeney, Lambertus A and Vermeulen, Sita H and Abecasis, Goncalo R and Schlessinger, David and Schipf, Sabine and Stumvoll, Michael and T{\"o}njes, Anke and Spector, Tim D and North, Kari E and Lettre, Guillaume and McCarthy, Mark I and Berndt, Sonja I and Heath, Andrew C and Madden, Pamela A F and Nyholt, Dale R and Montgomery, Grant W and Martin, Nicholas G and McKnight, Barbara and Strachan, David P and Hill, William G and Snieder, Harold and Ridker, Paul M and Thorsteinsdottir, Unnur and Stefansson, Kari and Frayling, Timothy M and Hirschhorn, Joel N and Goddard, Michael E and Visscher, Peter M} } @article {5864, title = {Genetic determinants of the ankle-brachial index: a meta-analysis of a cardiovascular candidate gene 50K SNP panel in the candidate gene association resource (CARe) consortium.}, journal = {Atherosclerosis}, volume = {222}, year = {2012}, month = {2012 May}, pages = {138-47}, abstract = {

BACKGROUND: Candidate gene association studies for peripheral artery disease (PAD), including subclinical disease assessed with the ankle-brachial index (ABI), have been limited by the modest number of genes examined. We conducted a two stage meta-analysis of \~{}50,000 SNPs across \~{}2100 candidate genes to identify genetic variants for ABI.

METHODS AND RESULTS: We studied subjects of European ancestry from 8 studies (n=21,547, 55\% women, mean age 44-73 years) and African American ancestry from 5 studies (n=7267, 60\% women, mean age 41-73 years) involved in the candidate gene association resource (CARe) consortium. In each ethnic group, additive genetic models were used (with each additional copy of the minor allele corresponding to the given beta) to test each SNP for association with continuous ABI (excluding ABI>1.40) and PAD (defined as ABI<0.90) using linear or logistic regression with adjustment for known PAD risk factors and population stratification. We then conducted a fixed-effects inverse-variance weighted meta-analyses considering a p<2{\texttimes}10(-6) to denote statistical significance.

RESULTS: In the European ancestry discovery meta-analyses, rs2171209 in SYTL3 (β=-0.007, p=6.02{\texttimes}10(-7)) and rs290481 in TCF7L2 (β=-0.008, p=7.01{\texttimes}10(-7)) were significantly associated with ABI. None of the SNP associations for PAD were significant, though a SNP in CYP2B6 (p=4.99{\texttimes}10(-5)) was among the strongest associations. These 3 genes are linked to key PAD risk factors (lipoprotein(a), type 2 diabetes, and smoking behavior, respectively). We sought replication in 6 population-based and 3 clinical samples (n=15,440) for rs290481 and rs2171209. However, in the replication stage (rs2171209, p=0.75; rs290481, p=0.19) and in the combined discovery and replication analysis the SNP-ABI associations were no longer significant (rs2171209, p=1.14{\texttimes}10(-3); rs290481, p=8.88{\texttimes}10(-5)). In African Americans, none of the SNP associations for ABI or PAD achieved an experiment-wide level of significance.

CONCLUSIONS: Genetic determinants of ABI and PAD remain elusive. Follow-up of these preliminary findings may uncover important biology given the known gene-risk factor associations. New and more powerful approaches to PAD gene discovery are warranted.

}, keywords = {Adult, African Americans, Aged, Ankle Brachial Index, Aryl Hydrocarbon Hydroxylases, Cytochrome P-450 CYP2B6, European Continental Ancestry Group, Female, Humans, Male, Middle Aged, Oxidoreductases, N-Demethylating, Peripheral Arterial Disease, Polymorphism, Single Nucleotide, Risk Factors, Transcription Factor 7-Like 2 Protein}, issn = {1879-1484}, doi = {10.1016/j.atherosclerosis.2012.01.039}, author = {Wassel, Christina L and Lamina, Claudia and Nambi, Vijay and Coassin, Stefan and Mukamal, Kenneth J and Ganesh, Santhi K and Jacobs, David R and Franceschini, Nora and Papanicolaou, George J and Gibson, Quince and Yanek, Lisa R and van der Harst, Pim and Ferguson, Jane F and Crawford, Dana C and Waite, Lindsay L and Allison, Matthew A and Criqui, Michael H and McDermott, Mary M and Mehra, Reena and Cupples, L Adrienne and Hwang, Shih-Jen and Redline, Susan and Kaplan, Robert C and Heiss, Gerardo and Rotter, Jerome I and Boerwinkle, Eric and Taylor, Herman A and Eraso, Luis H and Haun, Margot and Li, Mingyao and Meisinger, Christa and O{\textquoteright}Connell, Jeffrey R and Shuldiner, Alan R and Tybj{\ae}rg-Hansen, Anne and Frikke-Schmidt, Ruth and Kollerits, Barbara and Rantner, Barbara and Dieplinger, Benjamin and Stadler, Marietta and Mueller, Thomas and Haltmayer, Meinhard and Klein-Weigel, Peter and Summerer, Monika and Wichmann, H-Erich and Asselbergs, Folkert W and Navis, Gerjan and Mateo Leach, Irene and Brown-Gentry, Kristin and Goodloe, Robert and Assimes, Themistocles L and Becker, Diane M and Cooke, John P and Absher, Devin M and Olin, Jeffrey W and Mitchell, Braxton D and Reilly, Muredach P and Mohler, Emile R and North, Kari E and Reiner, Alexander P and Kronenberg, Florian and Murabito, Joanne M} } @article {6089, title = {Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation.}, journal = {Blood}, volume = {120}, year = {2012}, month = {2012 Dec 06}, pages = {4873-81}, abstract = {

We conducted a genome-wide association study to identify novel associations between genetic variants and circulating plasminogen activator inhibitor-1 (PAI-1) concentration, and examined functional implications of variants and genes that were discovered. A discovery meta-analysis was performed in 19 599 subjects, followed by replication analysis of genome-wide significant (P < 5 {\texttimes} 10(-8)) single nucleotide polymorphisms (SNPs) in 10 796 independent samples. We further examined associations with type 2 diabetes and coronary artery disease, assessed the functional significance of the SNPs for gene expression in human tissues, and conducted RNA-silencing experiments for one novel association. We confirmed the association of the 4G/5G proxy SNP rs2227631 in the promoter region of SERPINE1 (7q22.1) and discovered genome-wide significant associations at 3 additional loci: chromosome 7q22.1 close to SERPINE1 (rs6976053, discovery P = 3.4 {\texttimes} 10(-10)); chromosome 11p15.2 within ARNTL (rs6486122, discovery P = 3.0 {\texttimes} 10(-8)); and chromosome 3p25.2 within PPARG (rs11128603, discovery P = 2.9 {\texttimes} 10(-8)). Replication was achieved for the 7q22.1 and 11p15.2 loci. There was nominal association with type 2 diabetes and coronary artery disease at ARNTL (P < .05). Functional studies identified MUC3 as a candidate gene for the second association signal on 7q22.1. In summary, SNPs in SERPINE1 and ARNTL and an SNP associated with the expression of MUC3 were robustly associated with circulating levels of PAI-1.

}, keywords = {Adaptor Proteins, Signal Transducing, ARNTL Transcription Factors, ATPases Associated with Diverse Cellular Activities, Cell Line, Cell Line, Tumor, Cohort Studies, Coronary Artery Disease, Diabetes Mellitus, Type 2, Gene Expression Profiling, Gene Expression Regulation, Gene Frequency, Genome-Wide Association Study, Genotype, Humans, LIM Domain Proteins, Meta-Analysis as Topic, Monocytes, Mucin-3, Plasminogen Activator Inhibitor 1, Polymorphism, Single Nucleotide, PPAR gamma, Proteasome Endopeptidase Complex, RNA Interference, Transcription Factors}, issn = {1528-0020}, doi = {10.1182/blood-2012-06-436188}, author = {Huang, Jie and Sabater-Lleal, Maria and Asselbergs, Folkert W and Tregouet, David and Shin, So-Youn and Ding, Jingzhong and Baumert, Jens and Oudot-Mellakh, Tiphaine and Folkersen, Lasse and Johnson, Andrew D and Smith, Nicholas L and Williams, Scott M and Ikram, Mohammad A and Kleber, Marcus E and Becker, Diane M and Truong, Vinh and Mychaleckyj, Josyf C and Tang, Weihong and Yang, Qiong and Sennblad, Bengt and Moore, Jason H and Williams, Frances M K and Dehghan, Abbas and Silbernagel, G{\"u}nther and Schrijvers, Elisabeth M C and Smith, Shelly and Karakas, Mahir and Tofler, Geoffrey H and Silveira, Angela and Navis, Gerjan J and Lohman, Kurt and Chen, Ming-Huei and Peters, Annette and Goel, Anuj and Hopewell, Jemma C and Chambers, John C and Saleheen, Danish and Lundmark, Per and Psaty, Bruce M and Strawbridge, Rona J and Boehm, Bernhard O and Carter, Angela M and Meisinger, Christa and Peden, John F and Bis, Joshua C and McKnight, Barbara and Ohrvik, John and Taylor, Kent and Franzosi, Maria Grazia and Seedorf, Udo and Collins, Rory and Franco-Cereceda, Anders and Syv{\"a}nen, Ann-Christine and Goodall, Alison H and Yanek, Lisa R and Cushman, Mary and M{\"u}ller-Nurasyid, Martina and Folsom, Aaron R and Basu, Saonli and Matijevic, Nena and van Gilst, Wiek H and Kooner, Jaspal S and Hofman, Albert and Danesh, John and Clarke, Robert and Meigs, James B and Kathiresan, Sekar and Reilly, Muredach P and Klopp, Norman and Harris, Tamara B and Winkelmann, Bernhard R and Grant, Peter J and Hillege, Hans L and Watkins, Hugh and Spector, Timothy D and Becker, Lewis C and Tracy, Russell P and M{\"a}rz, Winfried and Uitterlinden, Andr{\'e} G and Eriksson, Per and Cambien, Francois and Morange, Pierre-Emmanuel and Koenig, Wolfgang and Soranzo, Nicole and van der Harst, Pim and Liu, Yongmei and O{\textquoteright}Donnell, Christopher J and Hamsten, Anders} } @article {6091, title = {Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.}, journal = {Nat Genet}, volume = {44}, year = {2012}, month = {2012 Sep}, pages = {991-1005}, abstract = {

Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.

}, keywords = {Adult, Animals, Blood Glucose, Fasting, Female, Gene Frequency, Genome-Wide Association Study, Humans, Insulin, Male, Metabolic Networks and Pathways, Mice, Osmolar Concentration, Quantitative Trait Loci}, issn = {1546-1718}, doi = {10.1038/ng.2385}, author = {Scott, Robert A and Lagou, Vasiliki and Welch, Ryan P and Wheeler, Eleanor and Montasser, May E and Luan, Jian{\textquoteright}an and M{\"a}gi, Reedik and Strawbridge, Rona J and Rehnberg, Emil and Gustafsson, Stefan and Kanoni, Stavroula and Rasmussen-Torvik, Laura J and Yengo, Loic and Lecoeur, C{\'e}cile and Shungin, Dmitry and Sanna, Serena and Sidore, Carlo and Johnson, Paul C D and Jukema, J Wouter and Johnson, Toby and Mahajan, Anubha and Verweij, Niek and Thorleifsson, Gudmar and Hottenga, Jouke-Jan and Shah, Sonia and Smith, Albert V and Sennblad, Bengt and Gieger, Christian and Salo, Perttu and Perola, Markus and Timpson, Nicholas J and Evans, David M and Pourcain, Beate St and Wu, Ying and Andrews, Jeanette S and Hui, Jennie and Bielak, Lawrence F and Zhao, Wei and Horikoshi, Momoko and Navarro, Pau and Isaacs, Aaron and O{\textquoteright}Connell, Jeffrey R and Stirrups, Kathleen and Vitart, Veronique and Hayward, Caroline and Esko, T{\~o}nu and Mihailov, Evelin and Fraser, Ross M and Fall, Tove and Voight, Benjamin F and Raychaudhuri, Soumya and Chen, Han and Lindgren, Cecilia M and Morris, Andrew P and Rayner, Nigel W and Robertson, Neil and Rybin, Denis and Liu, Ching-Ti and Beckmann, Jacques S and Willems, Sara M and Chines, Peter S and Jackson, Anne U and Kang, Hyun Min and Stringham, Heather M and Song, Kijoung and Tanaka, Toshiko and Peden, John F and Goel, Anuj and Hicks, Andrew A and An, Ping and M{\"u}ller-Nurasyid, Martina and Franco-Cereceda, Anders and Folkersen, Lasse and Marullo, Letizia and Jansen, Hanneke and Oldehinkel, Albertine J and Bruinenberg, Marcel and Pankow, James S and North, Kari E and Forouhi, Nita G and Loos, Ruth J F and Edkins, Sarah and Varga, Tibor V and Hallmans, G{\"o}ran and Oksa, Heikki and Antonella, Mulas and Nagaraja, Ramaiah and Trompet, Stella and Ford, Ian and Bakker, Stephan J L and Kong, Augustine and Kumari, Meena and Gigante, Bruna and Herder, Christian and Munroe, Patricia B and Caulfield, Mark and Antti, Jula and Mangino, Massimo and Small, Kerrin and Miljkovic, Iva and Liu, Yongmei and Atalay, Mustafa and Kiess, Wieland and James, Alan L and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Palmer, Colin N A and Doney, Alex S F and Willemsen, Gonneke and Smit, Johannes H and Campbell, Susan and Polasek, Ozren and Bonnycastle, Lori L and Hercberg, Serge and Dimitriou, Maria and Bolton, Jennifer L and Fowkes, Gerard R and Kovacs, Peter and Lindstr{\"o}m, Jaana and Zemunik, Tatijana and Bandinelli, Stefania and Wild, Sarah H and Basart, Hanneke V and Rathmann, Wolfgang and Grallert, Harald and Maerz, Winfried and Kleber, Marcus E and Boehm, Bernhard O and Peters, Annette and Pramstaller, Peter P and Province, Michael A and Borecki, Ingrid B and Hastie, Nicholas D and Rudan, Igor and Campbell, Harry and Watkins, Hugh and Farrall, Martin and Stumvoll, Michael and Ferrucci, Luigi and Waterworth, Dawn M and Bergman, Richard N and Collins, Francis S and Tuomilehto, Jaakko and Watanabe, Richard M and de Geus, Eco J C and Penninx, Brenda W and Hofman, Albert and Oostra, Ben A and Psaty, Bruce M and Vollenweider, Peter and Wilson, James F and Wright, Alan F and Hovingh, G Kees and Metspalu, Andres and Uusitupa, Matti and Magnusson, Patrik K E and Kyvik, Kirsten O and Kaprio, Jaakko and Price, Jackie F and Dedoussis, George V and Deloukas, Panos and Meneton, Pierre and Lind, Lars and Boehnke, Michael and Shuldiner, Alan R and van Duijn, Cornelia M and Morris, Andrew D and Toenjes, Anke and Peyser, Patricia A and Beilby, John P and K{\"o}rner, Antje and Kuusisto, Johanna and Laakso, Markku and Bornstein, Stefan R and Schwarz, Peter E H and Lakka, Timo A and Rauramaa, Rainer and Adair, Linda S and Smith, George Davey and Spector, Tim D and Illig, Thomas and de Faire, Ulf and Hamsten, Anders and Gudnason, Vilmundur and Kivimaki, Mika and Hingorani, Aroon and Keinanen-Kiukaanniemi, Sirkka M and Saaristo, Timo E and Boomsma, Dorret I and Stefansson, Kari and van der Harst, Pim and Dupuis, Jos{\'e}e and Pedersen, Nancy L and Sattar, Naveed and Harris, Tamara B and Cucca, Francesco and Ripatti, Samuli and Salomaa, Veikko and Mohlke, Karen L and Balkau, Beverley and Froguel, Philippe and Pouta, Anneli and Jarvelin, Marjo-Riitta and Wareham, Nicholas J and Bouatia-Naji, Nabila and McCarthy, Mark I and Franks, Paul W and Meigs, James B and Teslovich, Tanya M and Florez, Jose C and Langenberg, Claudia and Ingelsson, Erik and Prokopenko, Inga and Barroso, In{\^e}s} } @article {6075, title = {Genome-wide association analyses identify 18 new loci associated with serum urate concentrations.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 Feb}, pages = {145-54}, abstract = {

Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.

}, keywords = {Analysis of Variance, European Continental Ancestry Group, Gene Frequency, Genetic Loci, Genome-Wide Association Study, Glucose, Gout, Humans, Inhibins, Polymorphism, Single Nucleotide, Signal Transduction, Uric Acid}, issn = {1546-1718}, doi = {10.1038/ng.2500}, author = {K{\"o}ttgen, Anna and Albrecht, Eva and Teumer, Alexander and Vitart, Veronique and Krumsiek, Jan and Hundertmark, Claudia and Pistis, Giorgio and Ruggiero, Daniela and O{\textquoteright}Seaghdha, Conall M and Haller, Toomas and Yang, Qiong and Tanaka, Toshiko and Johnson, Andrew D and Kutalik, Zolt{\'a}n and Smith, Albert V and Shi, Julia and Struchalin, Maksim and Middelberg, Rita P S and Brown, Morris J and Gaffo, Angelo L and Pirastu, Nicola and Li, Guo and Hayward, Caroline and Zemunik, Tatijana and Huffman, Jennifer and Yengo, Loic and Zhao, Jing Hua and Demirkan, Ayse and Feitosa, Mary F and Liu, Xuan and Malerba, Giovanni and Lopez, Lorna M and van der Harst, Pim and Li, Xinzhong and Kleber, Marcus E and Hicks, Andrew A and Nolte, Ilja M and Johansson, Asa and Murgia, Federico and Wild, Sarah H and Bakker, Stephan J L and Peden, John F and Dehghan, Abbas and Steri, Maristella and Tenesa, Albert and Lagou, Vasiliki and Salo, Perttu and Mangino, Massimo and Rose, Lynda M and Lehtim{\"a}ki, Terho and Woodward, Owen M and Okada, Yukinori and Tin, Adrienne and M{\"u}ller, Christian and Oldmeadow, Christopher and Putku, Margus and Czamara, Darina and Kraft, Peter and Frogheri, Laura and Thun, Gian Andri and Grotevendt, Anne and Gislason, Gauti Kjartan and Harris, Tamara B and Launer, Lenore J and McArdle, Patrick and Shuldiner, Alan R and Boerwinkle, Eric and Coresh, Josef and Schmidt, Helena and Schallert, Michael and Martin, Nicholas G and Montgomery, Grant W and Kubo, Michiaki and Nakamura, Yusuke and Tanaka, Toshihiro and Munroe, Patricia B and Samani, Nilesh J and Jacobs, David R and Liu, Kiang and D{\textquoteright}Adamo, Pio and Ulivi, Sheila and Rotter, Jerome I and Psaty, Bruce M and Vollenweider, Peter and Waeber, G{\'e}rard and Campbell, Susan and Devuyst, Olivier and Navarro, Pau and Kolcic, Ivana and Hastie, Nicholas and Balkau, Beverley and Froguel, Philippe and Esko, T{\~o}nu and Salumets, Andres and Khaw, Kay Tee and Langenberg, Claudia and Wareham, Nicholas J and Isaacs, Aaron and Kraja, Aldi and Zhang, Qunyuan and Wild, Philipp S and Scott, Rodney J and Holliday, Elizabeth G and Org, Elin and Viigimaa, Margus and Bandinelli, Stefania and Metter, Jeffrey E and Lupo, Antonio and Trabetti, Elisabetta and Sorice, Rossella and D{\"o}ring, Angela and Lattka, Eva and Strauch, Konstantin and Theis, Fabian and Waldenberger, Melanie and Wichmann, H-Erich and Davies, Gail and Gow, Alan J and Bruinenberg, Marcel and Stolk, Ronald P and Kooner, Jaspal S and Zhang, Weihua and Winkelmann, Bernhard R and Boehm, Bernhard O and Lucae, Susanne and Penninx, Brenda W and Smit, Johannes H and Curhan, Gary and Mudgal, Poorva and Plenge, Robert M and Portas, Laura and Persico, Ivana and Kirin, Mirna and Wilson, James F and Mateo Leach, Irene and van Gilst, Wiek H and Goel, Anuj and Ongen, Halit and Hofman, Albert and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Imboden, Medea and von Eckardstein, Arnold and Cucca, Francesco and Nagaraja, Ramaiah and Piras, Maria Grazia and Nauck, Matthias and Schurmann, Claudia and Budde, Kathrin and Ernst, Florian and Farrington, Susan M and Theodoratou, Evropi and Prokopenko, Inga and Stumvoll, Michael and Jula, Antti and Perola, Markus and Salomaa, Veikko and Shin, So-Youn and Spector, Tim D and Sala, Cinzia and Ridker, Paul M and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Hengstenberg, Christian and Nelson, Christopher P and Meschia, James F and Nalls, Michael A and Sharma, Pankaj and Singleton, Andrew B and Kamatani, Naoyuki and Zeller, Tanja and Burnier, Michel and Attia, John and Laan, Maris and Klopp, Norman and Hillege, Hans L and Kloiber, Stefan and Choi, Hyon and Pirastu, Mario and Tore, Silvia and Probst-Hensch, Nicole M and V{\"o}lzke, Henry and Gudnason, Vilmundur and Parsa, Afshin and Schmidt, Reinhold and Whitfield, John B and Fornage, Myriam and Gasparini, Paolo and Siscovick, David S and Polasek, Ozren and Campbell, Harry and Rudan, Igor and Bouatia-Naji, Nabila and Metspalu, Andres and Loos, Ruth J F and van Duijn, Cornelia M and Borecki, Ingrid B and Ferrucci, Luigi and Gambaro, Giovanni and Deary, Ian J and Wolffenbuttel, Bruce H R and Chambers, John C and M{\"a}rz, Winfried and Pramstaller, Peter P and Snieder, Harold and Gyllensten, Ulf and Wright, Alan F and Navis, Gerjan and Watkins, Hugh and Witteman, Jacqueline C M and Sanna, Serena and Schipf, Sabine and Dunlop, Malcolm G and T{\"o}njes, Anke and Ripatti, Samuli and Soranzo, Nicole and Toniolo, Daniela and Chasman, Daniel I and Raitakari, Olli and Kao, W H Linda and Ciullo, Marina and Fox, Caroline S and Caulfield, Mark and Bochud, Murielle and Gieger, Christian} } @article {6152, title = {Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 May}, pages = {501-12}, abstract = {

Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.

}, keywords = {Anthropometry, Body Height, Body Mass Index, Case-Control Studies, European Continental Ancestry Group, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Meta-Analysis as Topic, Obesity, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Waist-Hip Ratio}, issn = {1546-1718}, doi = {10.1038/ng.2606}, author = {Berndt, Sonja I and Gustafsson, Stefan and M{\"a}gi, Reedik and Ganna, Andrea and Wheeler, Eleanor and Feitosa, Mary F and Justice, Anne E and Monda, Keri L and Croteau-Chonka, Damien C and Day, Felix R and Esko, T{\~o}nu and Fall, Tove and Ferreira, Teresa and Gentilini, Davide and Jackson, Anne U and Luan, Jian{\textquoteright}an and Randall, Joshua C and Vedantam, Sailaja and Willer, Cristen J and Winkler, Thomas W and Wood, Andrew R and Workalemahu, Tsegaselassie and Hu, Yi-Juan and Lee, Sang Hong and Liang, Liming and Lin, Dan-Yu and Min, Josine L and Neale, Benjamin M and Thorleifsson, Gudmar and Yang, Jian and Albrecht, Eva and Amin, Najaf and Bragg-Gresham, Jennifer L and Cadby, Gemma and den Heijer, Martin and Eklund, Niina and Fischer, Krista and Goel, Anuj and Hottenga, Jouke-Jan and Huffman, Jennifer E and Jarick, Ivonne and Johansson, Asa and Johnson, Toby and Kanoni, Stavroula and Kleber, Marcus E and K{\"o}nig, Inke R and Kristiansson, Kati and Kutalik, Zolt{\'a}n and Lamina, Claudia and Lecoeur, C{\'e}cile and Li, Guo and Mangino, Massimo and McArdle, Wendy L and Medina-G{\'o}mez, Carolina and M{\"u}ller-Nurasyid, Martina and Ngwa, Julius S and Nolte, Ilja M and Paternoster, Lavinia and Pechlivanis, Sonali and Perola, Markus and Peters, Marjolein J and Preuss, Michael and Rose, Lynda M and Shi, Jianxin and Shungin, Dmitry and Smith, Albert Vernon and Strawbridge, Rona J and Surakka, Ida and Teumer, Alexander and Trip, Mieke D and Tyrer, Jonathan and van Vliet-Ostaptchouk, Jana V and Vandenput, Liesbeth and Waite, Lindsay L and Zhao, Jing Hua and Absher, Devin and Asselbergs, Folkert W and Atalay, Mustafa and Attwood, Antony P and Balmforth, Anthony J and Basart, Hanneke and Beilby, John and Bonnycastle, Lori L and Brambilla, Paolo and Bruinenberg, Marcel and Campbell, Harry and Chasman, Daniel I and Chines, Peter S and Collins, Francis S and Connell, John M and Cookson, William O and de Faire, Ulf and de Vegt, Femmie and Dei, Mariano and Dimitriou, Maria and Edkins, Sarah and Estrada, Karol and Evans, David M and Farrall, Martin and Ferrario, Marco M and Ferrieres, Jean and Franke, Lude and Frau, Francesca and Gejman, Pablo V and Grallert, Harald and Gr{\"o}nberg, Henrik and Gudnason, Vilmundur and Hall, Alistair S and Hall, Per and Hartikainen, Anna-Liisa and Hayward, Caroline and Heard-Costa, Nancy L and Heath, Andrew C and Hebebrand, Johannes and Homuth, Georg and Hu, Frank B and Hunt, Sarah E and Hypp{\"o}nen, Elina and Iribarren, Carlos and Jacobs, Kevin B and Jansson, John-Olov and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Kee, Frank and Khaw, Kay-Tee and Kivimaki, Mika and Koenig, Wolfgang and Kraja, Aldi T and Kumari, Meena and Kuulasmaa, Kari and Kuusisto, Johanna and Laitinen, Jaana H and Lakka, Timo A and Langenberg, Claudia and Launer, Lenore J and Lind, Lars and Lindstr{\"o}m, Jaana and Liu, Jianjun and Liuzzi, Antonio and Lokki, Marja-Liisa and Lorentzon, Mattias and Madden, Pamela A and Magnusson, Patrik K and Manunta, Paolo and Marek, Diana and M{\"a}rz, Winfried and Mateo Leach, Irene and McKnight, Barbara and Medland, Sarah E and Mihailov, Evelin and Milani, Lili and Montgomery, Grant W and Mooser, Vincent and M{\"u}hleisen, Thomas W and Munroe, Patricia B and Musk, Arthur W and Narisu, Narisu and Navis, Gerjan and Nicholson, George and Nohr, Ellen A and Ong, Ken K and Oostra, Ben A and Palmer, Colin N A and Palotie, Aarno and Peden, John F and Pedersen, Nancy and Peters, Annette and Polasek, Ozren and Pouta, Anneli and Pramstaller, Peter P and Prokopenko, Inga and P{\"u}tter, Carolin and Radhakrishnan, Aparna and Raitakari, Olli and Rendon, Augusto and Rivadeneira, Fernando and Rudan, Igor and Saaristo, Timo E and Sambrook, Jennifer G and Sanders, Alan R and Sanna, Serena and Saramies, Jouko and Schipf, Sabine and Schreiber, Stefan and Schunkert, Heribert and Shin, So-Youn and Signorini, Stefano and Sinisalo, Juha and Skrobek, Boris and Soranzo, Nicole and Stan{\v c}{\'a}kov{\'a}, Alena and Stark, Klaus and Stephens, Jonathan C and Stirrups, Kathleen and Stolk, Ronald P and Stumvoll, Michael and Swift, Amy J and Theodoraki, Eirini V and Thorand, Barbara and Tr{\'e}gou{\"e}t, David-Alexandre and Tremoli, Elena and van der Klauw, Melanie M and van Meurs, Joyce B J and Vermeulen, Sita H and Viikari, Jorma and Virtamo, Jarmo and Vitart, Veronique and Waeber, G{\'e}rard and Wang, Zhaoming and Widen, Elisabeth and Wild, Sarah H and Willemsen, Gonneke and Winkelmann, Bernhard R and Witteman, Jacqueline C M and Wolffenbuttel, Bruce H R and Wong, Andrew and Wright, Alan F and Zillikens, M Carola and Amouyel, Philippe and Boehm, Bernhard O and Boerwinkle, Eric and Boomsma, Dorret I and Caulfield, Mark J and Chanock, Stephen J and Cupples, L Adrienne and Cusi, Daniele and Dedoussis, George V and Erdmann, Jeanette and Eriksson, Johan G and Franks, Paul W and Froguel, Philippe and Gieger, Christian and Gyllensten, Ulf and Hamsten, Anders and Harris, Tamara B and Hengstenberg, Christian and Hicks, Andrew A and Hingorani, Aroon and Hinney, Anke and Hofman, Albert and Hovingh, Kees G and Hveem, Kristian and Illig, Thomas and Jarvelin, Marjo-Riitta and J{\"o}ckel, Karl-Heinz and Keinanen-Kiukaanniemi, Sirkka M and Kiemeney, Lambertus A and Kuh, Diana and Laakso, Markku and Lehtim{\"a}ki, Terho and Levinson, Douglas F and Martin, Nicholas G and Metspalu, Andres and Morris, Andrew D and Nieminen, Markku S and Nj{\o}lstad, Inger and Ohlsson, Claes and Oldehinkel, Albertine J and Ouwehand, Willem H and Palmer, Lyle J and Penninx, Brenda and Power, Chris and Province, Michael A and Psaty, Bruce M and Qi, Lu and Rauramaa, Rainer and Ridker, Paul M and Ripatti, Samuli and Salomaa, Veikko and Samani, Nilesh J and Snieder, Harold and S{\o}rensen, Thorkild I A and Spector, Timothy D and Stefansson, Kari and T{\"o}njes, Anke and Tuomilehto, Jaakko and Uitterlinden, Andr{\'e} G and Uusitupa, Matti and van der Harst, Pim and Vollenweider, Peter and Wallaschofski, Henri and Wareham, Nicholas J and Watkins, Hugh and Wichmann, H-Erich and Wilson, James F and Abecasis, Goncalo R and Assimes, Themistocles L and Barroso, In{\^e}s and Boehnke, Michael and Borecki, Ingrid B and Deloukas, Panos and Fox, Caroline S and Frayling, Timothy and Groop, Leif C and Haritunian, Talin and Heid, Iris M and Hunter, David and Kaplan, Robert C and Karpe, Fredrik and Moffatt, Miriam F and Mohlke, Karen L and O{\textquoteright}Connell, Jeffrey R and Pawitan, Yudi and Schadt, Eric E and Schlessinger, David and Steinthorsdottir, Valgerdur and Strachan, David P and Thorsteinsdottir, Unnur and van Duijn, Cornelia M and Visscher, Peter M and Di Blasio, Anna Maria and Hirschhorn, Joel N and Lindgren, Cecilia M and Morris, Andrew P and Meyre, David and Scherag, Andre and McCarthy, Mark I and Speliotes, Elizabeth K and North, Kari E and Loos, Ruth J F and Ingelsson, Erik} } @article {8015, title = {Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 Jun}, pages = {621-31}, abstract = {

Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate-increasing and heart rate-decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into the mechanisms regulating heart rate and identify new therapeutic targets.

