@article {1221, title = {Biological, clinical and population relevance of 95 loci for blood lipids.}, journal = {Nature}, volume = {466}, year = {2010}, month = {2010 Aug 05}, pages = {707-13}, abstract = {

Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.

}, keywords = {African Americans, Animals, Asian Continental Ancestry Group, Cholesterol, HDL, Cholesterol, LDL, Coronary Artery Disease, Europe, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Humans, Lipid Metabolism, Lipids, Liver, Male, Mice, N-Acetylgalactosaminyltransferases, Phenotype, Polymorphism, Single Nucleotide, Protein Phosphatase 1, Reproducibility of Results, Triglycerides}, issn = {1476-4687}, doi = {10.1038/nature09270}, author = {Teslovich, Tanya M and Musunuru, Kiran and Smith, Albert V and Edmondson, Andrew C and Stylianou, Ioannis M and Koseki, Masahiro and Pirruccello, James P and Ripatti, Samuli and Chasman, Daniel I and Willer, Cristen J and Johansen, Christopher T and Fouchier, Sigrid W and Isaacs, Aaron and Peloso, Gina M and Barbalic, Maja and Ricketts, Sally L and Bis, Joshua C and Aulchenko, Yurii S and Thorleifsson, Gudmar and Feitosa, Mary F and Chambers, John and Orho-Melander, Marju and Melander, Olle and Johnson, Toby and Li, Xiaohui and Guo, Xiuqing and Li, Mingyao and Shin Cho, Yoon and Jin Go, Min and Jin Kim, Young and Lee, Jong-Young and Park, Taesung and Kim, Kyunga and Sim, Xueling and Twee-Hee Ong, Rick and Croteau-Chonka, Damien C and Lange, Leslie A and Smith, Joshua D and Song, Kijoung and Hua Zhao, Jing and Yuan, Xin and Luan, Jian{\textquoteright}an and Lamina, Claudia and Ziegler, Andreas and Zhang, Weihua and Zee, Robert Y L and Wright, Alan F and Witteman, Jacqueline C M and Wilson, James F and Willemsen, Gonneke and Wichmann, H-Erich and Whitfield, John B and Waterworth, Dawn M and Wareham, Nicholas J and Waeber, G{\'e}rard and Vollenweider, Peter and Voight, Benjamin F and Vitart, Veronique and Uitterlinden, Andr{\'e} G and Uda, Manuela and Tuomilehto, Jaakko and Thompson, John R and Tanaka, Toshiko and Surakka, Ida and Stringham, Heather M and Spector, Tim D and Soranzo, Nicole and Smit, Johannes H and Sinisalo, Juha and Silander, Kaisa and Sijbrands, Eric J G and Scuteri, Angelo and Scott, James and Schlessinger, David and Sanna, Serena and Salomaa, Veikko and Saharinen, Juha and Sabatti, Chiara and Ruokonen, Aimo and Rudan, Igor and Rose, Lynda M and Roberts, Robert and Rieder, Mark and Psaty, Bruce M and Pramstaller, Peter P and Pichler, Irene and Perola, Markus and Penninx, Brenda W J H and Pedersen, Nancy L and Pattaro, Cristian and Parker, Alex N and Par{\'e}, Guillaume and Oostra, Ben A and O{\textquoteright}Donnell, Christopher J and Nieminen, Markku S and Nickerson, Deborah A and Montgomery, Grant W and Meitinger, Thomas and McPherson, Ruth and McCarthy, Mark I and McArdle, Wendy and Masson, David and Martin, Nicholas G and Marroni, Fabio and Mangino, Massimo and Magnusson, Patrik K E and Lucas, Gavin and Luben, Robert and Loos, Ruth J F and Lokki, Marja-Liisa and Lettre, Guillaume and Langenberg, Claudia and Launer, Lenore J and Lakatta, Edward G and Laaksonen, Reijo and Kyvik, Kirsten O and Kronenberg, Florian and K{\"o}nig, Inke R and Khaw, Kay-Tee and Kaprio, Jaakko and Kaplan, Lee M and Johansson, Asa and Jarvelin, Marjo-Riitta and Janssens, A Cecile J W and Ingelsson, Erik and Igl, Wilmar and Kees Hovingh, G and Hottenga, Jouke-Jan and Hofman, Albert and Hicks, Andrew A and Hengstenberg, Christian and Heid, Iris M and Hayward, Caroline and Havulinna, Aki S and Hastie, Nicholas D and Harris, Tamara B and Haritunians, Talin and Hall, Alistair S and Gyllensten, Ulf and Guiducci, Candace and Groop, Leif C and Gonzalez, Elena and Gieger, Christian and Freimer, Nelson B and Ferrucci, Luigi and Erdmann, Jeanette and Elliott, Paul and Ejebe, Kenechi G and D{\"o}ring, Angela and Dominiczak, Anna F and Demissie, Serkalem and Deloukas, Panagiotis and de Geus, Eco J C and de Faire, Ulf and Crawford, Gabriel and Collins, Francis S and Chen, Yii-der I and Caulfield, Mark J and Campbell, Harry and Burtt, Noel P and Bonnycastle, Lori L and Boomsma, Dorret I and Boekholdt, S Matthijs and Bergman, Richard N and Barroso, In{\^e}s and Bandinelli, Stefania and Ballantyne, Christie M and Assimes, Themistocles L and Quertermous, Thomas and Altshuler, David and Seielstad, Mark and Wong, Tien Y and Tai, E-Shyong and Feranil, Alan B and Kuzawa, Christopher W and Adair, Linda S and Taylor, Herman A and Borecki, Ingrid B and Gabriel, Stacey B and Wilson, James G and Holm, Hilma and Thorsteinsdottir, Unnur and Gudnason, Vilmundur and Krauss, Ronald M and Mohlke, Karen L and Ordovas, Jose M and Munroe, Patricia B and Kooner, Jaspal S and Tall, Alan R and Hegele, Robert A and Kastelein, John J P and Schadt, Eric E and Rotter, Jerome I and Boerwinkle, Eric and Strachan, David P and Mooser, Vincent and Stefansson, Kari and Reilly, Muredach P and Samani, Nilesh J and Schunkert, Heribert and Cupples, L Adrienne and Sandhu, Manjinder S and Ridker, Paul M and Rader, Daniel J and van Duijn, Cornelia M and Peltonen, Leena and Abecasis, Goncalo R and Boehnke, Michael and Kathiresan, Sekar} } @article {1243, title = {Four novel Loci (19q13, 6q24, 12q24, and 5q14) influence the microcirculation in vivo.}, journal = {PLoS Genet}, volume = {6}, year = {2010}, month = {2010 Oct 28}, pages = {e1001184}, abstract = {

There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events. We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four independent Caucasian cohorts (n  =  6,652). All participants had retinal photography and retinal arteriolar and venular caliber measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five loci were significantly associated (p<5.0{\texttimes}10(-8)) with retinal venular caliber, but none showed association with arteriolar caliber. Collectively, these five loci explain 1.0\%-3.2\% of the variation in retinal venular caliber. Four out of these five loci were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921 (19q13; p  =  1.61{\texttimes}10(-25), within the RASIP1 locus), rs225717 (6q24; p = 1.25{\texttimes}10(-16), adjacent to the VTA1 and NMBR loci), rs10774625 (12q24; p  =  2.15{\texttimes}10(-13), in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p = 7.32{\texttimes}10(-16), adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie cardiovascular disease.

}, keywords = {Adolescent, Adult, Aged, Aged, 80 and over, Cardiovascular Diseases, Child, Child, Preschool, Chromosomes, Human, Pair 12, Chromosomes, Human, Pair 19, Chromosomes, Human, Pair 5, Chromosomes, Human, Pair 6, Cohort Studies, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Meta-Analysis as Topic, Microcirculation, Middle Aged, Polymorphism, Single Nucleotide, Retinal Vessels, Young Adult}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1001184}, author = {Ikram, M Kamran and Sim, Xueling and Xueling, Sim and Jensen, Richard A and Cotch, Mary Frances and Hewitt, Alex W and Ikram, M Arfan and Wang, Jie Jin and Klein, Ronald and Klein, Barbara E K and Breteler, Monique M B and Cheung, Ning and Liew, Gerald and Mitchell, Paul and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Hofman, Albert and de Jong, Paulus T V M and van Duijn, Cornelia M and Kao, Linda and Cheng, Ching-Yu and Smith, Albert Vernon and Glazer, Nicole L and Lumley, Thomas and McKnight, Barbara and Psaty, Bruce M and Jonasson, Fridbert and Eiriksdottir, Gudny and Aspelund, Thor and Harris, Tamara B and Launer, Lenore J and Taylor, Kent D and Li, Xiaohui and Iyengar, Sudha K and Xi, Quansheng and Sivakumaran, Theru A and Mackey, David A and Macgregor, Stuart and Martin, Nicholas G and Young, Terri L and Bis, Josh C and Wiggins, Kerri L and Heckbert, Susan R and Hammond, Christopher J and Andrew, Toby and Fahy, Samantha and Attia, John and Holliday, Elizabeth G and Scott, Rodney J and Islam, F M Amirul and Rotter, Jerome I and McAuley, Annie K and Boerwinkle, Eric and Tai, E Shyong and Gudnason, Vilmundur and Siscovick, David S and Vingerling, Johannes R and Wong, Tien Y} } @article {1567, title = {Candidate gene association study for diabetic retinopathy in persons with type 2 diabetes: the Candidate gene Association Resource (CARe).}, journal = {Invest Ophthalmol Vis Sci}, volume = {52}, year = {2011}, month = {2011 Sep 29}, pages = {7593-602}, abstract = {

PURPOSE: To investigate whether variants in cardiovascular candidate genes, some of which have been previously associated with type 2 diabetes (T2D), diabetic retinopathy (DR), and diabetic nephropathy (DN), are associated with DR in the Candidate gene Association Resource (CARe).