}, keywords = {Animals, Arrhythmias, Cardiac, Gene Frequency, Genetic Loci, Genome-Wide Association Study, Heart Conduction System, Heart Rate, Humans, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide, Quantitative Trait Loci}, issn = {1546-1718}, doi = {10.1038/ng.2610}, author = {den Hoed, Marcel and Eijgelsheim, Mark and Esko, T{\~o}nu and Brundel, Bianca J J M and Peal, David S and Evans, David M and Nolte, Ilja M and Segr{\`e}, Ayellet V and Holm, Hilma and Handsaker, Robert E and Westra, Harm-Jan and Johnson, Toby and Isaacs, Aaron and Yang, Jian and Lundby, Alicia and Zhao, Jing Hua and Kim, Young Jin and Go, Min Jin and Almgren, Peter and Bochud, Murielle and Boucher, Gabrielle and Cornelis, Marilyn C and Gudbjartsson, Daniel and Hadley, David and van der Harst, Pim and Hayward, Caroline and den Heijer, Martin and Igl, Wilmar and Jackson, Anne U and Kutalik, Zolt{\'a}n and Luan, Jian{\textquoteright}an and Kemp, John P and Kristiansson, Kati and Ladenvall, Claes and Lorentzon, Mattias and Montasser, May E and Njajou, Omer T and O{\textquoteright}Reilly, Paul F and Padmanabhan, Sandosh and St Pourcain, Beate and Rankinen, Tuomo and Salo, Perttu and Tanaka, Toshiko and Timpson, Nicholas J and Vitart, Veronique and Waite, Lindsay and Wheeler, William and Zhang, Weihua and Draisma, Harmen H M and Feitosa, Mary F and Kerr, Kathleen F and Lind, Penelope A and Mihailov, Evelin and Onland-Moret, N Charlotte and Song, Ci and Weedon, Michael N and Xie, Weijia and Yengo, Loic and Absher, Devin and Albert, Christine M and Alonso, Alvaro and Arking, Dan E and de Bakker, Paul I W and Balkau, Beverley and Barlassina, Cristina and Benaglio, Paola and Bis, Joshua C and Bouatia-Naji, Nabila and Brage, S{\o}ren and Chanock, Stephen J and Chines, Peter S and Chung, Mina and Darbar, Dawood and Dina, Christian and D{\"o}rr, Marcus and Elliott, Paul and Felix, Stephan B and Fischer, Krista and Fuchsberger, Christian and de Geus, Eco J C and Goyette, Philippe and Gudnason, Vilmundur and Harris, Tamara B and Hartikainen, Anna-Liisa and Havulinna, Aki S and Heckbert, Susan R and Hicks, Andrew A and Hofman, Albert and Holewijn, Suzanne and Hoogstra-Berends, Femke and Hottenga, Jouke-Jan and Jensen, Majken K and Johansson, Asa and Junttila, Juhani and K{\"a}{\"a}b, Stefan and Kanon, Bart and Ketkar, Shamika and Khaw, Kay-Tee and Knowles, Joshua W and Kooner, Angrad S and Kors, Jan A and Kumari, Meena and Milani, Lili and Laiho, P{\"a}ivi and Lakatta, Edward G and Langenberg, Claudia and Leusink, Maarten and Liu, Yongmei and Luben, Robert N and Lunetta, Kathryn L and Lynch, Stacey N and Markus, Marcello R P and Marques-Vidal, Pedro and Mateo Leach, Irene and McArdle, Wendy L and McCarroll, Steven A and Medland, Sarah E and Miller, Kathryn A and Montgomery, Grant W and Morrison, Alanna C and M{\"u}ller-Nurasyid, Martina and Navarro, Pau and Nelis, Mari and O{\textquoteright}Connell, Jeffrey R and O{\textquoteright}Donnell, Christopher J and Ong, Ken K and Newman, Anne B and Peters, Annette and Polasek, Ozren and Pouta, Anneli and Pramstaller, Peter P and Psaty, Bruce M and Rao, Dabeeru C and Ring, Susan M and Rossin, Elizabeth J and Rudan, Diana and Sanna, Serena and Scott, Robert A and Sehmi, Jaban S and Sharp, Stephen and Shin, Jordan T and Singleton, Andrew B and Smith, Albert V and Soranzo, Nicole and Spector, Tim D and Stewart, Chip and Stringham, Heather M and Tarasov, Kirill V and Uitterlinden, Andr{\'e} G and Vandenput, Liesbeth and Hwang, Shih-Jen and Whitfield, John B and Wijmenga, Cisca and Wild, Sarah H and Willemsen, Gonneke and Wilson, James F and Witteman, Jacqueline C M and Wong, Andrew and Wong, Quenna and Jamshidi, Yalda and Zitting, Paavo and Boer, Jolanda M A and Boomsma, Dorret I and Borecki, Ingrid B and van Duijn, Cornelia M and Ekelund, Ulf and Forouhi, Nita G and Froguel, Philippe and Hingorani, Aroon and Ingelsson, Erik and Kivimaki, Mika and Kronmal, Richard A and Kuh, Diana and Lind, Lars and Martin, Nicholas G and Oostra, Ben A and Pedersen, Nancy L and Quertermous, Thomas and Rotter, Jerome I and van der Schouw, Yvonne T and Verschuren, W M Monique and Walker, Mark and Albanes, Demetrius and Arnar, David O and Assimes, Themistocles L and Bandinelli, Stefania and Boehnke, Michael and de Boer, Rudolf A and Bouchard, Claude and Caulfield, W L Mark and Chambers, John C and Curhan, Gary and Cusi, Daniele and Eriksson, Johan and Ferrucci, Luigi and van Gilst, Wiek H and Glorioso, Nicola and de Graaf, Jacqueline and Groop, Leif and Gyllensten, Ulf and Hsueh, Wen-Chi and Hu, Frank B and Huikuri, Heikki V and Hunter, David J and Iribarren, Carlos and Isomaa, Bo and Jarvelin, Marjo-Riitta and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kiemeney, Lambertus A and van der Klauw, Melanie M and Kooner, Jaspal S and Kraft, Peter and Iacoviello, Licia and Lehtim{\"a}ki, Terho and Lokki, Marja-Liisa L and Mitchell, Braxton D and Navis, Gerjan and Nieminen, Markku S and Ohlsson, Claes and Poulter, Neil R and Qi, Lu and Raitakari, Olli T and Rimm, Eric B and Rioux, John D and Rizzi, Federica and Rudan, Igor and Salomaa, Veikko and Sever, Peter S and Shields, Denis C and Shuldiner, Alan R and Sinisalo, Juha and Stanton, Alice V and Stolk, Ronald P and Strachan, David P and Tardif, Jean-Claude and Thorsteinsdottir, Unnur and Tuomilehto, Jaako and van Veldhuisen, Dirk J and Virtamo, Jarmo and Viikari, Jorma and Vollenweider, Peter and Waeber, G{\'e}rard and Widen, Elisabeth and Cho, Yoon Shin and Olsen, Jesper V and Visscher, Peter M and Willer, Cristen and Franke, Lude and Erdmann, Jeanette and Thompson, John R and Pfeufer, Arne and Sotoodehnia, Nona and Newton-Cheh, Christopher and Ellinor, Patrick T and Stricker, Bruno H Ch and Metspalu, Andres and Perola, Markus and Beckmann, Jacques S and Smith, George Davey and Stefansson, Kari and Wareham, Nicholas J and Munroe, Patricia B and Sibon, Ody C M and Milan, David J and Snieder, Harold and Samani, Nilesh J and Loos, Ruth J F} } @article {6028, title = {Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits.}, journal = {PLoS Genet}, volume = {9}, year = {2013}, month = {2013 Jun}, pages = {e1003500}, abstract = {

Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5\%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5{\texttimes}10(-8)), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.

}, keywords = {Anthropometry, Body Height, Body Mass Index, Body Weight, Body Weights and Measures, Female, Genetic Loci, Genome, Human, Genome-Wide Association Study, Humans, Male, Polymorphism, Single Nucleotide, Sex Characteristics, Waist Circumference, Waist-Hip Ratio}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003500}, author = {Randall, Joshua C and Winkler, Thomas W and Kutalik, Zolt{\'a}n and Berndt, Sonja I and Jackson, Anne U and Monda, Keri L and Kilpel{\"a}inen, Tuomas O and Esko, T{\~o}nu and M{\"a}gi, Reedik and Li, Shengxu and Workalemahu, Tsegaselassie and Feitosa, Mary F and Croteau-Chonka, Damien C and Day, Felix R and Fall, Tove and Ferreira, Teresa and Gustafsson, Stefan and Locke, Adam E and Mathieson, Iain and Scherag, Andre and Vedantam, Sailaja and Wood, Andrew R and Liang, Liming and Steinthorsdottir, Valgerdur and Thorleifsson, Gudmar and Dermitzakis, Emmanouil T and Dimas, Antigone S and Karpe, Fredrik and Min, Josine L and Nicholson, George and Clegg, Deborah J and Person, Thomas and Krohn, Jon P and Bauer, Sabrina and Buechler, Christa and Eisinger, Kristina and Bonnefond, Am{\'e}lie and Froguel, Philippe and Hottenga, Jouke-Jan and Prokopenko, Inga and Waite, Lindsay L and Harris, Tamara B and Smith, Albert Vernon and Shuldiner, Alan R and McArdle, Wendy L and Caulfield, Mark J and Munroe, Patricia B and Gr{\"o}nberg, Henrik and Chen, Yii-Der Ida and Li, Guo and Beckmann, Jacques S and Johnson, Toby and Thorsteinsdottir, Unnur and Teder-Laving, Maris and Khaw, Kay-Tee and Wareham, Nicholas J and Zhao, Jing Hua and Amin, Najaf and Oostra, Ben A and Kraja, Aldi T and Province, Michael A and Cupples, L Adrienne and Heard-Costa, Nancy L and Kaprio, Jaakko and Ripatti, Samuli and Surakka, Ida and Collins, Francis S and Saramies, Jouko and Tuomilehto, Jaakko and Jula, Antti and Salomaa, Veikko and Erdmann, Jeanette and Hengstenberg, Christian and Loley, Christina and Schunkert, Heribert and Lamina, Claudia and Wichmann, H Erich and Albrecht, Eva and Gieger, Christian and Hicks, Andrew A and Johansson, Asa and Pramstaller, Peter P and Kathiresan, Sekar and Speliotes, Elizabeth K and Penninx, Brenda and Hartikainen, Anna-Liisa and Jarvelin, Marjo-Riitta and Gyllensten, Ulf and Boomsma, Dorret I and Campbell, Harry and Wilson, James F and Chanock, Stephen J and Farrall, Martin and Goel, Anuj and Medina-G{\'o}mez, Carolina and Rivadeneira, Fernando and Estrada, Karol and Uitterlinden, Andr{\'e} G and Hofman, Albert and Zillikens, M Carola and den Heijer, Martin and Kiemeney, Lambertus A and Maschio, Andrea and Hall, Per and Tyrer, Jonathan and Teumer, Alexander and V{\"o}lzke, Henry and Kovacs, Peter and T{\"o}njes, Anke and Mangino, Massimo and Spector, Tim D and Hayward, Caroline and Rudan, Igor and Hall, Alistair S and Samani, Nilesh J and Attwood, Antony Paul and Sambrook, Jennifer G and Hung, Joseph and Palmer, Lyle J and Lokki, Marja-Liisa and Sinisalo, Juha and Boucher, Gabrielle and Huikuri, Heikki and Lorentzon, Mattias and Ohlsson, Claes and Eklund, Niina and Eriksson, Johan G and Barlassina, Cristina and Rivolta, Carlo and Nolte, Ilja M and Snieder, Harold and van der Klauw, Melanie M and van Vliet-Ostaptchouk, Jana V and Gejman, Pablo V and Shi, Jianxin and Jacobs, Kevin B and Wang, Zhaoming and Bakker, Stephan J L and Mateo Leach, Irene and Navis, Gerjan and van der Harst, Pim and Martin, Nicholas G and Medland, Sarah E and Montgomery, Grant W and Yang, Jian and Chasman, Daniel I and Ridker, Paul M and Rose, Lynda M and Lehtim{\"a}ki, Terho and Raitakari, Olli and Absher, Devin and Iribarren, Carlos and Basart, Hanneke and Hovingh, Kees G and Hypp{\"o}nen, Elina and Power, Chris and Anderson, Denise and Beilby, John P and Hui, Jennie and Jolley, Jennifer and Sager, Hendrik and Bornstein, Stefan R and Schwarz, Peter E H and Kristiansson, Kati and Perola, Markus and Lindstr{\"o}m, Jaana and Swift, Amy J and Uusitupa, Matti and Atalay, Mustafa and Lakka, Timo A and Rauramaa, Rainer and Bolton, Jennifer L and Fowkes, Gerry and Fraser, Ross M and Price, Jackie F and Fischer, Krista and Krjut{\r a} Kov, Kaarel and Metspalu, Andres and Mihailov, Evelin and Langenberg, Claudia and Luan, Jian{\textquoteright}an and Ong, Ken K and Chines, Peter S and Keinanen-Kiukaanniemi, Sirkka M and Saaristo, Timo E and Edkins, Sarah and Franks, Paul W and Hallmans, G{\"o}ran and Shungin, Dmitry and Morris, Andrew David and Palmer, Colin N A and Erbel, Raimund and Moebus, Susanne and N{\"o}then, Markus M and Pechlivanis, Sonali and Hveem, Kristian and Narisu, Narisu and Hamsten, Anders and Humphries, Steve E and Strawbridge, Rona J and Tremoli, Elena and Grallert, Harald and Thorand, Barbara and Illig, Thomas and Koenig, Wolfgang and M{\"u}ller-Nurasyid, Martina and Peters, Annette and Boehm, Bernhard O and Kleber, Marcus E and M{\"a}rz, Winfried and Winkelmann, Bernhard R and Kuusisto, Johanna and Laakso, Markku and Arveiler, Dominique and Cesana, Giancarlo and Kuulasmaa, Kari and Virtamo, Jarmo and Yarnell, John W G and Kuh, Diana and Wong, Andrew and Lind, Lars and de Faire, Ulf and Gigante, Bruna and Magnusson, Patrik K E and Pedersen, Nancy L and Dedoussis, George and Dimitriou, Maria and Kolovou, Genovefa and Kanoni, Stavroula and Stirrups, Kathleen and Bonnycastle, Lori L and Nj{\o}lstad, Inger and Wilsgaard, Tom and Ganna, Andrea and Rehnberg, Emil and Hingorani, Aroon and Kivimaki, Mika and Kumari, Meena and Assimes, Themistocles L and Barroso, In{\^e}s and Boehnke, Michael and Borecki, Ingrid B and Deloukas, Panos and Fox, Caroline S and Frayling, Timothy and Groop, Leif C and Haritunians, Talin and Hunter, David and Ingelsson, Erik and Kaplan, Robert and Mohlke, Karen L and O{\textquoteright}Connell, Jeffrey R and Schlessinger, David and Strachan, David P and Stefansson, Kari and van Duijn, Cornelia M and Abecasis, Goncalo R and McCarthy, Mark I and Hirschhorn, Joel N and Qi, Lu and Loos, Ruth J F and Lindgren, Cecilia M and North, Kari E and Heid, Iris M} } @article {6569, title = {Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data.}, journal = {BMJ}, volume = {349}, year = {2014}, month = {2014 Jul 10}, pages = {g4164}, abstract = {

OBJECTIVE: To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease.

DESIGN: Mendelian randomisation meta-analysis of 56 epidemiological studies.

PARTICIPANTS: 261 991 individuals of European descent, including 20 259 coronary heart disease cases and 10 164 stroke events. Data were available on ADH1B rs1229984 variant, alcohol phenotypes, and cardiovascular biomarkers.

MAIN OUTCOME MEASURES: Odds ratio for coronary heart disease and stroke associated with the ADH1B variant in all individuals and by categories of alcohol consumption.

RESULTS: Carriers of the A-allele of ADH1B rs1229984 consumed 17.2\% fewer units of alcohol per week (95\% confidence interval 15.6\% to 18.9\%), had a lower prevalence of binge drinking (odds ratio 0.78 (95\% CI 0.73 to 0.84)), and had higher abstention (odds ratio 1.27 (1.21 to 1.34)) than non-carriers. Rs1229984 A-allele carriers had lower systolic blood pressure (-0.88 (-1.19 to -0.56) mm Hg), interleukin-6 levels (-5.2\% (-7.8 to -2.4\%)), waist circumference (-0.3 (-0.6 to -0.1) cm), and body mass index (-0.17 (-0.24 to -0.10) kg/m(2)). Rs1229984 A-allele carriers had lower odds of coronary heart disease (odds ratio 0.90 (0.84 to 0.96)). The protective association of the ADH1B rs1229984 A-allele variant remained the same across all categories of alcohol consumption (P=0.83 for heterogeneity). Although no association of rs1229984 was identified with the combined subtypes of stroke, carriers of the A-allele had lower odds of ischaemic stroke (odds ratio 0.83 (0.72 to 0.95)).

CONCLUSIONS: Individuals with a genetic variant associated with non-drinking and lower alcohol consumption had a more favourable cardiovascular profile and a reduced risk of coronary heart disease than those without the genetic variant. This suggests that reduction of alcohol consumption, even for light to moderate drinkers, is beneficial for cardiovascular health.

}, keywords = {Adult, Aged, Alcohol Dehydrogenase, Alcohol Drinking, Biomarkers, Coronary Disease, Female, Genetic Markers, Genotype, Humans, Male, Mendelian Randomization Analysis, Middle Aged, Models, Statistical, Polymorphism, Single Nucleotide, Stroke}, issn = {1756-1833}, doi = {10.1136/bmj.g4164}, author = {Holmes, Michael V and Dale, Caroline E and Zuccolo, Luisa and Silverwood, Richard J and Guo, Yiran and Ye, Zheng and Prieto-Merino, David and Dehghan, Abbas and Trompet, Stella and Wong, Andrew and Cavadino, Alana and Drogan, Dagmar and Padmanabhan, Sandosh and Li, Shanshan and Yesupriya, Ajay and Leusink, Maarten and Sundstr{\"o}m, Johan and Hubacek, Jaroslav A and Pikhart, Hynek and Swerdlow, Daniel I and Panayiotou, Andrie G and Borinskaya, Svetlana A and Finan, Chris and Shah, Sonia and Kuchenbaecker, Karoline B and Shah, Tina and Engmann, Jorgen and Folkersen, Lasse and Eriksson, Per and Ricceri, Fulvio and Melander, Olle and Sacerdote, Carlotta and Gamble, Dale M and Rayaprolu, Sruti and Ross, Owen A and McLachlan, Stela and Vikhireva, Olga and Sluijs, Ivonne and Scott, Robert A and Adamkova, Vera and Flicker, Leon and Bockxmeer, Frank M van and Power, Christine and Marques-Vidal, Pedro and Meade, Tom and Marmot, Michael G and Ferro, Jose M and Paulos-Pinheiro, Sofia and Humphries, Steve E and Talmud, Philippa J and Mateo Leach, Irene and Verweij, Niek and Linneberg, Allan and Skaaby, Tea and Doevendans, Pieter A and Cramer, Maarten J and van der Harst, Pim and Klungel, Olaf H and Dowling, Nicole F and Dominiczak, Anna F and Kumari, Meena and Nicolaides, Andrew N and Weikert, Cornelia and Boeing, Heiner and Ebrahim, Shah and Gaunt, Tom R and Price, Jackie F and Lannfelt, Lars and Peasey, Anne and Kubinova, Ruzena and Pajak, Andrzej and Malyutina, Sofia and Voevoda, Mikhail I and Tamosiunas, Abdonas and Maitland-van der Zee, Anke H and Norman, Paul E and Hankey, Graeme J and Bergmann, Manuela M and Hofman, Albert and Franco, Oscar H and Cooper, Jackie and Palmen, Jutta and Spiering, Wilko and de Jong, Pim A and Kuh, Diana and Hardy, Rebecca and Uitterlinden, Andr{\'e} G and Ikram, M Arfan and Ford, Ian and Hypp{\"o}nen, Elina and Almeida, Osvaldo P and Wareham, Nicholas J and Khaw, Kay-Tee and Hamsten, Anders and Husemoen, Lise Lotte N and Tj{\o}nneland, Anne and Tolstrup, Janne S and Rimm, Eric and Beulens, Joline W J and Verschuren, W M Monique and Onland-Moret, N Charlotte and Hofker, Marten H and Wannamethee, S Goya and Whincup, Peter H and Morris, Richard and Vicente, Astrid M and Watkins, Hugh and Farrall, Martin and Jukema, J Wouter and Meschia, James and Cupples, L Adrienne and Sharp, Stephen J and Fornage, Myriam and Kooperberg, Charles and LaCroix, Andrea Z and Dai, James Y and Lanktree, Matthew B and Siscovick, David S and Jorgenson, Eric and Spring, Bonnie and Coresh, Josef and Li, Yun R and Buxbaum, Sarah G and Schreiner, Pamela J and Ellison, R Curtis and Tsai, Michael Y and Patel, Sanjay R and Redline, Susan and Johnson, Andrew D and Hoogeveen, Ron C and Hakonarson, Hakon and Rotter, Jerome I and Boerwinkle, Eric and de Bakker, Paul I W and Kivimaki, Mika and Asselbergs, Folkert W and Sattar, Naveed and Lawlor, Debbie A and Whittaker, John and Davey Smith, George and Mukamal, Kenneth and Psaty, Bruce M and Wilson, James G and Lange, Leslie A and Hamidovic, Ajna and Hingorani, Aroon D and Nordestgaard, B{\o}rge G and Bobak, Martin and Leon, David A and Langenberg, Claudia and Palmer, Tom M and Reiner, Alex P and Keating, Brendan J and Dudbridge, Frank and Casas, Juan P} } @article {6246, title = {Gender and telomere length: systematic review and meta-analysis.}, journal = {Exp Gerontol}, volume = {51}, year = {2014}, month = {2014 Mar}, pages = {15-27}, abstract = {

BACKGROUND: It is widely believed that females have longer telomeres than males, although results from studies have been contradictory.

METHODS: We carried out a systematic review and meta-analyses to test the hypothesis that in humans, females have longer telomeres than males and that this association becomes stronger with increasing age. Searches were conducted in EMBASE and MEDLINE (by November 2009) and additional datasets were obtained from study investigators. Eligible observational studies measured telomeres for both females and males of any age, had a minimum sample size of 100 and included participants not part of a diseased group. We calculated summary estimates using random-effects meta-analyses. Heterogeneity between studies was investigated using sub-group analysis and meta-regression.

RESULTS: Meta-analyses from 36 cohorts (36,230 participants) showed that on average females had longer telomeres than males (standardised difference in telomere length between females and males 0.090, 95\% CI 0.015, 0.166; age-adjusted). There was little evidence that these associations varied by age group (p=1.00) or cell type (p=0.29). However, the size of this difference did vary by measurement methods, with only Southern blot but neither real-time PCR nor Flow-FISH showing a significant difference. This difference was not associated with random measurement error.

CONCLUSIONS: Telomere length is longer in females than males, although this difference was not universally found in studies that did not use Southern blot methods. Further research on explanations for the methodological differences is required.

}, keywords = {Adult, Aged, Aged, 80 and over, Aging, Female, Humans, Male, Middle Aged, Sex Factors, Telomere}, issn = {1873-6815}, doi = {10.1016/j.exger.2013.12.004}, author = {Gardner, Michael and Bann, David and Wiley, Laura and Cooper, Rachel and Hardy, Rebecca and Nitsch, Dorothea and Martin-Ruiz, Carmen and Shiels, Paul and Sayer, Avan Aihie and Barbieri, Michelangela and Bekaert, Sofie and Bischoff, Claus and Brooks-Wilson, Angela and Chen, Wei and Cooper, Cyrus and Christensen, Kaare and De Meyer, Tim and Deary, Ian and Der, Geoff and Diez Roux, Ana and Fitzpatrick, Annette and Hajat, Anjum and Halaschek-Wiener, Julius and Harris, Sarah and Hunt, Steven C and Jagger, Carol and Jeon, Hyo-Sung and Kaplan, Robert and Kimura, Masayuki and Lansdorp, Peter and Li, Changyong and Maeda, Toyoki and Mangino, Massimo and Nawrot, Tim S and Nilsson, Peter and Nordfjall, Katarina and Paolisso, Giuseppe and Ren, Fu and Riabowol, Karl and Robertson, Tony and Roos, Goran and Staessen, Jan A and Spector, Tim and Tang, Nelson and Unryn, Brad and van der Harst, Pim and Woo, Jean and Xing, Chao and Yadegarfar, Mohammad E and Park, Jae Yong and Young, Neal and Kuh, Diana and von Zglinicki, Thomas and Ben-Shlomo, Yoav} } @article {6599, title = {Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia.}, journal = {Am J Hum Genet}, volume = {95}, year = {2014}, month = {2014 Jul 03}, pages = {24-38}, abstract = {

Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p <= 5 {\texttimes} 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 {\texttimes} 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.

}, keywords = {Adolescent, Adult, Age Factors, Aged, Blood Pressure, Cohort Studies, Humans, Middle Aged, Young Adult}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2014.05.010}, author = {Simino, Jeannette and Shi, Gang and Bis, Joshua C and Chasman, Daniel I and Ehret, Georg B and Gu, Xiangjun and Guo, Xiuqing and Hwang, Shih-Jen and Sijbrands, Eric and Smith, Albert V and Verwoert, Germaine C and Bragg-Gresham, Jennifer L and Cadby, Gemma and Chen, Peng and Cheng, Ching-Yu and Corre, Tanguy and de Boer, Rudolf A and Goel, Anuj and Johnson, Toby and Khor, Chiea-Chuen and Llu{\'\i}s-Ganella, Carla and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Sim, Xueling and S{\~o}ber, Siim and van der Most, Peter J and Verweij, Niek and Zhao, Jing Hua and Amin, Najaf and Boerwinkle, Eric and Bouchard, Claude and Dehghan, Abbas and Eiriksdottir, Gudny and Elosua, Roberto and Franco, Oscar H and Gieger, Christian and Harris, Tamara B and Hercberg, Serge and Hofman, Albert and James, Alan L and Johnson, Andrew D and K{\"a}h{\"o}nen, Mika and Khaw, Kay-Tee and Kutalik, Zolt{\'a}n and Larson, Martin G and Launer, Lenore J and Li, Guo and Liu, Jianjun and Liu, Kiang and Morrison, Alanna C and Navis, Gerjan and Ong, Rick Twee-Hee and Papanicolau, George J and Penninx, Brenda W and Psaty, Bruce M and Raffel, Leslie J and Raitakari, Olli T and Rice, Kenneth and Rivadeneira, Fernando and Rose, Lynda M and Sanna, Serena and Scott, Robert A and Siscovick, David S and Stolk, Ronald P and Uitterlinden, Andr{\'e} G and Vaidya, Dhananjay and van der Klauw, Melanie M and Vasan, Ramachandran S and Vithana, Eranga Nishanthie and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Watkins, Hugh and Young, Terri L and Aung, Tin and Bochud, Murielle and Farrall, Martin and Hartman, Catharina A and Laan, Maris and Lakatta, Edward G and Lehtim{\"a}ki, Terho and Loos, Ruth J F and Lucas, Gavin and Meneton, Pierre and Palmer, Lyle J and Rettig, Rainer and Snieder, Harold and Tai, E Shyong and Teo, Yik-Ying and van der Harst, Pim and Wareham, Nicholas J and Wijmenga, Cisca and Wong, Tien Yin and Fornage, Myriam and Gudnason, Vilmundur and Levy, Daniel and Palmas, Walter and Ridker, Paul M and Rotter, Jerome I and van Duijn, Cornelia M and Witteman, Jacqueline C M and Chakravarti, Aravinda and Rao, Dabeeru C} } @article {6544, title = {Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.}, journal = {Nat Genet}, volume = {46}, year = {2014}, month = {2014 Aug}, pages = {826-36}, abstract = {

The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain \~{}8-10\% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.

}, keywords = {Adult, Aged, Arrhythmias, Cardiac, Calcium Signaling, Death, Sudden, Cardiac, Electrocardiography, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Heart Ventricles, Humans, Long QT Syndrome, Male, Middle Aged, Myocardium, Polymorphism, Single Nucleotide}, issn = {1546-1718}, doi = {10.1038/ng.3014}, author = {Arking, Dan E and Pulit, Sara L and Crotti, Lia and van der Harst, Pim and Munroe, Patricia B and Koopmann, Tamara T and Sotoodehnia, Nona and Rossin, Elizabeth J and Morley, Michael and Wang, Xinchen and Johnson, Andrew D and Lundby, Alicia and Gudbjartsson, Daniel F and Noseworthy, Peter A and Eijgelsheim, Mark and Bradford, Yuki and Tarasov, Kirill V and D{\"o}rr, Marcus and M{\"u}ller-Nurasyid, Martina and Lahtinen, Annukka M and Nolte, Ilja M and Smith, Albert Vernon and Bis, Joshua C and Isaacs, Aaron and Newhouse, Stephen J and Evans, Daniel S and Post, Wendy S and Waggott, Daryl and Lyytik{\"a}inen, Leo-Pekka and Hicks, Andrew A and Eisele, Lewin and Ellinghaus, David and Hayward, Caroline and Navarro, Pau and Ulivi, Sheila and Tanaka, Toshiko and Tester, David J and Chatel, St{\'e}phanie and Gustafsson, Stefan and Kumari, Meena and Morris, Richard W and Naluai, {\r A}sa T and Padmanabhan, Sandosh and Kluttig, Alexander and Strohmer, Bernhard and Panayiotou, Andrie G and Torres, Maria and Knoflach, Michael and Hubacek, Jaroslav A and Slowikowski, Kamil and Raychaudhuri, Soumya and Kumar, Runjun D and Harris, Tamara B and Launer, Lenore J and Shuldiner, Alan R and Alonso, Alvaro and Bader, Joel S and Ehret, Georg and Huang, Hailiang and Kao, W H Linda and Strait, James B and Macfarlane, Peter W and Brown, Morris and Caulfield, Mark J and Samani, Nilesh J and Kronenberg, Florian and Willeit, Johann and Smith, J Gustav and Greiser, Karin H and Meyer Zu Schwabedissen, Henriette and Werdan, Karl and Carella, Massimo and Zelante, Leopoldo and Heckbert, Susan R and Psaty, Bruce M and Rotter, Jerome I and Kolcic, Ivana and Polasek, Ozren and Wright, Alan F and Griffin, Maura and Daly, Mark J and Arnar, David O and Holm, Hilma and Thorsteinsdottir, Unnur and Denny, Joshua C and Roden, Dan M and Zuvich, Rebecca L and Emilsson, Valur and Plump, Andrew S and Larson, Martin G and O{\textquoteright}Donnell, Christopher J and Yin, Xiaoyan and Bobbo, Marco and D{\textquoteright}Adamo, Adamo P and Iorio, Annamaria and Sinagra, Gianfranco and Carracedo, Angel and Cummings, Steven R and Nalls, Michael A and Jula, Antti and Kontula, Kimmo K and Marjamaa, Annukka and Oikarinen, Lasse and Perola, Markus and Porthan, Kimmo and Erbel, Raimund and Hoffmann, Per and J{\"o}ckel, Karl-Heinz and K{\"a}lsch, Hagen and N{\"o}then, Markus M and den Hoed, Marcel and Loos, Ruth J F and Thelle, Dag S and Gieger, Christian and Meitinger, Thomas and Perz, Siegfried and Peters, Annette and Prucha, Hanna and Sinner, Moritz F and Waldenberger, Melanie and de Boer, Rudolf A and Franke, Lude and van der Vleuten, Pieter A and Beckmann, Britt Maria and Martens, Eimo and Bardai, Abdennasser and Hofman, Nynke and Wilde, Arthur A M and Behr, Elijah R and Dalageorgou, Chrysoula and Giudicessi, John R and Medeiros-Domingo, Argelia and Barc, Julien and Kyndt, Florence and Probst, Vincent and Ghidoni, Alice and Insolia, Roberto and Hamilton, Robert M and Scherer, Stephen W and Brandimarto, Jeffrey and Margulies, Kenneth and Moravec, Christine E and del Greco M, Fabiola and Fuchsberger, Christian and O{\textquoteright}Connell, Jeffrey R and Lee, Wai K and Watt, Graham C M and Campbell, Harry and Wild, Sarah H and El Mokhtari, Nour E and Frey, Norbert and Asselbergs, Folkert W and Mateo Leach, Irene and Navis, Gerjan and van den Berg, Maarten P and van Veldhuisen, Dirk J and Kellis, Manolis and Krijthe, Bouwe P and Franco, Oscar H and Hofman, Albert and Kors, Jan A and Uitterlinden, Andr{\'e} G and Witteman, Jacqueline C M and Kedenko, Lyudmyla and Lamina, Claudia and Oostra, Ben A and Abecasis, Goncalo R and Lakatta, Edward G and Mulas, Antonella and Orr{\`u}, Marco and Schlessinger, David and Uda, Manuela and Markus, Marcello R P and V{\"o}lker, Uwe and Snieder, Harold and Spector, Timothy D and Arnl{\"o}v, Johan and Lind, Lars and Sundstr{\"o}m, Johan and Syv{\"a}nen, Ann-Christine and Kivimaki, Mika and K{\"a}h{\"o}nen, Mika and Mononen, Nina and Raitakari, Olli T and Viikari, Jorma S and Adamkova, Vera and Kiechl, Stefan and Brion, Maria and Nicolaides, Andrew N and Paulweber, Bernhard and Haerting, Johannes and Dominiczak, Anna F and Nyberg, Fredrik and Whincup, Peter H and Hingorani, Aroon D and Schott, Jean-Jacques and Bezzina, Connie R and Ingelsson, Erik and Ferrucci, Luigi and Gasparini, Paolo and Wilson, James F and Rudan, Igor and Franke, Andre and M{\"u}hleisen, Thomas W and Pramstaller, Peter P and Lehtim{\"a}ki, Terho J and Paterson, Andrew D and Parsa, Afshin and Liu, Yongmei and van Duijn, Cornelia M and Siscovick, David S and Gudnason, Vilmundur and Jamshidi, Yalda and Salomaa, Veikko and Felix, Stephan B and Sanna, Serena and Ritchie, Marylyn D and Stricker, Bruno H and Stefansson, Kari and Boyer, Laurie A and Cappola, Thomas P and Olsen, Jesper V and Lage, Kasper and Schwartz, Peter J and K{\"a}{\"a}b, Stefan and Chakravarti, Aravinda and Ackerman, Michael J and Pfeufer, Arne and de Bakker, Paul I W and Newton-Cheh, Christopher} } @article {6367, title = {Genome-wide association study for circulating tissue plasminogen activator levels and functional follow-up implicates endothelial STXBP5 and STX2.}, journal = {Arterioscler Thromb Vasc Biol}, volume = {34}, year = {2014}, month = {2014 May}, pages = {1093-101}, abstract = {

OBJECTIVE: Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of plasminogen to plasmin, the major enzyme responsible for endogenous fibrinolysis. In some populations, elevated plasma levels of tPA have been associated with myocardial infarction and other cardiovascular diseases. We conducted a meta-analysis of genome-wide association studies to identify novel correlates of circulating levels of tPA.

APPROACH AND RESULTS: Fourteen cohort studies with tPA measures (N=26 929) contributed to the meta-analysis. Three loci were significantly associated with circulating tPA levels (P<5.0{\texttimes}10(-8)). The first locus is on 6q24.3, with the lead single nucleotide polymorphism (SNP; rs9399599; P=2.9{\texttimes}10(-14)) within STXBP5. The second locus is on 8p11.21. The lead SNP (rs3136739; P=1.3{\texttimes}10(-9)) is intronic to POLB and <200 kb away from the tPA encoding the gene PLAT. We identified a nonsynonymous SNP (rs2020921) in modest linkage disequilibrium with rs3136739 (r(2)=0.50) within exon 5 of PLAT (P=2.0{\texttimes}10(-8)). The third locus is on 12q24.33, with the lead SNP (rs7301826; P=1.0{\texttimes}10(-9)) within intron 7 of STX2. We further found evidence for the association of lead SNPs in STXBP5 and STX2 with expression levels of the respective transcripts. In in vitro cell studies, silencing STXBP5 decreased the release of tPA from vascular endothelial cells, whereas silencing STX2 increased the tPA release. Through an in silico lookup, we found no associations of the 3 lead SNPs with coronary artery disease or stroke.

CONCLUSIONS: We identified 3 loci associated with circulating tPA levels, the PLAT region, STXBP5, and STX2. Our functional studies implicate a novel role for STXBP5 and STX2 in regulating tPA release.

}, keywords = {Aged, Cells, Cultured, Coronary Artery Disease, Endothelial Cells, Europe, Female, Gene Expression Regulation, Gene Silencing, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Middle Aged, Nerve Tissue Proteins, Phenotype, Polymorphism, Single Nucleotide, R-SNARE Proteins, Risk Factors, Stroke, Syntaxin 1, Tissue Plasminogen Activator, Transfection, United States, Up-Regulation}, issn = {1524-4636}, doi = {10.1161/ATVBAHA.113.302088}, author = {Huang, Jie and Huffman, Jennifer E and Yamakuchi, Munekazu and Yamkauchi, Munekazu and Trompet, Stella and Asselbergs, Folkert W and Sabater-Lleal, Maria and Tr{\'e}gou{\"e}t, David-Alexandre and Chen, Wei-Min and Smith, Nicholas L and Kleber, Marcus E and Shin, So-Youn and Becker, Diane M and Tang, Weihong and Dehghan, Abbas and Johnson, Andrew D and Truong, Vinh and Folkersen, Lasse and Yang, Qiong and Oudot-Mellkah, Tiphaine and Buckley, Brendan M and Moore, Jason H and Williams, Frances M K and Campbell, Harry and Silbernagel, G{\"u}nther and Vitart, Veronique and Rudan, Igor and Tofler, Geoffrey H and Navis, Gerjan J and DeStefano, Anita and Wright, Alan F and Chen, Ming-Huei and de Craen, Anton J M and Worrall, Bradford B and Rudnicka, Alicja R and Rumley, Ann and Bookman, Ebony B and Psaty, Bruce M and Chen, Fang and Keene, Keith L and Franco, Oscar H and B{\"o}hm, Bernhard O and Uitterlinden, Andr{\'e} G and Carter, Angela M and Jukema, J Wouter and Sattar, Naveed and Bis, Joshua C and Ikram, Mohammad A and Sale, Mich{\`e}le M and McKnight, Barbara and Fornage, Myriam and Ford, Ian and Taylor, Kent and Slagboom, P Eline and McArdle, Wendy L and Hsu, Fang-Chi and Franco-Cereceda, Anders and Goodall, Alison H and Yanek, Lisa R and Furie, Karen L and Cushman, Mary and Hofman, Albert and Witteman, Jacqueline C M and Folsom, Aaron R and Basu, Saonli and Matijevic, Nena and van Gilst, Wiek H and Wilson, James F and Westendorp, Rudi G J and Kathiresan, Sekar and Reilly, Muredach P and Tracy, Russell P and Polasek, Ozren and Winkelmann, Bernhard R and Grant, Peter J and Hillege, Hans L and Cambien, Francois and Stott, David J and Lowe, Gordon D and Spector, Timothy D and Meigs, James B and M{\"a}rz, Winfried and Eriksson, Per and Becker, Lewis C and Morange, Pierre-Emmanuel and Soranzo, Nicole and Williams, Scott M and Hayward, Caroline and van der Harst, Pim and Hamsten, Anders and Lowenstein, Charles J and Strachan, David P and O{\textquoteright}Donnell, Christopher J} } @article {6811, title = {Association of Cardiometabolic Multimorbidity With Mortality.}, journal = {JAMA}, volume = {314}, year = {2015}, month = {2015 Jul 7}, pages = {52-60}, abstract = {

IMPORTANCE: The prevalence of cardiometabolic multimorbidity is increasing.