METHODS: Persons with T2D who were enrolled in the study (n = 2691) had fundus photography and genotyping of single nucleotide polymorphisms (SNPs) in 2000 candidate genes. Two case definitions were investigated: Early Treatment Diabetic Retinopathy Study (ETDRS) grades >= 14 and >= 30. The χ{\texttwosuperior} analyses for each CARe cohort were combined by Cochran-Mantel-Haenszel (CMH) pooling of odds ratios (ORs) and corrected for multiple hypothesis testing. Logistic regression was performed with adjustment for other DR risk factors. Results from replication in independent cohorts were analyzed with CMH meta-analysis methods.

RESULTS: Among 39 genes previously associated with DR, DN, or T2D, three SNPs in P-selectin (SELP) were associated with DR. The strongest association was to rs6128 (OR = 0.43, P = 0.0001, after Bonferroni correction). These associations remained significant after adjustment for DR risk factors. Among other genes examined, several variants were associated with DR with significant P values, including rs6856425 tagging α-l-iduronidase (IDUA) (P = 2.1 {\texttimes} 10(-5), after Bonferroni correction). However, replication in independent cohorts did not reveal study-wide significant effects. The P values after replication were 0.55 and 0.10 for rs6128 and rs6856425, respectively.

CONCLUSIONS: Genes associated with DN, T2D, and vascular diseases do not appear to be consistently associated with DR. A few genetic variants associated with DR, particularly those in SELP and near IDUA, should be investigated in additional DR cohorts.

}, keywords = {Cardiovascular Diseases, Diabetes Mellitus, Type 2, Diabetic Nephropathies, Diabetic Retinopathy, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Iduronidase, Odds Ratio, P-Selectin, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1552-5783}, doi = {10.1167/iovs.11-7510}, author = {Sobrin, Lucia and Green, Todd and Sim, Xueling and Jensen, Richard A and Tai, E Shyong and Tay, Wan Ting and Wang, Jie Jin and Mitchell, Paul and Sandholm, Niina and Liu, Yiyuan and Hietala, Kustaa and Iyengar, Sudha K and Brooks, Matthew and Buraczynska, Monika and Van Zuydam, Natalie and Smith, Albert V and Gudnason, Vilmundur and Doney, Alex S F and Morris, Andrew D and Leese, Graham P and Palmer, Colin N A and Swaroop, Anand and Taylor, Herman A and Wilson, James G and Penman, Alan and Chen, Ching J and Groop, Per-Henrik and Saw, Seang-Mei and Aung, Tin and Klein, Barbara E and Rotter, Jerome I and Siscovick, David S and Cotch, Mary Frances and Klein, Ronald and Daly, Mark J and Wong, Tien Y} } @article {1325, title = {Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.}, journal = {Nature}, volume = {478}, year = {2011}, month = {2011 Sep 11}, pages = {103-9}, abstract = {

Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>=140 mm Hg systolic blood pressure or >=90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.

}, keywords = {Africa, Asia, Blood Pressure, Cardiovascular Diseases, Coronary Artery Disease, Europe, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hypertension, Kidney Diseases, Polymorphism, Single Nucleotide, Stroke}, issn = {1476-4687}, doi = {10.1038/nature10405}, author = {Ehret, Georg B and Munroe, Patricia B and Rice, Kenneth M and Bochud, Murielle and Johnson, Andrew D and Chasman, Daniel I and Smith, Albert V and Tobin, Martin D and Verwoert, Germaine C and Hwang, Shih-Jen and Pihur, Vasyl and Vollenweider, Peter and O{\textquoteright}Reilly, Paul F and Amin, Najaf and Bragg-Gresham, Jennifer L and Teumer, Alexander and Glazer, Nicole L and Launer, Lenore and Zhao, Jing Hua and Aulchenko, Yurii and Heath, Simon and S{\~o}ber, Siim and Parsa, Afshin and Luan, Jian{\textquoteright}an and Arora, Pankaj and Dehghan, Abbas and Zhang, Feng and Lucas, Gavin and Hicks, Andrew A and Jackson, Anne U and Peden, John F and Tanaka, Toshiko and Wild, Sarah H and Rudan, Igor and Igl, Wilmar and Milaneschi, Yuri and Parker, Alex N and Fava, Cristiano and Chambers, John C and Fox, Ervin R and Kumari, Meena and Go, Min Jin and van der Harst, Pim and Kao, Wen Hong Linda and Sj{\"o}gren, Marketa and Vinay, D G and Alexander, Myriam and Tabara, Yasuharu and Shaw-Hawkins, Sue and Whincup, Peter H and Liu, Yongmei and Shi, Gang and Kuusisto, Johanna and Tayo, Bamidele and Seielstad, Mark and Sim, Xueling and Nguyen, Khanh-Dung Hoang and Lehtim{\"a}ki, Terho and Matullo, Giuseppe and Wu, Ying and Gaunt, Tom R and Onland-Moret, N Charlotte and Cooper, Matthew N and Platou, Carl G P and Org, Elin and Hardy, Rebecca and Dahgam, Santosh and Palmen, Jutta and Vitart, Veronique and Braund, Peter S and Kuznetsova, Tatiana and Uiterwaal, Cuno S P M and Adeyemo, Adebowale and Palmas, Walter and Campbell, Harry and Ludwig, Barbara and Tomaszewski, Maciej and Tzoulaki, Ioanna and Palmer, Nicholette D and Aspelund, Thor and Garcia, Melissa and Chang, Yen-Pei C and O{\textquoteright}Connell, Jeffrey R and Steinle, Nanette I and Grobbee, Diederick E and Arking, Dan E and Kardia, Sharon L and Morrison, Alanna C and Hernandez, Dena and Najjar, Samer and McArdle, Wendy L and Hadley, David and Brown, Morris J and Connell, John M and Hingorani, Aroon D and Day, Ian N M and Lawlor, Debbie A and Beilby, John P and Lawrence, Robert W and Clarke, Robert and Hopewell, Jemma C and Ongen, Halit and Dreisbach, Albert W and Li, Yali and Young, J Hunter and Bis, Joshua C and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Adair, Linda S and Lee, Nanette R and Chen, Ming-Huei and Olden, Matthias and Pattaro, Cristian and Bolton, Judith A Hoffman and K{\"o}ttgen, Anna and Bergmann, Sven and Mooser, Vincent and Chaturvedi, Nish and Frayling, Timothy M and Islam, Muhammad and Jafar, Tazeen H and Erdmann, Jeanette and Kulkarni, Smita R and Bornstein, Stefan R and Gr{\"a}ssler, J{\"u}rgen and Groop, Leif and Voight, Benjamin F and Kettunen, Johannes and Howard, Philip and Taylor, Andrew and Guarrera, Simonetta and Ricceri, Fulvio and Emilsson, Valur and Plump, Andrew and Barroso, In{\^e}s and Khaw, Kay-Tee and Weder, Alan B and Hunt, Steven C and Sun, Yan V and Bergman, Richard N and Collins, Francis S and Bonnycastle, Lori L and Scott, Laura J and Stringham, Heather M and Peltonen, Leena and Perola, Markus and Vartiainen, Erkki and Brand, Stefan-Martin and Staessen, Jan A and Wang, Thomas J and Burton, Paul R and Soler Artigas, Maria and Dong, Yanbin and Snieder, Harold and Wang, Xiaoling and Zhu, Haidong and Lohman, Kurt K and Rudock, Megan E and Heckbert, Susan R and Smith, Nicholas L and Wiggins, Kerri L and Doumatey, Ayo and Shriner, Daniel and Veldre, Gudrun and Viigimaa, Margus and Kinra, Sanjay and Prabhakaran, Dorairaj and Tripathy, Vikal and Langefeld, Carl D and Rosengren, Annika and Thelle, Dag S and Corsi, Anna Maria and Singleton, Andrew and Forrester, Terrence and Hilton, Gina and McKenzie, Colin A and Salako, Tunde and Iwai, Naoharu and Kita, Yoshikuni and Ogihara, Toshio and Ohkubo, Takayoshi and Okamura, Tomonori and Ueshima, Hirotsugu and Umemura, Satoshi and Eyheramendy, Susana and Meitinger, Thomas and Wichmann, H-Erich and Cho, Yoon Shin and Kim, Hyung-Lae and Lee, Jong-Young and Scott, James and Sehmi, Joban S and Zhang, Weihua and Hedblad, Bo and Nilsson, Peter and Smith, George Davey and Wong, Andrew and Narisu, Narisu and Stan{\v c}{\'a}kov{\'a}, Alena and Raffel, Leslie J and Yao, Jie and Kathiresan, Sekar and O{\textquoteright}Donnell, Christopher J and Schwartz, Stephen M and Ikram, M Arfan and Longstreth, W T and Mosley, Thomas H and Seshadri, Sudha and Shrine, Nick R G and Wain, Louise V and Morken, Mario A and Swift, Amy J and Laitinen, Jaana and Prokopenko, Inga and Zitting, Paavo and Cooper, Jackie A and Humphries, Steve E and Danesh, John and Rasheed, Asif and Goel, Anuj and Hamsten, Anders and Watkins, Hugh and Bakker, Stephan J L and van Gilst, Wiek H and Janipalli, Charles S and Mani, K Radha and Yajnik, Chittaranjan S and Hofman, Albert and Mattace-Raso, Francesco U S and Oostra, Ben A and Demirkan, Ayse and Isaacs, Aaron and Rivadeneira, Fernando and Lakatta, Edward G and Orr{\`u}, Marco and Scuteri, Angelo and Ala-Korpela, Mika and Kangas, Antti J and Lyytik{\"a}inen, Leo-Pekka and Soininen, Pasi and Tukiainen, Taru and W{\"u}rtz, Peter and Ong, Rick Twee-Hee and D{\"o}rr, Marcus and Kroemer, Heyo K and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Galan, Pilar and Hercberg, Serge and Lathrop, Mark and Zelenika, Diana and Deloukas, Panos and Mangino, Massimo and Spector, Tim D and Zhai, Guangju and Meschia, James F and Nalls, Michael A and Sharma, Pankaj and Terzic, Janos and Kumar, M V Kranthi and Denniff, Matthew and Zukowska-Szczechowska, Ewa and Wagenknecht, Lynne E and Fowkes, F Gerald R and Charchar, Fadi J and Schwarz, Peter E H and Hayward, Caroline and Guo, Xiuqing and Rotimi, Charles and Bots, Michiel L and Brand, Eva and Samani, Nilesh J and Polasek, Ozren and Talmud, Philippa J and Nyberg, Fredrik and Kuh, Diana and Laan, Maris and Hveem, Kristian and Palmer, Lyle J and van der Schouw, Yvonne T and Casas, Juan P and Mohlke, Karen L and Vineis, Paolo and Raitakari, Olli and Ganesh, Santhi K and Wong, Tien Y and Tai, E Shyong and Cooper, Richard S and Laakso, Markku and Rao, Dabeeru C and Harris, Tamara B and Morris, Richard W and Dominiczak, Anna F and Kivimaki, Mika and Marmot, Michael G and Miki, Tetsuro and Saleheen, Danish and Chandak, Giriraj R and Coresh, Josef and Navis, Gerjan and Salomaa, Veikko and Han, Bok-Ghee and Zhu, Xiaofeng and Kooner, Jaspal S and Melander, Olle and Ridker, Paul M and Bandinelli, Stefania and Gyllensten, Ulf B and Wright, Alan F and Wilson, James F and Ferrucci, Luigi and Farrall, Martin and Tuomilehto, Jaakko and Pramstaller, Peter P and Elosua, Roberto and Soranzo, Nicole and Sijbrands, Eric J G and Altshuler, David and Loos, Ruth J F and Shuldiner, Alan R and Gieger, Christian and Meneton, Pierre and Uitterlinden, Andr{\'e} G and Wareham, Nicholas J and Gudnason, Vilmundur and Rotter, Jerome I and Rettig, Rainer and Uda, Manuela and Strachan, David P and Witteman, Jacqueline C M and Hartikainen, Anna-Liisa and Beckmann, Jacques S and Boerwinkle, Eric and Vasan, Ramachandran S and Boehnke, Michael and Larson, Martin G and Jarvelin, Marjo-Riitta and Psaty, Bruce M and Abecasis, Goncalo R and Chakravarti, Aravinda and Elliott, Paul and van Duijn, Cornelia M and Newton-Cheh, Christopher and Levy, Daniel and Caulfield, Mark J and Johnson, Toby} } @article {1378, title = {Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1002607}, abstract = {