OBJECTIVE: To estimate reductions in life expectancy associated with cardiometabolic multimorbidity.

DESIGN, SETTING, AND PARTICIPANTS: Age- and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689,300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128,843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499,808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates.

EXPOSURES: A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI).

MAIN OUTCOMES AND MEASURES: All-cause mortality and estimated reductions in life expectancy.

RESULTS: In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95\% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95\% CI, 2.0-2.2) in those with stroke, 2.0 (95\% CI, 1.9-2.2) in those with MI, 3.7 (95\% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95\% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95\% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95\% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy.

CONCLUSIONS AND RELEVANCE: Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity.

}, keywords = {Adult, Aged, Comorbidity, Diabetes Mellitus, Female, Humans, Life Expectancy, Male, Middle Aged, Mortality, Myocardial Infarction, Risk Factors, Stroke}, issn = {1538-3598}, doi = {10.1001/jama.2015.7008}, author = {Di Angelantonio, Emanuele and Kaptoge, Stephen and Wormser, David and Willeit, Peter and Butterworth, Adam S and Bansal, Narinder and O{\textquoteright}Keeffe, Linda M and Gao, Pei and Wood, Angela M and Burgess, Stephen and Freitag, Daniel F and Pennells, Lisa and Peters, Sanne A and Hart, Carole L and H{\r a}heim, Lise Lund and Gillum, Richard F and Nordestgaard, B{\o}rge G and Psaty, Bruce M and Yeap, Bu B and Knuiman, Matthew W and Nietert, Paul J and Kauhanen, Jussi and Salonen, Jukka T and Kuller, Lewis H and Simons, Leon A and van der Schouw, Yvonne T and Barrett-Connor, Elizabeth and Selmer, Randi and Crespo, Carlos J and Rodriguez, Beatriz and Verschuren, W M Monique and Salomaa, Veikko and Sv{\"a}rdsudd, Kurt and van der Harst, Pim and Bj{\"o}rkelund, Cecilia and Wilhelmsen, Lars and Wallace, Robert B and Brenner, Hermann and Amouyel, Philippe and Barr, Elizabeth L M and Iso, Hiroyasu and Onat, Altan and Trevisan, Maurizio and D{\textquoteright}Agostino, Ralph B and Cooper, Cyrus and Kavousi, Maryam and Welin, Lennart and Roussel, Ronan and Hu, Frank B and Sato, Shinichi and Davidson, Karina W and Howard, Barbara V and Leening, Maarten J G and Leening, Maarten and Rosengren, Annika and D{\"o}rr, Marcus and Deeg, Dorly J H and Kiechl, Stefan and Stehouwer, Coen D A and Nissinen, Aulikki and Giampaoli, Simona and Donfrancesco, Chiara and Kromhout, Daan and Price, Jackie F and Peters, Annette and Meade, Tom W and Casiglia, Edoardo and Lawlor, Debbie A and Gallacher, John and Nagel, Dorothea and Franco, Oscar H and Assmann, Gerd and Dagenais, Gilles R and Jukema, J Wouter and Sundstr{\"o}m, Johan and Woodward, Mark and Brunner, Eric J and Khaw, Kay-Tee and Wareham, Nicholas J and Whitsel, Eric A and Nj{\o}lstad, Inger and Hedblad, Bo and Wassertheil-Smoller, Sylvia and Engstr{\"o}m, Gunnar and Rosamond, Wayne D and Selvin, Elizabeth and Sattar, Naveed and Thompson, Simon G and Danesh, John} } @article {6682, title = {Genome of The Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels.}, journal = {Nat Commun}, volume = {6}, year = {2015}, month = {2015}, pages = {6065}, abstract = {

Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of The Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 {\texttimes} 10(-4)), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR.

}, keywords = {ATP-Binding Cassette Transporters, Cholesterol, Gene Frequency, Genetic Association Studies, Humans, Mutation, Missense, Netherlands}, issn = {2041-1723}, doi = {10.1038/ncomms7065}, author = {van Leeuwen, Elisabeth M and Karssen, Lennart C and Deelen, Joris and Isaacs, Aaron and Medina-G{\'o}mez, Carolina and Mbarek, Hamdi and Kanterakis, Alexandros and Trompet, Stella and Postmus, Iris and Verweij, Niek and van Enckevort, David J and Huffman, Jennifer E and White, Charles C and Feitosa, Mary F and Bartz, Traci M and Manichaikul, Ani and Joshi, Peter K and Peloso, Gina M and Deelen, Patrick and van Dijk, Freerk and Willemsen, Gonneke and de Geus, Eco J and Milaneschi, Yuri and Penninx, Brenda W J H and Francioli, Laurent C and Menelaou, Androniki and Pulit, Sara L and Rivadeneira, Fernando and Hofman, Albert and Oostra, Ben A and Franco, Oscar H and Mateo Leach, Irene and Beekman, Marian and de Craen, Anton J M and Uh, Hae-Won and Trochet, Holly and Hocking, Lynne J and Porteous, David J and Sattar, Naveed and Packard, Chris J and Buckley, Brendan M and Brody, Jennifer A and Bis, Joshua C and Rotter, Jerome I and Mychaleckyj, Josyf C and Campbell, Harry and Duan, Qing and Lange, Leslie A and Wilson, James F and Hayward, Caroline and Polasek, Ozren and Vitart, Veronique and Rudan, Igor and Wright, Alan F and Rich, Stephen S and Psaty, Bruce M and Borecki, Ingrid B and Kearney, Patricia M and Stott, David J and Adrienne Cupples, L and Jukema, J Wouter and van der Harst, Pim and Sijbrands, Eric J and Hottenga, Jouke-Jan and Uitterlinden, Andr{\'e} G and Swertz, Morris A and van Ommen, Gert-Jan B and de Bakker, Paul I W and Eline Slagboom, P and Boomsma, Dorret I and Wijmenga, Cisca and van Duijn, Cornelia M} } @article {6863, title = {HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials.}, journal = {Lancet}, volume = {385}, year = {2015}, month = {2015 Jan 24}, pages = {351-61}, abstract = {

BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target.

METHODS: We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis.

FINDINGS: Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0{\textperiodcentered}06 mmol/L (95\% CI 0{\textperiodcentered}05-0{\textperiodcentered}07) lower LDL cholesterol and higher body weight (0{\textperiodcentered}30 kg, 0{\textperiodcentered}18-0{\textperiodcentered}43), waist circumference (0{\textperiodcentered}32 cm, 0{\textperiodcentered}16-0{\textperiodcentered}47), plasma insulin concentration (1{\textperiodcentered}62\%, 0{\textperiodcentered}53-2{\textperiodcentered}72), and plasma glucose concentration (0{\textperiodcentered}23\%, 0{\textperiodcentered}02-0{\textperiodcentered}44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1{\textperiodcentered}02, 95\% CI 1{\textperiodcentered}00-1{\textperiodcentered}05); the rs12916-T allele association was consistent (1{\textperiodcentered}06, 1{\textperiodcentered}03-1{\textperiodcentered}09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0{\textperiodcentered}92 mmol/L (95\% CI 0{\textperiodcentered}18-1{\textperiodcentered}67) at 1-year of follow-up, increased bodyweight by 0{\textperiodcentered}24 kg (95\% CI 0{\textperiodcentered}10-0{\textperiodcentered}38 in all trials; 0{\textperiodcentered}33 kg, 95\% CI 0{\textperiodcentered}24-0{\textperiodcentered}42 in placebo or standard care controlled trials and -0{\textperiodcentered}15 kg, 95\% CI -0{\textperiodcentered}39 to 0{\textperiodcentered}08 in intensive-dose vs moderate-dose trials) at a mean of 4{\textperiodcentered}2 years (range 1{\textperiodcentered}9-6{\textperiodcentered}7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1{\textperiodcentered}12, 95\% CI 1{\textperiodcentered}06-1{\textperiodcentered}18 in all trials; 1{\textperiodcentered}11, 95\% CI 1{\textperiodcentered}03-1{\textperiodcentered}20 in placebo or standard care controlled trials and 1{\textperiodcentered}12, 95\% CI 1{\textperiodcentered}04-1{\textperiodcentered}22 in intensive-dose vs moderate dose trials).

INTERPRETATION: The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition.

FUNDING: The funding sources are cited at the end of the paper.

}, keywords = {Aged, Body Mass Index, Body Weight, Cholesterol, HDL, Cholesterol, LDL, Diabetes Mellitus, Type 2, Female, Genetic Testing, Humans, Hydroxymethylglutaryl CoA Reductases, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Male, Middle Aged, Polymorphism, Single Nucleotide, Randomized Controlled Trials as Topic, Risk Factors}, issn = {1474-547X}, doi = {10.1016/S0140-6736(14)61183-1}, author = {Swerdlow, Daniel I and Preiss, David and Kuchenbaecker, Karoline B and Holmes, Michael V and Engmann, Jorgen E L and Shah, Tina and Sofat, Reecha and Stender, Stefan and Johnson, Paul C D and Scott, Robert A and Leusink, Maarten and Verweij, Niek and Sharp, Stephen J and Guo, Yiran and Giambartolomei, Claudia and Chung, Christina and Peasey, Anne and Amuzu, Antoinette and Li, KaWah and Palmen, Jutta and Howard, Philip and Cooper, Jackie A and Drenos, Fotios and Li, Yun R and Lowe, Gordon and Gallacher, John and Stewart, Marlene C W and Tzoulaki, Ioanna and Buxbaum, Sarah G and van der A, Daphne L and Forouhi, Nita G and Onland-Moret, N Charlotte and van der Schouw, Yvonne T and Schnabel, Renate B and Hubacek, Jaroslav A and Kubinova, Ruzena and Baceviciene, Migle and Tamosiunas, Abdonas and Pajak, Andrzej and Topor-Madry, Roman and Stepaniak, Urszula and Malyutina, Sofia and Baldassarre, Damiano and Sennblad, Bengt and Tremoli, Elena and de Faire, Ulf and Veglia, Fabrizio and Ford, Ian and Jukema, J Wouter and Westendorp, Rudi G J and de Borst, Gert Jan and de Jong, Pim A and Algra, Ale and Spiering, Wilko and Maitland-van der Zee, Anke H and Klungel, Olaf H and de Boer, Anthonius and Doevendans, Pieter A and Eaton, Charles B and Robinson, Jennifer G and Duggan, David and Kjekshus, John and Downs, John R and Gotto, Antonio M and Keech, Anthony C and Marchioli, Roberto and Tognoni, Gianni and Sever, Peter S and Poulter, Neil R and Waters, David D and Pedersen, Terje R and Amarenco, Pierre and Nakamura, Haruo and McMurray, John J V and Lewsey, James D and Chasman, Daniel I and Ridker, Paul M and Maggioni, Aldo P and Tavazzi, Luigi and Ray, Kausik K and Seshasai, Sreenivasa Rao Kondapally and Manson, JoAnn E and Price, Jackie F and Whincup, Peter H and Morris, Richard W and Lawlor, Debbie A and Smith, George Davey and Ben-Shlomo, Yoav and Schreiner, Pamela J and Fornage, Myriam and Siscovick, David S and Cushman, Mary and Kumari, Meena and Wareham, Nick J and Verschuren, W M Monique and Redline, Susan and Patel, Sanjay R and Whittaker, John C and Hamsten, Anders and Delaney, Joseph A and Dale, Caroline and Gaunt, Tom R and Wong, Andrew and Kuh, Diana and Hardy, Rebecca and Kathiresan, Sekar and Castillo, Berta A and van der Harst, Pim and Brunner, Eric J and Tybjaerg-Hansen, Anne and Marmot, Michael G and Krauss, Ronald M and Tsai, Michael and Coresh, Josef and Hoogeveen, Ronald C and Psaty, Bruce M and Lange, Leslie A and Hakonarson, Hakon and Dudbridge, Frank and Humphries, Steve E and Talmud, Philippa J and Kivimaki, Mika and Timpson, Nicholas J and Langenberg, Claudia and Asselbergs, Folkert W and Voevoda, Mikhail and Bobak, Martin and Pikhart, Hynek and Wilson, James G and Reiner, Alex P and Keating, Brendan J and Hingorani, Aroon D and Sattar, Naveed} } @article {7262, title = {52 Genetic Loci Influencing Myocardial~Mass.}, journal = {J Am Coll Cardiol}, volume = {68}, year = {2016}, month = {2016 Sep 27}, pages = {1435-48}, abstract = {

BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death.

OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass.

METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment.

RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p~< 1~{\texttimes} 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67~candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in~vitro and in~vivo.

CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets.

}, issn = {1558-3597}, doi = {10.1016/j.jacc.2016.07.729}, author = {van der Harst, Pim and van Setten, Jessica and Verweij, Niek and Vogler, Georg and Franke, Lude and Maurano, Matthew T and Wang, Xinchen and Mateo Leach, Irene and Eijgelsheim, Mark and Sotoodehnia, Nona and Hayward, Caroline and Sorice, Rossella and Meirelles, Osorio and Lyytik{\"a}inen, Leo-Pekka and Polasek, Ozren and Tanaka, Toshiko and Arking, Dan E and Ulivi, Sheila and Trompet, Stella and M{\"u}ller-Nurasyid, Martina and Smith, Albert V and D{\"o}rr, Marcus and Kerr, Kathleen F and Magnani, Jared W and del Greco M, Fabiola and Zhang, Weihua and Nolte, Ilja M and Silva, Claudia T and Padmanabhan, Sandosh and Tragante, Vinicius and Esko, T{\~o}nu and Abecasis, Goncalo R and Adriaens, Michiel E and Andersen, Karl and Barnett, Phil and Bis, Joshua C and Bodmer, Rolf and Buckley, Brendan M and Campbell, Harry and Cannon, Megan V and Chakravarti, Aravinda and Chen, Lin Y and Delitala, Alessandro and Devereux, Richard B and Doevendans, Pieter A and Dominiczak, Anna F and Ferrucci, Luigi and Ford, Ian and Gieger, Christian and Harris, Tamara B and Haugen, Eric and Heinig, Matthias and Hernandez, Dena G and Hillege, Hans L and Hirschhorn, Joel N and Hofman, Albert and Hubner, Norbert and Hwang, Shih-Jen and Iorio, Annamaria and K{\"a}h{\"o}nen, Mika and Kellis, Manolis and Kolcic, Ivana and Kooner, Ishminder K and Kooner, Jaspal S and Kors, Jan A and Lakatta, Edward G and Lage, Kasper and Launer, Lenore J and Levy, Daniel and Lundby, Alicia and Macfarlane, Peter W and May, Dalit and Meitinger, Thomas and Metspalu, Andres and Nappo, Stefania and Naitza, Silvia and Neph, Shane and Nord, Alex S and Nutile, Teresa and Okin, Peter M and Olsen, Jesper V and Oostra, Ben A and Penninger, Josef M and Pennacchio, Len A and Pers, Tune H and Perz, Siegfried and Peters, Annette and Pinto, Yigal M and Pfeufer, Arne and Pilia, Maria Grazia and Pramstaller, Peter P and Prins, Bram P and Raitakari, Olli T and Raychaudhuri, Soumya and Rice, Ken M and Rossin, Elizabeth J and Rotter, Jerome I and Schafer, Sebastian and Schlessinger, David and Schmidt, Carsten O and Sehmi, Jobanpreet and Sillj{\'e}, Herman H W and Sinagra, Gianfranco and Sinner, Moritz F and Slowikowski, Kamil and Soliman, Elsayed Z and Spector, Timothy D and Spiering, Wilko and Stamatoyannopoulos, John A and Stolk, Ronald P and Strauch, Konstantin and Tan, Sian-Tsung and Tarasov, Kirill V and Trinh, Bosco and Uitterlinden, Andr{\'e} G and van den Boogaard, Malou and van Duijn, Cornelia M and van Gilst, Wiek H and Viikari, Jorma S and Visscher, Peter M and Vitart, Veronique and V{\"o}lker, Uwe and Waldenberger, Melanie and Weichenberger, Christian X and Westra, Harm-Jan and Wijmenga, Cisca and Wolffenbuttel, Bruce H and Yang, Jian and Bezzina, Connie R and Munroe, Patricia B and Snieder, Harold and Wright, Alan F and Rudan, Igor and Boyer, Laurie A and Asselbergs, Folkert W and van Veldhuisen, Dirk J and Stricker, Bruno H and Psaty, Bruce M and Ciullo, Marina and Sanna, Serena and Lehtim{\"a}ki, Terho and Wilson, James F and Bandinelli, Stefania and Alonso, Alvaro and Gasparini, Paolo and Jukema, J Wouter and K{\"a}{\"a}b, Stefan and Gudnason, Vilmundur and Felix, Stephan B and Heckbert, Susan R and de Boer, Rudolf A and Newton-Cheh, Christopher and Hicks, Andrew A and Chambers, John C and Jamshidi, Yalda and Visel, Axel and Christoffels, Vincent M and Isaacs, Aaron and Samani, Nilesh J and de Bakker, Paul I W} } @article {7144, title = {Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure.}, journal = {PLoS Genet}, volume = {12}, year = {2016}, month = {2016 May}, pages = {e1006034}, abstract = {

Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinants of mortality in patients with new-onset heart failure, we performed a meta-analysis of genome-wide association studies and follow-up genotyping in independent populations. We identified and replicated an association for a genetic variant on chromosome 5q22 with 36\% increased risk of death in subjects with heart failure (rs9885413, P = 2.7x10-9). We provide evidence from reporter gene assays, computational predictions and epigenomic marks that this polymorphism increases activity of an enhancer region active in multiple human tissues. The polymorphism was further reproducibly associated with a DNA methylation signature in whole blood (P = 4.5x10-40) that also associated with allergic sensitization and expression in blood of the cytokine TSLP (P = 1.1x10-4). Knockdown of the transcription factor predicted to bind the enhancer region (NHLH1) in a human cell line (HEK293) expressing NHLH1 resulted in lower TSLP expression. In addition, we observed evidence of recent positive selection acting on the risk allele in populations of African descent. Our findings provide novel genetic leads to factors that influence mortality in patients with heart failure.

}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1006034}, author = {Smith, J Gustav and Felix, Janine F and Morrison, Alanna C and Kalogeropoulos, Andreas and Trompet, Stella and Wilk, Jemma B and Gidl{\"o}f, Olof and Wang, Xinchen and Morley, Michael and Mendelson, Michael and Joehanes, Roby and Ligthart, Symen and Shan, Xiaoyin and Bis, Joshua C and Wang, Ying A and Sj{\"o}gren, Marketa and Ngwa, Julius and Brandimarto, Jeffrey and Stott, David J and Aguilar, David and Rice, Kenneth M and Sesso, Howard D and Demissie, Serkalem and Buckley, Brendan M and Taylor, Kent D and Ford, Ian and Yao, Chen and Liu, Chunyu and Sotoodehnia, Nona and van der Harst, Pim and Stricker, Bruno H Ch and Kritchevsky, Stephen B and Liu, Yongmei and Gaziano, J Michael and Hofman, Albert and Moravec, Christine S and Uitterlinden, Andr{\'e} G and Kellis, Manolis and van Meurs, Joyce B and Margulies, Kenneth B and Dehghan, Abbas and Levy, Daniel and Olde, Bj{\"o}rn and Psaty, Bruce M and Cupples, L Adrienne and Jukema, J Wouter and Djouss{\'e}, Luc and Franco, Oscar H and Boerwinkle, Eric and Boyer, Laurie A and Newton-Cheh, Christopher and Butler, Javed and Vasan, Ramachandran S and Cappola, Thomas P and Smith, Nicholas L} } @article {7256, title = {KLB is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference.}, journal = {Proc Natl Acad Sci U S A}, volume = {113}, year = {2016}, month = {2016 Dec 13}, pages = {14372-14377}, abstract = {

Excessive alcohol consumption is a major public health problem worldwide. Although drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association metaanalysis and replication study among >105,000 individuals of European ancestry and identified β-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P = 9.2 {\texttimes} 10(-12)). β-Klotho is an obligate coreceptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in humans. We show that brain-specific β-Klotho KO mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver-brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption.

}, issn = {1091-6490}, doi = {10.1073/pnas.1611243113}, author = {Schumann, Gunter and Liu, Chunyu and O{\textquoteright}Reilly, Paul and Gao, He and Song, Parkyong and Xu, Bing and Ruggeri, Barbara and Amin, Najaf and Jia, Tianye and Preis, Sarah and Segura Lepe, Marcelo and Akira, Shizuo and Barbieri, Caterina and Baumeister, Sebastian and Cauchi, Stephane and Clarke, Toni-Kim and Enroth, Stefan and Fischer, Krista and H{\"a}llfors, Jenni and Harris, Sarah E and Hieber, Saskia and Hofer, Edith and Hottenga, Jouke-Jan and Johansson, Asa and Joshi, Peter K and Kaartinen, Niina and Laitinen, Jaana and Lemaitre, Rozenn and Loukola, Anu and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Mangino, Massimo and Manichaikul, Ani and Mbarek, Hamdi and Milaneschi, Yuri and Moayyeri, Alireza and Mukamal, Kenneth and Nelson, Christopher and Nettleton, Jennifer and Partinen, Eemil and Rawal, Rajesh and Robino, Antonietta and Rose, Lynda and Sala, Cinzia and Satoh, Takashi and Schmidt, Reinhold and Schraut, Katharina and Scott, Robert and Smith, Albert Vernon and Starr, John M and Teumer, Alexander and Trompet, Stella and Uitterlinden, Andr{\'e} G and Venturini, Cristina and Vergnaud, Anne-Claire and Verweij, Niek and Vitart, Veronique and Vuckovic, Dragana and Wedenoja, Juho and Yengo, Loic and Yu, Bing and Zhang, Weihua and Zhao, Jing Hua and Boomsma, Dorret I and Chambers, John and Chasman, Daniel I and Daniela, Toniolo and de Geus, Eco and Deary, Ian and Eriksson, Johan G and Esko, T{\~o}nu and Eulenburg, Volker and Franco, Oscar H and Froguel, Philippe and Gieger, Christian and Grabe, Hans J and Gudnason, Vilmundur and Gyllensten, Ulf and Harris, Tamara B and Hartikainen, Anna-Liisa and Heath, Andrew C and Hocking, Lynne and Hofman, Albert and Huth, Cornelia and Jarvelin, Marjo-Riitta and Jukema, J Wouter and Kaprio, Jaakko and Kooner, Jaspal S and Kutalik, Zolt{\'a}n and Lahti, Jari and Langenberg, Claudia and Lehtim{\"a}ki, Terho and Liu, Yongmei and Madden, Pamela A F and Martin, Nicholas and Morrison, Alanna and Penninx, Brenda and Pirastu, Nicola and Psaty, Bruce and Raitakari, Olli and Ridker, Paul and Rose, Richard and Rotter, Jerome I and Samani, Nilesh J and Schmidt, Helena and Spector, Tim D and Stott, David and Strachan, David and Tzoulaki, Ioanna and van der Harst, Pim and van Duijn, Cornelia M and Marques-Vidal, Pedro and Vollenweider, Peter and Wareham, Nicholas J and Whitfield, John B and Wilson, James and Wolffenbuttel, Bruce and Bakalkin, Georgy and Evangelou, Evangelos and Liu, Yun and Rice, Kenneth M and Desrivi{\`e}res, Sylvane and Kliewer, Steven A and Mangelsdorf, David J and M{\"u}ller, Christian P and Levy, Daniel and Elliott, Paul} } @article {7011, title = {Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels.}, journal = {J Med Genet}, volume = {53}, year = {2016}, month = {2016 Jul}, pages = {441-9}, abstract = {

BACKGROUND: So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels.

METHODS: We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from \~{}60 000 individuals in the discovery stage and \~{}90 000 samples in the replication stage.

RESULTS: Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene.

CONCLUSIONS: This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels.

}, issn = {1468-6244}, doi = {10.1136/jmedgenet-2015-103439}, author = {van Leeuwen, Elisabeth M and Sabo, Aniko and Bis, Joshua C and Huffman, Jennifer E and Manichaikul, Ani and Smith, Albert V and Feitosa, Mary F and Demissie, Serkalem and Joshi, Peter K and Duan, Qing and Marten, Jonathan and van Klinken, Jan B and Surakka, Ida and Nolte, Ilja M and Zhang, Weihua and Mbarek, Hamdi and Li-Gao, Ruifang and Trompet, Stella and Verweij, Niek and Evangelou, Evangelos and Lyytik{\"a}inen, Leo-Pekka and Tayo, Bamidele O and Deelen, Joris and van der Most, Peter J and van der Laan, Sander W and Arking, Dan E and Morrison, Alanna and Dehghan, Abbas and Franco, Oscar H and Hofman, Albert and Rivadeneira, Fernando and Sijbrands, Eric J and Uitterlinden, Andr{\'e} G and Mychaleckyj, Josyf C and Campbell, Archie and Hocking, Lynne J and Padmanabhan, Sandosh and Brody, Jennifer A and Rice, Kenneth M and White, Charles C and Harris, Tamara and Isaacs, Aaron and Campbell, Harry and Lange, Leslie A and Rudan, Igor and Kolcic, Ivana and Navarro, Pau and Zemunik, Tatijana and Salomaa, Veikko and Kooner, Angad S and Kooner, Jaspal S and Lehne, Benjamin and Scott, William R and Tan, Sian-Tsung and de Geus, Eco J and Milaneschi, Yuri and Penninx, Brenda W J H and Willemsen, Gonneke and de Mutsert, Ren{\'e}e and Ford, Ian and Gansevoort, Ron T and Segura-Lepe, Marcelo P and Raitakari, Olli T and Viikari, Jorma S and Nikus, Kjell and Forrester, Terrence and McKenzie, Colin A and de Craen, Anton J M and de Ruijter, Hester M and Pasterkamp, Gerard and Snieder, Harold and Oldehinkel, Albertine J and Slagboom, P Eline and Cooper, Richard S and K{\"a}h{\"o}nen, Mika and Lehtim{\"a}ki, Terho and Elliott, Paul and van der Harst, Pim and Jukema, J Wouter and Mook-Kanamori, Dennis O and Boomsma, Dorret I and Chambers, John C and Swertz, Morris and Ripatti, Samuli and Willems van Dijk, Ko and Vitart, Veronique and Polasek, Ozren and Hayward, Caroline and Wilson, James G and Wilson, James F and Gudnason, Vilmundur and Rich, Stephen S and Psaty, Bruce M and Borecki, Ingrid B and Boerwinkle, Eric and Rotter, Jerome I and Cupples, L Adrienne and van Duijn, Cornelia M} } @article {7140, title = {Predicting Heart Failure With Preserved and Reduced Ejection Fraction: The International Collaboration on Heart Failure Subtypes.}, journal = {Circ Heart Fail}, volume = {9}, year = {2016}, month = {2016 Jun}, abstract = {

BACKGROUND: Heart failure (HF) is a prevalent and deadly disease, and preventive strategies focused on at-risk individuals are needed. Current HF prediction models have not examined HF subtypes. We sought to develop and validate risk prediction models for HF with preserved and reduced ejection fraction (HFpEF, HFrEF).

METHODS AND RESULTS: Of 28,820 participants from 4 community-based cohorts, 982 developed incident HFpEF and 909 HFrEF during a median follow-up of 12 years. Three cohorts were combined, and a 2:1 random split was used for derivation and internal validation, with the fourth cohort as external validation. Models accounted for multiple competing risks (death, other HF subtype, and unclassified HF). The HFpEF-specific model included age, sex, systolic blood pressure, body mass index, antihypertensive treatment, and previous myocardial infarction; it had good discrimination in derivation (c-statistic 0.80; 95\% confidence interval [CI], 0.78-0.82) and validation samples (internal: 0.79; 95\% CI, 0.77-0.82 and external: 0.76; 95\% CI: 0.71-0.80). The HFrEF-specific model additionally included smoking, left ventricular hypertrophy, left bundle branch block, and diabetes mellitus; it had good discrimination in derivation (c-statistic 0.82; 95\% CI, 0.80-0.84) and validation samples (internal: 0.80; 95\% CI, 0.78-0.83 and external: 0.76; 95\% CI, 0.71-0.80). Age was more strongly associated with HFpEF, and male sex, left ventricular hypertrophy, bundle branch block, previous myocardial infarction, and smoking with HFrEF (P value for each comparison <=0.02).

CONCLUSIONS: We describe and validate risk prediction models for HF subtypes and show good discrimination in a large sample. Some risk factors differed between HFpEF and HFrEF, supporting the notion of pathogenetic differences among HF subtypes.

}, issn = {1941-3297}, doi = {10.1161/CIRCHEARTFAILURE.115.003116}, author = {Ho, Jennifer E and Enserro, Danielle and Brouwers, Frank P and Kizer, Jorge R and Shah, Sanjiv J and Psaty, Bruce M and Bartz, Traci M and Santhanakrishnan, Rajalakshmi and Lee, Douglas S and Chan, Cheeling and Liu, Kiang and Blaha, Michael J and Hillege, Hans L and van der Harst, Pim and van Gilst, Wiek H and Kop, Willem J and Gansevoort, Ron T and Vasan, Ramachandran S and Gardin, Julius M and Levy, Daniel and Gottdiener, John S and de Boer, Rudolf A and Larson, Martin G} } @article {8570, title = {A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape.}, journal = {Nat Commun}, volume = {7}, year = {2016}, month = {2016 11 23}, pages = {13357}, abstract = {

Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99\% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.

}, keywords = {Anthropometry, Body Size, Genome-Wide Association Study, Genotype, Humans, Models, Genetic, Principal Component Analysis}, issn = {2041-1723}, doi = {10.1038/ncomms13357}, author = {Ried, Janina S and Jeff M, Janina and Chu, Audrey Y and Bragg-Gresham, Jennifer L and van Dongen, Jenny and Huffman, Jennifer E and Ahluwalia, Tarunveer S and Cadby, Gemma and Eklund, Niina and Eriksson, Joel and Esko, T{\~o}nu and Feitosa, Mary F and Goel, Anuj and Gorski, Mathias and Hayward, Caroline and Heard-Costa, Nancy L and Jackson, Anne U and Jokinen, Eero and Kanoni, Stavroula and Kristiansson, Kati and Kutalik, Zolt{\'a}n and Lahti, Jari and Luan, Jian{\textquoteright}an and M{\"a}gi, Reedik and Mahajan, Anubha and Mangino, Massimo and Medina-G{\'o}mez, Carolina and Monda, Keri L and Nolte, Ilja M and Perusse, Louis and Prokopenko, Inga and Qi, Lu and Rose, Lynda M and Salvi, Erika and Smith, Megan T and Snieder, Harold and Stan{\v c}{\'a}kov{\'a}, Alena and Ju Sung, Yun and Tachmazidou, Ioanna and Teumer, Alexander and Thorleifsson, Gudmar and van der Harst, Pim and Walker, Ryan W and Wang, Sophie R and Wild, Sarah H and Willems, Sara M and Wong, Andrew and Zhang, Weihua and Albrecht, Eva and Couto Alves, Alexessander and Bakker, Stephan J L and Barlassina, Cristina and Bartz, Traci M and Beilby, John and Bellis, Claire and Bergman, Richard N and Bergmann, Sven and Blangero, John and Bl{\"u}her, Matthias and Boerwinkle, Eric and Bonnycastle, Lori L and Bornstein, Stefan R and Bruinenberg, Marcel and Campbell, Harry and Chen, Yii-Der Ida and Chiang, Charleston W K and Chines, Peter S and Collins, Francis S and Cucca, Fracensco and Cupples, L Adrienne and D{\textquoteright}Avila, Francesca and de Geus, Eco J C and Dedoussis, George and Dimitriou, Maria and D{\"o}ring, Angela and Eriksson, Johan G and Farmaki, Aliki-Eleni and Farrall, Martin and Ferreira, Teresa and Fischer, Krista and Forouhi, Nita G and Friedrich, Nele and Gjesing, Anette Prior and Glorioso, Nicola and Graff, Mariaelisa and Grallert, Harald and Grarup, Niels and Gr{\"a}{\ss}ler, J{\"u}rgen and Grewal, Jagvir and Hamsten, Anders and Harder, Marie Neergaard and Hartman, Catharina A and Hassinen, Maija and Hastie, Nicholas and Hattersley, Andrew Tym and Havulinna, Aki S and Heli{\"o}vaara, Markku and Hillege, Hans and Hofman, Albert and Holmen, Oddgeir and Homuth, Georg and Hottenga, Jouke-Jan and Hui, Jennie and Husemoen, Lise Lotte and Hysi, Pirro G and Isaacs, Aaron and Ittermann, Till and Jalilzadeh, Shapour and James, Alan L and J{\o}rgensen, Torben and Jousilahti, Pekka and Jula, Antti and Marie Justesen, Johanne and Justice, Anne E and K{\"a}h{\"o}nen, Mika and Karaleftheri, Maria and Tee Khaw, Kay and Keinanen-Kiukaanniemi, Sirkka M and Kinnunen, Leena and Knekt, Paul B and Koistinen, Heikki A and Kolcic, Ivana and Kooner, Ishminder K and Koskinen, Seppo and Kovacs, Peter and Kyriakou, Theodosios and Laitinen, Tomi and Langenberg, Claudia and Lewin, Alexandra M and Lichtner, Peter and Lindgren, Cecilia M and Lindstr{\"o}m, Jaana and Linneberg, Allan and Lorbeer, Roberto and Lorentzon, Mattias and Luben, Robert and Lyssenko, Valeriya and M{\"a}nnist{\"o}, Satu and Manunta, Paolo and Leach, Irene Mateo and McArdle, Wendy L and McKnight, Barbara and Mohlke, Karen L and Mihailov, Evelin and Milani, Lili and Mills, Rebecca and Montasser, May E and Morris, Andrew P and M{\"u}ller, Gabriele and Musk, Arthur W and Narisu, Narisu and Ong, Ken K and Oostra, Ben A and Osmond, Clive and Palotie, Aarno and Pankow, James S and Paternoster, Lavinia and Penninx, Brenda W and Pichler, Irene and Pilia, Maria G and Polasek, Ozren and Pramstaller, Peter P and Raitakari, Olli T and Rankinen, Tuomo and Rao, D C and Rayner, Nigel W and Ribel-Madsen, Rasmus and Rice, Treva K and Richards, Marcus and Ridker, Paul M and Rivadeneira, Fernando and Ryan, Kathy A and Sanna, Serena and Sarzynski, Mark A and Scholtens, Salome and Scott, Robert A and Sebert, Sylvain and Southam, Lorraine and Spars{\o}, Thomas Hempel and Steinthorsdottir, Valgerdur and Stirrups, Kathleen and Stolk, Ronald P and Strauch, Konstantin and Stringham, Heather M and Swertz, Morris A and Swift, Amy J and T{\"o}njes, Anke and Tsafantakis, Emmanouil and van der Most, Peter J and van Vliet-Ostaptchouk, Jana V and Vandenput, Liesbeth and Vartiainen, Erkki and Venturini, Cristina and Verweij, Niek and Viikari, Jorma S and Vitart, Veronique and Vohl, Marie-Claude and Vonk, Judith M and Waeber, G{\'e}rard and Widen, Elisabeth and Willemsen, Gonneke and Wilsgaard, Tom and Winkler, Thomas W and Wright, Alan F and Yerges-Armstrong, Laura M and Hua Zhao, Jing and Zillikens, M Carola and Boomsma, Dorret I and Bouchard, Claude and Chambers, John C and Chasman, Daniel I and Cusi, Daniele and Gansevoort, Ron T and Gieger, Christian and Hansen, Torben and Hicks, Andrew A and Hu, Frank and Hveem, Kristian and Jarvelin, Marjo-Riitta and Kajantie, Eero and Kooner, Jaspal S and Kuh, Diana and Kuusisto, Johanna and Laakso, Markku and Lakka, Timo A and Lehtim{\"a}ki, Terho and Metspalu, Andres and Nj{\o}lstad, Inger and Ohlsson, Claes and Oldehinkel, Albertine J and Palmer, Lyle J and Pedersen, Oluf and Perola, Markus and Peters, Annette and Psaty, Bruce M and Puolijoki, Hannu and Rauramaa, Rainer and Rudan, Igor and Salomaa, Veikko and Schwarz, Peter E H and Shudiner, Alan R and Smit, Jan H and S{\o}rensen, Thorkild I A and Spector, Timothy D and Stefansson, Kari and Stumvoll, Michael and Tremblay, Angelo and Tuomilehto, Jaakko and Uitterlinden, Andr{\'e} G and Uusitupa, Matti and V{\"o}lker, Uwe and Vollenweider, Peter and Wareham, Nicholas J and Watkins, Hugh and Wilson, James F and Zeggini, Eleftheria and Abecasis, Goncalo R and Boehnke, Michael and Borecki, Ingrid B and Deloukas, Panos and van Duijn, Cornelia M and Fox, Caroline and Groop, Leif C and Heid, Iris M and Hunter, David J and Kaplan, Robert C and McCarthy, Mark I and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Schlessinger, David and Thorsteinsdottir, Unnur and Strachan, David P and Frayling, Timothy and Hirschhorn, Joel N and M{\"u}ller-Nurasyid, Martina and Loos, Ruth J F} } @article {7604, title = {Twenty-eight genetic loci associated with ST-T-wave amplitudes of the electrocardiogram.}, journal = {Hum Mol Genet}, volume = {25}, year = {2016}, month = {2016 05 15}, pages = {2093-2103}, abstract = {

The ST-segment and adjacent T-wave (ST-T wave) amplitudes of the electrocardiogram are quantitative characteristics of cardiac repolarization. Repolarization abnormalities have been linked to ventricular arrhythmias and sudden cardiac death. We performed the first genome-wide association meta-analysis of ST-T-wave amplitudes in up to 37 977 individuals identifying 71 robust genotype-phenotype associations clustered within 28 independent loci. Fifty-four genes were prioritized as candidates underlying the phenotypes, including genes with established roles in the cardiac repolarization phase (SCN5A/SCN10A, KCND3, KCNB1, NOS1AP and HEY2) and others with as yet undefined cardiac function. These associations may provide insights in the spatiotemporal contribution of genetic variation influencing cardiac repolarization and provide novel leads for future functional follow-up.

}, keywords = {Adaptor Proteins, Signal Transducing, Arrhythmias, Cardiac, Basic Helix-Loop-Helix Transcription Factors, Brugada Syndrome, Cardiac Conduction System Disease, Death, Sudden, Cardiac, Electrocardiography, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Heart Conduction System, Humans, Male, NAV1.5 Voltage-Gated Sodium Channel, Polymorphism, Single Nucleotide, Repressor Proteins, Shab Potassium Channels, Shal Potassium Channels}, issn = {1460-2083}, doi = {10.1093/hmg/ddw058}, author = {Verweij, Niek and Mateo Leach, Irene and Isaacs, Aaron and Arking, Dan E and Bis, Joshua C and Pers, Tune H and van den Berg, Marten E and Lyytik{\"a}inen, Leo-Pekka and Barnett, Phil and Wang, Xinchen and Soliman, Elsayed Z and van Duijn, Cornelia M and K{\"a}h{\"o}nen, Mika and van Veldhuisen, Dirk J and Kors, Jan A and Raitakari, Olli T and Silva, Claudia T and Lehtim{\"a}ki, Terho and Hillege, Hans L and Hirschhorn, Joel N and Boyer, Laurie A and van Gilst, Wiek H and Alonso, Alvaro and Sotoodehnia, Nona and Eijgelsheim, Mark and de Boer, Rudolf A and de Bakker, Paul I W and Franke, Lude and van der Harst, Pim} } @article {7363, title = {Discovery of novel heart rate-associated loci using the Exome Chip.}, journal = {Hum Mol Genet}, year = {2017}, month = {2017 Apr 03}, abstract = {

Background Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. GWAS analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9\% of the variation.Aim To discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Methods Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104,452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134,251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.Results We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2, SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long range regulatory chromatin interactions in heart tissue (SCD, SLF2, MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Conclusion Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddx113}, author = {van den Berg, Marten E and Warren, Helen R and Cabrera, Claudia P and Verweij, Niek and Mifsud, Borbala and Haessler, Jeffrey and Bihlmeyer, Nathan A and Fu, Yi-Ping and Weiss, Stefan and Lin, Henry J and Grarup, Niels and Li-Gao, Ruifang and Pistis, Giorgio and Shah, Nabi and Brody, Jennifer A and M{\"u}ller-Nurasyid, Martina and Lin, Honghuang and Mei, Hao and Smith, Albert V and Lyytik{\"a}inen, Leo-Pekka and Hall, Leanne M and van Setten, Jessica and Trompet, Stella and Prins, Bram P and Isaacs, Aaron and Radmanesh, Farid and Marten, Jonathan and Entwistle, Aiman and Kors, Jan A and Silva, Claudia T and Alonso, Alvaro and Bis, Joshua C and de Boer, Rudolf and de Haan, Hugoline G and de Mutsert, Ren{\'e}e and Dedoussis, George and Dominiczak, Anna F and Doney, Alex S F and Ellinor, Patrick T and Eppinga, Ruben N and Felix, Stephan B and Guo, Xiuqing and Hagemeijer, Yanick and Hansen, Torben and Harris, Tamara B and Heckbert, Susan R and Huang, Paul L and Hwang, Shih-Jen and K{\"a}h{\"o}nen, Mika and Kanters, J{\o}rgen K and Kolcic, Ivana and Launer, Lenore J and Li, Man and Yao, Jie and Linneberg, Allan and Liu, Simin and Macfarlane, Peter W and Mangino, Massimo and Morris, Andrew D and Mulas, Antonella and Murray, Alison D and Nelson, Christopher P and Orr{\`u}, Marco and Padmanabhan, Sandosh and Peters, Annette and Porteous, David J and Poulter, Neil and Psaty, Bruce M and Qi, Lihong and Raitakari, Olli T and Rivadeneira, Fernando and Roselli, Carolina and Rudan, Igor and Sattar, Naveed and Sever, Peter and Sinner, Moritz F and Soliman, Elsayed Z and Spector, Timothy D and Stanton, Alice V and Stirrups, Kathleen E and Taylor, Kent D and Tobin, Martin D and Uitterlinden, Andre and Vaartjes, Ilonca and Hoes, Arno W and van der Meer, Peter and V{\"o}lker, Uwe and Waldenberger, Melanie and Xie, Zhijun and Zoledziewska, Magdalena and Tinker, Andrew and Polasek, Ozren and Rosand, Jonathan and Jamshidi, Yalda and van Duijn, Cornelia M and Zeggini, Eleftheria and Wouter Jukema, J and Asselbergs, Folkert W and Samani, Nilesh J and Lehtim{\"a}ki, Terho and Gudnason, Vilmundur and Wilson, James and Lubitz, Steven A and K{\"a}{\"a}b, Stefan and Sotoodehnia, Nona and Caulfield, Mark J and Palmer, Colin N A and Sanna, Serena and Mook-Kanamori, Dennis O and Deloukas, Panos and Pedersen, Oluf and Rotter, Jerome I and D{\"o}rr, Marcus and O{\textquoteright}Donnell, Chris J and Hayward, Caroline and Arking, Dan E and Kooperberg, Charles and van der Harst, Pim and Eijgelsheim, Mark and Stricker, Bruno H and Munroe, Patricia B} } @article {7595, title = {Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation: The AFGen Consortium.}, journal = {Sci Rep}, volume = {7}, year = {2017}, month = {2017 Sep 12}, pages = {11303}, abstract = {

It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects <= 65 years of age than among those > 65 years (interaction p-value = 4.0 {\texttimes} 10-5). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 {\texttimes} 10-8). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk.

}, issn = {2045-2322}, doi = {10.1038/s41598-017-09396-7}, author = {Weng, Lu-Chen and Lunetta, Kathryn L and M{\"u}ller-Nurasyid, Martina and Smith, Albert Vernon and Th{\'e}riault, S{\'e}bastien and Weeke, Peter E and Barnard, John and Bis, Joshua C and Lyytik{\"a}inen, Leo-Pekka and Kleber, Marcus E and Martinsson, Andreas and Lin, Henry J and Rienstra, Michiel and Trompet, Stella and Krijthe, Bouwe P and D{\"o}rr, Marcus and Klarin, Derek and Chasman, Daniel I and Sinner, Moritz F and Waldenberger, Melanie and Launer, Lenore J and Harris, Tamara B and Soliman, Elsayed Z and Alonso, Alvaro and Par{\'e}, Guillaume and Teixeira, Pedro L and Denny, Joshua C and Shoemaker, M Benjamin and Van Wagoner, David R and Smith, Jonathan D and Psaty, Bruce M and Sotoodehnia, Nona and Taylor, Kent D and K{\"a}h{\"o}nen, Mika and Nikus, Kjell and Delgado, Graciela E and Melander, Olle and Engstr{\"o}m, Gunnar and Yao, Jie and Guo, Xiuqing and Christophersen, Ingrid E and Ellinor, Patrick T and Geelhoed, Bastiaan and Verweij, Niek and Macfarlane, Peter and Ford, Ian and Heeringa, Jan and Franco, Oscar H and Uitterlinden, Andr{\'e} G and V{\"o}lker, Uwe and Teumer, Alexander and Rose, Lynda M and K{\"a}{\"a}b, Stefan and Gudnason, Vilmundur and Arking, Dan E and Conen, David and Roden, Dan M and Chung, Mina K and Heckbert, Susan R and Benjamin, Emelia J and Lehtim{\"a}ki, Terho and M{\"a}rz, Winfried and Smith, J Gustav and Rotter, Jerome I and van der Harst, Pim and Jukema, J Wouter and Stricker, Bruno H and Felix, Stephan B and Albert, Christine M and Lubitz, Steven A} } @article {7579, title = {Genetic loci associated with heart rate variability and their effects on cardiac disease risk.}, journal = {Nat Commun}, volume = {8}, year = {2017}, month = {2017 Jun 14}, pages = {15805}, abstract = {

Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6\% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74}, issn = {2041-1723}, doi = {10.1038/ncomms15805}, author = {Nolte, Ilja M and Munoz, M Loretto and Tragante, Vinicius and Amare, Azmeraw T and Jansen, Rick and Vaez, Ahmad and von der Heyde, Benedikt and Avery, Christy L and Bis, Joshua C and Dierckx, Bram and van Dongen, Jenny and Gogarten, Stephanie M and Goyette, Philippe and Hernesniemi, Jussi and Huikari, Ville and Hwang, Shih-Jen and Jaju, Deepali and Kerr, Kathleen F and Kluttig, Alexander and Krijthe, Bouwe P and Kumar, Jitender and van der Laan, Sander W and Lyytik{\"a}inen, Leo-Pekka and Maihofer, Adam X and Minassian, Arpi and van der Most, Peter J and M{\"u}ller-Nurasyid, Martina and Nivard, Michel and Salvi, Erika and Stewart, James D and Thayer, Julian F and Verweij, Niek and Wong, Andrew and Zabaneh, Delilah and Zafarmand, Mohammad H and Abdellaoui, Abdel and Albarwani, Sulayma and Albert, Christine and Alonso, Alvaro and Ashar, Foram and Auvinen, Juha and Axelsson, Tomas and Baker, Dewleen G and de Bakker, Paul I W and Barcella, Matteo and Bayoumi, Riad and Bieringa, Rob J and Boomsma, Dorret and Boucher, Gabrielle and Britton, Annie R and Christophersen, Ingrid and Dietrich, Andrea and Ehret, George B and Ellinor, Patrick T and Eskola, Markku and Felix, Janine F and Floras, John S and Franco, Oscar H and Friberg, Peter and Gademan, Maaike G J and Geyer, Mark A and Giedraitis, Vilmantas and Hartman, Catharina A and Hemerich, Daiane and Hofman, Albert and Hottenga, Jouke-Jan and Huikuri, Heikki and Hutri-K{\"a}h{\"o}nen, Nina and Jouven, Xavier and Junttila, Juhani and Juonala, Markus and Kiviniemi, Antti M and Kors, Jan A and Kumari, Meena and Kuznetsova, Tatiana and Laurie, Cathy C and Lefrandt, Joop D and Li, Yong and Li, Yun and Liao, Duanping and Limacher, Marian C and Lin, Henry J and Lindgren, Cecilia M and Lubitz, Steven A and Mahajan, Anubha and McKnight, Barbara and Zu Schwabedissen, Henriette Meyer and Milaneschi, Yuri and Mononen, Nina and Morris, Andrew P and Nalls, Mike A and Navis, Gerjan and Neijts, Melanie and Nikus, Kjell and North, Kari E and O{\textquoteright}Connor, Daniel T and Ormel, Johan and Perz, Siegfried and Peters, Annette and Psaty, Bruce M and Raitakari, Olli T and Risbrough, Victoria B and Sinner, Moritz F and Siscovick, David and Smit, Johannes H and Smith, Nicholas L and Soliman, Elsayed Z and Sotoodehnia, Nona and Staessen, Jan A and Stein, Phyllis K and Stilp, Adrienne M and Stolarz-Skrzypek, Katarzyna and Strauch, Konstantin and Sundstr{\"o}m, Johan and Swenne, Cees A and Syv{\"a}nen, Ann-Christine and Tardif, Jean-Claude and Taylor, Kent D and Teumer, Alexander and Thornton, Timothy A and Tinker, Lesley E and Uitterlinden, Andr{\'e} G and van Setten, Jessica and Voss, Andreas and Waldenberger, Melanie and Wilhelmsen, Kirk C and Willemsen, Gonneke and Wong, Quenna and Zhang, Zhu-Ming and Zonderman, Alan B and Cusi, Daniele and Evans, Michele K and Greiser, Halina K and van der Harst, Pim and Hassan, Mohammad and Ingelsson, Erik and Jarvelin, Marjo-Riitta and K{\"a}{\"a}b, Stefan and K{\"a}h{\"o}nen, Mika and Kivimaki, Mika and Kooperberg, Charles and Kuh, Diana and Lehtim{\"a}ki, Terho and Lind, Lars and Nievergelt, Caroline M and O{\textquoteright}Donnell, Chris J and Oldehinkel, Albertine J and Penninx, Brenda and Reiner, Alexander P and Riese, Harri{\"e}tte and van Roon, Arie M and Rioux, John D and Rotter, Jerome I and Sofer, Tamar and Stricker, Bruno H and Tiemeier, Henning and Vrijkotte, Tanja G M and Asselbergs, Folkert W and Brundel, Bianca J J M and Heckbert, Susan R and Whitsel, Eric A and den Hoed, Marcel and Snieder, Harold and de Geus, Eco J C} } @article {7396, title = {Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation.}, journal = {Nat Genet}, volume = {49}, year = {2017}, month = {2017 Jun}, pages = {946-952}, abstract = {

Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery.

}, issn = {1546-1718}, doi = {10.1038/ng.3843}, author = {Christophersen, Ingrid E and Rienstra, Michiel and Roselli, Carolina and Yin, Xiaoyan and Geelhoed, Bastiaan and Barnard, John and Lin, Honghuang and Arking, Dan E and Smith, Albert V and Albert, Christine M and Chaffin, Mark and Tucker, Nathan R and Li, Molong and Klarin, Derek and Bihlmeyer, Nathan A and Low, Siew-Kee and Weeke, Peter E and M{\"u}ller-Nurasyid, Martina and Smith, J Gustav and Brody, Jennifer A and Niemeijer, Maartje N and D{\"o}rr, Marcus and Trompet, Stella and Huffman, Jennifer and Gustafsson, Stefan and Schurmann, Claudia and Kleber, Marcus E and Lyytik{\"a}inen, Leo-Pekka and Sepp{\"a}l{\"a}, Ilkka and Malik, Rainer and Horimoto, Andrea R V R and Perez, Marco and Sinisalo, Juha and Aeschbacher, Stefanie and Th{\'e}riault, S{\'e}bastien and Yao, Jie and Radmanesh, Farid and Weiss, Stefan and Teumer, Alexander and Choi, Seung Hoan and Weng, Lu-Chen and Clauss, Sebastian and Deo, Rajat and Rader, Daniel J and Shah, Svati H and Sun, Albert and Hopewell, Jemma C and Debette, Stephanie and Chauhan, Ganesh and Yang, Qiong and Worrall, Bradford B and Par{\'e}, Guillaume and Kamatani, Yoichiro and Hagemeijer, Yanick P and Verweij, Niek and Siland, Joylene E and Kubo, Michiaki and Smith, Jonathan D and Van Wagoner, David R and Bis, Joshua C and Perz, Siegfried and Psaty, Bruce M and Ridker, Paul M and Magnani, Jared W and Harris, Tamara B and Launer, Lenore J and Shoemaker, M Benjamin and Padmanabhan, Sandosh and Haessler, Jeffrey and Bartz, Traci M and Waldenberger, Melanie and Lichtner, Peter and Arendt, Marina and Krieger, Jose E and K{\"a}h{\"o}nen, Mika and Risch, Lorenz and Mansur, Alfredo J and Peters, Annette and Smith, Blair H and Lind, Lars and Scott, Stuart A and Lu, Yingchang and Bottinger, Erwin B and Hernesniemi, Jussi and Lindgren, Cecilia M and Wong, Jorge A and Huang, Jie and Eskola, Markku and Morris, Andrew P and Ford, Ian and Reiner, Alex P and Delgado, Graciela and Chen, Lin Y and Chen, Yii-Der Ida and Sandhu, Roopinder K and Li, Man and Boerwinkle, Eric and Eisele, Lewin and Lannfelt, Lars and Rost, Natalia and Anderson, Christopher D and Taylor, Kent D and Campbell, Archie and Magnusson, Patrik K and Porteous, David and Hocking, Lynne J and Vlachopoulou, Efthymia and Pedersen, Nancy L and Nikus, Kjell and Orho-Melander, Marju and Hamsten, Anders and Heeringa, Jan and Denny, Joshua C and Kriebel, Jennifer and Darbar, Dawood and Newton-Cheh, Christopher and Shaffer, Christian and Macfarlane, Peter W and Heilmann-Heimbach, Stefanie and Almgren, Peter and Huang, Paul L and Sotoodehnia, Nona and Soliman, Elsayed Z and Uitterlinden, Andr{\'e} G and Hofman, Albert and Franco, Oscar H and V{\"o}lker, Uwe and J{\"o}ckel, Karl-Heinz and Sinner, Moritz F and Lin, Henry J and Guo, Xiuqing and Dichgans, Martin and Ingelsson, Erik and Kooperberg, Charles and Melander, Olle and Loos, Ruth J F and Laurikka, Jari and Conen, David and Rosand, Jonathan and van der Harst, Pim and Lokki, Marja-Liisa and Kathiresan, Sekar and Pereira, Alexandre and Jukema, J Wouter and Hayward, Caroline and Rotter, Jerome I and M{\"a}rz, Winfried and Lehtim{\"a}ki, Terho and Stricker, Bruno H and Chung, Mina K and Felix, Stephan B and Gudnason, Vilmundur and Alonso, Alvaro and Roden, Dan M and K{\"a}{\"a}b, Stefan and Chasman, Daniel I and Heckbert, Susan R and Benjamin, Emelia J and Tanaka, Toshihiro and Lunetta, Kathryn L and Lubitz, Steven A and Ellinor, Patrick T} } @article {7569, title = {New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475 000 Individuals.}, journal = {Circ Cardiovasc Genet}, volume = {10}, year = {2017}, month = {2017 Oct}, abstract = {

BACKGROUND: Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association.

METHODS AND RESULTS: Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (P<5{\texttimes}10-8) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant.

CONCLUSIONS: We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.117.001778}, author = {Kraja, Aldi T and Cook, James P and Warren, Helen R and Surendran, Praveen and Liu, Chunyu and Evangelou, Evangelos and Manning, Alisa K and Grarup, Niels and Drenos, Fotios and Sim, Xueling and Smith, Albert Vernon and Amin, Najaf and Blakemore, Alexandra I F and Bork-Jensen, Jette and Brandslund, Ivan and Farmaki, Aliki-Eleni and Fava, Cristiano and Ferreira, Teresa and Herzig, Karl-Heinz and Giri, Ayush and Giulianini, Franco and Grove, Megan L and Guo, Xiuqing and Harris, Sarah E and Have, Christian T and Havulinna, Aki S and Zhang, He and J{\o}rgensen, Marit E and K{\"a}r{\"a}j{\"a}m{\"a}ki, AnneMari and Kooperberg, Charles and Linneberg, Allan and Little, Louis and Liu, Yongmei and Bonnycastle, Lori L and Lu, Yingchang and M{\"a}gi, Reedik and Mahajan, Anubha and Malerba, Giovanni and Marioni, Riccardo E and Mei, Hao and Menni, Cristina and Morrison, Alanna C and Padmanabhan, Sandosh and Palmas, Walter and Poveda, Alaitz and Rauramaa, Rainer and Rayner, Nigel William and Riaz, Muhammad and Rice, Ken and Richard, Melissa A and Smith, Jennifer A and Southam, Lorraine and Stan{\v c}{\'a}kov{\'a}, Alena and Stirrups, Kathleen E and Tragante, Vinicius and Tuomi, Tiinamaija and Tzoulaki, Ioanna and Varga, Tibor V and Weiss, Stefan and Yiorkas, Andrianos M and Young, Robin and Zhang, Weihua and Barnes, Michael R and Cabrera, Claudia P and Gao, He and Boehnke, Michael and Boerwinkle, Eric and Chambers, John C and Connell, John M and Christensen, Cramer K and de Boer, Rudolf A and Deary, Ian J and Dedoussis, George and Deloukas, Panos and Dominiczak, Anna F and D{\"o}rr, Marcus and Joehanes, Roby and Edwards, Todd L and Esko, T{\~o}nu and Fornage, Myriam and Franceschini, Nora and Franks, Paul W and Gambaro, Giovanni and Groop, Leif and Hallmans, G{\"o}ran and Hansen, Torben and Hayward, Caroline and Heikki, Oksa and Ingelsson, Erik and Tuomilehto, Jaakko and Jarvelin, Marjo-Riitta and Kardia, Sharon L R and Karpe, Fredrik and Kooner, Jaspal S and Lakka, Timo A and Langenberg, Claudia and Lind, Lars and Loos, Ruth J F and Laakso, Markku and McCarthy, Mark I and Melander, Olle and Mohlke, Karen L and Morris, Andrew P and Palmer, Colin N A and Pedersen, Oluf and Polasek, Ozren and Poulter, Neil R and Province, Michael A and Psaty, Bruce M and Ridker, Paul M and Rotter, Jerome I and Rudan, Igor and Salomaa, Veikko and Samani, Nilesh J and Sever, Peter J and Skaaby, Tea and Stafford, Jeanette M and Starr, John M and van der Harst, Pim and van der Meer, Peter and van Duijn, Cornelia M and Vergnaud, Anne-Claire and Gudnason, Vilmundur and Wareham, Nicholas J and Wilson, James G and Willer, Cristen J and Witte, Daniel R and Zeggini, Eleftheria and Saleheen, Danish and Butterworth, Adam S and Danesh, John and Asselbergs, Folkert W and Wain, Louise V and Ehret, Georg B and Chasman, Daniel I and Caulfield, Mark J and Elliott, Paul and Lindgren, Cecilia M and Levy, Daniel and Newton-Cheh, Christopher and Munroe, Patricia B and Howson, Joanna M M} } @article {7492, title = {Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.}, journal = {Hypertension}, year = {2017}, month = {2017 Jul 24}, abstract = {

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.

}, issn = {1524-4563}, doi = {10.1161/HYPERTENSIONAHA.117.09438}, author = {Wain, Louise V and Vaez, Ahmad and Jansen, Rick and Joehanes, Roby and van der Most, Peter J and Erzurumluoglu, A Mesut and O{\textquoteright}Reilly, Paul F and Cabrera, Claudia P and Warren, Helen R and Rose, Lynda M and Verwoert, Germaine C and Hottenga, Jouke-Jan and Strawbridge, Rona J and Esko, T{\~o}nu and Arking, Dan E and Hwang, Shih-Jen and Guo, Xiuqing and Kutalik, Zolt{\'a}n and Trompet, Stella and Shrine, Nick and Teumer, Alexander and Ried, Janina S and Bis, Joshua C and Smith, Albert V and Amin, Najaf and Nolte, Ilja M and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Wareham, Nicholas J and Hofer, Edith and Joshi, Peter K and Kristiansson, Kati and Traglia, Michela and Havulinna, Aki S and Goel, Anuj and Nalls, Mike A and S{\~o}ber, Siim and Vuckovic, Dragana and Luan, Jian{\textquoteright}an and del Greco M, Fabiola and Ayers, Kristin L and Marrugat, Jaume and Ruggiero, Daniela and Lopez, Lorna M and Niiranen, Teemu and Enroth, Stefan and Jackson, Anne U and Nelson, Christopher P and Huffman, Jennifer E and Zhang, Weihua and Marten, Jonathan and Gandin, Ilaria and Harris, Sarah E and Zemunik, Tatijana and Lu, Yingchang and Evangelou, Evangelos and Shah, Nabi and de Borst, Martin H and Mangino, Massimo and Prins, Bram P and Campbell, Archie and Li-Gao, Ruifang and Chauhan, Ganesh and Oldmeadow, Christopher and Abecasis, Goncalo and Abedi, Maryam and Barbieri, Caterina M and Barnes, Michael R and Batini, Chiara and Beilby, John and Blake, Tineka and Boehnke, Michael and Bottinger, Erwin P and Braund, Peter S and Brown, Morris and Brumat, Marco and Campbell, Harry and Chambers, John C and Cocca, Massimiliano and Collins, Francis and Connell, John and Cordell, Heather J and Damman, Jeffrey J and Davies, Gail and de Geus, Eco J and de Mutsert, Ren{\'e}e and Deelen, Joris and Demirkale, Yusuf and Doney, Alex S F and D{\"o}rr, Marcus and Farrall, Martin and Ferreira, Teresa and Fr{\r a}nberg, Mattias and Gao, He and Giedraitis, Vilmantas and Gieger, Christian and Giulianini, Franco and Gow, Alan J and Hamsten, Anders and Harris, Tamara B and Hofman, Albert and Holliday, Elizabeth G and Hui, Jennie and Jarvelin, Marjo-Riitta and Johansson, Asa and Johnson, Andrew D and Jousilahti, Pekka and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Khaw, Kay-Tee and Kolcic, Ivana and Koskinen, Seppo and Langenberg, Claudia and Larson, Marty and Launer, Lenore J and Lehne, Benjamin and Liewald, David C M and Lin, Li and Lind, Lars and Mach, Fran{\c c}ois and Mamasoula, Chrysovalanto and Menni, Cristina and Mifsud, Borbala and Milaneschi, Yuri and Morgan, Anna and Morris, Andrew D and Morrison, Alanna C and Munson, Peter J and Nandakumar, Priyanka and Nguyen, Quang Tri and Nutile, Teresa and Oldehinkel, Albertine J and Oostra, Ben A and Org, Elin and Padmanabhan, Sandosh and Palotie, Aarno and Par{\'e}, Guillaume and Pattie, Alison and Penninx, Brenda W J H and Poulter, Neil and Pramstaller, Peter P and Raitakari, Olli T and Ren, Meixia and Rice, Kenneth and Ridker, Paul M and Riese, Harri{\"e}tte and Ripatti, Samuli and Robino, Antonietta and Rotter, Jerome I and Rudan, Igor and Saba, Yasaman and Saint Pierre, Aude and Sala, Cinzia F and Sarin, Antti-Pekka and Schmidt, Reinhold and Scott, Rodney and Seelen, Marc A and Shields, Denis C and Siscovick, David and Sorice, Rossella and Stanton, Alice and Stott, David J and Sundstr{\"o}m, Johan and Swertz, Morris and Taylor, Kent D and Thom, Simon and Tzoulaki, Ioanna and Tzourio, Christophe and Uitterlinden, Andr{\'e} G and V{\"o}lker, Uwe and Vollenweider, Peter and Wild, Sarah and Willemsen, Gonneke and Wright, Alan F and Yao, Jie and Th{\'e}riault, S{\'e}bastien and Conen, David and Attia, John and Sever, Peter and Debette, Stephanie and Mook-Kanamori, Dennis O and Zeggini, Eleftheria and Spector, Tim D and van der Harst, Pim and Palmer, Colin N A and Vergnaud, Anne-Claire and Loos, Ruth J F and Polasek, Ozren and Starr, John M and Girotto, Giorgia and Hayward, Caroline and Kooner, Jaspal S and Lindgren, Cecila M and Vitart, Veronique and Samani, Nilesh J and Tuomilehto, Jaakko and Gyllensten, Ulf and Knekt, Paul and Deary, Ian J and Ciullo, Marina and Elosua, Roberto and Keavney, Bernard D and Hicks, Andrew A and Scott, Robert A and Gasparini, Paolo and Laan, Maris and Liu, Yongmei and Watkins, Hugh and Hartman, Catharina A and Salomaa, Veikko and Toniolo, Daniela and Perola, Markus and Wilson, James F and Schmidt, Helena and Zhao, Jing Hua and Lehtim{\"a}ki, Terho and van Duijn, Cornelia M and Gudnason, Vilmundur and Psaty, Bruce M and Peters, Annette and Rettig, Rainer and James, Alan and Jukema, J Wouter and Strachan, David P and Palmas, Walter and Metspalu, Andres and Ingelsson, Erik and Boomsma, Dorret I and Franco, Oscar H and Bochud, Murielle and Newton-Cheh, Christopher and Munroe, Patricia B and Elliott, Paul and Chasman, Daniel I and Chakravarti, Aravinda and Knight, Joanne and Morris, Andrew P and Levy, Daniel and Tobin, Martin D and Snieder, Harold and Caulfield, Mark J and Ehret, Georg B} } @article {7549, title = {Predictors and outcomes of heart failure with mid-range ejection fraction.}, journal = {Eur J Heart Fail}, year = {2017}, month = {2017 Dec 11}, abstract = {

AIMS: While heart failure with preserved (HFpEF) and reduced ejection fraction (HFrEF) are well described, determinants and outcomes of heart failure with mid-range ejection fraction (HFmrEF) remain unclear. We sought to examine clinical and biochemical predictors of incident HFmrEF in the community.

METHODS AND RESULTS: We pooled data from four community-based longitudinal cohorts, with ascertainment of new heart failure (HF) classified into HFmrEF [ejection fraction (EF) 41-49\%], HFpEF (EF >=50\%), and HFrEF (EF <=40\%). Predictors of incident HF subtypes were assessed using multivariable Cox models. Among 28 820 participants free of HF followed for a median of 12 years, there were 200 new HFmrEF cases, compared with 811 HFpEF and 1048 HFrEF. Clinical predictors of HFmrEF included age, male sex, systolic blood pressure, diabetes mellitus, and prior myocardial infarction (multivariable adjusted P~<= 0.003 for all). Biomarkers that predicted HFmrEF included natriuretic peptides, cystatin-C, and high-sensitivity troponin (P~<= 0.0004 for all). Natriuretic peptides were stronger predictors of HFrEF [hazard ratio (HR) 2.00 per 1 standard deviation increase, 95\% confidence interval (CI) 1.81-2.20] than of HFmrEF (HR 1.51, 95\% CI 1.20-1.90, P~= 0.01 for difference), and did not differ in their association with incident HFmrEF and HFpEF (HR 1.56, 95\% CI 1.41-1.73, P~= 0.68 for difference). All-cause mortality following the onset of HFmrEF was worse than that of HFpEF (50 vs. 39 events per 1000 person-years, P~= 0.02), but comparable to that of HFrEF (46 events per 1000 person-years, P~= 0.78).

CONCLUSIONS: We found overlap in predictors of incident HFmrEF with other HF subtypes. In contrast, mortality risk after HFmrEF was worse than HFpEF, and similar to HFrEF.

}, issn = {1879-0844}, doi = {10.1002/ejhf.1091}, author = {Bhambhani, Vijeta and Kizer, Jorge R and Lima, Jo{\~a}o A C and van der Harst, Pim and Bahrami, Hossein and Nayor, Matthew and de Filippi, Christopher R and Enserro, Danielle and Blaha, Michael J and Cushman, Mary and Wang, Thomas J and Gansevoort, Ron T and Fox, Caroline S and Gaggin, Hanna K and Kop, Willem J and Liu, Kiang and Vasan, Ramachandran S and Psaty, Bruce M and Lee, Douglas S and Brouwers, Frank P and Hillege, Hans L and Bartz, Traci M and Benjamin, Emelia J and Chan, Cheeling and Allison, Matthew and Gardin, Julius M and Januzzi, James L and Levy, Daniel and Herrington, David M and van Gilst, Wiek H and Bertoni, Alain G and Larson, Martin G and de Boer, Rudolf A and Gottdiener, John S and Shah, Sanjiv J and Ho, Jennifer E} } @article {7603, title = {Association of Cardiovascular Biomarkers With Incident Heart Failure With Preserved and Reduced Ejection Fraction.}, journal = {JAMA Cardiol}, year = {2018}, month = {2018 Jan 10}, abstract = {

Importance: Nearly half of all patients with heart failure have preserved ejection fraction (HFpEF) as opposed to reduced ejection fraction (HFrEF), yet associations of biomarkers with future heart failure subtype are incompletely understood.

Objective: To evaluate the associations of 12 cardiovascular biomarkers with incident HFpEF vs HFrEF among adults from the general population.