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5{\texttimes}10(-8)-1.2{\texttimes}10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3{\texttimes}10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3{\texttimes}10(-3), n = 22,044), increased triglycerides (p = 2.6{\texttimes}10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8{\texttimes}10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4{\texttimes}10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5{\texttimes}10(-13), n = 96,748) and decreased BMI (p = 1.4{\texttimes}10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

}, keywords = {Adiponectin, African Americans, Asian Continental Ancestry Group, Cholesterol, HDL, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Female, Gene Expression, Genetic Predisposition to Disease, Genome-Wide Association Study, Glucose Tolerance Test, Humans, Insulin Resistance, Male, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide, Waist-Hip Ratio}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002607}, author = {Dastani, Zari and Hivert, Marie-France and Timpson, Nicholas and Perry, John R B and Yuan, Xin and Scott, Robert A and Henneman, Peter and Heid, Iris M and Kizer, Jorge R and Lyytik{\"a}inen, Leo-Pekka and Fuchsberger, Christian and Tanaka, Toshiko and Morris, Andrew P and Small, Kerrin and Isaacs, Aaron and Beekman, Marian and Coassin, Stefan and Lohman, Kurt and Qi, Lu and Kanoni, Stavroula and Pankow, James S and Uh, Hae-Won and Wu, Ying and Bidulescu, Aurelian and Rasmussen-Torvik, Laura J and Greenwood, Celia M T and Ladouceur, Martin and Grimsby, Jonna and Manning, Alisa K and Liu, Ching-Ti and Kooner, Jaspal and Mooser, Vincent E and Vollenweider, Peter and Kapur, Karen A and Chambers, John and Wareham, Nicholas J and Langenberg, Claudia and Frants, Rune and Willems-Vandijk, Ko and Oostra, Ben A and Willems, Sara M and Lamina, Claudia and Winkler, Thomas W and Psaty, Bruce M and Tracy, Russell P and Brody, Jennifer and Chen, Ida and Viikari, Jorma and K{\"a}h{\"o}nen, Mika and Pramstaller, Peter P and Evans, David M and St Pourcain, Beate and Sattar, Naveed and Wood, Andrew R and Bandinelli, Stefania and Carlson, Olga D and Egan, Josephine M and B{\"o}hringer, Stefan and van Heemst, Diana and Kedenko, Lyudmyla and Kristiansson, Kati and Nuotio, Marja-Liisa and Loo, Britt-Marie and Harris, Tamara and Garcia, Melissa and Kanaya, Alka and Haun, Margot and Klopp, Norman and Wichmann, H-Erich and Deloukas, Panos and Katsareli, Efi and Couper, David J and Duncan, Bruce B and Kloppenburg, Margreet and Adair, Linda S and Borja, Judith B and Wilson, James G and Musani, Solomon and Guo, Xiuqing and Johnson, Toby and Semple, Robert and Teslovich, Tanya M and Allison, Matthew A and Redline, Susan and Buxbaum, Sarah G and Mohlke, Karen L and Meulenbelt, Ingrid and Ballantyne, Christie M and Dedoussis, George V and Hu, Frank B and Liu, Yongmei and Paulweber, Bernhard and Spector, Timothy D and Slagboom, P Eline and Ferrucci, Luigi and Jula, Antti and Perola, Markus and Raitakari, Olli and Florez, Jose C and Salomaa, Veikko and Eriksson, Johan G and Frayling, Timothy M and Hicks, Andrew A and Lehtim{\"a}ki, Terho and Smith, George Davey and Siscovick, David S and Kronenberg, Florian and van Duijn, Cornelia and Loos, Ruth J F and Waterworth, Dawn M and Meigs, James B and Dupuis, Jos{\'e}e and Richards, J Brent and Voight, Benjamin F and Scott, Laura J and Steinthorsdottir, Valgerdur and Dina, Christian and Welch, Ryan P and Zeggini, Eleftheria and Huth, Cornelia and Aulchenko, Yurii S and Thorleifsson, Gudmar and McCulloch, Laura J and Ferreira, Teresa and Grallert, Harald and Amin, Najaf and Wu, Guanming and Willer, Cristen J and Raychaudhuri, Soumya and McCarroll, Steve A and Hofmann, Oliver M and Segr{\`e}, Ayellet V and van Hoek, Mandy and Navarro, Pau and Ardlie, Kristin and Balkau, Beverley and Benediktsson, Rafn and Bennett, Amanda J and Blagieva, Roza and Boerwinkle, Eric and Bonnycastle, Lori L and Bostr{\"o}m, Kristina Bengtsson and Bravenboer, Bert and Bumpstead, Suzannah and Burtt, Noel P and Charpentier, Guillaume and Chines, Peter S and Cornelis, Marilyn and Crawford, Gabe and Doney, Alex S F and Elliott, Katherine S and Elliott, Amanda L and Erdos, Michael R and Fox, Caroline S and Franklin, Christopher S and Ganser, Martha and Gieger, Christian and Grarup, Niels and Green, Todd and Griffin, Simon and Groves, Christopher J and Guiducci, Candace and Hadjadj, Samy and Hassanali, Neelam and Herder, Christian and Isomaa, Bo and Jackson, Anne U and Johnson, Paul R V and J{\o}rgensen, Torben and Kao, Wen H L and Kong, Augustine and Kraft, Peter and Kuusisto, Johanna and Lauritzen, Torsten and Li, Man and Lieverse, Aloysius and Lindgren, Cecilia M and Lyssenko, Valeriya and Marre, Michel and Meitinger, Thomas and Midthjell, Kristian and Morken, Mario A and Narisu, Narisu and Nilsson, Peter and Owen, Katharine R and Payne, Felicity and Petersen, Ann-Kristin and Platou, Carl and Proen{\c c}a, Christine and Prokopenko, Inga and Rathmann, Wolfgang and Rayner, N William and Robertson, Neil R and Rocheleau, Ghislain and Roden, Michael and Sampson, Michael J and Saxena, Richa and Shields, Beverley M and Shrader, Peter and Sigurdsson, Gunnar and Spars{\o}, Thomas and Strassburger, Klaus and Stringham, Heather M and Sun, Qi and Swift, Amy J and Thorand, Barbara and Tichet, Jean and Tuomi, Tiinamaija and van Dam, Rob M and van Haeften, Timon W and van Herpt, Thijs and van Vliet-Ostaptchouk, Jana V and Walters, G Bragi and Weedon, Michael N and Wijmenga, Cisca and Witteman, Jacqueline and Bergman, Richard N and Cauchi, Stephane and Collins, Francis S and Gloyn, Anna L and Gyllensten, Ulf and Hansen, Torben and Hide, Winston A and Hitman, Graham A and Hofman, Albert and Hunter, David J and Hveem, Kristian and Laakso, Markku and Morris, Andrew D and Palmer, Colin N A and Rudan, Igor and Sijbrands, Eric and Stein, Lincoln D and Tuomilehto, Jaakko and Uitterlinden, Andre and Walker, Mark and Watanabe, Richard M and Abecasis, Goncalo R and Boehm, Bernhard O and Campbell, Harry and Daly, Mark J and Hattersley, Andrew T and Pedersen, Oluf and Barroso, In{\^e}s and Groop, Leif and Sladek, Rob and Thorsteinsdottir, Unnur and Wilson, James F and Illig, Thomas and Froguel, Philippe and van Duijn, Cornelia M and Stefansson, Kari and Altshuler, David and Boehnke, Michael and McCarthy, Mark I and Soranzo, Nicole and Wheeler, Eleanor and Glazer, Nicole L and Bouatia-Naji, Nabila and M{\"a}gi, Reedik and Randall, Joshua and Elliott, Paul and Rybin, Denis and Dehghan, Abbas and Hottenga, Jouke Jan and Song, Kijoung