Design, Setting, and Participants: This study included 4 longitudinal community-based cohorts: the Cardiovascular Health Study (1989-1990; 1992-1993 for supplemental African-American cohort), the Framingham Heart Study (1995-1998), the Multi-Ethnic Study of Atherosclerosis (2000-2002), and the Prevention of Renal and Vascular End-stage Disease study (1997-1998). Each cohort had prospective ascertainment of incident HFpEF and HFrEF. Data analysis was performed from June 25, 2015, to November 9, 2017.

Exposures: The following biomarkers were examined: N-terminal pro B-type natriuretic peptide or brain natriuretic peptide, high-sensitivity troponin T or I, C-reactive protein (CRP), urinary albumin to creatinine ratio (UACR), renin to aldosterone ratio, D-dimer, fibrinogen, soluble suppressor of tumorigenicity, galectin-3, cystatin C, plasminogen activator inhibitor 1, and interleukin 6.

Main Outcomes and Measures: Development of incident HFpEF and incident HFrEF.

Results: Among the 22 756 participants in these 4 cohorts (12 087 women and 10 669 men; mean [SD] age, 60 [13] years) in the study, during a median follow-up of 12 years, 633 participants developed incident HFpEF, and 841 developed HFrEF. In models adjusted for clinical risk factors of heart failure, 2 biomarkers were significantly associated with incident HFpEF: UACR (hazard ratio [HR], 1.33; 95\% CI, 1.20-1.48; P < .001) and natriuretic peptides (HR, 1.27; 95\% CI, 1.16-1.40; P < .001), with suggestive associations for high-sensitivity troponin (HR, 1.11; 95\% CI, 1.03-1.19; P = .008), plasminogen activator inhibitor 1 (HR, 1.22; 95\% CI, 1.03-1.45; P = .02), and fibrinogen (HR, 1.12; 95\% CI, 1.03-1.22; P = .01). By contrast, 6 biomarkers were associated with incident HFrEF: natriuretic peptides (HR, 1.54; 95\% CI, 1.41-1.68; P < .001), UACR (HR, 1.21; 95\% CI, 1.11-1.32; P < .001), high-sensitivity troponin (HR, 1.37; 95\% CI, 1.29-1.46; P < .001), cystatin C (HR, 1.19; 95\% CI, 1.11-1.27; P < .001), D-dimer (HR, 1.22; 95\% CI, 1.11-1.35; P < .001), and CRP (HR, 1.19; 95\% CI, 1.11-1.28; P < .001). When directly compared, natriuretic peptides, high-sensitivity troponin, and CRP were more strongly associated with HFrEF compared with HFpEF.

Conclusions and Relevance: Biomarkers of renal dysfunction, endothelial dysfunction, and inflammation were associated with incident HFrEF. By contrast, only natriuretic peptides and UACR were associated with HFpEF. These findings highlight the need for future studies focused on identifying novel biomarkers of the risk of HFpEF.

}, issn = {2380-6591}, doi = {10.1001/jamacardio.2017.4987}, author = {de Boer, Rudolf A and Nayor, Matthew and deFilippi, Christopher R and Enserro, Danielle and Bhambhani, Vijeta and Kizer, Jorge R and Blaha, Michael J and Brouwers, Frank P and Cushman, Mary and Lima, Jo{\~a}o A C and Bahrami, Hossein and van der Harst, Pim and Wang, Thomas J and Gansevoort, Ron T and Fox, Caroline S and Gaggin, Hanna K and Kop, Willem J and Liu, Kiang and Vasan, Ramachandran S and Psaty, Bruce M and Lee, Douglas S and Hillege, Hans L and Bartz, Traci M and Benjamin, Emelia J and Chan, Cheeling and Allison, Matthew and Gardin, Julius M and Januzzi, James L and Shah, Sanjiv J and Levy, Daniel and Herrington, David M and Larson, Martin G and van Gilst, Wiek H and Gottdiener, John S and Bertoni, Alain G and Ho, Jennifer E} } @article {7812, title = {The Association of Obesity and Cardiometabolic Traits With Incident~HFpEF and HFrEF.}, journal = {JACC Heart Fail}, volume = {6}, year = {2018}, month = {2018 Aug}, pages = {701-709}, abstract = {

OBJECTIVES: This study evaluated the associations of obesity and cardiometabolic traits with incident heart failure with preserved versus reduced ejection fraction (HFpEF vs. HFrEF). Given known sex differences in HF subtype, we examined men and women separately.

BACKGROUND: Recent studies suggest that obesity confers greater risk of HFpEF versus HFrEF. Contributions of associated metabolic traits to HFpEF are less clear.

METHODS: We studied 22,681 participants from 4 community-based cohorts followed for incident HFpEF versus HFrEF (ejection fraction >=50\% vs.~<50\%). We evaluated the association of body mass index (BMI) and cardiometabolic traits with incident HF subtype using Cox models.

RESULTS: The mean age was 60 {\textpm} 13 years, and 53\% were women. Over a median follow-up of 12 years, 628 developed incident HFpEF and 835 HFrEF. Greater BMI portended higher risk of HFpEF compared with HFrEF (hazard ratio [HR]: 1.34 per 1-SD increase in BMI; 95\% confidence interval [CI]: 1.24 to 1.45 vs. HR: 1.18; 95\% CI: 1.10 to 1.27). Similarly, insulin resistance (homeostatic model assessment of insulin resistance) was associated with HFpEF (HR: 1.20 per 1-SD; 95\% CI: 1.05 to 1.37), but not HFrEF (HR: 0.99; 95\% CI: 0.88 to 1.11; p~< 0.05 for difference HFpEF vs. HFrEF). We found that the differential association of BMI with HFpEF versus HFrEF was more pronounced among women (p for difference HFpEF vs. HFrEF~= 0.01) when compared with men (p~= 0.34).

CONCLUSIONS: Obesity and related cardiometabolic traits including insulin resistance are more strongly associated with risk of future HFpEF versus HFrEF. The differential risk of HFpEF with obesity seems particularly pronounced among~women and may underlie sex differences in HF subtypes.

}, issn = {2213-1787}, doi = {10.1016/j.jchf.2018.05.018}, author = {Savji, Nazir and Meijers, Wouter C and Bartz, Traci M and Bhambhani, Vijeta and Cushman, Mary and Nayor, Matthew and Kizer, Jorge R and Sarma, Amy and Blaha, Michael J and Gansevoort, Ron T and Gardin, Julius M and Hillege, Hans L and Ji, Fei and Kop, Willem J and Lau, Emily S and Lee, Douglas S and Sadreyev, Ruslan and van Gilst, Wiek H and Wang, Thomas J and Zanni, Markella V and Vasan, Ramachandran S and Allen, Norrina B and Psaty, Bruce M and van der Harst, Pim and Levy, Daniel and Larson, Martin and Shah, Sanjiv J and de Boer, Rudolf A and Gottdiener, John S and Ho, Jennifer E} } @article {7801, title = {Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 May}, pages = {e002037}, abstract = {

BACKGROUND: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability.

METHODS: We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval.

RESULTS: We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction (<1.2{\texttimes}10), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at (=5.9{\texttimes}10) and (=1.1{\texttimes}10) were associated with PR interval. locus also was implicated in the common variant analysis, whereas was a novel locus.

CONCLUSIONS: We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.117.002037}, author = {Lin, Honghuang and van Setten, Jessica and Smith, Albert V and Bihlmeyer, Nathan A and Warren, Helen R and Brody, Jennifer A and Radmanesh, Farid and Hall, Leanne and Grarup, Niels and M{\"u}ller-Nurasyid, Martina and Boutin, Thibaud and Verweij, Niek and Lin, Henry J and Li-Gao, Ruifang and van den Berg, Marten E and Marten, Jonathan and Weiss, Stefan and Prins, Bram P and Haessler, Jeffrey and Lyytik{\"a}inen, Leo-Pekka and Mei, Hao and Harris, Tamara B and Launer, Lenore J and Li, Man and Alonso, Alvaro and Soliman, Elsayed Z and Connell, John M and Huang, Paul L and Weng, Lu-Chen and Jameson, Heather S and Hucker, William and Hanley, Alan and Tucker, Nathan R and Chen, Yii-Der Ida and Bis, Joshua C and Rice, Kenneth M and Sitlani, Colleen M and Kors, Jan A and Xie, Zhijun and Wen, Chengping and Magnani, Jared W and Nelson, Christopher P and Kanters, J{\o}rgen K and Sinner, Moritz F and Strauch, Konstantin and Peters, Annette and Waldenberger, Melanie and Meitinger, Thomas and Bork-Jensen, Jette and Pedersen, Oluf and Linneberg, Allan and Rudan, Igor and de Boer, Rudolf A and van der Meer, Peter and Yao, Jie and Guo, Xiuqing and Taylor, Kent D and Sotoodehnia, Nona and Rotter, Jerome I and Mook-Kanamori, Dennis O and Trompet, Stella and Rivadeneira, Fernando and Uitterlinden, Andre and Eijgelsheim, Mark and Padmanabhan, Sandosh and Smith, Blair H and V{\"o}lzke, Henry and Felix, Stephan B and Homuth, Georg and V{\"o}lker, Uwe and Mangino, Massimo and Spector, Timothy D and Bots, Michiel L and Perez, Marco and K{\"a}h{\"o}nen, Mika and Raitakari, Olli T and Gudnason, Vilmundur and Arking, Dan E and Munroe, Patricia B and Psaty, Bruce M and van Duijn, Cornelia M and Benjamin, Emelia J and Rosand, Jonathan and Samani, Nilesh J and Hansen, Torben and K{\"a}{\"a}b, Stefan and Polasek, Ozren and van der Harst, Pim and Heckbert, Susan R and Jukema, J Wouter and Stricker, Bruno H and Hayward, Caroline and D{\"o}rr, Marcus and Jamshidi, Yalda and Asselbergs, Folkert W and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Wilson, James G and Ellinor, Patrick T and Lubitz, Steven A and Isaacs, Aaron} } @article {7809, title = {Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6.}, journal = {Genome Biol}, volume = {19}, year = {2018}, month = {2018 07 17}, pages = {87}, abstract = {

BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear.

RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874~individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction.

CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.

}, issn = {1474-760X}, doi = {10.1186/s13059-018-1457-6}, author = {Prins, Bram P and Mead, Timothy J and Brody, Jennifer A and Sveinbjornsson, Gardar and Ntalla, Ioanna and Bihlmeyer, Nathan A and van den Berg, Marten and Bork-Jensen, Jette and Cappellani, Stefania and Van Duijvenboden, Stefan and Klena, Nikolai T and Gabriel, George C and Liu, Xiaoqin and Gulec, Cagri and Grarup, Niels and Haessler, Jeffrey and Hall, Leanne M and Iorio, Annamaria and Isaacs, Aaron and Li-Gao, Ruifang and Lin, Honghuang and Liu, Ching-Ti and Lyytik{\"a}inen, Leo-Pekka and Marten, Jonathan and Mei, Hao and M{\"u}ller-Nurasyid, Martina and Orini, Michele and Padmanabhan, Sandosh and Radmanesh, Farid and Ramirez, Julia and Robino, Antonietta and Schwartz, Molly and van Setten, Jessica and Smith, Albert V and Verweij, Niek and Warren, Helen R and Weiss, Stefan and Alonso, Alvaro and Arnar, David O and Bots, Michiel L and de Boer, Rudolf A and Dominiczak, Anna F and Eijgelsheim, Mark and Ellinor, Patrick T and Guo, Xiuqing and Felix, Stephan B and Harris, Tamara B and Hayward, Caroline and Heckbert, Susan R and Huang, Paul L and Jukema, J W and K{\"a}h{\"o}nen, Mika and Kors, Jan A and Lambiase, Pier D and Launer, Lenore J and Li, Man and Linneberg, Allan and Nelson, Christopher P and Pedersen, Oluf and Perez, Marco and Peters, Annette and Polasek, Ozren and Psaty, Bruce M and Raitakari, Olli T and Rice, Kenneth M and Rotter, Jerome I and Sinner, Moritz F and Soliman, Elsayed Z and Spector, Tim D and Strauch, Konstantin and Thorsteinsdottir, Unnur and Tinker, Andrew and Trompet, Stella and Uitterlinden, Andre and Vaartjes, Ilonca and van der Meer, Peter and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Waldenberger, Melanie and Wilson, James G and Xie, Zhijun and Asselbergs, Folkert W and D{\"o}rr, Marcus and van Duijn, Cornelia M and Gasparini, Paolo and Gudbjartsson, Daniel F and Gudnason, Vilmundur and Hansen, Torben and K{\"a}{\"a}b, Stefan and Kanters, J{\o}rgen K and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Lin, Henry J and Lubitz, Steven A and Mook-Kanamori, Dennis O and Conti, Francesco J and Newton-Cheh, Christopher H and Rosand, Jonathan and Rudan, Igor and Samani, Nilesh J and Sinagra, Gianfranco and Smith, Blair H and Holm, Hilma and Stricker, Bruno H and Ulivi, Sheila and Sotoodehnia, Nona and Apte, Suneel S and van der Harst, Pim and Stefansson, Kari and Munroe, Patricia B and Arking, Dan E and Lo, Cecilia W and Jamshidi, Yalda} } @article {7784, title = {ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 Jan}, pages = {e001758}, abstract = {

BACKGROUND: QT interval, measured through a standard ECG, captures the time it takes for the cardiac ventricles to depolarize and repolarize. JT interval is the component of the QT interval that reflects ventricular repolarization alone. Prolonged QT interval has been linked to higher risk of sudden cardiac arrest.

METHODS AND RESULTS: We performed an ExomeChip-wide analysis for both QT and JT intervals, including 209 449 variants, both common and rare, in 17 341 genes from the Illumina Infinium HumanExome BeadChip. We identified 10 loci that modulate QT and JT interval duration that have not been previously reported in the literature using single-variant statistical models in a meta-analysis of 95 626 individuals from 23 cohorts (comprised 83 884 European ancestry individuals, 9610 blacks, 1382 Hispanics, and 750 Asians). This brings the total number of ventricular repolarization associated loci to 45. In addition, our approach of using coding variants has highlighted the role of 17 specific genes for involvement in ventricular repolarization, 7 of which are in novel loci.

CONCLUSIONS: Our analyses show a role for myocyte internal structure and interconnections in modulating QT interval duration, adding to previous known roles of potassium, sodium, and calcium ion regulation, as well as autonomic control. We anticipate that these discoveries will open new paths to the goal of making novel remedies for the prevention of lethal ventricular arrhythmias and sudden cardiac arrest.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.117.001758}, author = {Bihlmeyer, Nathan A and Brody, Jennifer A and Smith, Albert Vernon and Warren, Helen R and Lin, Honghuang and Isaacs, Aaron and Liu, Ching-Ti and Marten, Jonathan and Radmanesh, Farid and Hall, Leanne M and Grarup, Niels and Mei, Hao and M{\"u}ller-Nurasyid, Martina and Huffman, Jennifer E and Verweij, Niek and Guo, Xiuqing and Yao, Jie and Li-Gao, Ruifang and van den Berg, Marten and Weiss, Stefan and Prins, Bram P and van Setten, Jessica and Haessler, Jeffrey and Lyytik{\"a}inen, Leo-Pekka and Li, Man and Alonso, Alvaro and Soliman, Elsayed Z and Bis, Joshua C and Austin, Tom and Chen, Yii-Der Ida and Psaty, Bruce M and Harrris, Tamara B and Launer, Lenore J and Padmanabhan, Sandosh and Dominiczak, Anna and Huang, Paul L and Xie, Zhijun and Ellinor, Patrick T and Kors, Jan A and Campbell, Archie and Murray, Alison D and Nelson, Christopher P and Tobin, Martin D and Bork-Jensen, Jette and Hansen, Torben and Pedersen, Oluf and Linneberg, Allan and Sinner, Moritz F and Peters, Annette and Waldenberger, Melanie and Meitinger, Thomas and Perz, Siegfried and Kolcic, Ivana and Rudan, Igor and de Boer, Rudolf A and van der Meer, Peter and Lin, Henry J and Taylor, Kent D and de Mutsert, Ren{\'e}e and Trompet, Stella and Jukema, J Wouter and Maan, Arie C and Stricker, Bruno H C and Rivadeneira, Fernando and Uitterlinden, Andre and V{\"o}lker, Uwe and Homuth, Georg and V{\"o}lzke, Henry and Felix, Stephan B and Mangino, Massimo and Spector, Timothy D and Bots, Michiel L and Perez, Marco and Raitakari, Olli T and K{\"a}h{\"o}nen, Mika and Mononen, Nina and Gudnason, Vilmundur and Munroe, Patricia B and Lubitz, Steven A and van Duijn, Cornelia M and Newton-Cheh, Christopher H and Hayward, Caroline and Rosand, Jonathan and Samani, Nilesh J and Kanters, J{\o}rgen K and Wilson, James G and K{\"a}{\"a}b, Stefan and Polasek, Ozren and van der Harst, Pim and Heckbert, Susan R and Rotter, Jerome I and Mook-Kanamori, Dennis O and Eijgelsheim, Mark and D{\"o}rr, Marcus and Jamshidi, Yalda and Asselbergs, Folkert W and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Arking, Dan E and Sotoodehnia, Nona} } @article {7845, title = {Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Oct}, pages = {1412-1425}, abstract = {

High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0205-x}, author = {Evangelou, Evangelos and Warren, Helen R and Mosen-Ansorena, David and Mifsud, Borbala and Pazoki, Raha and Gao, He and Ntritsos, Georgios and Dimou, Niki and Cabrera, Claudia P and Karaman, Ibrahim and Ng, Fu Liang and Evangelou, Marina and Witkowska, Katarzyna and Tzanis, Evan and Hellwege, Jacklyn N and Giri, Ayush and Velez Edwards, Digna R and Sun, Yan V and Cho, Kelly and Gaziano, J Michael and Wilson, Peter W F and Tsao, Philip S and Kovesdy, Csaba P and Esko, T{\~o}nu and M{\"a}gi, Reedik and Milani, Lili and Almgren, Peter and Boutin, Thibaud and Debette, Stephanie and Ding, Jun and Giulianini, Franco and Holliday, Elizabeth G and Jackson, Anne U and Li-Gao, Ruifang and Lin, Wei-Yu and Luan, Jian{\textquoteright}an and Mangino, Massimo and Oldmeadow, Christopher and Prins, Bram Peter and Qian, Yong and Sargurupremraj, Muralidharan and Shah, Nabi and Surendran, Praveen and Th{\'e}riault, S{\'e}bastien and Verweij, Niek and Willems, Sara M and Zhao, Jing-Hua and Amouyel, Philippe and Connell, John and de Mutsert, Ren{\'e}e and Doney, Alex S F and Farrall, Martin and Menni, Cristina and Morris, Andrew D and Noordam, Raymond and Par{\'e}, Guillaume and Poulter, Neil R and Shields, Denis C and Stanton, Alice and Thom, Simon and Abecasis, Goncalo and Amin, Najaf and Arking, Dan E and Ayers, Kristin L and Barbieri, Caterina M and Batini, Chiara and Bis, Joshua C and Blake, Tineka and Bochud, Murielle and Boehnke, Michael and Boerwinkle, Eric and Boomsma, Dorret I and Bottinger, Erwin P and Braund, Peter S and Brumat, Marco and Campbell, Archie and Campbell, Harry and Chakravarti, Aravinda and Chambers, John C and Chauhan, Ganesh and Ciullo, Marina and Cocca, Massimiliano and Collins, Francis and Cordell, Heather J and Davies, Gail and Borst, Martin H de and Geus, Eco J de and Deary, Ian J and Deelen, Joris and del Greco M, Fabiola and Demirkale, Cumhur Yusuf and D{\"o}rr, Marcus and Ehret, Georg B and Elosua, Roberto and Enroth, Stefan and Erzurumluoglu, A Mesut and Ferreira, Teresa and Fr{\r a}nberg, Mattias and Franco, Oscar H and Gandin, Ilaria and Gasparini, Paolo and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Goel, Anuj and Gow, Alan J and Gudnason, Vilmundur and Guo, Xiuqing and Gyllensten, Ulf and Hamsten, Anders and Harris, Tamara B and Harris, Sarah E and Hartman, Catharina A and Havulinna, Aki S and Hicks, Andrew A and Hofer, Edith and Hofman, Albert and Hottenga, Jouke-Jan and Huffman, Jennifer E and Hwang, Shih-Jen and Ingelsson, Erik and James, Alan and Jansen, Rick and Jarvelin, Marjo-Riitta and Joehanes, Roby and Johansson, Asa and Johnson, Andrew D and Joshi, Peter K and Jousilahti, Pekka and Jukema, J Wouter and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Keavney, Bernard D and Khaw, Kay-Tee and Knekt, Paul and Knight, Joanne and Kolcic, Ivana and Kooner, Jaspal S and Koskinen, Seppo and Kristiansson, Kati and Kutalik, Zolt{\'a}n and Laan, Maris and Larson, Marty and Launer, Lenore J and Lehne, Benjamin and Lehtim{\"a}ki, Terho and Liewald, David C M and Lin, Li and Lind, Lars and Lindgren, Cecilia M and Liu, Yongmei and Loos, Ruth J F and Lopez, Lorna M and Lu, Yingchang and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Mamasoula, Chrysovalanto and Marrugat, Jaume and Marten, Jonathan and Milaneschi, Yuri and Morgan, Anna and Morris, Andrew P and Morrison, Alanna C and Munson, Peter J and Nalls, Mike A and Nandakumar, Priyanka and Nelson, Christopher P and Niiranen, Teemu and Nolte, Ilja M and Nutile, Teresa and Oldehinkel, Albertine J and Oostra, Ben A and O{\textquoteright}Reilly, Paul F and Org, Elin and Padmanabhan, Sandosh and Palmas, Walter and Palotie, Aarno and Pattie, Alison and Penninx, Brenda W J H and Perola, Markus and Peters, Annette and Polasek, Ozren and Pramstaller, Peter P and Nguyen, Quang Tri and Raitakari, Olli T and Ren, Meixia and Rettig, Rainer and Rice, Kenneth and Ridker, Paul M and Ried, Janina S and Riese, Harri{\"e}tte and Ripatti, Samuli and Robino, Antonietta and Rose, Lynda M and Rotter, Jerome I and Rudan, Igor and Ruggiero, Daniela and Saba, Yasaman and Sala, Cinzia F and Salomaa, Veikko and Samani, Nilesh J and Sarin, Antti-Pekka and Schmidt, Reinhold and Schmidt, Helena and Shrine, Nick and Siscovick, David and Smith, Albert V and Snieder, Harold and S{\~o}ber, Siim and Sorice, Rossella and Starr, John M and Stott, David J and Strachan, David P and Strawbridge, Rona J and Sundstr{\"o}m, Johan and Swertz, Morris A and Taylor, Kent D and Teumer, Alexander and Tobin, Martin D and Tomaszewski, Maciej and Toniolo, Daniela and Traglia, Michela and Trompet, Stella and Tuomilehto, Jaakko and Tzourio, Christophe and Uitterlinden, Andr{\'e} G and Vaez, Ahmad and van der Most, Peter J and van Duijn, Cornelia M and Vergnaud, Anne-Claire and Verwoert, Germaine C and Vitart, Veronique and V{\"o}lker, Uwe and Vollenweider, Peter and Vuckovic, Dragana and Watkins, Hugh and Wild, Sarah H and Willemsen, Gonneke and Wilson, James F and Wright, Alan F and Yao, Jie and Zemunik, Tatijana and Zhang, Weihua and Attia, John R and Butterworth, Adam S and Chasman, Daniel I and Conen, David and Cucca, Francesco and Danesh, John and Hayward, Caroline and Howson, Joanna M M and Laakso, Markku and Lakatta, Edward G and Langenberg, Claudia and Melander, Olle and Mook-Kanamori, Dennis O and Palmer, Colin N A and Risch, Lorenz and Scott, Robert A and Scott, Rodney J and Sever, Peter and Spector, Tim D and van der Harst, Pim and Wareham, Nicholas J and Zeggini, Eleftheria and Levy, Daniel and Munroe, Patricia B and Newton-Cheh, Christopher and Brown, Morris J and Metspalu, Andres and Hung, Adriana M and O{\textquoteright}Donnell, Christopher J and Edwards, Todd L and Psaty, Bruce M and Tzoulaki, Ioanna and Barnes, Michael R and Wain, Louise V and Elliott, Paul and Caulfield, Mark J} } @article {7920, title = {Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders.}, journal = {Am J Hum Genet}, volume = {103}, year = {2018}, month = {2018 Nov 01}, pages = {691-706}, abstract = {

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5~{\texttimes} 10). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0\% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2018.09.009}, author = {Ligthart, Symen and Vaez, Ahmad and V{\~o}sa, Urmo and Stathopoulou, Maria G and de Vries, Paul S and Prins, Bram P and van der Most, Peter J and Tanaka, Toshiko and Naderi, Elnaz and Rose, Lynda M and Wu, Ying and Karlsson, Robert and Barbalic, Maja and Lin, Honghuang and Pool, Rene and Zhu, Gu and Mace, Aurelien and Sidore, Carlo and Trompet, Stella and Mangino, Massimo and Sabater-Lleal, Maria and Kemp, John P and Abbasi, Ali and Kacprowski, Tim and Verweij, Niek and Smith, Albert V and Huang, Tao and Marzi, Carola and Feitosa, Mary F and Lohman, Kurt K and Kleber, Marcus E and Milaneschi, Yuri and Mueller, Christian and Huq, Mahmudul and Vlachopoulou, Efthymia and Lyytik{\"a}inen, Leo-Pekka and Oldmeadow, Christopher and Deelen, Joris and Perola, Markus and Zhao, Jing Hua and Feenstra, Bjarke and Amini, Marzyeh and Lahti, Jari and Schraut, Katharina E and Fornage, Myriam and Suktitipat, Bhoom and Chen, Wei-Min and Li, Xiaohui and Nutile, Teresa and Malerba, Giovanni and Luan, Jian{\textquoteright}an and Bak, Tom and Schork, Nicholas and del Greco M, Fabiola and Thiering, Elisabeth and Mahajan, Anubha and Marioni, Riccardo E and Mihailov, Evelin and Eriksson, Joel and Ozel, Ayse Bilge and Zhang, Weihua and Nethander, Maria and Cheng, Yu-Ching and Aslibekyan, Stella and Ang, Wei and Gandin, Ilaria and Yengo, Loic and Portas, Laura and Kooperberg, Charles and Hofer, Edith and Rajan, Kumar B and Schurmann, Claudia and den Hollander, Wouter and Ahluwalia, Tarunveer S and Zhao, Jing and Draisma, Harmen H M and Ford, Ian and Timpson, Nicholas and Teumer, Alexander and Huang, Hongyan and Wahl, Simone and Liu, Yongmei and Huang, Jie and Uh, Hae-Won and Geller, Frank and Joshi, Peter K and Yanek, Lisa R and Trabetti, Elisabetta and Lehne, Benjamin and Vozzi, Diego and Verbanck, Marie and Biino, Ginevra and Saba, Yasaman and Meulenbelt, Ingrid and O{\textquoteright}Connell, Jeff R and Laakso, Markku and Giulianini, Franco and Magnusson, Patrik K E and Ballantyne, Christie M and Hottenga, Jouke Jan and Montgomery, Grant W and Rivadineira, Fernando and Rueedi, Rico and Steri, Maristella and Herzig, Karl-Heinz and Stott, David J and Menni, Cristina and Fr{\r a}nberg, Mattias and St Pourcain, Beate and Felix, Stephan B and Pers, Tune H and Bakker, Stephan J L and Kraft, Peter and Peters, Annette and Vaidya, Dhananjay and Delgado, Graciela and Smit, Johannes H and Gro{\ss}mann, Vera and Sinisalo, Juha and Sepp{\"a}l{\"a}, Ilkka and Williams, Stephen R and Holliday, Elizabeth G and Moed, Matthijs and Langenberg, Claudia and R{\"a}ikk{\"o}nen, Katri and Ding, Jingzhong and Campbell, Harry and Sale, Mich{\`e}le M and Chen, Yii-der I and James, Alan L and Ruggiero, Daniela and Soranzo, Nicole and Hartman, Catharina A and Smith, Erin N and Berenson, Gerald S and Fuchsberger, Christian and Hernandez, Dena and Tiesler, Carla M T and Giedraitis, Vilmantas and Liewald, David and Fischer, Krista and Mellstr{\"o}m, Dan and Larsson, Anders and Wang, Yunmei and Scott, William R and Lorentzon, Matthias and Beilby, John and Ryan, Kathleen A and Pennell, Craig E and Vuckovic, Dragana and Balkau, Beverly and Concas, Maria Pina and Schmidt, Reinhold and Mendes de Leon, Carlos F and Bottinger, Erwin P and Kloppenburg, Margreet and Paternoster, Lavinia and Boehnke, Michael and Musk, A W and Willemsen, Gonneke and Evans, David M and Madden, Pamela A F and K{\"a}h{\"o}nen, Mika and Kutalik, Zolt{\'a}n and Zoledziewska, Magdalena and Karhunen, Ville and Kritchevsky, Stephen B and Sattar, Naveed and Lachance, Genevieve and Clarke, Robert and Harris, Tamara B and Raitakari, Olli T and Attia, John R and van Heemst, Diana and Kajantie, Eero and Sorice, Rossella and Gambaro, Giovanni and Scott, Robert A and Hicks, Andrew A and Ferrucci, Luigi and Standl, Marie and Lindgren, Cecilia M and Starr, John M and Karlsson, Magnus and Lind, Lars and Li, Jun Z and Chambers, John C and Mori, Trevor A and de Geus, Eco J C N and Heath, Andrew C and Martin, Nicholas G and Auvinen, Juha and Buckley, Brendan M and de Craen, Anton J M and Waldenberger, Melanie and Strauch, Konstantin and Meitinger, Thomas and Scott, Rodney J and McEvoy, Mark and Beekman, Marian and Bombieri, Cristina and Ridker, Paul M and Mohlke, Karen L and Pedersen, Nancy L and Morrison, Alanna C and Boomsma, Dorret I and Whitfield, John B and Strachan, David P and Hofman, Albert and Vollenweider, Peter and Cucca, Francesco and Jarvelin, Marjo-Riitta and Jukema, J Wouter and Spector, Tim D and Hamsten, Anders and Zeller, Tanja and Uitterlinden, Andr{\'e} G and Nauck, Matthias and Gudnason, Vilmundur and Qi, Lu and Grallert, Harald and Borecki, Ingrid B and Rotter, Jerome I and M{\"a}rz, Winfried and Wild, Philipp S and Lokki, Marja-Liisa and Boyle, Michael and Salomaa, Veikko and Melbye, Mads and Eriksson, Johan G and Wilson, James F and Penninx, Brenda W J H and Becker, Diane M and Worrall, Bradford B and Gibson, Greg and Krauss, Ronald M and Ciullo, Marina and Zaza, Gianluigi and Wareham, Nicholas J and Oldehinkel, Albertine J and Palmer, Lyle J and Murray, Sarah S and Pramstaller, Peter P and Bandinelli, Stefania and Heinrich, Joachim and Ingelsson, Erik and Deary, Ian J and M{\"a}gi, Reedik and Vandenput, Liesbeth and van der Harst, Pim and Desch, Karl C and Kooner, Jaspal S and Ohlsson, Claes and Hayward, Caroline and Lehtim{\"a}ki, Terho and Shuldiner, Alan R and Arnett, Donna K and Beilin, Lawrence J and Robino, Antonietta and Froguel, Philippe and Pirastu, Mario and Jess, Tine and Koenig, Wolfgang and Loos, Ruth J F and Evans, Denis A and Schmidt, Helena and Smith, George Davey and Slagboom, P Eline and Eiriksdottir, Gudny and Morris, Andrew P and Psaty, Bruce M and Tracy, Russell P and Nolte, Ilja M and Boerwinkle, Eric and Visvikis-Siest, Sophie and Reiner, Alex P and Gross, Myron and Bis, Joshua C and Franke, Lude and Franco, Oscar H and Benjamin, Emelia J and Chasman, Daniel I and Dupuis, Jos{\'e}e and Snieder, Harold and Dehghan, Abbas and Alizadeh, Behrooz Z} } @article {7686, title = {A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure.}, journal = {Am J Hum Genet}, volume = {102}, year = {2018}, month = {2018 Mar 01}, pages = {375-400}, abstract = {

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined \~{}18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5~{\texttimes} 10) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5~{\texttimes} 10). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2018.01.015}, author = {Sung, Yun J and Winkler, Thomas W and de Las Fuentes, Lisa and Bentley, Amy R and Brown, Michael R and Kraja, Aldi T and Schwander, Karen and Ntalla, Ioanna and Guo, Xiuqing and Franceschini, Nora and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Marten, Jonathan and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Kilpel{\"a}inen, Tuomas O and Richard, Melissa A and Noordam, Raymond and Aslibekyan, Stella and Aschard, Hugues and Bartz, Traci M and Dorajoo, Rajkumar and Liu, Yongmei and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert Vernon and Tajuddin, Salman M and Tayo, Bamidele O and Warren, Helen R and Zhao, Wei and Zhou, Yanhua and Matoba, Nana and Sofer, Tamar and Alver, Maris and Amini, Marzyeh and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gandin, Ilaria and Gao, Chuan and Giulianini, Franco and Goel, Anuj and Harris, Sarah E and Hartwig, Fernando Pires and Horimoto, Andrea R V R and Hsu, Fang-Chi and Jackson, Anne U and K{\"a}h{\"o}nen, Mika and Kasturiratne, Anuradhani and Kuhnel, Brigitte and Leander, Karin and Lee, Wen-Jane and Lin, Keng-Hung and {\textquoteright}an Luan, Jian and McKenzie, Colin A and Meian, He and Nelson, Christopher P and Rauramaa, Rainer and Schupf, Nicole and Scott, Robert A and Sheu, Wayne H H and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and van der Most, Peter J and Varga, Tibor V and Wang, Heming and Wang, Yajuan and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Alfred, Tamuno and Amin, Najaf and Arking, Dan and Aung, Tin and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Braund, Peter S and Brody, Jennifer A and Broeckel, Ulrich and Cabrera, Claudia P and Cade, Brian and Caizheng, Yu and Campbell, Archie and Canouil, Micka{\"e}l and Chakravarti, Aravinda and Chauhan, Ganesh and Christensen, Kaare and Cocca, Massimiliano and Collins, Francis S and Connell, John M and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Debette, Stephanie and D{\"o}rr, Marcus and Duan, Qing and Eaton, Charles B and Ehret, Georg and Evangelou, Evangelos and Faul, Jessica D and Fisher, Virginia A and Forouhi, Nita G and Franco, Oscar H and Friedlander, Yechiel and Gao, He and Gigante, Bruna and Graff, Misa and Gu, C Charles and Gu, Dongfeng and Gupta, Preeti and Hagenaars, Saskia P and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hofman, Albert and Howard, Barbara V and Hunt, Steven and Irvin, Marguerite R and Jia, Yucheng and Joehanes, Roby and Justice, Anne E and Katsuya, Tomohiro and Kaufman, Joel and Kerrison, Nicola D and Khor, Chiea Chuen and Koh, Woon-Puay and Koistinen, Heikki A and Komulainen, Pirjo and Kooperberg, Charles and Krieger, Jose E and Kubo, Michiaki and Kuusisto, Johanna and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Lim, Sing Hui and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Jingmin and Liu, Kiang and Liu, Yeheng and Loh, Marie and Lohman, Kurt K and Long, Jirong and Louie, Tin and M{\"a}gi, Reedik and Mahajan, Anubha and Meitinger, Thomas and Metspalu, Andres and Milani, Lili and Momozawa, Yukihide and Morris, Andrew P and Mosley, Thomas H and Munson, Peter and Murray, Alison D and Nalls, Mike A and Nasri, Ubaydah and Norris, Jill M and North, Kari and Ogunniyi, Adesola and Padmanabhan, Sandosh and Palmas, Walter R and Palmer, Nicholette D and Pankow, James S and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Raitakari, Olli T and Renstrom, Frida and Rice, Treva K and Ridker, Paul M and Robino, Antonietta and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Sabanayagam, Charumathi and Salako, Babatunde L and Sandow, Kevin and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Seshadri, Sudha and Sever, Peter and Sitlani, Colleen M and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and Waldenberger, Melanie and Wang, Lihua and Wang, Ya X and Wei, Wen Bin and Williams, Christine and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Yuan, Jian-Min and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Chen, Yii-Der Ida and de Faire, Ulf and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Forrester, Terrence and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo Lessa and Hung, Yi-Jen and Jonas, Jost B and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Lehtim{\"a}ki, Terho and Liang, Kae-Woei and Magnusson, Patrik K E and Newman, Anne B and Oldehinkel, Albertine J and Pereira, Alexandre C and Redline, Susan and Rettig, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zheng, Wei and Kamatani, Yoichiro and Laurie, Cathy C and Bouchard, Claude and Cooper, Richard S and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Kritchevsky, Stephen B and Levy, Daniel and O{\textquoteright}Connell, Jeff R and Psaty, Bruce M and van Dam, Rob M and Sims, Mario and Arnett, Donna K and Mook-Kanamori, Dennis O and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and Fornage, Myriam and Rotimi, Charles N and Province, Michael A and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Reiner, Alex P and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Caulfield, Mark J and Elliott, Paul and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Cupples, L Adrienne and Rao, Dabeeru C and Chasman, Daniel I} } @article {7683, title = {Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Apr}, pages = {524-537}, abstract = {

Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and~using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0058-3}, author = {Malik, Rainer and Chauhan, Ganesh and Traylor, Matthew and Sargurupremraj, Muralidharan and Okada, Yukinori and Mishra, Aniket and Rutten-Jacobs, Loes and Giese, Anne-Katrin and van der Laan, Sander W and Gretarsdottir, Solveig and Anderson, Christopher D and Chong, Michael and Adams, Hieab H H and Ago, Tetsuro and Almgren, Peter and Amouyel, Philippe and Ay, Hakan and Bartz, Traci M and Benavente, Oscar R and Bevan, Steve and Boncoraglio, Giorgio B and Brown, Robert D and Butterworth, Adam S and Carrera, Caty and Carty, Cara L and Chasman, Daniel I and Chen, Wei-Min and Cole, John W and Correa, Adolfo and Cotlarciuc, Ioana and Cruchaga, Carlos and Danesh, John and de Bakker, Paul I W and DeStefano, Anita L and den Hoed, Marcel and Duan, Qing and Engelter, Stefan T and Falcone, Guido J and Gottesman, Rebecca F and Grewal, Raji P and Gudnason, Vilmundur and Gustafsson, Stefan and Haessler, Jeffrey and Harris, Tamara B and Hassan, Ahamad and Havulinna, Aki S and Heckbert, Susan R and Holliday, Elizabeth G and Howard, George and Hsu, Fang-Chi and Hyacinth, Hyacinth I and Ikram, M Arfan and Ingelsson, Erik and Irvin, Marguerite R and Jian, Xueqiu and Jimenez-Conde, Jordi and Johnson, Julie A and Jukema, J Wouter and Kanai, Masahiro and Keene, Keith L and Kissela, Brett M and Kleindorfer, Dawn O and Kooperberg, Charles and Kubo, Michiaki and Lange, Leslie A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lee, Jin-Moo and Lemmens, Robin and Leys, Didier and Lewis, Cathryn M and Lin, Wei-Yu and Lindgren, Arne G and Lorentzen, Erik and Magnusson, Patrik K and Maguire, Jane and Manichaikul, Ani and McArdle, Patrick F and Meschia, James F and Mitchell, Braxton D and Mosley, Thomas H and Nalls, Michael A and Ninomiya, Toshiharu and O{\textquoteright}Donnell, Martin J and Psaty, Bruce M and Pulit, Sara L and Rannikmae, Kristiina and Reiner, Alexander P and Rexrode, Kathryn M and Rice, Kenneth and Rich, Stephen S and Ridker, Paul M and Rost, Natalia S and Rothwell, Peter M and Rotter, Jerome I and Rundek, Tatjana and Sacco, Ralph L and Sakaue, Saori and Sale, Mich{\`e}le M and Salomaa, Veikko and Sapkota, Bishwa R and Schmidt, Reinhold and Schmidt, Carsten O and Schminke, Ulf and Sharma, Pankaj and Slowik, Agnieszka and Sudlow, Cathie L M and Tanislav, Christian and Tatlisumak, Turgut and Taylor, Kent D and Thijs, Vincent N S and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiedt, Steffen and Trompet, Stella and Tzourio, Christophe and van Duijn, Cornelia M and Walters, Matthew and Wareham, Nicholas J and Wassertheil-Smoller, Sylvia and Wilson, James G and Wiggins, Kerri L and Yang, Qiong and Yusuf, Salim and Bis, Joshua C and Pastinen, Tomi and Ruusalepp, Arno and Schadt, Eric E and Koplev, Simon and Bj{\"o}rkegren, Johan L M and Codoni, Veronica and Civelek, Mete and Smith, Nicholas L and Tr{\'e}gou{\"e}t, David A and Christophersen, Ingrid E and Roselli, Carolina and Lubitz, Steven A and Ellinor, Patrick T and Tai, E Shyong and Kooner, Jaspal S and Kato, Norihiro and He, Jiang and van der Harst, Pim and Elliott, Paul and Chambers, John C and Takeuchi, Fumihiko and Johnson, Andrew D and Sanghera, Dharambir K and Melander, Olle and Jern, Christina and Strbian, Daniel and Fernandez-Cadenas, Israel and Longstreth, W T and Rolfs, Arndt and Hata, Jun and Woo, Daniel and Rosand, Jonathan and Par{\'e}, Guillaume and Hopewell, Jemma C and Saleheen, Danish and Stefansson, Kari and Worrall, Bradford B and Kittner, Steven J and Seshadri, Sudha and Fornage, Myriam and Markus, Hugh S and Howson, Joanna M M and Kamatani, Yoichiro and Debette, Stephanie and Dichgans, Martin and Malik, Rainer and Chauhan, Ganesh and Traylor, Matthew and Sargurupremraj, Muralidharan and Okada, Yukinori and Mishra, Aniket and Rutten-Jacobs, Loes and Giese, Anne-Katrin and van der Laan, Sander W and Gretarsdottir, Solveig and Anderson, Christopher D and Chong, Michael and Adams, Hieab H H and Ago, Tetsuro and Almgren, Peter and Amouyel, Philippe and Ay, Hakan and Bartz, Traci M and Benavente, Oscar R and Bevan, Steve and Boncoraglio, Giorgio B and Brown, Robert D and Butterworth, Adam S and Carrera, Caty and Carty, Cara L and Chasman, Daniel I and Chen, Wei-Min and Cole, John W and Correa, Adolfo and Cotlarciuc, Ioana and Cruchaga, Carlos and Danesh, John and de Bakker, Paul I W and DeStefano, Anita L and Hoed, Marcel den and Duan, Qing and Engelter, Stefan T and Falcone, Guido J and Gottesman, Rebecca F and Grewal, Raji P and Gudnason, Vilmundur and Gustafsson, Stefan and Haessler, Jeffrey and Harris, Tamara B and Hassan, Ahamad and Havulinna, Aki S and Heckbert, Susan R and Holliday, Elizabeth G and Howard, George and Hsu, Fang-Chi and Hyacinth, Hyacinth I and Ikram, M Arfan and Ingelsson, Erik and Irvin, Marguerite R and Jian, Xueqiu and Jimenez-Conde, Jordi and Johnson, Julie A and Jukema, J Wouter and Kanai, Masahiro and Keene, Keith L and Kissela, Brett M and Kleindorfer, Dawn O and Kooperberg, Charles and Kubo, Michiaki and Lange, Leslie A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lee, Jin-Moo and Lemmens, Robin and Leys, Didier and Lewis, Cathryn M and Lin, Wei-Yu and Lindgren, Arne G and Lorentzen, Erik and Magnusson, Patrik K and Maguire, Jane and Manichaikul, Ani and McArdle, Patrick F and Meschia, James F and Mitchell, Braxton D and Mosley, Thomas H and Nalls, Michael A and Ninomiya, Toshiharu and O{\textquoteright}Donnell, Martin J and Psaty, Bruce M and Pulit, Sara L and Rannikmae, Kristiina and Reiner, Alexander P and Rexrode, Kathryn M and Rice, Kenneth and Rich, Stephen S and Ridker, Paul M and Rost, Natalia S and Rothwell, Peter M and Rotter, Jerome I and Rundek, Tatjana and Sacco, Ralph L and Sakaue, Saori and Sale, Mich{\`e}le M and Salomaa, Veikko and Sapkota, Bishwa R and Schmidt, Reinhold and Schmidt, Carsten O and Schminke, Ulf and Sharma, Pankaj and Slowik, Agnieszka and Sudlow, Cathie L M and Tanislav, Christian and Tatlisumak, Turgut and Taylor, Kent D and Thijs, Vincent N S and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiedt, Steffen and Trompet, Stella and Tzourio, Christophe and van Duijn, Cornelia M and Walters, Matthew and Wareham, Nicholas J and Wassertheil-Smoller, Sylvia and Wilson, James G and Wiggins, Kerri L and Yang, Qiong and Yusuf, Salim and Amin, Najaf and Aparicio, Hugo S and Arnett, Donna K and Attia, John and Beiser, Alexa S and Berr, Claudine and Buring, Julie E and Bustamante, Mariana and Caso, Valeria and Cheng, Yu-Ching and Choi, Seung Hoan and Chowhan, Ayesha and Cullell, Natalia and Dartigues, Jean-Fran{\c c}ois and Delavaran, Hossein and Delgado, Pilar and D{\"o}rr, Marcus and Engstr{\"o}m, Gunnar and Ford, Ian and Gurpreet, Wander S and Hamsten, Anders and Heitsch, Laura and Hozawa, Atsushi and Ibanez, Laura and Ilinca, Andreea and Ingelsson, Martin and Iwasaki, Motoki and Jackson, Rebecca D and Jood, Katarina and Jousilahti, Pekka and Kaffashian, Sara and Kalra, Lalit and Kamouchi, Masahiro and Kitazono, Takanari and Kjartansson, Olafur and Kloss, Manja and Koudstaal, Peter J and Krupinski, Jerzy and Labovitz, Daniel L and Laurie, Cathy C and Levi, Christopher R and Li, Linxin and Lind, Lars and Lindgren, Cecilia M and Lioutas, Vasileios and Liu, Yong Mei and Lopez, Oscar L and Makoto, Hirata and Martinez-Majander, Nicolas and Matsuda, Koichi and Minegishi, Naoko and Montaner, Joan and Morris, Andrew P and Mui{\~n}o, Elena and M{\"u}ller-Nurasyid, Martina and Norrving, Bo and Ogishima, Soichi and Parati, Eugenio A and Peddareddygari, Leema Reddy and Pedersen, Nancy L and Pera, Joanna and Perola, Markus and Pezzini, Alessandro and Pileggi, Silvana and Rabionet, Raquel and Riba-Llena, Iolanda and Ribas{\'e}s, Marta and Romero, Jose R and Roquer, Jaume and Rudd, Anthony G and Sarin, Antti-Pekka and Sarju, Ralhan and Sarnowski, Chloe and Sasaki, Makoto and Satizabal, Claudia L and Satoh, Mamoru and Sattar, Naveed and Sawada, Norie and Sibolt, Gerli and Sigurdsson, {\'A}sgeir and Smith, Albert and Sobue, Kenji and Soriano-T{\'a}rraga, Carolina and Stanne, Tara and Stine, O Colin and Stott, David J and Strauch, Konstantin and Takai, Takako and Tanaka, Hideo and Tanno, Kozo and Teumer, Alexander and Tomppo, Liisa and Torres-Aguila, Nuria P and Touze, Emmanuel and Tsugane, Shoichiro and Uitterlinden, Andr{\'e} G and Valdimarsson, Einar M and van der Lee, Sven J and V{\"o}lzke, Henry and Wakai, Kenji and Weir, David and Williams, Stephen R and Wolfe, Charles D A and Wong, Quenna and Xu, Huichun and Yamaji, Taiki and Sanghera, Dharambir K and Melander, Olle and Jern, Christina and Strbian, Daniel and Fernandez-Cadenas, Israel and Longstreth, W T and Rolfs, Arndt and Hata, Jun and Woo, Daniel and Rosand, Jonathan and Par{\'e}, Guillaume and Hopewell, Jemma C and Saleheen, Danish and Stefansson, Kari and Worrall, Bradford B and Kittner, Steven J and Seshadri, Sudha and Fornage, Myriam and Markus, Hugh S and Howson, Joanna M M and Kamatani, Yoichiro and Debette, Stephanie and Dichgans, Martin} } @article {7811, title = {Multi-ethnic genome-wide association study for atrial fibrillation.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Sep}, pages = {1225-1233}, abstract = {

Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0133-9}, author = {Roselli, Carolina and Chaffin, Mark D and Weng, Lu-Chen and Aeschbacher, Stefanie and Ahlberg, Gustav and Albert, Christine M and Almgren, Peter and Alonso, Alvaro and Anderson, Christopher D and Aragam, Krishna G and Arking, Dan E and Barnard, John and Bartz, Traci M and Benjamin, Emelia J and Bihlmeyer, Nathan A and Bis, Joshua C and Bloom, Heather L and Boerwinkle, Eric and Bottinger, Erwin B and Brody, Jennifer A and Calkins, Hugh and Campbell, Archie and Cappola, Thomas P and Carlquist, John and Chasman, Daniel I and Chen, Lin Y and Chen, Yii-Der Ida and Choi, Eue-Keun and Choi, Seung Hoan and Christophersen, Ingrid E and Chung, Mina K and Cole, John W and Conen, David and Cook, James and Crijns, Harry J and Cutler, Michael J and Damrauer, Scott M and Daniels, Brian R and Darbar, Dawood and Delgado, Graciela and Denny, Joshua C and Dichgans, Martin and D{\"o}rr, Marcus and Dudink, Elton A and Dudley, Samuel C and Esa, Nada and Esko, T{\~o}nu and Eskola, Markku and Fatkin, Diane and Felix, Stephan B and Ford, Ian and Franco, Oscar H and Geelhoed, Bastiaan and Grewal, Raji P and Gudnason, Vilmundur and Guo, Xiuqing and Gupta, Namrata and Gustafsson, Stefan and Gutmann, Rebecca and Hamsten, Anders and Harris, Tamara B and Hayward, Caroline and Heckbert, Susan R and Hernesniemi, Jussi and Hocking, Lynne J and Hofman, Albert and Horimoto, Andrea R V R and Huang, Jie and Huang, Paul L and Huffman, Jennifer and Ingelsson, Erik and Ipek, Esra Gucuk and Ito, Kaoru and Jimenez-Conde, Jordi and Johnson, Renee and Jukema, J Wouter and K{\"a}{\"a}b, Stefan and K{\"a}h{\"o}nen, Mika and Kamatani, Yoichiro and Kane, John P and Kastrati, Adnan and Kathiresan, Sekar and Katschnig-Winter, Petra and Kavousi, Maryam and Kessler, Thorsten and Kietselaer, Bas L and Kirchhof, Paulus and Kleber, Marcus E and Knight, Stacey and Krieger, Jose E and Kubo, Michiaki and Launer, Lenore J and Laurikka, Jari and Lehtim{\"a}ki, Terho and Leineweber, Kirsten and Lemaitre, Rozenn N and Li, Man and Lim, Hong Euy and Lin, Henry J and Lin, Honghuang and Lind, Lars and Lindgren, Cecilia M and Lokki, Marja-Liisa and London, Barry and Loos, Ruth J F and Low, Siew-Kee and Lu, Yingchang and Lyytik{\"a}inen, Leo-Pekka and Macfarlane, Peter W and Magnusson, Patrik K and Mahajan, Anubha and Malik, Rainer and Mansur, Alfredo J and Marcus, Gregory M and Margolin, Lauren and Margulies, Kenneth B and M{\"a}rz, Winfried and McManus, David D and Melander, Olle and Mohanty, Sanghamitra and Montgomery, Jay A and Morley, Michael P and Morris, Andrew P and M{\"u}ller-Nurasyid, Martina and Natale, Andrea and Nazarian, Saman and Neumann, Benjamin and Newton-Cheh, Christopher and Niemeijer, Maartje N and Nikus, Kjell and Nilsson, Peter and Noordam, Raymond and Oellers, Heidi and Olesen, Morten S and Orho-Melander, Marju and Padmanabhan, Sandosh and Pak, Hui-Nam and Par{\'e}, Guillaume and Pedersen, Nancy L and Pera, Joanna and Pereira, Alexandre and Porteous, David and Psaty, Bruce M and Pulit, Sara L and Pullinger, Clive R and Rader, Daniel J and Refsgaard, Lena and Ribas{\'e}s, Marta and Ridker, Paul M and Rienstra, Michiel and Risch, Lorenz and Roden, Dan M and Rosand, Jonathan and Rosenberg, Michael A and Rost, Natalia and Rotter, Jerome I and Saba, Samir and Sandhu, Roopinder K and Schnabel, Renate B and Schramm, Katharina and Schunkert, Heribert and Schurman, Claudia and Scott, Stuart A and Sepp{\"a}l{\"a}, Ilkka and Shaffer, Christian and Shah, Svati and Shalaby, Alaa A and Shim, Jaemin and Shoemaker, M Benjamin and Siland, Joylene E and Sinisalo, Juha and Sinner, Moritz F and Slowik, Agnieszka and Smith, Albert V and Smith, Blair H and Smith, J Gustav and Smith, Jonathan D and Smith, Nicholas L and Soliman, Elsayed Z and Sotoodehnia, Nona and Stricker, Bruno H and Sun, Albert and Sun, Han and Svendsen, Jesper H and Tanaka, Toshihiro and Tanriverdi, Kahraman and Taylor, Kent D and Teder-Laving, Maris and Teumer, Alexander and Th{\'e}riault, S{\'e}bastien and Trompet, Stella and Tucker, Nathan R and Tveit, Arnljot and Uitterlinden, Andr{\'e} G and van der Harst, Pim and Van Gelder, Isabelle C and Van Wagoner, David R and Verweij, Niek and Vlachopoulou, Efthymia and V{\"o}lker, Uwe and Wang, Biqi and Weeke, Peter E and Weijs, Bob and Weiss, Raul and Weiss, Stefan and Wells, Quinn S and Wiggins, Kerri L and Wong, Jorge A and Woo, Daniel and Worrall, Bradford B and Yang, Pil-Sung and Yao, Jie and Yoneda, Zachary T and Zeller, Tanja and Zeng, Lingyao and Lubitz, Steven A and Lunetta, Kathryn L and Ellinor, Patrick T} } @article {7792, title = {Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries.}, journal = {PLoS One}, volume = {13}, year = {2018}, month = {2018}, pages = {e0198166}, abstract = {

Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.

}, issn = {1932-6203}, doi = {10.1371/journal.pone.0198166}, author = {Feitosa, Mary F and Kraja, Aldi T and Chasman, Daniel I and Sung, Yun J and Winkler, Thomas W and Ntalla, Ioanna and Guo, Xiuqing and Franceschini, Nora and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Marten, Jonathan and Musani, Solomon K and Li, Changwei and Bentley, Amy R and Brown, Michael R and Schwander, Karen and Richard, Melissa A and Noordam, Raymond and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Dorajoo, Rajkumar and Fisher, Virginia and Hartwig, Fernando P and Horimoto, Andrea R V R and Lohman, Kurt K and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Wojczynski, Mary K and Alver, Maris and Boissel, Mathilde and Cai, Qiuyin and Campbell, Archie and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Jackson, Anne U and K{\"a}h{\"o}nen, Mika and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Laguzzi, Federica and Luan, Jian{\textquoteright}an and Matoba, Nana and Nolte, Ilja M and Padmanabhan, Sandosh and Riaz, Muhammad and Rueedi, Rico and Robino, Antonietta and Said, M Abdullah and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Vitart, Veronique and Wang, Yajuan and Ware, Erin B and Warren, Helen R and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Aung, Tin and Boerwinkle, Eric and Borecki, Ingrid and Broeckel, Ulrich and Brown, Morris and Brumat, Marco and Burke, Gregory L and Canouil, Micka{\"e}l and Chakravarti, Aravinda and Charumathi, Sabanayagam and Ida Chen, Yii-Der and Connell, John M and Correa, Adolfo and de Las Fuentes, Lisa and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Deng, Xuan and Ding, Jingzhong and Duan, Qing and Eaton, Charles B and Ehret, Georg and Eppinga, Ruben N and Evangelou, Evangelos and Faul, Jessica D and Felix, Stephan B and Forouhi, Nita G and Forrester, Terrence and Franco, Oscar H and Friedlander, Yechiel and Gandin, Ilaria and Gao, He and Ghanbari, Mohsen and Gigante, Bruna and Gu, C Charles and Gu, Dongfeng and Hagenaars, Saskia P and Hallmans, G{\"o}ran and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Howard, Barbara V and Ikram, M Arfan and John, Ulrich and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Krieger, Jose E and Kritchevsky, Stephen B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Lin, Shiow and Liu, Jianjun and Liu, Jingmin and Loh, Marie and Louie, Tin and M{\"a}gi, Reedik and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Momozawa, Yukihide and Nalls, Mike A and Nelson, Christopher P and Sotoodehnia, Nona and Norris, Jill M and O{\textquoteright}Connell, Jeff R and Palmer, Nicholette D and Perls, Thomas and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Poulter, Neil and Raffel, Leslie J and Raitakari, Olli T and Roll, Kathryn and Rose, Lynda M and Rosendaal, Frits R and Rotter, Jerome I and Schmidt, Carsten O and Schreiner, Pamela J and Schupf, Nicole and Scott, William R and Sever, Peter S and Shi, Yuan and Sidney, Stephen and Sims, Mario and Sitlani, Colleen M and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Stringham, Heather M and Tan, Nicholas Y Q and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Turner, Stephen T and Uitterlinden, Andr{\'e} G and Vollenweider, Peter and Waldenberger, Melanie and Wang, Lihua and Wang, Ya Xing and Wei, Wen Bin and Williams, Christine and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Jonas, Jost Bruno and Kamatani, Yoichiro and Kato, Norihiro and Kooner, Jaspal S and Kutalik, Zolt{\'a}n and Laakso, Markku and Laurie, Cathy C and Leander, Karin and Lehtim{\"a}ki, Terho and Study, Lifelines Cohort and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Polasek, Ozren and Porteous, David J and Rauramaa, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zheng, Wei and Bouchard, Claude and Christensen, Kaare and Evans, Michele K and Gudnason, Vilmundur and Horta, Bernardo L and Kardia, Sharon L R and Liu, Yongmei and Pereira, Alexandre C and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Gauderman, W James and Zhu, Xiaofeng and Mook-Kanamori, Dennis O and Fornage, Myriam and Rotimi, Charles N and Cupples, L Adrienne and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Kooperberg, Charles and Palmas, Walter and Rice, Kenneth and Morrison, Alanna C and Elliott, Paul and Caulfield, Mark J and Munroe, Patricia B and Rao, Dabeeru C and Province, Michael A and Levy, Daniel} } @article {7815, title = {PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Jul 25}, pages = {2904}, abstract = {

Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genome-wide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity. Genes in these loci are over-represented in cardiac disease processes including heart block and atrial fibrillation. Variants in over half of the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with missense variants. Six additional loci were identified either by meta-analysis of ~105,000 African and European-descent individuals and/or by pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation. These findings implicate developmental pathways, and identify transcription factors, ion-channel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction, identifying potential targets for drug development.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-04766-9}, author = {van Setten, Jessica and Brody, Jennifer A and Jamshidi, Yalda and Swenson, Brenton R and Butler, Anne M and Campbell, Harry and Del Greco, Fabiola M and Evans, Daniel S and Gibson, Quince and Gudbjartsson, Daniel F and Kerr, Kathleen F and Krijthe, Bouwe P and Lyytik{\"a}inen, Leo-Pekka and M{\"u}ller, Christian and M{\"u}ller-Nurasyid, Martina and Nolte, Ilja M and Padmanabhan, Sandosh and Ritchie, Marylyn D and Robino, Antonietta and Smith, Albert V and Steri, Maristella and Tanaka, Toshiko and Teumer, Alexander and Trompet, Stella and Ulivi, Sheila and Verweij, Niek and Yin, Xiaoyan and Arnar, David O and Asselbergs, Folkert W and Bader, Joel S and Barnard, John and Bis, Josh and Blankenberg, Stefan and Boerwinkle, Eric and Bradford, Yuki and Buckley, Brendan M and Chung, Mina K and Crawford, Dana and den Hoed, Marcel and Denny, Josh C and Dominiczak, Anna F and Ehret, Georg B and Eijgelsheim, Mark and Ellinor, Patrick T and Felix, Stephan B and Franco, Oscar H and Franke, Lude and Harris, Tamara B and Holm, Hilma and Ilaria, Gandin and Iorio, Annamaria and K{\"a}h{\"o}nen, Mika and Kolcic, Ivana and Kors, Jan A and Lakatta, Edward G and Launer, Lenore J and Lin, Honghuang and Lin, Henry J and Loos, Ruth J F and Lubitz, Steven A and Macfarlane, Peter W and Magnani, Jared W and Leach, Irene Mateo and Meitinger, Thomas and Mitchell, Braxton D and M{\"u}nzel, Thomas and Papanicolaou, George J and Peters, Annette and Pfeufer, Arne and Pramstaller, Peter P and Raitakari, Olli T and Rotter, Jerome I and Rudan, Igor and Samani, Nilesh J and Schlessinger, David and Silva Aldana, Claudia T and Sinner, Moritz F and Smith, Jonathan D and Snieder, Harold and Soliman, Elsayed Z and Spector, Timothy D and Stott, David J and Strauch, Konstantin and Tarasov, Kirill V and Thorsteinsdottir, Unnur and Uitterlinden, Andr{\'e} G and Van Wagoner, David R and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Waldenberger, Melanie and Jan Westra, Harm and Wild, Philipp S and Zeller, Tanja and Alonso, Alvaro and Avery, Christy L and Bandinelli, Stefania and Benjamin, Emelia J and Cucca, Francesco and D{\"o}rr, Marcus and Ferrucci, Luigi and Gasparini, Paolo and Gudnason, Vilmundur and Hayward, Caroline and Heckbert, Susan R and Hicks, Andrew A and Jukema, J Wouter and K{\"a}{\"a}b, Stefan and Lehtim{\"a}ki, Terho and Liu, Yongmei and Munroe, Patricia B and Parsa, Afshin and Polasek, Ozren and Psaty, Bruce M and Roden, Dan M and Schnabel, Renate B and Sinagra, Gianfranco and Stefansson, Kari and Stricker, Bruno H and van der Harst, Pim and van Duijn, Cornelia M and Wilson, James F and Gharib, Sina A and de Bakker, Paul I W and Isaacs, Aaron and Arking, Dan E and Sotoodehnia, Nona} } @article {7973, title = {Assessment of the Relationship Between Genetic Determinants of Thyroid Function and Atrial Fibrillation: A Mendelian Randomization Study.}, journal = {JAMA Cardiol}, year = {2019}, month = {2019 Jan 23}, abstract = {

Importance: Increased free thyroxine (FT4) and decreased thyrotropin are associated with increased risk of atrial fibrillation (AF) in observational studies, but direct involvement is unclear.

Objective: To evaluate the potential direct involvement of thyroid traits on AF.

Design, Setting, and Participants: Study-level mendelian randomization (MR) included 11 studies, and summary-level MR included 55 114 AF cases and 482 295 referents, all of European ancestry.

Exposures: Genomewide significant variants were used as instruments for standardized FT4 and thyrotropin levels within the reference range, standardized triiodothyronine (FT3):FT4 ratio, hypothyroidism, standardized thyroid peroxidase antibody levels, and hyperthyroidism. Mendelian randomization used genetic risk scores in study-level analysis or individual single-nucleotide polymorphisms in 2-sample MR for the summary-level data.

Main Outcomes and Measures: Prevalent and incident AF.

Results: The study-level analysis included 7679 individuals with AF and 49 233 referents (mean age [standard error], 62 [3] years; 15 859 men [29.7\%]). In study-level random-effects meta-analysis, the pooled hazard ratio of FT4 levels (nanograms per deciliter) for incident AF was 1.55 (95\% CI, 1.09-2.20; P = .02; I2 = 76\%) and the pooled odds ratio (OR) for prevalent AF was 2.80 (95\% CI, 1.41-5.54; P = .003; I2 = 64\%) in multivariable-adjusted analyses. The FT4 genetic risk score was associated with an increase in FT4 by 0.082 SD (standard error, 0.007; P < .001) but not with incident AF (risk ratio, 0.84; 95\% CI, 0.62-1.14; P = .27) or prevalent AF (OR, 1.32; 95\% CI, 0.64-2.73; P = .46). Similarly, in summary-level inverse-variance weighted random-effects MR, gene-based FT4 within the reference range was not associated with AF (OR, 1.01; 95\% CI, 0.89-1.14; P = .88). However, gene-based increased FT3:FT4 ratio, increased thyrotropin within the reference range, and hypothyroidism were associated with AF with inverse-variance weighted random-effects OR of 1.33 (95\% CI, 1.08-1.63; P = .006), 0.88 (95\% CI, 0.84-0.92; P < .001), and 0.94 (95\% CI, 0.90-0.99; P = .009), respectively, and robust to tests of horizontal pleiotropy. However, the subset of hypothyroidism single-nucleotide polymorphisms involved in autoimmunity and thyroid peroxidase antibodies levels were not associated with AF. Gene-based hyperthyroidism was associated with AF with MR-Egger OR of 1.31 (95\% CI, 1.05-1.63; P = .02) with evidence of horizontal pleiotropy (P = .045).

Conclusions and Relevance: Genetically increased FT3:FT4 ratio and hyperthyroidism, but not FT4 within the reference range, were associated with increased AF, and increased thyrotropin within the reference range and hypothyroidism were associated with decreased AF, supporting a pathway involving the pituitary-thyroid-cardiac axis.

}, issn = {2380-6591}, doi = {10.1001/jamacardio.2018.4635}, author = {Ellervik, Christina and Roselli, Carolina and Christophersen, Ingrid E and Alonso, Alvaro and Pietzner, Maik and Sitlani, Collen M and Trompet, Stella and Arking, Dan E and Geelhoed, Bastiaan and Guo, Xiuqing and Kleber, Marcus E and Lin, Henry J and Lin, Honghuang and Macfarlane, Peter and Selvin, Elizabeth and Shaffer, Christian and Smith, Albert V and Verweij, Niek and Weiss, Stefan and Cappola, Anne R and D{\"o}rr, Marcus and Gudnason, Vilmundur and Heckbert, Susan and Mooijaart, Simon and M{\"a}rz, Winfried and Psaty, Bruce M and Ridker, Paul M and Roden, Dan and Stott, David J and V{\"o}lzke, Henry and Benjamin, Emelia J and Delgado, Graciela and Ellinor, Patrick and Homuth, Georg and K{\"o}ttgen, Anna and Jukema, Johan W and Lubitz, Steven A and Mora, Samia and Rienstra, Michiel and Rotter, Jerome I and Shoemaker, M Benjamin and Sotoodehnia, Nona and Taylor, Kent D and van der Harst, Pim and Albert, Christine M and Chasman, Daniel I} } @article {8198, title = {Associations of autozygosity with a broad range of human phenotypes.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 Oct 31}, pages = {4957}, abstract = {

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F) for >1.4 million individuals, we show that F is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F equivalent to the offspring of first cousins is associated with a 55\% decrease [95\% CI 44-66\%] in the odds of having children. Finally, the effects of F are confirmed within full-sibling pairs, where the variation in F is independent of all environmental confounding.

}, issn = {2041-1723}, doi = {10.1038/s41467-019-12283-6}, author = {Clark, David W and Okada, Yukinori and Moore, Kristjan H S and Mason, Dan and Pirastu, Nicola and Gandin, Ilaria and Mattsson, Hannele and Barnes, Catriona L K and Lin, Kuang and Zhao, Jing Hua and Deelen, Patrick and Rohde, Rebecca and Schurmann, Claudia and Guo, Xiuqing and Giulianini, Franco and Zhang, Weihua and Medina-G{\'o}mez, Carolina and Karlsson, Robert and Bao, Yanchun and Bartz, Traci M and Baumbach, Clemens and Biino, Ginevra and Bixley, Matthew J and Brumat, Marco and Chai, Jin-Fang and Corre, Tanguy and Cousminer, Diana L and Dekker, Annelot M and Eccles, David A and van Eijk, Kristel R and Fuchsberger, Christian and Gao, He and Germain, Marine and Gordon, Scott D and de Haan, Hugoline G and Harris, Sarah E and Hofer, Edith and Huerta-Chagoya, Alicia and Igartua, Catherine and Jansen, Iris E and Jia, Yucheng and Kacprowski, Tim and Karlsson, Torgny and Kleber, Marcus E and Li, Shengchao Alfred and Li-Gao, Ruifang and Mahajan, Anubha and Matsuda, Koichi and Meidtner, Karina and Meng, Weihua and Montasser, May E and van der Most, Peter J and Munz, Matthias and Nutile, Teresa and Palviainen, Teemu and Prasad, Gauri and Prasad, Rashmi B and Priyanka, Tallapragada Divya Sri and Rizzi, Federica and Salvi, Erika and Sapkota, Bishwa R and Shriner, Daniel and Skotte, Line and Smart, Melissa C and Smith, Albert Vernon and van der Spek, Ashley and Spracklen, Cassandra N and Strawbridge, Rona J and Tajuddin, Salman M and Trompet, Stella and Turman, Constance and Verweij, Niek and Viberti, Clara and Wang, Lihua and Warren, Helen R and Wootton, Robyn E and Yanek, Lisa R and Yao, Jie and Yousri, Noha A and Zhao, Wei and Adeyemo, Adebowale A and Afaq, Saima and Aguilar-Salinas, Carlos Alberto and Akiyama, Masato and Albert, Matthew L and Allison, Matthew A and Alver, Maris and Aung, Tin and Azizi, Fereidoun and Bentley, Amy R and Boeing, Heiner and Boerwinkle, Eric and Borja, Judith B and de Borst, Gert J and Bottinger, Erwin P and Broer, Linda and Campbell, Harry and Chanock, Stephen and Chee, Miao-Li and Chen, Guanjie and Chen, Yii-der I and Chen, Zhengming and Chiu, Yen-Feng and Cocca, Massimiliano and Collins, Francis S and Concas, Maria Pina and Corley, Janie and Cugliari, Giovanni and van Dam, Rob M and Damulina, Anna and Daneshpour, Maryam S and Day, Felix R and Delgado, Graciela E and Dhana, Klodian and Doney, Alexander S F and D{\"o}rr, Marcus and Doumatey, Ayo P and Dzimiri, Nduna and Ebenesersd{\'o}ttir, S Sunna and Elliott, Joshua and Elliott, Paul and Ewert, Ralf and Felix, Janine F and Fischer, Krista and Freedman, Barry I and Girotto, Giorgia and Goel, Anuj and G{\"o}gele, Martin and Goodarzi, Mark O and Graff, Mariaelisa and Granot-Hershkovitz, Einat and Grodstein, Francine and Guarrera, Simonetta and Gudbjartsson, Daniel F and Guity, Kamran and Gunnarsson, Bjarni and Guo, Yu and Hagenaars, Saskia P and Haiman, Christopher A and Halevy, Avner and Harris, Tamara B and Hedayati, Mehdi and van Heel, David A and Hirata, Makoto and H{\"o}fer, Imo and Hsiung, Chao Agnes and Huang, Jinyan and Hung, Yi-Jen and Ikram, M Arfan and Jagadeesan, Anuradha and Jousilahti, Pekka and Kamatani, Yoichiro and Kanai, Masahiro and Kerrison, Nicola D and Kessler, Thorsten and Khaw, Kay-Tee and Khor, Chiea Chuen and de Kleijn, Dominique P V and Koh, Woon-Puay and Kolcic, Ivana and Kraft, Peter and Kr{\"a}mer, Bernhard K and Kutalik, Zolt{\'a}n and Kuusisto, Johanna and Langenberg, Claudia and Launer, Lenore J and Lawlor, Deborah A and Lee, I-Te and Lee, Wen-Jane and Lerch, Markus M and Li, Liming and Liu, Jianjun and Loh, Marie and London, Stephanie J and Loomis, Stephanie and Lu, Yingchang and Luan, Jian{\textquoteright}an and M{\"a}gi, Reedik and Manichaikul, Ani W and Manunta, Paolo and M{\'a}sson, G{\'\i}sli and Matoba, Nana and Mei, Xue W and Meisinger, Christa and Meitinger, Thomas and Mezzavilla, Massimo and Milani, Lili and Millwood, Iona Y and Momozawa, Yukihide and Moore, Amy and Morange, Pierre-Emmanuel and Moreno-Macias, Hortensia and Mori, Trevor A and Morrison, Alanna C and Muka, Taulant and Murakami, Yoshinori and Murray, Alison D and de Mutsert, Ren{\'e}e and Mychaleckyj, Josyf C and Nalls, Mike A and Nauck, Matthias and Neville, Matt J and Nolte, Ilja M and Ong, Ken K and Orozco, Lorena and Padmanabhan, Sandosh and P{\'a}lsson, Gunnar and Pankow, James S and Pattaro, Cristian and Pattie, Alison and Polasek, Ozren and Poulter, Neil and Pramstaller, Peter P and Quintana-Murci, Lluis and R{\"a}ikk{\"o}nen, Katri and Ralhan, Sarju and Rao, Dabeeru C and van Rheenen, Wouter and Rich, Stephen S and Ridker, Paul M and Rietveld, Cornelius A and Robino, Antonietta and van Rooij, Frank J A and Ruggiero, Daniela and Saba, Yasaman and Sabanayagam, Charumathi and Sabater-Lleal, Maria and Sala, Cinzia Felicita and Salomaa, Veikko and Sandow, Kevin and Schmidt, Helena and Scott, Laura J and Scott, William R and Sedaghati-Khayat, Bahareh and Sennblad, Bengt and van Setten, Jessica and Sever, Peter J and Sheu, Wayne H-H and Shi, Yuan and Shrestha, Smeeta and Shukla, Sharvari Rahul and Sigurdsson, Jon K and Sikka, Timo Tonis and Singh, Jai Rup and Smith, Blair H and Stan{\v c}{\'a}kov{\'a}, Alena and Stanton, Alice and Starr, John M and Stefansdottir, Lilja and Straker, Leon and Sulem, Patrick and Sveinbjornsson, Gardar and Swertz, Morris A and Taylor, Adele M and Taylor, Kent D and Terzikhan, Natalie and Tham, Yih-Chung and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tillander, Annika and Tracy, Russell P and Tusi{\'e}-Luna, Teresa and Tzoulaki, Ioanna and Vaccargiu, Simona and Vangipurapu, Jagadish and Veldink, Jan H and Vitart, Veronique and V{\"o}lker, Uwe and Vuoksimaa, Eero and Wakil, Salma M and Waldenberger, Melanie and Wander, Gurpreet S and Wang, Ya Xing and Wareham, Nicholas J and Wild, Sarah and Yajnik, Chittaranjan S and Yuan, Jian-Min and Zeng, Lingyao and Zhang, Liang and Zhou, Jie and Amin, Najaf and Asselbergs, Folkert W and Bakker, Stephan J L and Becker, Diane M and Lehne, Benjamin and Bennett, David A and van den Berg, Leonard H and Berndt, Sonja I and Bharadwaj, Dwaipayan and Bielak, Lawrence F and Bochud, Murielle and Boehnke, Mike and Bouchard, Claude and Bradfield, Jonathan P and Brody, Jennifer A and Campbell, Archie and Carmi, Shai and Caulfield, Mark J and Cesarini, David and Chambers, John C and Chandak, Giriraj Ratan and Cheng, Ching-Yu and Ciullo, Marina and Cornelis, Marilyn and Cusi, Daniele and Smith, George Davey and Deary, Ian J and Dorajoo, Rajkumar and van Duijn, Cornelia M and Ellinghaus, David and Erdmann, Jeanette and Eriksson, Johan G and Evangelou, Evangelos and Evans, Michele K and Faul, Jessica D and Feenstra, Bjarke and Feitosa, Mary and Foisy, Sylvain and Franke, Andre and Friedlander, Yechiel and Gasparini, Paolo and Gieger, Christian and Gonzalez, Clicerio and Goyette, Philippe and Grant, Struan F A and Griffiths, Lyn R and Groop, Leif and Gudnason, Vilmundur and Gyllensten, Ulf and Hakonarson, Hakon and Hamsten, Anders and van der Harst, Pim and Heng, Chew-Kiat and Hicks, Andrew A and Hochner, Hagit and Huikuri, Heikki and Hunt, Steven C and Jaddoe, Vincent W V and De Jager, Philip L and Johannesson, Magnus and Johansson, Asa and Jonas, Jost B and Jukema, J Wouter and Junttila, Juhani and Kaprio, Jaakko and Kardia, Sharon L R and Karpe, Fredrik and Kumari, Meena and Laakso, Markku and van der Laan, Sander W and Lahti, Jari and Laudes, Matthias and Lea, Rodney A and Lieb, Wolfgang and Lumley, Thomas and Martin, Nicholas G and M{\"a}rz, Winfried and Matullo, Giuseppe and McCarthy, Mark I and Medland, Sarah E and Merriman, Tony R and Metspalu, Andres and Meyer, Brian F and Mohlke, Karen L and Montgomery, Grant W and Mook-Kanamori, Dennis and Munroe, Patricia B and North, Kari E and Nyholt, Dale R and O{\textquoteright}Connell, Jeffery R and Ober, Carole and Oldehinkel, Albertine J and Palmas, Walter and Palmer, Colin and Pasterkamp, Gerard G and Patin, Etienne and Pennell, Craig E and Perusse, Louis and Peyser, Patricia A and Pirastu, Mario and Polderman, Tinca J C and Porteous, David J and Posthuma, Danielle and Psaty, Bruce M and Rioux, John D and Rivadeneira, Fernando and Rotimi, Charles and Rotter, Jerome I and Rudan, Igor and den Ruijter, Hester M and Sanghera, Dharambir K and Sattar, Naveed and Schmidt, Reinhold and Schulze, Matthias B and Schunkert, Heribert and Scott, Robert A and Shuldiner, Alan R and Sim, Xueling and Small, Neil and Smith, Jennifer A and Sotoodehnia, Nona and Tai, E-Shyong and Teumer, Alexander and Timpson, Nicholas J and Toniolo, Daniela and Tr{\'e}gou{\"e}t, David-Alexandre and Tuomi, Tiinamaija and Vollenweider, Peter and Wang, Carol A and Weir, David R and Whitfield, John B and Wijmenga, Cisca and Wong, Tien-Yin and Wright, John and Yang, Jingyun and Yu, Lei and Zemel, Babette S and Zonderman, Alan B and Perola, Markus and Magnusson, Patrik K E and Uitterlinden, Andr{\'e} G and Kooner, Jaspal S and Chasman, Daniel I and Loos, Ruth J F and Franceschini, Nora and Franke, Lude and Haley, Chris S and Hayward, Caroline and Walters, Robin G and Perry, John R B and Esko, T{\~o}nu and Helgason, Agnar and Stefansson, Kari and Joshi, Peter K and Kubo, Michiaki and Wilson, James F} } @article {8109, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 06}, pages = {957-972}, abstract = {

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.

}, keywords = {Chromosome Mapping, European Continental Ancestry Group, Genetic Association Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Inheritance Patterns, Kidney Function Tests, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable, Renal Insufficiency, Chronic, Uromodulin}, issn = {1546-1718}, doi = {10.1038/s41588-019-0407-x}, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B and Feitosa, Mary F and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and van der Most, Peter J and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer S and Almgren, Peter and Amin, Najaf and Arnl{\"o}v, Johan and Bakker, Stephan J L and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and Bottinger, Erwin P and Boutin, Thibaud S and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Micka{\"e}l and Carroll, Robert J and Catamo, Eulalia and Chambers, John C and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E Warwick and de Borst, Martin H and De Grandi, Alessandro and de Mutsert, Ren{\'e}e and de Vries, Aiko P J and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K and Felix, Janine F and Foo, Valencia Hui Xian and Franco, Oscar H and Franke, Andre and Freedman, Barry I and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T and Gao, He and Gasparini, Paolo and Gaziano, J Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and G{\"o}gele, Martin and Gordon, Scott D and Gudbjartsson, Daniel F and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B and Hartman, Catharina A and Hayward, Caroline and Hellwege, Jacklyn N and Heng, Chew-Kiat and Hicks, Andrew A and Hofer, Edith and Huang, Wei and Hutri-K{\"a}h{\"o}nen, Nina and Hwang, Shih-Jen and Ikram, M Arfan and Indridason, Olafur S and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W V and Jakobsdottir, Johanna and Jonas, Jost B and Joshi, Peter K and Josyula, Navya Shilpa and Jung, Bettina and K{\"a}h{\"o}nen, Mika and Kamatani, Yoichiro and Kammerer, Candace M and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E and Koenig, Wolfgang and Kooner, Jaspal S and K{\"o}rner, Antje and Kovacs, Peter and Kraja, Aldi T and Krajcoviechova, Alena and Kramer, Holly and Kr{\"a}mer, Bernhard K and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A and Langefeld, Carl D and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtim{\"a}ki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J F and Lucae, Susanne and Lukas, Mary Ann and Lyytik{\"a}inen, Leo-Pekka and M{\"a}gi, Reedik and Magnusson, Patrik K E and Mahajan, Anubha and Martin, Nicholas G and Martins, Jade and M{\"a}rz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P and Mohlke, Karen L and Mononen, Nina and Montgomery, Grant W and Mook-Kanamori, Dennis O and Mychaleckyj, Josyf C and Nadkarni, Girish N and Nalls, Mike A and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M and Noordam, Raymond and O{\textquoteright}Connell, Jeffrey and O{\textquoteright}Donoghue, Michelle L and Olafsson, Isleifur and Oldehinkel, Albertine J and Orho-Melander, Marju and Ouwehand, Willem H and Padmanabhan, Sandosh and Palmer, Nicholette D and Palsson, Runolfur and Penninx, Brenda W J H and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I and Polasek, Ozren and Ponte, Belen and Porteous, David J and Poulain, Tanja and Pramstaller, Peter P and Preuss, Michael H and Prins, Bram P and Province, Michael A and Rabelink, Ton J and Raffield, Laura M and Raitakari, Olli T and Reilly, Dermot F and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M and Ridker, Paul M and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Sch{\"o}ttker, Ben and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M and Shi, Yuan and Smith, Albert V and Smith, Blair H and Soranzo, Nicole and Spracklen, Cassandra N and Strauch, Konstantin and Stringham, Heather M and Stumvoll, Michael and Svensson, Per O and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M and Tan, Nicholas Y Q and Taylor, Kent D and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H L and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and T{\"o}njes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andr{\'e} G and Vaccargiu, Simona and van Dam, Rob M and van der Harst, Pim and van Duijn, Cornelia M and Velez Edward, Digna R and Verweij, Niek and Vogelezang, Suzanne and V{\"o}lker, Uwe and Vollenweider, Peter and Waeber, G{\'e}rard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M and Bin Wei, Wen and White, Harvey and Whitfield, John B and Wild, Sarah H and Wilson, James F and Wojczynski, Mary K and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M and Zhang, Weihua and Zonderman, Alan B and Rotter, Jerome I and Bochud, Murielle and Psaty, Bruce M and Vitart, Veronique and Wilson, James G and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I and Ho, Kevin and Morris, Andrew P and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A and Sim, Xueling and B{\"o}ger, Carsten A and Okada, Yukinori and Edwards, Todd L and Snieder, Harold and Stefansson, Kari and Hung, Adriana M and Heid, Iris M and Scholz, Markus and Teumer, Alexander and K{\"o}ttgen, Anna and Pattaro, Cristian} } @article {7970, title = {Multi-Ancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions.}, journal = {Am J Epidemiol}, year = {2019}, month = {2019 Jan 29}, abstract = {

An individual{\textquoteright}s lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multi-ancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in Stage 1 (genome-wide discovery) and 66 studies in Stage 2 (focused follow-up), for a total of 394,584 individuals from five ancestry groups. Genetic main and interaction effects were jointly assessed by a 2 degrees of freedom (DF) test, and a 1 DF test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P~<~1~{\texttimes}~10-6) with lipid levels in Stage 1 and were evaluated in Stage 2, followed by combined analyses of Stage 1 and Stage 2. In the combined analysis of Stage 1 and Stage 2, 147 independent loci were associated with lipid levels at P~<~5~{\texttimes}~10-8 using 2 DF tests, of which 18 were novel. No genome-wide significant associations were found testing the interaction effect alone. The novel loci included several genes (PCSK5, VEGFB, and A1CF) with a putative role in lipid metabolism based on existing evidence from cellular and experimental models.

}, issn = {1476-6256}, doi = {10.1093/aje/kwz005}, author = {de Vries, Paul S and Brown, Michael R and Bentley, Amy R and Sung, Yun J and Winkler, Thomas W and Ntalla, Ioanna and Schwander, Karen and Kraja, Aldi T and Guo, Xiuqing and Franceschini, Nora and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Huffman, Jennifer E and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Richard, Melissa A and Noordam, Raymond and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Deng, Xuan and Dorajoo, Rajkumar and Lohman, Kurt K and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Evangelou, Evangelos and Graff, Mariaelisa and Alver, Maris and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gandin, Ilaria and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and Hartwig, Fernando P and He, Meian and Horimoto, Andrea R V R and Hsu, Fang-Chi and Jackson, Anne U and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Laguzzi, Federica and Lee, Joseph H and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Matoba, Nana and Nolte, Ilja M and Pietzner, Maik and Riaz, Muhammad and Said, M Abdullah and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Wang, Yajuan and Ware, Erin B and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Aung, Tin and Ballantyne, Christie and Boerwinkle, Eric and Broeckel, Ulrich and Campbell, Archie and Canouil, Micka{\"e}l and Charumathi, Sabanayagam and Chen, Yii-Der Ida and Connell, John M and de Faire, Ulf and de Las Fuentes, Lisa and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Ding, Jingzhong and Dominiczak, Anna F and Duan, Qing and Eaton, Charles B and Eppinga, Ruben N and Faul, Jessica D and Fisher, Virginia and Forrester, Terrence and Franco, Oscar H and Friedlander, Yechiel and Ghanbari, Mohsen and Giulianini, Franco and Grabe, Hans J and Grove, Megan L and Gu, C Charles and Harris, Tamara B and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hixson, James E and Howard, Barbara V and Ikram, M Arfan and Jacobs, David R and Johnson, Craig and Jonas, Jost Bruno and Kammerer, Candace M and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Koistinen, Heikki A and Kolcic, Ivana and Kooperberg, Charles and Krieger, Jose E and Kritchevsky, Steve B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lemaitre, Rozenn N and Li, Yize and Liang, Jingjing and Liu, Jianjun and Liu, Kiang and Loh, Marie and Louie, Tin and M{\"a}gi, Reedik and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Mosley, Thomas H and Mukamal, Kenneth J and Nalls, Mike A and Nauck, Matthias and Nelson, Christopher P and Sotoodehnia, Nona and O{\textquoteright}Connell, Jeff R and Palmer, Nicholette D and Pazoki, Raha and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Poulter, Neil and Raffel, Leslie J and Raitakari, Olli T and Reiner, Alex P and Rice, Treva K and Rich, Stephen S and Robino, Antonietta and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Sever, Peter and Shi, Yuan and Sidney, Stephen and Sims, Mario and Smith, Blair H and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Tan, Nicholas and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Vuckovic, Dragana and Waldenberger, Melanie and Wang, Lihua and Wang, Yujie and Wang, Zhe and Wei, Wen Bin and Williams, Christine and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Yu, Bing and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo L and Kamatani, Yoichiro and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Penninx, Brenda and Pereira, Alexandre C and Rauramaa, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wang, Ya Xing and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Zheng, Wei and Elliott, Paul and North, Kari E and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Liu, Ching-Ti and Liu, Yongmei and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Kardia, Sharon L R and Zhu, Xiaofeng and Rotimi, Charles N and Mook-Kanamori, Dennis O and Fornage, Myriam and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Liu, Jingmin and Rotter, Jerome I and Gauderman, W James and Province, Michael A and Munroe, Patricia B and Rice, Kenneth and Chasman, Daniel I and Cupples, L Adrienne and Rao, Dabeeru C and Morrison, Alanna C} } @article {8005, title = {Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 Apr}, pages = {636-648}, abstract = {

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.

}, issn = {1546-1718}, doi = {10.1038/s41588-019-0378-y}, author = {Bentley, Amy R and Sung, Yun J and Brown, Michael R and Winkler, Thomas W and Kraja, Aldi T and Ntalla, Ioanna and Schwander, Karen and Chasman, Daniel I and Lim, Elise and Deng, Xuan and Guo, Xiuqing and Liu, Jingmin and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Huffman, Jennifer E and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Richard, Melissa A and Noordam, Raymond and Baker, Jenna and Chen, Guanjie and Aschard, Hugues and Bartz, Traci M and Ding, Jingzhong and Dorajoo, Rajkumar and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Zhao, Wei and Graff, Mariaelisa and Alver, Maris and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and Hartwig, Fernando P and He, Meian and Horimoto, Andrea R V R and Hsu, Fang-Chi and Hung, Yi-Jen and Jackson, Anne U and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Leander, Karin and Lin, Keng-Hung and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Matoba, Nana and Nolte, Ilja M and Pietzner, Maik and Prins, Bram and Riaz, Muhammad and Robino, Antonietta and Said, M Abdullah and Schupf, Nicole and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Wang, Tzung-Dau and Wang, Yajuan and Ware, Erin B and Wen, Wanqing and Xiang, Yong-Bing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Adeyemo, Adebowale and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Arzumanyan, Zorayr and Aung, Tin and Ballantyne, Christie and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Broeckel, Ulrich and Brown, Morris and Cade, Brian E and Campbell, Archie and Canouil, Micka{\"e}l and Charumathi, Sabanayagam and Chen, Yii-Der Ida and Christensen, Kaare and Concas, Maria Pina and Connell, John M and de Las Fuentes, Lisa and de Silva, H Janaka and de Vries, Paul S and Doumatey, Ayo and Duan, Qing and Eaton, Charles B and Eppinga, Ruben N and Faul, Jessica D and Floyd, James S and Forouhi, Nita G and Forrester, Terrence and Friedlander, Yechiel and Gandin, Ilaria and Gao, He and Ghanbari, Mohsen and Gharib, Sina A and Gigante, Bruna and Giulianini, Franco and Grabe, Hans J and Gu, C Charles and Harris, Tamara B and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hixson, James E and Ikram, M Arfan and Jia, Yucheng and Joehanes, Roby and Johnson, Craig and Jonas, Jost Bruno and Justice, Anne E and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Kolcic, Ivana and Kooperberg, Charles and Krieger, Jose E and Kritchevsky, Stephen B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Liang, Jingjing and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Kiang and Loh, Marie and Lohman, Kurt K and Louie, Tin and Luzzi, Anna and M{\"a}gi, Reedik and Mahajan, Anubha and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Momozawa, Yukihide and Morris, Andrew P and Murray, Alison D and Nalls, Mike A and Nauck, Matthias and Nelson, Christopher P and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Papanicolau, George J and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Poulter, Neil and Raitakari, Olli T and Reiner, Alex P and Renstrom, Frida and Rice, Treva K and Rich, Stephen S and Robinson, Jennifer G and Rose, Lynda M and Rosendaal, Frits R and Rudan, Igor and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Sever, Peter and Shi, Yuan and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Stringham, Heather M and Tan, Nicholas Y Q and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Tiemeier, Henning and Turner, Stephen T and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Waldenberger, Melanie and Wang, Heming and Wang, Lan and Wang, Lihua and Wei, Wen Bin and Williams, Christine A and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Young, Kristin and Yu, Caizheng and Yuan, Jian-Min and Zhou, Jie and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Cooper, Richard S and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo L and Juang, Jyh-Ming Jimmy and Kamatani, Yoichiro and Kammerer, Candace M and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Laurie, Cathy C and Lee, I-Te and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Pereira, Alexandre C and Rauramaa, Rainer and Redline, Susan and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wang, Jun-Sing and Wang, Ya Xing and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zeggini, Eleftheria and Zheng, Wei and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Mook-Kanamori, Dennis O and Fornage, Myriam and Province, Michael A and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Franceschini, Nora and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Rao, Dabeeru C and Rotimi, Charles N and Cupples, L Adrienne} } @article {7976, title = {Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 01 22}, pages = {376}, abstract = {

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.

}, keywords = {Adolescent, Adult, African Continental Ancestry Group, Aged, Aged, 80 and over, Asian Continental Ancestry Group, Brazil, Calcium-Binding Proteins, Cholesterol, Cholesterol, HDL, Cholesterol, LDL, European Continental Ancestry Group, Exercise, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Hispanic Americans, Humans, LIM-Homeodomain Proteins, Lipid Metabolism, Lipids, Male, Membrane Proteins, Microtubule-Associated Proteins, Middle Aged, Muscle Proteins, Nerve Tissue Proteins, Transcription Factors, Triglycerides, Young Adult}, issn = {2041-1723}, doi = {10.1038/s41467-018-08008-w}, author = {Kilpel{\"a}inen, Tuomas O and Bentley, Amy R and Noordam, Raymond and Sung, Yun Ju and Schwander, Karen and Winkler, Thomas W and Jakupovi{\'c}, Hermina and Chasman, Daniel I and Manning, Alisa and Ntalla, Ioanna and Aschard, Hugues and Brown, Michael R and de Las Fuentes, Lisa and Franceschini, Nora and Guo, Xiuqing and Vojinovic, Dina and Aslibekyan, Stella and Feitosa, Mary F and Kho, Minjung and Musani, Solomon K and Richard, Melissa and Wang, Heming and Wang, Zhe and Bartz, Traci M and Bielak, Lawrence F and Campbell, Archie and Dorajoo, Rajkumar and Fisher, Virginia and Hartwig, Fernando P and Horimoto, Andrea R V R and Li, Changwei and Lohman, Kurt K and Marten, Jonathan and Sim, Xueling and Smith, Albert V and Tajuddin, Salman M and Alver, Maris and Amini, Marzyeh and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Graff, Mariaelisa and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Jackson, Anne U and Zhao, Jing Hua and Kraja, Aldi T and Kuhnel, Brigitte and Laguzzi, Federica and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Rauramaa, Rainer and Riaz, Muhammad and Robino, Antonietta and Rueedi, Rico and Stringham, Heather M and Takeuchi, Fumihiko and van der Most, Peter J and Varga, Tibor V and Verweij, Niek and Ware, Erin B and Wen, Wanqing and Li, Xiaoyin and Yanek, Lisa R and Amin, Najaf and Arnett, Donna K and Boerwinkle, Eric and Brumat, Marco and Cade, Brian and Canouil, Micka{\"e}l and Chen, Yii-Der Ida and Concas, Maria Pina and Connell, John and de Mutsert, Ren{\'e}e and de Silva, H Janaka and de Vries, Paul S and Demirkan, Ayse and Ding, Jingzhong and Eaton, Charles B and Faul, Jessica D and Friedlander, Yechiel and Gabriel, Kelley P and Ghanbari, Mohsen and Giulianini, Franco and Gu, Chi Charles and Gu, Dongfeng and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hunt, Steven C and Ikram, M Arfan and Jonas, Jost B and Koh, Woon-Puay and Komulainen, Pirjo and Krieger, Jose E and Kritchevsky, Stephen B and Kutalik, Zolt{\'a}n and Kuusisto, Johanna and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Leander, Karin and Lemaitre, Rozenn N and Lewis, Cora E and Liang, Jingjing and Liu, Jianjun and M{\"a}gi, Reedik and Manichaikul, Ani and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Mohlke, Karen L and Mosley, Thomas H and Murray, Alison D and Nalls, Mike A and Nang, Ei-Ei Khaing and Nelson, Christopher P and Nona, Sotoodehnia and Norris, Jill M and Nwuba, Chiamaka Vivian and O{\textquoteright}Connell, Jeff and Palmer, Nicholette D and Papanicolau, George J and Pazoki, Raha and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Porteous, David J and Poveda, Alaitz and Raitakari, Olli T and Rich, Stephen S and Risch, Neil and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Schreiner, Pamela J and Scott, Robert A and Sidney, Stephen S and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Sofer, Tamar and Starr, John M and Sternfeld, Barbara and Strauch, Konstantin and Tang, Hua and Taylor, Kent D and Tsai, Michael Y and Tuomilehto, Jaakko and Uitterlinden, Andr{\'e} G and van der Ende, M Yldau and van Heemst, Diana and Voortman, Trudy and Waldenberger, Melanie and Wennberg, Patrik and Wilson, Gregory and Xiang, Yong-Bing and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Kato, Norihiro and Laakso, Markku and Lakka, Timo A and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Samani, Nilesh J and Shu, Xiao-Ou and van der Harst, Pim and van Vliet-Ostaptchouk, Jana V and Vollenweider, Peter and Wagenknecht, Lynne E and Wang, Ya X and Wareham, Nicholas J and Weir, David R and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Evans, Michele K and Franks, Paul W and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kelly, Tanika N and Liu, Yongmei and North, Kari E and Pereira, Alexandre C and Ridker, Paul M and Tai, E Shyong and van Dam, Rob M and Fox, Ervin R and Kardia, Sharon L R and Liu, Ching-Ti and Mook-Kanamori, Dennis O and Province, Michael A and Redline, Susan and van Duijn, Cornelia M and Rotter, Jerome I and Kooperberg, Charles B and Gauderman, W James and Psaty, Bruce M and Rice, Kenneth and Munroe, Patricia B and Fornage, Myriam and Cupples, L Adrienne and Rotimi, Charles N and Morrison, Alanna C and Rao, Dabeeru C and Loos, Ruth J F} } @article {8207, title = {Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 Oct}, pages = {1459-1474}, abstract = {

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.

}, issn = {1546-1718}, doi = {10.1038/s41588-019-0504-x}, author = {Tin, Adrienne and Marten, Jonathan and Halperin Kuhns, Victoria L and Li, Yong and Wuttke, Matthias and Kirsten, Holger and Sieber, Karsten B and Qiu, Chengxiang and Gorski, Mathias and Yu, Zhi and Giri, Ayush and Sveinbjornsson, Gardar and Li, Man and Chu, Audrey Y and Hoppmann, Anselm and O{\textquoteright}Connor, Luke J and Prins, Bram and Nutile, Teresa and Noce, Damia and Akiyama, Masato and Cocca, Massimiliano and Ghasemi, Sahar and van der Most, Peter J and Horn, Katrin and Xu, Yizhe and Fuchsberger, Christian and Sedaghat, Sanaz and Afaq, Saima and Amin, Najaf and Arnl{\"o}v, Johan and Bakker, Stephan J L and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L and Biino, Ginevra and Boerwinkle, Eric and Bottinger, Erwin P and Boutin, Thibaud S and Brumat, Marco and Burkhardt, Ralph and Campana, Eric and Campbell, Archie and Campbell, Harry and Carroll, Robert J and Catamo, Eulalia and Chambers, John C and Ciullo, Marina and Concas, Maria Pina and Coresh, Josef and Corre, Tanguy and Cusi, Daniele and Felicita, Sala Cinzia and de Borst, Martin H and De Grandi, Alessandro and de Mutsert, Ren{\'e}e and de Vries, Aiko P J and Delgado, Graciela and Demirkan, Ayse and Devuyst, Olivier and Dittrich, Katalin and Eckardt, Kai-Uwe and Ehret, Georg and Endlich, Karlhans and Evans, Michele K and Gansevoort, Ron T and Gasparini, Paolo and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and G{\"o}gele, Martin and Gordon, Scott D and Gudbjartsson, Daniel F and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B and Hayward, Caroline and Hicks, Andrew A and Hofer, Edith and Holm, Hilma and Huang, Wei and Hutri-K{\"a}h{\"o}nen, Nina and Hwang, Shih-Jen and Ikram, M Arfan and Lewis, Raychel M and Ingelsson, Erik and Jakobsdottir, Johanna and Jonsdottir, Ingileif and Jonsson, Helgi and Joshi, Peter K and Josyula, Navya Shilpa and Jung, Bettina and K{\"a}h{\"o}nen, Mika and Kamatani, Yoichiro and Kanai, Masahiro and Kerr, Shona M and Kiess, Wieland and Kleber, Marcus E and Koenig, Wolfgang and Kooner, Jaspal S and K{\"o}rner, Antje and Kovacs, Peter and Kr{\"a}mer, Bernhard K and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and La Bianca, Martina and Lange, Leslie A and Lehne, Benjamin and Lehtim{\"a}ki, Terho and Liu, Jun and Loeffler, Markus and Loos, Ruth J F and Lyytik{\"a}inen, Leo-Pekka and M{\"a}gi, Reedik and Mahajan, Anubha and Martin, Nicholas G and M{\"a}rz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and O{\textquoteright}Donnell, Christopher J and Wilson, Otis D and Gaziano, J Michael and Mishra, Pashupati P and Mohlke, Karen L and Mononen, Nina and Montgomery, Grant W and Mook-Kanamori, Dennis O and M{\"u}ller-Nurasyid, Martina and Nadkarni, Girish N and Nalls, Mike A and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M and Noordam, Raymond and O{\textquoteright}Connell, Jeffrey R and Olafsson, Isleifur and Padmanabhan, Sandosh and Penninx, Brenda W J H and Perls, Thomas and Peters, Annette and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Polasek, Ozren and Ponte, Belen and Porteous, David J and Poulain, Tanja and Preuss, Michael H and Rabelink, Ton J and Raffield, Laura M and Raitakari, Olli T and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M and Rizzi, Federica and Robino, Antonietta and Rudan, Igor and Krajcoviechova, Alena and Cifkova, Renata and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A and Saba, Yasaman and Salvi, Erika and Schmidt, Helena and Schmidt, Reinhold and Shaffer, Christian M and Smith, Albert V and Smith, Blair H and Spracklen, Cassandra N and Strauch, Konstantin and Stumvoll, Michael and Sulem, Patrick and Tajuddin, Salman M and Teren, Andrej and Thiery, Joachim and Thio, Chris H L and Thorsteinsdottir, Unnur and Toniolo, Daniela and T{\"o}njes, Anke and Tremblay, Johanne and Uitterlinden, Andr{\'e} G and Vaccargiu, Simona and van der Harst, Pim and van Duijn, Cornelia M and Verweij, Niek and V{\"o}lker, Uwe and Vollenweider, Peter and Waeber, G{\'e}rard and Waldenberger, Melanie and Whitfield, John B and Wild, Sarah H and Wilson, James F and Yang, Qiong and Zhang, Weihua and Zonderman, Alan B and Bochud, Murielle and Wilson, James G and Pendergrass, Sarah A and Ho, Kevin and Parsa, Afshin and Pramstaller, Peter P and Psaty, Bruce M and B{\"o}ger, Carsten A and Snieder, Harold and Butterworth, Adam S and Okada, Yukinori and Edwards, Todd L and Stefansson, Kari and Susztak, Katalin and Scholz, Markus and Heid, Iris M and Hung, Adriana M and Teumer, Alexander and Pattaro, Cristian and Woodward, Owen M and Vitart, Veronique and K{\"o}ttgen, Anna} } @article {8381, title = {Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.}, journal = {Mol Psychiatry}, year = {2020}, month = {2020 May 05}, abstract = {

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 {\texttimes} 10). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.