and Goel, Anuj and Lajunen, Taina and Doney, Alex and Cavalcanti-Proen{\c c}a, Christine and Kumari, Meena and Timpson, Nicholas J and Zabena, Carina and Ingelsson, Erik and An, Ping and O{\textquoteright}Connell, Jeffrey and Luan, Jian{\textquoteright}an and Elliott, Amanda and McCarroll, Steven A and Roccasecca, Rosa Maria and Pattou, Fran{\c c}ois and Sethupathy, Praveen and Ariyurek, Yavuz and Barter, Philip and Beilby, John P and Ben-Shlomo, Yoav and Bergmann, Sven and Bochud, Murielle and Bonnefond, Am{\'e}lie and Borch-Johnsen, Knut and B{\"o}ttcher, Yvonne and Brunner, Eric and Bumpstead, Suzannah J and Chen, Yii-Der Ida and Chines, Peter and Clarke, Robert and Coin, Lachlan J M and Cooper, Matthew N and Crisponi, Laura and Day, Ian N M and de Geus, Eco J C and Delplanque, Jerome and Fedson, Annette C and Fischer-Rosinsky, Antje and Forouhi, Nita G and Franzosi, Maria Grazia and Galan, Pilar and Goodarzi, Mark O and Graessler, J{\"u}rgen and Grundy, Scott and Gwilliam, Rhian and Hallmans, G{\"o}ran and Hammond, Naomi and Han, Xijing and Hartikainen, Anna-Liisa and Hayward, Caroline and Heath, Simon C and Hercberg, Serge and Hillman, David R and Hingorani, Aroon D and Hui, Jennie and Hung, Joe and Kaakinen, Marika and Kaprio, Jaakko and Kesaniemi, Y Antero and Kivimaki, Mika and Knight, Beatrice and Koskinen, Seppo and Kovacs, Peter and Kyvik, Kirsten Ohm and Lathrop, G Mark and Lawlor, Debbie A and Le Bacquer, Olivier and Lecoeur, C{\'e}cile and Li, Yun and Mahley, Robert and Mangino, Massimo and Mart{\'\i}nez-Larrad, Mar{\'\i}a Teresa and McAteer, Jarred B and McPherson, Ruth and Meisinger, Christa and Melzer, David and Meyre, David and Mitchell, Braxton D and Mukherjee, Sutapa and Naitza, Silvia and Neville, Matthew J and Orr{\`u}, Marco and Pakyz, Ruth and Paolisso, Giuseppe and Pattaro, Cristian and Pearson, Daniel and Peden, John F and Pedersen, Nancy L and Pfeiffer, Andreas F H and Pichler, Irene and Polasek, Ozren and Posthuma, Danielle and Potter, Simon C and Pouta, Anneli and Province, Michael A and Rayner, Nigel W and Rice, Kenneth and Ripatti, Samuli and Rivadeneira, Fernando and Rolandsson, Olov and Sandbaek, Annelli and Sandhu, Manjinder and Sanna, Serena and Sayer, Avan Aihie and Scheet, Paul and Seedorf, Udo and Sharp, Stephen J and Shields, Beverley and Sigur{\dh}sson, Gunnar and Sijbrands, Eric J G and Silveira, Angela and Simpson, Laila and Singleton, Andrew and Smith, Nicholas L and Sovio, Ulla and Swift, Amy and Syddall, Holly and Syv{\"a}nen, Ann-Christine and T{\"o}njes, Anke and Uitterlinden, Andr{\'e} G and van Dijk, Ko Willems and Varma, Dhiraj and Visvikis-Siest, Sophie and Vitart, Veronique and Vogelzangs, Nicole and Waeber, G{\'e}rard and Wagner, Peter J and Walley, Andrew and Ward, Kim L and Watkins, Hugh and Wild, Sarah H and Willemsen, Gonneke and Witteman, Jaqueline C M and Yarnell, John W G and Zelenika, Diana and Zethelius, Bj{\"o}rn and Zhai, Guangju and Zhao, Jing Hua and Zillikens, M Carola and Borecki, Ingrid B and Meneton, Pierre and Magnusson, Patrik K E and Nathan, David M and Williams, Gordon H and Silander, Kaisa and Bornstein, Stefan R and Schwarz, Peter and Spranger, Joachim and Karpe, Fredrik and Shuldiner, Alan R and Cooper, Cyrus and Serrano-R{\'\i}os, Manuel and Lind, Lars and Palmer, Lyle J and Hu, Frank B and Franks, Paul W and Ebrahim, Shah and Marmot, Michael and Kao, W H Linda and Pramstaller, Peter Paul and Wright, Alan F and Stumvoll, Michael and Hamsten, Anders and Buchanan, Thomas A and Valle, Timo T and Rotter, Jerome I and Penninx, Brenda W J H and Boomsma, Dorret I and Cao, Antonio and Scuteri, Angelo and Schlessinger, David and Uda, Manuela and Ruokonen, Aimo and Jarvelin, Marjo-Riitta and Peltonen, Leena and Mooser, Vincent and Sladek, Robert and Musunuru, Kiran and Smith, Albert V and Edmondson, Andrew C and Stylianou, Ioannis M and Koseki, Masahiro and Pirruccello, James P and Chasman, Daniel I and Johansen, Christopher T and Fouchier, Sigrid W and Peloso, Gina M and Barbalic, Maja and Ricketts, Sally L and Bis, Joshua C and Feitosa, Mary F and Orho-Melander, Marju and Melander, Olle and Li, Xiaohui and Li, Mingyao and Cho, Yoon Shin and Go, Min Jin and Kim, Young Jin and Lee, Jong-Young and Park, Taesung and Kim, Kyunga and Sim, Xueling and Ong, Rick Twee-Hee and Croteau-Chonka, Damien C and Lange, Leslie A and Smith, Joshua D and Ziegler, Andreas and Zhang, Weihua and Zee, Robert Y L and Whitfield, John B and Thompson, John R and Surakka, Ida and Spector, Tim D and Smit, Johannes H and Sinisalo, Juha and Scott, James and Saharinen, Juha and Sabatti, Chiara and Rose, Lynda M and Roberts, Robert and Rieder, Mark and Parker, Alex N and Par{\'e}, Guillaume and O{\textquoteright}Donnell, Christopher J and Nieminen, Markku S and Nickerson, Deborah A and Montgomery, Grant W and McArdle, Wendy and Masson, David and Martin, Nicholas G and Marroni, Fabio and Lucas, Gavin and Luben, Robert and Lokki, Marja-Liisa and Lettre, Guillaume and Launer, Lenore J and Lakatta, Edward G and Laaksonen, Reijo and Kyvik, Kirsten O and K{\"o}nig, Inke R and Khaw, Kay-Tee and Kaplan, Lee M and Johansson, Asa and Janssens, A Cecile J W and Igl, Wilmar and Hovingh, G Kees and Hengstenberg, Christian and Havulinna, Aki S and Hastie, Nicholas D and Harris, Tamara B and Haritunians, Talin and Hall, Alistair S and Groop, Leif C and Gonzalez, Elena and Freimer, Nelson B and Erdmann, Jeanette and Ejebe, Kenechi G and D{\"o}ring, Angela and Dominiczak, Anna F and Demissie, Serkalem and Deloukas, Panagiotis and de Faire, Ulf and Crawford, Gabriel and Chen, Yii-der I and Caulfield, Mark J and Boekholdt, S Matthijs and Assimes, Themistocles L and Quertermous, Thomas and Seielstad, Mark and Wong, Tien Y and Tai, E-Shyong and Feranil, Alan B and Kuzawa, Christopher W and Taylor, Herman A and Gabriel, Stacey B and Holm, Hilma and Gudnason, Vilmundur and Krauss, Ronald M and Ordovas, Jose M and Munroe, Patricia B and Kooner, Jaspal S and Tall, Alan R and Hegele, Robert A and Kastelein, John J P and Schadt, Eric E and Strachan, David P and Reilly, Muredach P and Samani, Nilesh J and Schunkert, Heribert and Cupples, L Adrienne and Sandhu, Manjinder S and Ridker, Paul M and Rader, Daniel J and Kathiresan, Sekar} } @article {6027, title = {Genetic loci for retinal arteriolar microcirculation.}, journal = {PLoS One}, volume = {8}, year = {2013}, month = {2013}, pages = {e65804}, abstract = {

Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5{\texttimes}10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11{\texttimes}10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.

}, keywords = {Aged, Aged, 80 and over, Arterioles, Chromosomes, Human, Pair 5, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Humans, Male, MEF2 Transcription Factors, Microcirculation, Middle Aged, Models, Genetic, Retinal Vessels}, issn = {1932-6203}, doi = {10.1371/journal.pone.0065804}, author = {Sim, Xueling and Jensen, Richard A and Ikram, M Kamran and Cotch, Mary Frances and Li, Xiaohui and Macgregor, Stuart and Xie, Jing and Smith, Albert Vernon and Boerwinkle, Eric and Mitchell, Paul and Klein, Ronald and Klein, Barbara E K and Glazer, Nicole L and Lumley, Thomas and McKnight, Barbara and Psaty, Bruce M and de Jong, Paulus T V M and Hofman, Albert and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and van Duijn, Cornelia M and Aspelund, Thor and Eiriksdottir, Gudny and Harris, Tamara B and Jonasson, Fridbert and Launer, Lenore J and Attia, John and Baird, Paul N and Harrap, Stephen and Holliday, Elizabeth G and Inouye, Michael and Rochtchina, Elena and Scott, Rodney J and Viswanathan, Ananth and Li, Guo and Smith, Nicholas L and Wiggins, Kerri L and Kuo, Jane Z and Taylor, Kent D and Hewitt, Alex W and Martin, Nicholas G and Montgomery, Grant W and Sun, Cong and Young, Terri L and Mackey, David A and van Zuydam, Natalie R and Doney, Alex S F and Palmer, Colin N A and Morris, Andrew D and Rotter, Jerome I and Tai, E Shyong and Gudnason, Vilmundur and Vingerling, Johannes R and Siscovick, David S and Wang, Jie Jin and Wong, Tien Y} } @article {6072, title = {Genome-wide association study of retinopathy in individuals without diabetes.}, journal = {PLoS One}, volume = {8}, year = {2013}, month = {2013}, pages = {e54232}, abstract = {

BACKGROUND: Mild retinopathy (microaneurysms or dot-blot hemorrhages) is observed in persons without diabetes or hypertension and may reflect microvascular disease in other organs. We conducted a genome-wide association study (GWAS) of mild retinopathy in persons without diabetes.

METHODS: A working group agreed on phenotype harmonization, covariate selection and analytic plans for within-cohort GWAS. An inverse-variance weighted fixed effects meta-analysis was performed with GWAS results from six cohorts of 19,411 Caucasians. The primary analysis included individuals without diabetes and secondary analyses were stratified by hypertension status. We also singled out the results from single nucleotide polymorphisms (SNPs) previously shown to be associated with diabetes and hypertension, the two most common causes of retinopathy.

RESULTS: No SNPs reached genome-wide significance in the primary analysis or the secondary analysis of participants with hypertension. SNP, rs12155400, in the histone deacetylase 9 gene (HDAC9) on chromosome 7, was associated with retinopathy in analysis of participants without hypertension, -1.3{\textpm}0.23 (beta {\textpm} standard error), p = 6.6{\texttimes}10(-9). Evidence suggests this was a false positive finding. The minor allele frequency was low (\~{}2\%), the quality of the imputation was moderate (r(2) \~{}0.7), and no other common variants in the HDAC9 gene were associated with the outcome. SNPs found to be associated with diabetes and hypertension in other GWAS were not associated with retinopathy in persons without diabetes or in subgroups with or without hypertension.

CONCLUSIONS: This GWAS of retinopathy in individuals without diabetes showed little evidence of genetic associations. Further studies are needed to identify genes associated with these signs in order to help unravel novel pathways and determinants of microvascular diseases.

}, keywords = {Aged, Aged, 80 and over, Female, Genome-Wide Association Study, Genotype, Histone Deacetylases, Humans, Hypertension, Male, Polymorphism, Single Nucleotide, Repressor Proteins, Retinal Diseases}, issn = {1932-6203}, doi = {10.1371/journal.pone.0054232}, author = {Jensen, Richard A and Sim, Xueling and Li, Xiaohui and Cotch, Mary Frances and Ikram, M Kamran and Holliday, Elizabeth G and Eiriksdottir, Gudny and Harris, Tamara B and Jonasson, Fridbert and Klein, Barbara E K and Launer, Lenore J and Smith, Albert Vernon and Boerwinkle, Eric and Cheung, Ning and Hewitt, Alex W and Liew, Gerald and Mitchell, Paul and Wang, Jie Jin and Attia, John and Scott, Rodney and Glazer, Nicole L and Lumley, Thomas and McKnight, Barbara and Psaty, Bruce M and Taylor, Kent and Hofman, Albert and de Jong, Paulus T V M and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Tay, Wan-Ting and Teo, Yik Ying and Seielstad, Mark and Liu, Jianjun and Cheng, Ching-Yu and Saw, Seang-Mei and Aung, Tin and Ganesh, Santhi K and O{\textquoteright}Donnell, Christopher J and Nalls, Mike A and Wiggins, Kerri L and Kuo, Jane Z and van Duijn, Cornelia M and Gudnason, Vilmundur and Klein, Ronald and Siscovick, David S and Rotter, Jerome I and Tai, E Shong and Vingerling, Johannes and Wong, Tien Y} } @article {5875, title = {Insights into the genetic architecture of early stage age-related macular degeneration: a genome-wide association study meta-analysis.}, journal = {PLoS One}, volume = {8}, year = {2013}, month = {2013}, pages = {e53830}, abstract = {

Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD). While genome-wide association studies (GWAS) for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes) and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH) (peak P = 1.5{\texttimes}10(-31)) and age-related maculopathy susceptibility 2 (ARMS2) (P = 4.3{\texttimes}10(-24)) loci, and suggested Apolipoprotein E (ApoE) polymorphisms (rs2075650; P = 1.1{\texttimes}10(-6)) associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9{\texttimes}10(-6)) and upstream of GLI2 (rs6721654; P = 6.5{\texttimes}10(-6)), encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR) gene (rs621313; P = 3.5{\texttimes}10(-6)), involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation.

}, keywords = {Apolipoproteins E, Complement Factor H, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Kruppel-Like Transcription Factors, Macular Degeneration, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Proteins, Risk Factors, Zinc Finger Protein Gli3}, issn = {1932-6203}, doi = {10.1371/journal.pone.0053830}, author = {Holliday, Elizabeth G and Smith, Albert V and Cornes, Belinda K and Buitendijk, Gabri{\"e}lle H S and Jensen, Richard A and Sim, Xueling and Aspelund, Thor and Aung, Tin and Baird, Paul N and Boerwinkle, Eric and Cheng, Ching Yu and van Duijn, Cornelia M and Eiriksdottir, Gudny and Gudnason, Vilmundur and Harris, Tamara and Hewitt, Alex W and Inouye, Michael and Jonasson, Fridbert and Klein, Barbara E K and Launer, Lenore and Li, Xiaohui and Liew, Gerald and Lumley, Thomas and McElduff, Patrick and McKnight, Barbara and Mitchell, Paul and Psaty, Bruce M and Rochtchina, Elena and Rotter, Jerome I and Scott, Rodney J and Tay, Wanting and Taylor, Kent and Teo, Yik Ying and Uitterlinden, Andr{\'e} G and Viswanathan, Ananth and Xie, Sophia and Vingerling, Johannes R and Klaver, Caroline C W and Tai, E Shyong and Siscovick, David and Klein, Ronald and Cotch, Mary Frances and Wong, Tien Y and Attia, John and Wang, Jie Jin} } @article {6599, title = {Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia.}, journal = {Am J Hum Genet}, volume = {95}, year = {2014}, month = {2014 Jul 03}, pages = {24-38}, abstract = {

Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p <= 5 {\texttimes} 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 {\texttimes} 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.

}, keywords = {Adolescent, Adult, Age Factors, Aged, Blood Pressure, Cohort Studies, Humans, Middle Aged, Young Adult}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2014.05.010}, author = {Simino, Jeannette and Shi, Gang and Bis, Joshua C and Chasman, Daniel I and Ehret, Georg B and Gu, Xiangjun and Guo, Xiuqing and Hwang, Shih-Jen and Sijbrands, Eric and Smith, Albert V and Verwoert, Germaine C and Bragg-Gresham, Jennifer L and Cadby, Gemma and Chen, Peng and Cheng, Ching-Yu and Corre, Tanguy and de Boer, Rudolf A and Goel, Anuj and Johnson, Toby and Khor, Chiea-Chuen and Llu{\'\i}s-Ganella, Carla and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Sim, Xueling and S{\~o}ber, Siim and van der Most, Peter J and Verweij, Niek and Zhao, Jing Hua and Amin, Najaf and Boerwinkle, Eric and Bouchard, Claude and Dehghan, Abbas and Eiriksdottir, Gudny and Elosua, Roberto and Franco, Oscar H and Gieger, Christian and Harris, Tamara B and Hercberg, Serge and Hofman, Albert and James, Alan L and Johnson, Andrew D and K{\"a}h{\"o}nen, Mika and Khaw, Kay-Tee and Kutalik, Zolt{\'a}n and Larson, Martin G and Launer, Lenore J and Li, Guo and Liu, Jianjun and Liu, Kiang and Morrison, Alanna C and Navis, Gerjan and Ong, Rick Twee-Hee and Papanicolau, George J and Penninx, Brenda W and Psaty, Bruce M and Raffel, Leslie J and Raitakari, Olli T and Rice, Kenneth and Rivadeneira, Fernando and Rose, Lynda M and Sanna, Serena and Scott, Robert A and Siscovick, David S and Stolk, Ronald P and Uitterlinden, Andr{\'e} G and Vaidya, Dhananjay and van der Klauw, Melanie M and Vasan, Ramachandran S and Vithana, Eranga Nishanthie and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Watkins, Hugh and Young, Terri L and Aung, Tin and Bochud, Murielle and Farrall, Martin and Hartman, Catharina A and Laan, Maris and Lakatta, Edward G and Lehtim{\"a}ki, Terho and Loos, Ruth J F and Lucas, Gavin and Meneton, Pierre and Palmer, Lyle J and Rettig, Rainer and Snieder, Harold and Tai, E Shyong and Teo, Yik-Ying and van der Harst, Pim and Wareham, Nicholas J and Wijmenga, Cisca and Wong, Tien Yin and Fornage, Myriam and Gudnason, Vilmundur and Levy, Daniel and Palmas, Walter and Ridker, Paul M and Rotter, Jerome I and van Duijn, Cornelia M and Witteman, Jacqueline C M and Chakravarti, Aravinda and Rao, Dabeeru C} } @article {6577, title = {Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol.}, journal = {Am J Hum Genet}, volume = {94}, year = {2014}, month = {2014 Feb 06}, pages = {233-45}, abstract = {

Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments.