}, issn = {1476-5578}, doi = {10.1038/s41380-020-0719-3}, author = {de Las Fuentes, Lisa and Sung, Yun Ju and Noordam, Raymond and Winkler, Thomas and Feitosa, Mary F and Schwander, Karen and Bentley, Amy R and Brown, Michael R and Guo, Xiuqing and Manning, Alisa and Chasman, Daniel I and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Campbell, Archie and Cheng, Ching-Yu and Dorajoo, Rajkumar and Hartwig, Fernando P and Horimoto, A R V R and Li, Changwei and Li-Gao, Ruifang and Liu, Yongmei and Marten, Jonathan and Musani, Solomon K and Ntalla, Ioanna and Rankinen, Tuomo and Richard, Melissa and Sim, Xueling and Smith, Albert V and Tajuddin, Salman M and Tayo, Bamidele O and Vojinovic, Dina and Warren, Helen R and Xuan, Deng and Alver, Maris and Boissel, Mathilde and Chai, Jin-Fang and Chen, Xu and Christensen, Kaare and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Girotto, Giorgia and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Kuhnel, Brigitte and Laguzzi, Federica and Li, Xiaoyin and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Poveda, Alaitz and Rauramaa, Rainer and Riaz, Muhammad and Rueedi, Rico and Shu, Xiao-Ou and Snieder, Harold and Sofer, Tamar and Takeuchi, Fumihiko and Verweij, Niek and Ware, Erin B and Weiss, Stefan and Yanek, Lisa R and Amin, Najaf and Arking, Dan E and Arnett, Donna K and Bergmann, Sven and Boerwinkle, Eric and Brody, Jennifer A and Broeckel, Ulrich and Brumat, Marco and Burke, Gregory and Cabrera, Claudia P and Canouil, Micka{\"e}l and Chee, Miao Li and Chen, Yii-Der Ida and Cocca, Massimiliano and Connell, John and de Silva, H Janaka and de Vries, Paul S and Eiriksdottir, Gudny and Faul, Jessica D and Fisher, Virginia and Forrester, Terrence and Fox, Ervin F and Friedlander, Yechiel and Gao, He and Gigante, Bruna and Giulianini, Franco and Gu, Chi Charles and Gu, Dongfeng and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hunt, Steven and Ikram, M Arfan and Irvin, Marguerite R and K{\"a}h{\"o}nen, Mika and Kavousi, Maryam and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Komulainen, Pirjo and Kraja, Aldi T and Krieger, J E and Langefeld, Carl D and Li, Yize and Liang, Jingjing and Liewald, David C M and Liu, Ching-Ti and Liu, Jianjun and Lohman, Kurt K and M{\"a}gi, Reedik and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mook-Kanamori, Dennis O and Nalls, Mike A and Nelson, Christopher P and Norris, Jill M and O{\textquoteright}Connell, Jeff and Ogunniyi, Adesola and Padmanabhan, Sandosh and Palmer, Nicholette D and Pedersen, Nancy L and Perls, Thomas and Peters, Annette and Petersmann, Astrid and Peyser, Patricia A and Polasek, Ozren and Porteous, David J and Raffel, Leslie J and Rice, Treva K and Rotter, Jerome I and Rudan, Igor and Rueda-Ochoa, Oscar-Leonel and Sabanayagam, Charumathi and Salako, Babatunde L and Schreiner, Pamela J and Shikany, James M and Sidney, Stephen S and Sims, Mario and Sitlani, Colleen M and Smith, Jennifer A and Starr, John M and Strauch, Konstantin and Swertz, Morris A and Teumer, Alexander and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and Vaidya, Dhananjay and van der Ende, M Yldau and Waldenberger, Melanie and Wang, Lihua and Wang, Ya-Xing and Wei, Wen-Bin and Weir, David R and Wen, Wanqing and Yao, Jie and Yu, Bing and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Bowden, Donald W and Deary, Ian J and D{\"o}rr, Marcus and Esko, T{\~o}nu and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Jonas, Jost Bruno and Kammerer, Candace M and Kato, Norihiro and Lakka, Timo A and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Marques-Vidal, Pedro and Penninx, Brenda W J H and Samani, Nilesh J and van der Harst, Pim and Wagenknecht, Lynne E and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Bouchard, Claude and Cooper, Richard S and Correa, Adolfo and Evans, Michele K and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kelly, Tanika N and Kritchevsky, Stephen B and Levy, Daniel and Palmas, Walter R and Pereira, A C and Province, Michael M and Psaty, Bruce M and Ridker, Paul M and Rotimi, Charles N and Tai, E Shyong and van Dam, Rob M and van Duijn, Cornelia M and Wong, Tien Yin and Rice, Kenneth and Gauderman, W James and Morrison, Alanna C and North, Kari E and Kardia, Sharon L R and Caulfield, Mark J and Elliott, Paul and Munroe, Patricia B and Franks, Paul W and Rao, Dabeeru C and Fornage, Myriam} } @article {8624, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline.}, journal = {Kidney Int}, year = {2020}, month = {2020 Oct 30}, abstract = {

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m at follow-up among those with eGFRcrea 60 mL/min/1.73m or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.

}, issn = {1523-1755}, doi = {10.1016/j.kint.2020.09.030}, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H L and Kleber, Marcus E and Winkler, Thomas W and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y and Cocca, Massimiliano and Feitosa, Mary F and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O and Ahluwalia, Tarunveer S and Almgren, Peter and Bakker, Stephan J L and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L and Boerwinkle, Eric and Bottinger, Erwin P and Brenner, Hermann and Carroll, Robert J and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Xian Foo, Valencia Hui and Hutri-K{\"a}h{\"o}nen, Nina and Hwang, Shih-Jen and Ikram, M Arfan and Josyula, Navya Shilpa and K{\"a}h{\"o}nen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kr{\"a}mer, Bernhard K and Kuhnel, Brigitte and Lange, Leslie A and Lehtim{\"a}ki, Terho and Lieb, Wolfgang and Loos, Ruth J F and Lukas, Mary Ann and Lyytik{\"a}inen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P and Mononen, Nina and Mychaleckyj, Josyf C and Nadkarni, Girish N and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M and O{\textquoteright}Donoghue, Michelle L and Orho-Melander, Marju and Pendergrass, Sarah A and Penninx, Brenda W J H and Preuss, Michael H and Psaty, Bruce M and Raffield, Laura M and Raitakari, Olli T and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M and Rosenkranz, Alexander R and Rossing, Peter and Rotter, Jerome I and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Sch{\"o}ttker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J and Verweij, Niek and V{\"o}lker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M and White, Harvey D and Wilson, James G and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M and Zhang, Yan and Snieder, Harold and Wanner, Christoph and B{\"o}ger, Carsten A and K{\"o}ttgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M} } @article {8368, title = {Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction.}, journal = {Nat Commun}, volume = {11}, year = {2020}, month = {2020 May 21}, pages = {2542}, abstract = {

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5\% to 62.6\%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.

}, issn = {2041-1723}, doi = {10.1038/s41467-020-15706-x}, author = {Ntalla, Ioanna and Weng, Lu-Chen and Cartwright, James H and Hall, Amelia Weber and Sveinbjornsson, Gardar and Tucker, Nathan R and Choi, Seung Hoan and Chaffin, Mark D and Roselli, Carolina and Barnes, Michael R and Mifsud, Borbala and Warren, Helen R and Hayward, Caroline and Marten, Jonathan and Cranley, James J and Concas, Maria Pina and Gasparini, Paolo and Boutin, Thibaud and Kolcic, Ivana and Polasek, Ozren and Rudan, Igor and Araujo, Nathalia M and Lima-Costa, Maria Fernanda and Ribeiro, Antonio Luiz P and Souza, Renan P and Tarazona-Santos, Eduardo and Giedraitis, Vilmantas and Ingelsson, Erik and Mahajan, Anubha and Morris, Andrew P and del Greco M, Fabiola and Foco, Luisa and G{\"o}gele, Martin and Hicks, Andrew A and Cook, James P and Lind, Lars and Lindgren, Cecilia M and Sundstr{\"o}m, Johan and Nelson, Christopher P and Riaz, Muhammad B and Samani, Nilesh J and Sinagra, Gianfranco and Ulivi, Sheila and K{\"a}h{\"o}nen, Mika and Mishra, Pashupati P and Mononen, Nina and Nikus, Kjell and Caulfield, Mark J and Dominiczak, Anna and Padmanabhan, Sandosh and Montasser, May E and O{\textquoteright}Connell, Jeff R and Ryan, Kathleen and Shuldiner, Alan R and Aeschbacher, Stefanie and Conen, David and Risch, Lorenz and Th{\'e}riault, S{\'e}bastien and Hutri-K{\"a}h{\"o}nen, Nina and Lehtim{\"a}ki, Terho and Lyytik{\"a}inen, Leo-Pekka and Raitakari, Olli T and Barnes, Catriona L K and Campbell, Harry and Joshi, Peter K and Wilson, James F and Isaacs, Aaron and Kors, Jan A and van Duijn, Cornelia M and Huang, Paul L and Gudnason, Vilmundur and Harris, Tamara B and Launer, Lenore J and Smith, Albert V and Bottinger, Erwin P and Loos, Ruth J F and Nadkarni, Girish N and Preuss, Michael H and Correa, Adolfo and Mei, Hao and Wilson, James and Meitinger, Thomas and M{\"u}ller-Nurasyid, Martina and Peters, Annette and Waldenberger, Melanie and Mangino, Massimo and Spector, Timothy D and Rienstra, Michiel and van de Vegte, Yordi J and van der Harst, Pim and Verweij, Niek and K{\"a}{\"a}b, Stefan and Schramm, Katharina and Sinner, Moritz F and Strauch, Konstantin and Cutler, Michael J and Fatkin, Diane and London, Barry and Olesen, Morten and Roden, Dan M and Benjamin Shoemaker, M and Gustav Smith, J and Biggs, Mary L and Bis, Joshua C and Brody, Jennifer A and Psaty, Bruce M and Rice, Kenneth and Sotoodehnia, Nona and De Grandi, Alessandro and Fuchsberger, Christian and Pattaro, Cristian and Pramstaller, Peter P and Ford, Ian and Wouter Jukema, J and Macfarlane, Peter W and Trompet, Stella and D{\"o}rr, Marcus and Felix, Stephan B and V{\"o}lker, Uwe and Weiss, Stefan and Havulinna, Aki S and Jula, Antti and S{\"a}{\"a}ksj{\"a}rvi, Katri and Salomaa, Veikko and Guo, Xiuqing and Heckbert, Susan R and Lin, Henry J and Rotter, Jerome I and Taylor, Kent D and Yao, Jie and de Mutsert, Ren{\'e}e and Maan, Arie C and Mook-Kanamori, Dennis O and Noordam, Raymond and Cucca, Francesco and Ding, Jun and Lakatta, Edward G and Qian, Yong and Tarasov, Kirill V and Levy, Daniel and Lin, Honghuang and Newton-Cheh, Christopher H and Lunetta, Kathryn L and Murray, Alison D and Porteous, David J and Smith, Blair H and Stricker, Bruno H and Uitterlinden, Andre and van den Berg, Marten E and Haessler, Jeffrey and Jackson, Rebecca D and Kooperberg, Charles and Peters, Ulrike and Reiner, Alexander P and Whitsel, Eric A and Alonso, Alvaro and Arking, Dan E and Boerwinkle, Eric and Ehret, Georg B and Soliman, Elsayed Z and Avery, Christy L and Gogarten, Stephanie M and Kerr, Kathleen F and Laurie, Cathy C and Seyerle, Amanda A and Stilp, Adrienne and Assa, Solmaz and Abdullah Said, M and Yldau van der Ende, M and Lambiase, Pier D and Orini, Michele and Ramirez, Julia and Van Duijvenboden, Stefan and Arnar, David O and Gudbjartsson, Daniel F and Holm, Hilma and Sulem, Patrick and Thorleifsson, Gudmar and Thorolfsdottir, Rosa B and Thorsteinsdottir, Unnur and Benjamin, Emelia J and Tinker, Andrew and Stefansson, Kari and Ellinor, Patrick T and Jamshidi, Yalda and Lubitz, Steven A and Munroe, Patricia B} } @article {9112, title = {Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals.}, journal = {Commun Biol}, volume = {5}, year = {2022}, month = {2022 Jun 13}, pages = {580}, abstract = {

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (n = 178,691, n = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.

}, keywords = {Creatinine, Diabetes Mellitus, Diabetic Nephropathies, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Kidney}, issn = {2399-3642}, doi = {10.1038/s42003-022-03448-z}, author = {Winkler, Thomas W and Rasheed, Humaira and Teumer, Alexander and Gorski, Mathias and Rowan, Bryce X and Stanzick, Kira J and Thomas, Laurent F and Tin, Adrienne and Hoppmann, Anselm and Chu, Audrey Y and Tayo, Bamidele and Thio, Chris H L and Cusi, Daniele and Chai, Jin-Fang and Sieber, Karsten B and Horn, Katrin and Li, Man and Scholz, Markus and Cocca, Massimiliano and Wuttke, Matthias and van der Most, Peter J and Yang, Qiong and Ghasemi, Sahar and Nutile, Teresa and Li, Yong and Pontali, Giulia and G{\"u}nther, Felix and Dehghan, Abbas and Correa, Adolfo and Parsa, Afshin and Feresin, Agnese and de Vries, Aiko P J and Zonderman, Alan B and Smith, Albert V and Oldehinkel, Albertine J and De Grandi, Alessandro and Rosenkranz, Alexander R and Franke, Andre and Teren, Andrej and Metspalu, Andres and Hicks, Andrew A and Morris, Andrew P and T{\"o}njes, Anke and Morgan, Anna and Podgornaia, Anna I and Peters, Annette and K{\"o}rner, Antje and Mahajan, Anubha and Campbell, Archie and Freedman, Barry I and Spedicati, Beatrice and Ponte, Belen and Sch{\"o}ttker, Ben and Brumpton, Ben and Banas, Bernhard and Kr{\"a}mer, Bernhard K and Jung, Bettina and {\r A}svold, Bj{\o}rn Olav and Smith, Blair H and Ning, Boting and Penninx, Brenda W J H and Vanderwerff, Brett R and Psaty, Bruce M and Kammerer, Candace M and Langefeld, Carl D and Hayward, Caroline and Spracklen, Cassandra N and Robinson-Cohen, Cassianne and Hartman, Catharina A and Lindgren, Cecilia M and Wang, Chaolong and Sabanayagam, Charumathi and Heng, Chew-Kiat and Lanzani, Chiara and Khor, Chiea-Chuen and Cheng, Ching-Yu and Fuchsberger, Christian and Gieger, Christian and Shaffer, Christian M and Schulz, Christina-Alexandra and Willer, Cristen J and Chasman, Daniel I and Gudbjartsson, Daniel F and Ruggiero, Daniela and Toniolo, Daniela and Czamara, Darina and Porteous, David J and Waterworth, Dawn M and Mascalzoni, Deborah and Mook-Kanamori, Dennis O and Reilly, Dermot F and Daw, E Warwick and Hofer, Edith and Boerwinkle, Eric and Salvi, Erika and Bottinger, Erwin P and Tai, E-Shyong and Catamo, Eulalia and Rizzi, Federica and Guo, Feng and Rivadeneira, Fernando and Guilianini, Franco and Sveinbjornsson, Gardar and Ehret, Georg and Waeber, G{\'e}rard and Biino, Ginevra and Girotto, Giorgia and Pistis, Giorgio and Nadkarni, Girish N and Delgado, Graciela E and Montgomery, Grant W and Snieder, Harold and Campbell, Harry and White, Harvey D and Gao, He and Stringham, Heather M and Schmidt, Helena and Li, Hengtong and Brenner, Hermann and Holm, Hilma and Kirsten, Holgen and Kramer, Holly and Rudan, Igor and Nolte, Ilja M and Tzoulaki, Ioanna and Olafsson, Isleifur and Martins, Jade and Cook, James P and Wilson, James F and Halbritter, Jan and Felix, Janine F and Divers, Jasmin and Kooner, Jaspal S and Lee, Jeannette Jen-Mai and O{\textquoteright}Connell, Jeffrey and Rotter, Jerome I and Liu, Jianjun and Xu, Jie and Thiery, Joachim and Arnl{\"o}v, Johan and Kuusisto, Johanna and Jakobsdottir, Johanna and Tremblay, Johanne and Chambers, John C and Whitfield, John B and Gaziano, John M and Marten, Jonathan and Coresh, Josef and Jonas, Jost B and Mychaleckyj, Josyf C and Christensen, Kaare and Eckardt, Kai-Uwe and Mohlke, Karen L and Endlich, Karlhans and Dittrich, Katalin and Ryan, Kathleen A and Rice, Kenneth M and Taylor, Kent D and Ho, Kevin and Nikus, Kjell and Matsuda, Koichi and Strauch, Konstantin and Miliku, Kozeta and Hveem, Kristian and Lind, Lars and Wallentin, Lars and Yerges-Armstrong, Laura M and Raffield, Laura M and Phillips, Lawrence S and Launer, Lenore J and Lyytik{\"a}inen, Leo-Pekka and Lange, Leslie A and Citterio, Lorena and Klaric, Lucija and Ikram, M Arfan and Ising, Marcus and Kleber, Marcus E and Francescatto, Margherita and Concas, Maria Pina and Ciullo, Marina and Piratsu, Mario and Orho-Melander, Marju and Laakso, Markku and Loeffler, Markus and Perola, Markus and de Borst, Martin H and G{\"o}gele, Martin and Bianca, Martina La and Lukas, Mary Ann and Feitosa, Mary F and Biggs, Mary L and Wojczynski, Mary K and Kavousi, Maryam and Kanai, Masahiro and Akiyama, Masato and Yasuda, Masayuki and Nauck, Matthias and Waldenberger, Melanie and Chee, Miao-Li and Chee, Miao-Ling and Boehnke, Michael and Preuss, Michael H and Stumvoll, Michael and Province, Michael A and Evans, Michele K and O{\textquoteright}Donoghue, Michelle L and Kubo, Michiaki and K{\"a}h{\"o}nen, Mika and Kastarinen, Mika and Nalls, Mike A and Kuokkanen, Mikko and Ghanbari, Mohsen and Bochud, Murielle and Josyula, Navya Shilpa and Martin, Nicholas G and Tan, Nicholas Y Q and Palmer, Nicholette D and Pirastu, Nicola and Schupf, Nicole and Verweij, Niek and Hutri-K{\"a}h{\"o}nen, Nina and Mononen, Nina and Bansal, Nisha and Devuyst, Olivier and Melander, Olle and Raitakari, Olli T and Polasek, Ozren and Manunta, Paolo and Gasparini, Paolo and Mishra, Pashupati P and Sulem, Patrick and Magnusson, Patrik K E and Elliott, Paul and Ridker, Paul M and Hamet, Pavel and Svensson, Per O and Joshi, Peter K and Kovacs, Peter and Pramstaller, Peter P and Rossing, Peter and Vollenweider, Peter and van der Harst, Pim and Dorajoo, Rajkumar and Sim, Ralene Z H and Burkhardt, Ralph and Tao, Ran and Noordam, Raymond and M{\"a}gi, Reedik and Schmidt, Reinhold and de Mutsert, Ren{\'e}e and Rueedi, Rico and van Dam, Rob M and Carroll, Robert J and Gansevoort, Ron T and Loos, Ruth J F and Felicita, Sala Cinzia and Sedaghat, Sanaz and Padmanabhan, Sandosh and Freitag-Wolf, Sandra and Pendergrass, Sarah A and Graham, Sarah E and Gordon, Scott D and Hwang, Shih-Jen and Kerr, Shona M and Vaccargiu, Simona and Patil, Snehal B and Hallan, Stein and Bakker, Stephan J L and Lim, Su-Chi and Lucae, Susanne and Vogelezang, Suzanne and Bergmann, Sven and Corre, Tanguy and Ahluwalia, Tarunveer S and Lehtim{\"a}ki, Terho and Boutin, Thibaud S and Meitinger, Thomas and Wong, Tien-Yin and Bergler, Tobias and Rabelink, Ton J and Esko, T{\~o}nu and Haller, Toomas and Thorsteinsdottir, Unnur and V{\"o}lker, Uwe and Foo, Valencia Hui Xian and Salomaa, Veikko and Vitart, Veronique and Giedraitis, Vilmantas and Gudnason, Vilmundur and Jaddoe, Vincent W V and Huang, Wei and Zhang, Weihua and Wei, Wen Bin and Kiess, Wieland and M{\"a}rz, Winfried and Koenig, Wolfgang and Lieb, Wolfgang and G{\`a}o, Xin and Sim, Xueling and Wang, Ya Xing and Friedlander, Yechiel and Tham, Yih-Chung and Kamatani, Yoichiro and Okada, Yukinori and Milaneschi, Yuri and Yu, Zhi and Stark, Klaus J and Stefansson, Kari and B{\"o}ger, Carsten A and Hung, Adriana M and Kronenberg, Florian and K{\"o}ttgen, Anna and Pattaro, Cristian and Heid, Iris M} } @article {9093, title = {Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies.}, journal = {Kidney Int}, year = {2022}, month = {2022 Jun 16}, abstract = {

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95\% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95\% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.

}, issn = {1523-1755}, doi = {10.1016/j.kint.2022.05.021}, author = {Gorski, Mathias and Rasheed, Humaira and Teumer, Alexander and Thomas, Laurent F and Graham, Sarah E and Sveinbjornsson, Gardar and Winkler, Thomas W and G{\"u}nther, Felix and Stark, Klaus J and Chai, Jin-Fang and Tayo, Bamidele O and Wuttke, Matthias and Li, Yong and Tin, Adrienne and Ahluwalia, Tarunveer S and Arnl{\"o}v, Johan and {\r A}svold, Bj{\o}rn Olav and Bakker, Stephan J L and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L and Biino, Ginevra and B{\"o}hnke, Michael and Boerwinkle, Eric and Bottinger, Erwin P and Brenner, Hermann and Brumpton, Ben and Carroll, Robert J and Chaker, Layal and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Chu, Audrey Y and Ciullo, Marina and Cocca, Massimiliano and Cook, James P and Coresh, Josef and Cusi, Daniele and de Borst, Martin H and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Evans, Michele K and Feitosa, Mary F and Franke, Andre and Freitag-Wolf, Sandra and Fuchsberger, Christian and Gampawar, Piyush and Gansevoort, Ron T and Ghanbari, Mohsen and Ghasemi, Sahar and Giedraitis, Vilmantas and Gieger, Christian and Gudbjartsson, Daniel F and Hallan, Stein and Hamet, Pavel and Hishida, Asahi and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Holm, Hilma and Hoppmann, Anselm and Horn, Katrin and Hutri-K{\"a}h{\"o}nen, Nina and Hveem, Kristian and Hwang, Shih-Jen and Ikram, M Arfan and Josyula, Navya Shilpa and Jung, Bettina and K{\"a}h{\"o}nen, Mika and Karabegovi{\'c}, Irma and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kr{\"a}mer, Bernhard K and Kuhnel, Brigitte and Kuusisto, Johanna and Laakso, Markku and Lange, Leslie A and Lehtim{\"a}ki, Terho and Li, Man and Lieb, Wolfgang and Lind, Lars and Lindgren, Cecilia M and Loos, Ruth J F and Lukas, Mary Ann and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Matias-Garcia, Pamela R and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P and Mononen, Nina and Morris, Andrew P and Mychaleckyj, Josyf C and Nadkarni, Girish N and Naito, Mariko and Nakatochi, Masahiro and Nalls, Mike A and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M and Nutile, Teresa and O{\textquoteright}Donoghue, Michelle L and O{\textquoteright}Connell, Jeffrey and Olafsson, Isleifur and Orho-Melander, Marju and Parsa, Afshin and Pendergrass, Sarah A and Penninx, Brenda W J H and Pirastu, Mario and Preuss, Michael H and Psaty, Bruce M and Raffield, Laura M and Raitakari, Olli T and Rheinberger, Myriam and Rice, Kenneth M and Rizzi, Federica and Rosenkranz, Alexander R and Rossing, Peter and Rotter, Jerome I and Ruggiero, Daniela and Ryan, Kathleen A and Sabanayagam, Charumathi and Salvi, Erika and Schmidt, Helena and Schmidt, Reinhold and Scholz, Markus and Sch{\"o}ttker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M and Sieber, Karsten B and Sim, Xueling and Sims, Mario and Snieder, Harold and Stanzick, Kira J and Thorsteinsdottir, Unnur and Stocker, Hannah and Strauch, Konstantin and Stringham, Heather M and Sulem, Patrick and Szymczak, Silke and Taylor, Kent D and Thio, Chris H L and Tremblay, Johanne and Vaccargiu, Simona and van der Harst, Pim and van der Most, Peter J and Verweij, Niek and V{\"o}lker, Uwe and Wakai, Kenji and Waldenberger, Melanie and Wallentin, Lars and Wallner, Stefan and Wang, Judy and Waterworth, Dawn M and White, Harvey D and Willer, Cristen J and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yerges-Armstrong, Laura M and Zimmermann, Martina and Zonderman, Alan B and Bergler, Tobias and Stefansson, Kari and B{\"o}ger, Carsten A and Pattaro, Cristian and K{\"o}ttgen, Anna and Kronenberg, Florian and Heid, Iris M} } @article {9387, title = {Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.}, journal = {Nature}, volume = {616}, year = {2023}, month = {2023 Apr}, pages = {755-763}, abstract = {

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis. These lesions are precursors for blood cancers, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but~this effect was not seen in~clones with~driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental~knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.

}, keywords = {Alleles, Animals, Clonal Hematopoiesis, Genome-Wide Association Study, Hematopoiesis, Hematopoietic Stem Cells, Humans, Mice, Mutation, Promoter Regions, Genetic}, issn = {1476-4687}, doi = {10.1038/s41586-023-05806-1}, author = {Weinstock, Joshua S and Gopakumar, Jayakrishnan and Burugula, Bala Bharathi and Uddin, Md Mesbah and Jahn, Nikolaus and Belk, Julia A and Bouzid, Hind and Daniel, Bence and Miao, Zhuang and Ly, Nghi and Mack, Taralynn M and Luna, Sofia E and Prothro, Katherine P and Mitchell, Shaneice R and Laurie, Cecelia A and Broome, Jai G and Taylor, Kent D and Guo, Xiuqing and Sinner, Moritz F and von Falkenhausen, Aenne S and K{\"a}{\"a}b, Stefan and Shuldiner, Alan R and O{\textquoteright}Connell, Jeffrey R and Lewis, Joshua P and Boerwinkle, Eric and Barnes, Kathleen C and Chami, Nathalie and Kenny, Eimear E and Loos, Ruth J F and Fornage, Myriam and Hou, Lifang and Lloyd-Jones, Donald M and Redline, Susan and Cade, Brian E and Psaty, Bruce M and Bis, Joshua C and Brody, Jennifer A and Silverman, Edwin K and Yun, Jeong H and Qiao, Dandi and Palmer, Nicholette D and Freedman, Barry I and Bowden, Donald W and Cho, Michael H and DeMeo, Dawn L and Vasan, Ramachandran S and Yanek, Lisa R and Becker, Lewis C and Kardia, Sharon L R and Peyser, Patricia A and He, Jiang and Rienstra, Michiel and van der Harst, Pim and Kaplan, Robert and Heckbert, Susan R and Smith, Nicholas L and Wiggins, Kerri L and Arnett, Donna K and Irvin, Marguerite R and Tiwari, Hemant and Cutler, Michael J and Knight, Stacey and Muhlestein, J Brent and Correa, Adolfo and Raffield, Laura M and Gao, Yan and de Andrade, Mariza and Rotter, Jerome I and Rich, Stephen S and Tracy, Russell P and Konkle, Barbara A and Johnsen, Jill M and Wheeler, Marsha M and Smith, J Gustav and Melander, Olle and Nilsson, Peter M and Custer, Brian S and Duggirala, Ravindranath and Curran, Joanne E and Blangero, John and McGarvey, Stephen and Williams, L Keoki and Xiao, Shujie and Yang, Mao and Gu, C Charles and Chen, Yii-Der Ida and Lee, Wen-Jane and Marcus, Gregory M and Kane, John P and Pullinger, Clive R and Shoemaker, M Benjamin and Darbar, Dawood and Roden, Dan M and Albert, Christine and Kooperberg, Charles and Zhou, Ying and Manson, JoAnn E and Desai, Pinkal and Johnson, Andrew D and Mathias, Rasika A and Blackwell, Thomas W and Abecasis, Goncalo R and Smith, Albert V and Kang, Hyun M and Satpathy, Ansuman T and Natarajan, Pradeep and Kitzman, Jacob O and Whitsel, Eric A and Reiner, Alexander P and Bick, Alexander G and Jaiswal, Siddhartha} } @article {9535, title = {Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci.}, journal = {Front Genet}, volume = {14}, year = {2023}, month = {2023}, pages = {1235337}, abstract = {

Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant ( < 5 {\texttimes} 10) and suggestive ( < 1 {\texttimes} 10) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (), brain (), and liver () biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

}, issn = {1664-8021}, doi = {10.3389/fgene.2023.1235337}, author = {de Las Fuentes, Lisa and Schwander, Karen L and Brown, Michael R and Bentley, Amy R and Winkler, Thomas W and Sung, Yun Ju and Munroe, Patricia B and Miller, Clint L and Aschard, Hugo and Aslibekyan, Stella and Bartz, Traci M and Bielak, Lawrence F and Chai, Jin Fang and Cheng, Ching-Yu and Dorajoo, Rajkumar and Feitosa, Mary F and Guo, Xiuqing and Hartwig, Fernando P and Horimoto, Andrea and Kolcic, Ivana and Lim, Elise and Liu, Yongmei and Manning, Alisa K and Marten, Jonathan and Musani, Solomon K and Noordam, Raymond and Padmanabhan, Sandosh and Rankinen, Tuomo and Richard, Melissa A and Ridker, Paul M and Smith, Albert V and Vojinovic, Dina and Zonderman, Alan B and Alver, Maris and Boissel, Mathilde and Christensen, Kaare and Freedman, Barry I and Gao, Chuan and Giulianini, Franco and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Kuhnel, Brigitte and Laguzzi, Federica and Li, Xiaoyin and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Poveda, Alaitz and Rauramaa, Rainer and Riaz, Muhammad and Robino, Antonietta and Sofer, Tamar and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Verweij, Niek and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhan, Yiqiang and Amin, Najaf and Arking, Dan E and Ballantyne, Christie and Boerwinkle, Eric and Brody, Jennifer A and Broeckel, Ulrich and Campbell, Archie and Canouil, Micka{\"e}l and Chai, Xiaoran and Chen, Yii-Der Ida and Chen, Xu and Chitrala, Kumaraswamy Naidu and Concas, Maria Pina and de Faire, Ulf and de Mutsert, Ren{\'e}e and de Silva, H Janaka and de Vries, Paul S and Do, Ahn and Faul, Jessica D and Fisher, Virginia and Floyd, James S and Forrester, Terrence and Friedlander, Yechiel and Girotto, Giorgia and Gu, C Charles and Hallmans, G{\"o}ran and Heikkinen, Sami and Heng, Chew-Kiat and Homuth, Georg and Hunt, Steven and Ikram, M Arfan and Jacobs, David R and Kavousi, Maryam and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Komulainen, Pirjo and Langefeld, Carl D and Liang, Jingjing and Liu, Kiang and Liu, Jianjun and Lohman, Kurt and M{\"a}gi, Reedik and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Milaneschi, Yuri and Nauck, Matthias and Nelson, Christopher P and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Pereira, Alexandre C and Perls, Thomas and Peters, Annette and Polasek, Ozren and Raitakari, Olli T and Rice, Kenneth and Rice, Treva K and Rich, Stephen S and Sabanayagam, Charumathi and Schreiner, Pamela J and Shu, Xiao-Ou and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Starr, John M and Strauch, Konstantin and Tai, E Shyong and Taylor, Kent D and Tsai, Michael Y and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Waldenberger, Melanie and Wang, Ya-Xing and Wei, Wen-Bin and Wilson, Gregory and Xuan, Deng and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Becker, Diane M and Bonnefond, Am{\'e}lie and Bowden, Donald W and Cooper, Richard S and Deary, Ian J and Divers, Jasmin and Esko, T{\~o}nu and Franks, Paul W and Froguel, Philippe and Gieger, Christian and Jonas, Jost B and Kato, Norihiro and Lakka, Timo A and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and North, Kari E and Ntalla, Ioanna and Penninx, Brenda and Samani, Nilesh J and Snieder, Harold and Spedicati, Beatrice and van der Harst, Pim and V{\"o}lzke, Henry and Wagenknecht, Lynne E and Weir, David R and Wojczynski, Mary K and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Bouchard, Claude and Chasman, Daniel I and Evans, Michele K and Fox, Ervin R and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kardia, Sharon L R and Krieger, Jose Eduardo and Mook-Kanamori, Dennis O and Peyser, Patricia A and Province, Michael M and Psaty, Bruce M and Rudan, Igor and Sim, Xueling and Smith, Blair H and van Dam, Rob M and van Duijn, Cornelia M and Wong, Tien Yin and Arnett, Donna K and Rao, Dabeeru C and Gauderman, James and Liu, Ching-Ti and Morrison, Alanna C and Rotter, Jerome I and Fornage, Myriam} } @article {9322, title = {Genetic architecture of spatial electrical biomarkers for cardiac arrhythmia and relationship with cardiovascular disease.}, journal = {Nat Commun}, volume = {14}, year = {2023}, month = {2023 Mar 14}, pages = {1411}, abstract = {

The 3-dimensional spatial and 2-dimensional frontal QRS-T angles are measures derived from the vectorcardiogram. They are independent risk predictors for arrhythmia, but the underlying biology is unknown. Using multi-ancestry genome-wide association studies we identify 61 (58 previously unreported) loci for the spatial QRS-T angle (N = 118,780) and 11 for the frontal QRS-T angle (N = 159,715). Seven out of the 61 spatial QRS-T angle loci have not been reported for other electrocardiographic measures. Enrichments are observed in pathways related to cardiac and vascular development, muscle contraction, and hypertrophy. Pairwise genome-wide association studies with classical ECG traits identify shared genetic influences with PR interval and QRS duration.~Phenome-wide scanning indicate associations with atrial fibrillation, atrioventricular block and arterial embolism~and~genetically determined QRS-T angle measures are associated with fascicular and bundle branch block (and also atrioventricular block for the frontal QRS-T angle). We identify potential biology involved in the QRS-T angle~and~their genetic relationships with cardiovascular traits and diseases, may inform future research and risk prediction.

}, keywords = {Arrhythmias, Cardiac, Atrioventricular Block, Biomarkers, Cardiovascular Diseases, Electrocardiography, Genome-Wide Association Study, Humans, Risk Factors}, issn = {2041-1723}, doi = {10.1038/s41467-023-36997-w}, author = {Young, William J and Haessler, Jeffrey and Benjamins, Jan-Walter and Repetto, Linda and Yao, Jie and Isaacs, Aaron and Harper, Andrew R and Ramirez, Julia and Garnier, Sophie and Van Duijvenboden, Stefan and Baldassari, Antoine R and Concas, Maria Pina and Duong, ThuyVy and Foco, Luisa and Isaksen, Jonas L and Mei, Hao and Noordam, Raymond and Nursyifa, Casia and Richmond, Anne and Santolalla, Meddly L and Sitlani, Colleen M and Soroush, Negin and Th{\'e}riault, S{\'e}bastien and Trompet, Stella and Aeschbacher, Stefanie and Ahmadizar, Fariba and Alonso, Alvaro and Brody, Jennifer A and Campbell, Archie and Correa, Adolfo and Darbar, Dawood and De Luca, Antonio and Deleuze, Jean-Francois and Ellervik, Christina and Fuchsberger, Christian and Goel, Anuj and Grace, Christopher and Guo, Xiuqing and Hansen, Torben and Heckbert, Susan R and Jackson, Rebecca D and Kors, Jan A and Lima-Costa, Maria Fernanda and Linneberg, Allan and Macfarlane, Peter W and Morrison, Alanna C and Navarro, Pau and Porteous, David J and Pramstaller, Peter P and Reiner, Alexander P and Risch, Lorenz and Schotten, Ulrich and Shen, Xia and Sinagra, Gianfranco and Soliman, Elsayed Z and Stoll, Monika and Tarazona-Santos, Eduardo and Tinker, Andrew and Trajanoska, Katerina and Villard, Eric and Warren, Helen R and Whitsel, Eric A and Wiggins, Kerri L and Arking, Dan E and Avery, Christy L and Conen, David and Girotto, Giorgia and Grarup, Niels and Hayward, Caroline and Jukema, J Wouter and Mook-Kanamori, Dennis O and Olesen, Morten Salling and Padmanabhan, Sandosh and Psaty, Bruce M and Pattaro, Cristian and Ribeiro, Antonio Luiz P and Rotter, Jerome I and Stricker, Bruno H and van der Harst, Pim and van Duijn, Cornelia M and Verweij, Niek and Wilson, James G and Orini, Michele and Charron, Philippe and Watkins, Hugh and Kooperberg, Charles and Lin, Henry J and Wilson, James F and Kanters, J{\o}rgen K and Sotoodehnia, Nona and Mifsud, Borbala and Lambiase, Pier D and Tereshchenko, Larisa G and Munroe, Patricia B} }