}, keywords = {Adult, Aged, Apolipoproteins E, Cholesterol, LDL, Cohort Studies, Dyslipidemias, Exome, Female, Follow-Up Studies, Gene Frequency, Genetic Code, Genome-Wide Association Study, Genotype, Humans, Lipase, Male, Middle Aged, Phenotype, Polymorphism, Single Nucleotide, Proprotein Convertase 9, Proprotein Convertases, Receptors, LDL, Sequence Analysis, DNA, Serine Endopeptidases}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2014.01.010}, author = {Lange, Leslie A and Hu, Youna and Zhang, He and Xue, Chenyi and Schmidt, Ellen M and Tang, Zheng-Zheng and Bizon, Chris and Lange, Ethan M and Smith, Joshua D and Turner, Emily H and Jun, Goo and Kang, Hyun Min and Peloso, Gina and Auer, Paul and Li, Kuo-Ping and Flannick, Jason and Zhang, Ji and Fuchsberger, Christian and Gaulton, Kyle and Lindgren, Cecilia and Locke, Adam and Manning, Alisa and Sim, Xueling and Rivas, Manuel A and Holmen, Oddgeir L and Gottesman, Omri and Lu, Yingchang and Ruderfer, Douglas and Stahl, Eli A and Duan, Qing and Li, Yun and Durda, Peter and Jiao, Shuo and Isaacs, Aaron and Hofman, Albert and Bis, Joshua C and Correa, Adolfo and Griswold, Michael E and Jakobsdottir, Johanna and Smith, Albert V and Schreiner, Pamela J and Feitosa, Mary F and Zhang, Qunyuan and Huffman, Jennifer E and Crosby, Jacy and Wassel, Christina L and Do, Ron and Franceschini, Nora and Martin, Lisa W and Robinson, Jennifer G and Assimes, Themistocles L and Crosslin, David R and Rosenthal, Elisabeth A and Tsai, Michael and Rieder, Mark J and Farlow, Deborah N and Folsom, Aaron R and Lumley, Thomas and Fox, Ervin R and Carlson, Christopher S and Peters, Ulrike and Jackson, Rebecca D and van Duijn, Cornelia M and Uitterlinden, Andr{\'e} G and Levy, Daniel and Rotter, Jerome I and Taylor, Herman A and Gudnason, Vilmundur and Siscovick, David S and Fornage, Myriam and Borecki, Ingrid B and Hayward, Caroline and Rudan, Igor and Chen, Y Eugene and Bottinger, Erwin P and Loos, Ruth J F and S{\ae}trom, P{\r a}l and Hveem, Kristian and Boehnke, Michael and Groop, Leif and McCarthy, Mark and Meitinger, Thomas and Ballantyne, Christie M and Gabriel, Stacey B and O{\textquoteright}Donnell, Christopher J and Post, Wendy S and North, Kari E and Reiner, Alexander P and Boerwinkle, Eric and Psaty, Bruce M and Altshuler, David and Kathiresan, Sekar and Lin, Dan-Yu and Jarvik, Gail P and Cupples, L Adrienne and Kooperberg, Charles and Wilson, James G and Nickerson, Deborah A and Abecasis, Goncalo R and Rich, Stephen S and Tracy, Russell P and Willer, Cristen J} } @article {6900, title = {Novel Genetic Loci Associated With Retinal Microvascular Diameter.}, journal = {Circ Cardiovasc Genet}, volume = {9}, year = {2016}, month = {2016 Feb}, pages = {45-54}, abstract = {

BACKGROUND: There is increasing evidence that retinal microvascular diameters are associated with cardiovascular and cerebrovascular conditions. The shared genetic effects of these associations are currently unknown. The aim of this study was to increase our understanding of the genetic factors that mediate retinal vessel size.

METHODS AND RESULTS: This study extends previous genome-wide association study results using 24 000+ multiethnic participants from 7 discovery cohorts and 5000+ subjects of European ancestry from 2 replication cohorts. Using the Illumina HumanExome BeadChip, we investigate the association of single-nucleotide polymorphisms and variants collectively across genes with summary measures of retinal vessel diameters, referred to as the central retinal venule equivalent and the central retinal arteriole equivalent. We report 4 new loci associated with central retinal venule equivalent, one of which is also associated with central retinal arteriole equivalent. The 4 single-nucleotide polymorphisms are rs7926971 in TEAD1 (P=3.1{\texttimes}10(-) (11); minor allele frequency=0.43), rs201259422 in TSPAN10 (P=4.4{\texttimes}10(-9); minor allele frequency=0.27), rs5442 in GNB3 (P=7.0{\texttimes}10(-10); minor allele frequency=0.05), and rs1800407 in OCA2 (P=3.4{\texttimes}10(-8); minor allele frequency=0.05). The latter single-nucleotide polymorphism, rs1800407, was also associated with central retinal arteriole equivalent (P=6.5{\texttimes}10(-12)). Results from the gene-based burden tests were null. In phenotype look-ups, single-nucleotide polymorphism rs201255422 was associated with both systolic (P=0.001) and diastolic blood pressures (P=8.3{\texttimes}10(-04)).

CONCLUSIONS: Our study expands the understanding of genetic factors influencing the size of the retinal microvasculature. These findings may also provide insight into the relationship between retinal and systemic microvascular disease.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.115.001142}, author = {Jensen, Richard A and Sim, Xueling and Smith, Albert Vernon and Li, Xiaohui and Jakobsdottir, Johanna and Cheng, Ching-Yu and Brody, Jennifer A and Cotch, Mary Frances and McKnight, Barbara and Klein, Ronald and Wang, Jie Jin and Kifley, Annette and Harris, Tamara B and Launer, Lenore J and Taylor, Kent D and Klein, Barbara E K and Raffel, Leslie J and Li, Xiang and Ikram, M Arfan and Klaver, Caroline C and van der Lee, Sven J and Mutlu, Unal and Hofman, Albert and Uitterlinden, Andr{\'e} G and Liu, Chunyu and Kraja, Aldi T and Mitchell, Paul and Gudnason, Vilmundur and Rotter, Jerome I and Boerwinkle, Eric and van Duijn, Cornelia M and Psaty, Bruce M and Wong, Tien Y} } @article {7573, title = {Exome-wide association study of plasma lipids in >300,000 individuals.}, journal = {Nat Genet}, volume = {49}, year = {2017}, month = {2017 Dec}, pages = {1758-1766}, abstract = {

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.

}, keywords = {Coronary Artery Disease, Diabetes Mellitus, Type 2, Exome, Genetic Association Studies, Genetic Predisposition to Disease, Genetic Variation, Genotype, Humans, Lipids, Macular Degeneration, Phenotype, Risk Factors}, issn = {1546-1718}, doi = {10.1038/ng.3977}, author = {Liu, Dajiang J and Peloso, Gina M and Yu, Haojie and Butterworth, Adam S and Wang, Xiao and Mahajan, Anubha and Saleheen, Danish and Emdin, Connor and Alam, Dewan and Alves, Alexessander Couto and Amouyel, Philippe and Di Angelantonio, Emanuele and Arveiler, Dominique and Assimes, Themistocles L and Auer, Paul L and Baber, Usman and Ballantyne, Christie M and Bang, Lia E and Benn, Marianne and Bis, Joshua C and Boehnke, Michael and Boerwinkle, Eric and Bork-Jensen, Jette and Bottinger, Erwin P and Brandslund, Ivan and Brown, Morris and Busonero, Fabio and Caulfield, Mark J and Chambers, John C and Chasman, Daniel I and Chen, Y Eugene and Chen, Yii-Der Ida and Chowdhury, Rajiv and Christensen, Cramer and Chu, Audrey Y and Connell, John M and Cucca, Francesco and Cupples, L Adrienne and Damrauer, Scott M and Davies, Gail and Deary, Ian J and Dedoussis, George and Denny, Joshua C and Dominiczak, Anna and Dub{\'e}, Marie-Pierre and Ebeling, Tapani and Eiriksdottir, Gudny and Esko, T{\~o}nu and Farmaki, Aliki-Eleni and Feitosa, Mary F and Ferrario, Marco and Ferrieres, Jean and Ford, Ian and Fornage, Myriam and Franks, Paul W and Frayling, Timothy M and Frikke-Schmidt, Ruth and Fritsche, Lars G and Frossard, Philippe and Fuster, Valentin and Ganesh, Santhi K and Gao, Wei and Garcia, Melissa E and Gieger, Christian and Giulianini, Franco and Goodarzi, Mark O and Grallert, Harald and Grarup, Niels and Groop, Leif and Grove, Megan L and Gudnason, Vilmundur and Hansen, Torben and Harris, Tamara B and Hayward, Caroline and Hirschhorn, Joel N and Holmen, Oddgeir L and Huffman, Jennifer and Huo, Yong and Hveem, Kristian and Jabeen, Sehrish and Jackson, Anne U and Jakobsdottir, Johanna and Jarvelin, Marjo-Riitta and Jensen, Gorm B and J{\o}rgensen, Marit E and Jukema, J Wouter and Justesen, Johanne M and Kamstrup, Pia R and Kanoni, Stavroula and Karpe, Fredrik and Kee, Frank and Khera, Amit V and Klarin, Derek and Koistinen, Heikki A and Kooner, Jaspal S and Kooperberg, Charles and Kuulasmaa, Kari and Kuusisto, Johanna and Laakso, Markku and Lakka, Timo and Langenberg, Claudia and Langsted, Anne and Launer, Lenore J and Lauritzen, Torsten and Liewald, David C M and Lin, Li An and Linneberg, Allan and Loos, Ruth J F and Lu, Yingchang and Lu, Xiangfeng and M{\"a}gi, Reedik and M{\"a}larstig, Anders and Manichaikul, Ani and Manning, Alisa K and M{\"a}ntyselk{\"a}, Pekka and Marouli, Eirini and Masca, Nicholas G D and Maschio, Andrea and Meigs, James B and Melander, Olle and Metspalu, Andres and Morris, Andrew P and Morrison, Alanna C and Mulas, Antonella and M{\"u}ller-Nurasyid, Martina and Munroe, Patricia B and Neville, Matt J and Nielsen, Jonas B and Nielsen, Sune F and Nordestgaard, B{\o}rge G and Ordovas, Jose M and Mehran, Roxana and O{\textquoteright}Donnell, Christoper J and Orho-Melander, Marju and Molony, Cliona M and Muntendam, Pieter and Padmanabhan, Sandosh and Palmer, Colin N A and Pasko, Dorota and Patel, Aniruddh P and Pedersen, Oluf and Perola, Markus and Peters, Annette and Pisinger, Charlotta and Pistis, Giorgio and Polasek, Ozren and Poulter, Neil and Psaty, Bruce M and Rader, Daniel J and Rasheed, Asif and Rauramaa, Rainer and Reilly, Dermot F and Reiner, Alex P and Renstrom, Frida and Rich, Stephen S and Ridker, Paul M and Rioux, John D and Robertson, Neil R and Roden, Dan M and Rotter, Jerome I and Rudan, Igor and Salomaa, Veikko and Samani, Nilesh J and Sanna, Serena and Sattar, Naveed and Schmidt, Ellen M and Scott, Robert A and Sever, Peter and Sevilla, Raquel S and Shaffer, Christian M and Sim, Xueling and Sivapalaratnam, Suthesh and Small, Kerrin S and Smith, Albert V and Smith, Blair H and Somayajula, Sangeetha and Southam, Lorraine and Spector, Timothy D and Speliotes, Elizabeth K and Starr, John M and Stirrups, Kathleen E and Stitziel, Nathan and Strauch, Konstantin and Stringham, Heather M and Surendran, Praveen and Tada, Hayato and Tall, Alan R and Tang, Hua and Tardif, Jean-Claude and Taylor, Kent D and Trompet, Stella and Tsao, Philip S and Tuomilehto, Jaakko and Tybjaerg-Hansen, Anne and van Zuydam, Natalie R and Varbo, Anette and Varga, Tibor V and Virtamo, Jarmo and Waldenberger, Melanie and Wang, Nan and Wareham, Nick J and Warren, Helen R and Weeke, Peter E and Weinstock, Joshua and Wessel, Jennifer and Wilson, James G and Wilson, Peter W F and Xu, Ming and Yaghootkar, Hanieh and Young, Robin and Zeggini, Eleftheria and Zhang, He and Zheng, Neil S and Zhang, Weihua and Zhang, Yan and Zhou, Wei and Zhou, Yanhua and Zoledziewska, Magdalena and Howson, Joanna M M and Danesh, John and McCarthy, Mark I and Cowan, Chad A and Abecasis, Goncalo and Deloukas, Panos and Musunuru, Kiran and Willer, Cristen J and Kathiresan, Sekar} } @article {7571, title = {Genome-Wide Association Study Meta-Analysis of Long-Term Average Blood Pressure in East Asians.}, journal = {Circ Cardiovasc Genet}, volume = {10}, year = {2017}, month = {2017 Apr}, pages = {e001527}, abstract = {

BACKGROUND: Genome-wide single marker and gene-based meta-analyses of long-term average (LTA) blood pressure (BP) phenotypes may reveal novel findings for BP.

METHODS AND RESULTS: We conducted genome-wide analysis among 18 422 East Asian participants (stage 1) followed by replication study of <=46 629 participants of European ancestry (stage 2). Significant single-nucleotide polymorphisms and genes were determined by a P<5.0{\texttimes}10-8 and 2.5{\texttimes}10-6, respectively, in joint analyses of stage-1 and stage-2 data. We identified 1 novel ARL3 variant, rs4919669 at 10q24.32, influencing LTA systolic BP (stage-1 P=5.03{\texttimes}10-8, stage-2 P=8.64{\texttimes}10-3, joint P=2.63{\texttimes}10-8) and mean arterial pressure (stage-1 P=3.59{\texttimes}10-9, stage-2 P=2.35{\texttimes}10-2, joint P=2.64{\texttimes}10-8). Three previously reported BP loci (WBP1L, NT5C2, and ATP2B1) were also identified for all BP phenotypes. Gene-based analysis provided the first robust evidence for association of KCNJ11 with LTA systolic BP (stage-1 P=8.55{\texttimes}10-6, stage-2 P=1.62{\texttimes}10-5, joint P=3.28{\texttimes}10-9) and mean arterial pressure (stage-1 P=9.19{\texttimes}10-7, stage-2 P=9.69{\texttimes}10-5, joint P=2.15{\texttimes}10-9) phenotypes. Fourteen genes (TMEM180, ACTR1A, SUFU, ARL3, SFXN2, WBP1L, CYP17A1, C10orf32, C10orf32-ASMT, AS3MT, CNNM2, and NT5C2 at 10q24.32; ATP2B1 at 12q21.33; and NCR3LG1 at 11p15.1) implicated by previous genome-wide association study meta-analyses were also identified. Among the loci identified by the previous genome-wide association study meta-analysis of LTA BP, we transethnically replicated associations of the KCNK3 marker rs1275988 at 2p23.3 with LTA systolic BP and mean arterial pressure phenotypes (P=1.27{\texttimes}10-4 and 3.30{\texttimes}10-4, respectively).

CONCLUSIONS: We identified 1 novel variant and 1 novel gene and present the first direct evidence of relevance of the KCNK3 locus for LTA BP among East Asians.

}, keywords = {Asian Continental Ancestry Group, Blood Pressure, Far East, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Phenotype, Polymorphism, Single Nucleotide}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.116.001527}, author = {Li, Changwei and Kim, Yun Kyoung and Dorajoo, Rajkumar and Li, Huaixing and Lee, I-Te and Cheng, Ching-Yu and He, Meian and Sheu, Wayne H-H and Guo, Xiuqing and Ganesh, Santhi K and He, Jiang and Lee, Juyoung and Liu, Jianjun and Hu, Yao and Rao, Dabeeru C and Tsai, Fuu-Jen and Koh, Jia Yu and Hu, Hua and Liang, Kae-Woei and Palmas, Walter and Hixson, James E and Han, Sohee and Teo, Yik-Ying and Wang, Yiqin and Chen, Jing and Lu, Chieh Hsiang and Zheng, Yingfeng and Gui, Lixuan and Lee, Wen-Jane and Yao, Jie and Gu, Dongfeng and Han, Bok-Ghee and Sim, Xueling and Sun, Liang and Zhao, Jinying and Chen, Chien-Hsiun and Kumari, Neelam and He, Yunfeng and Taylor, Kent D and Raffel, Leslie J and Moon, Sanghoon and Rotter, Jerome I and Ida Chen, Yii-Der and Wu, Tangchun and Wong, Tien Yin and Wu, Jer-Yuarn and Lin, Xu and Tai, E-Shyong and Kim, Bong-Jo and Kelly, Tanika N} } @article {7596, title = {Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis.}, journal = {PLoS Med}, volume = {14}, year = {2017}, month = {2017 Sep}, pages = {e1002383}, abstract = {

BACKGROUND: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.

METHODS \& FINDINGS: Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95\% CI 1.04-1.06, per HbA1c-raising allele, p = 3 {\texttimes} 10-29); whereas GS-E was not (OR = 1.00, 95\% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11\%) was associated with an absolute decrease in HbA1c of 0.81\%-units (95\% CI 0.66-0.96) per allele in hemizygous men, and 0.68\%-units (95\% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2\% (N = 0.65 million, 95\% CI 0.55-0.74) of African American adults with T2D to remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants.

CONCLUSIONS: As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.

}, keywords = {Diabetes Mellitus, Type 2, Genetic Variation, Genome-Wide Association Study, Glycated Hemoglobin A, Humans, Phenotype, Risk}, issn = {1549-1676}, doi = {10.1371/journal.pmed.1002383}, author = {Wheeler, Eleanor and Leong, Aaron and Liu, Ching-Ti and Hivert, Marie-France and Strawbridge, Rona J and Podmore, Clara and Li, Man and Yao, Jie and Sim, Xueling and Hong, Jaeyoung and Chu, Audrey Y and Zhang, Weihua and Wang, Xu and Chen, Peng and Maruthur, Nisa M and Porneala, Bianca C and Sharp, Stephen J and Jia, Yucheng and Kabagambe, Edmond K and Chang, Li-Ching and Chen, Wei-Min and Elks, Cathy E and Evans, Daniel S and Fan, Qiao and Giulianini, Franco and Go, Min Jin and Hottenga, Jouke-Jan and Hu, Yao and Jackson, Anne U and Kanoni, Stavroula and Kim, Young Jin and Kleber, Marcus E and Ladenvall, Claes and Lecoeur, C{\'e}cile and Lim, Sing-Hui and Lu, Yingchang and Mahajan, Anubha and Marzi, Carola and Nalls, Mike A and Navarro, Pau and Nolte, Ilja M and Rose, Lynda M and Rybin, Denis V and Sanna, Serena and Shi, Yuan and Stram, Daniel O and Takeuchi, Fumihiko and Tan, Shu Pei and van der Most, Peter J and van Vliet-Ostaptchouk, Jana V and Wong, Andrew and Yengo, Loic and Zhao, Wanting and Goel, Anuj and Martinez Larrad, Maria Teresa and Radke, D{\"o}rte and Salo, Perttu and Tanaka, Toshiko and van Iperen, Erik P A and Abecasis, Goncalo and Afaq, Saima and Alizadeh, Behrooz Z and Bertoni, Alain G and Bonnefond, Am{\'e}lie and B{\"o}ttcher, Yvonne and Bottinger, Erwin P and Campbell, Harry and Carlson, Olga D and Chen, Chien-Hsiun and Cho, Yoon Shin and Garvey, W Timothy and Gieger, Christian and Goodarzi, Mark O and Grallert, Harald and Hamsten, Anders and Hartman, Catharina A and Herder, Christian and Hsiung, Chao Agnes and Huang, Jie and Igase, Michiya and Isono, Masato and Katsuya, Tomohiro and Khor, Chiea-Chuen and Kiess, Wieland and Kohara, Katsuhiko and Kovacs, Peter and Lee, Juyoung and Lee, Wen-Jane and Lehne, Benjamin and Li, Huaixing and Liu, Jianjun and Lobbens, Stephane and Luan, Jian{\textquoteright}an and Lyssenko, Valeriya and Meitinger, Thomas and Miki, Tetsuro and Miljkovic, Iva and Moon, Sanghoon and Mulas, Antonella and M{\"u}ller, Gabriele and M{\"u}ller-Nurasyid, Martina and Nagaraja, Ramaiah and Nauck, Matthias and Pankow, James S and Polasek, Ozren and Prokopenko, Inga and Ramos, Paula S and Rasmussen-Torvik, Laura and Rathmann, Wolfgang and Rich, Stephen S and Robertson, Neil R and Roden, Michael and Roussel, Ronan and Rudan, Igor and Scott, Robert A and Scott, William R and Sennblad, Bengt and Siscovick, David S and Strauch, Konstantin and Sun, Liang and Swertz, Morris and Tajuddin, Salman M and Taylor, Kent D and Teo, Yik-Ying and Tham, Yih Chung and T{\"o}njes, Anke and Wareham, Nicholas J and Willemsen, Gonneke and Wilsgaard, Tom and Hingorani, Aroon D and Egan, Josephine and Ferrucci, Luigi and Hovingh, G Kees and Jula, Antti and Kivimaki, Mika and Kumari, Meena and Nj{\o}lstad, Inger and Palmer, Colin N A and Serrano R{\'\i}os, Manuel and Stumvoll, Michael and Watkins, Hugh and Aung, Tin and Bl{\"u}her, Matthias and Boehnke, Michael and Boomsma, Dorret I and Bornstein, Stefan R and Chambers, John C and Chasman, Daniel I and Chen, Yii-Der Ida and Chen, Yduan-Tsong and Cheng, Ching-Yu and Cucca, Francesco and de Geus, Eco J C and Deloukas, Panos and Evans, Michele K and Fornage, Myriam and Friedlander, Yechiel and Froguel, Philippe and Groop, Leif and Gross, Myron D and Harris, Tamara B and Hayward, Caroline and Heng, Chew-Kiat and Ingelsson, Erik and Kato, Norihiro and Kim, Bong-Jo and Koh, Woon-Puay and Kooner, Jaspal S and K{\"o}rner, Antje and Kuh, Diana and Kuusisto, Johanna and Laakso, Markku and Lin, Xu and Liu, Yongmei and Loos, Ruth J F and Magnusson, Patrik K E and M{\"a}rz, Winfried and McCarthy, Mark I and Oldehinkel, Albertine J and Ong, Ken K and Pedersen, Nancy L and Pereira, Mark A and Peters, Annette and Ridker, Paul M and Sabanayagam, Charumathi and Sale, Michele and Saleheen, Danish and Saltevo, Juha and Schwarz, Peter Eh and Sheu, Wayne H H and Snieder, Harold and Spector, Timothy D and Tabara, Yasuharu and Tuomilehto, Jaakko and van Dam, Rob M and Wilson, James G and Wilson, James F and Wolffenbuttel, Bruce H R and Wong, Tien Yin and Wu, Jer-Yuarn and Yuan, Jian-Min and Zonderman, Alan B and Soranzo, Nicole and Guo, Xiuqing and Roberts, David J and Florez, Jose C and Sladek, Robert and Dupuis, Jos{\'e}e and Morris, Andrew P and Tai, E-Shyong and Selvin, Elizabeth and Rotter, Jerome I and Langenberg, Claudia and Barroso, In{\^e}s and Meigs, James B} } @article {7569, title = {New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475 000 Individuals.}, journal = {Circ Cardiovasc Genet}, volume = {10}, year = {2017}, month = {2017 Oct}, abstract = {

BACKGROUND: Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association.

METHODS AND RESULTS: Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (P<5{\texttimes}10-8) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant.

CONCLUSIONS: We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.117.001778}, author = {Kraja, Aldi T and Cook, James P and Warren, Helen R and Surendran, Praveen and Liu, Chunyu and Evangelou, Evangelos and Manning, Alisa K and Grarup, Niels and Drenos, Fotios and Sim, Xueling and Smith, Albert Vernon and Amin, Najaf and Blakemore, Alexandra I F and Bork-Jensen, Jette and Brandslund, Ivan and Farmaki, Aliki-Eleni and Fava, Cristiano and Ferreira, Teresa and Herzig, Karl-Heinz and Giri, Ayush and Giulianini, Franco and Grove, Megan L and Guo, Xiuqing and Harris, Sarah E and Have, Christian T and Havulinna, Aki S and Zhang, He and J{\o}rgensen, Marit E and K{\"a}r{\"a}j{\"a}m{\"a}ki, AnneMari and Kooperberg, Charles and Linneberg, Allan and Little, Louis and Liu, Yongmei and Bonnycastle, Lori L and Lu, Yingchang and M{\"a}gi, Reedik and Mahajan, Anubha and Malerba, Giovanni and Marioni, Riccardo E and Mei, Hao and Menni, Cristina and Morrison, Alanna C and Padmanabhan, Sandosh and Palmas, Walter and Poveda, Alaitz and Rauramaa, Rainer and Rayner, Nigel William and Riaz, Muhammad and Rice, Ken and Richard, Melissa A and Smith, Jennifer A and Southam, Lorraine and Stan{\v c}{\'a}kov{\'a}, Alena and Stirrups, Kathleen E and Tragante, Vinicius and Tuomi, Tiinamaija and Tzoulaki, Ioanna and Varga, Tibor V and Weiss, Stefan and Yiorkas, Andrianos M and Young, Robin and Zhang, Weihua and Barnes, Michael R and Cabrera, Claudia P and Gao, He and Boehnke, Michael and Boerwinkle, Eric and Chambers, John C and Connell, John M and Christensen, Cramer K and de Boer, Rudolf A and Deary, Ian J and Dedoussis, George and Deloukas, Panos and Dominiczak, Anna F and D{\"o}rr, Marcus and Joehanes, Roby and Edwards, Todd L and Esko, T{\~o}nu and Fornage, Myriam and Franceschini, Nora and Franks, Paul W and Gambaro, Giovanni and Groop, Leif and Hallmans, G{\"o}ran and Hansen, Torben and Hayward, Caroline and Heikki, Oksa and Ingelsson, Erik and Tuomilehto, Jaakko and Jarvelin, Marjo-Riitta and Kardia, Sharon L R and Karpe, Fredrik and Kooner, Jaspal S and Lakka, Timo A and Langenberg, Claudia and Lind, Lars and Loos, Ruth J F and Laakso, Markku and McCarthy, Mark I and Melander, Olle and Mohlke, Karen L and Morris, Andrew P and Palmer, Colin N A and Pedersen, Oluf and Polasek, Ozren and Poulter, Neil R and Province, Michael A and Psaty, Bruce M and Ridker, Paul M and Rotter, Jerome I and Rudan, Igor and Salomaa, Veikko and Samani, Nilesh J and Sever, Peter J and Skaaby, Tea and Stafford, Jeanette M and Starr, John M and van der Harst, Pim and van der Meer, Peter and van Duijn, Cornelia M and Vergnaud, Anne-Claire and Gudnason, Vilmundur and Wareham, Nicholas J and Wilson, James G and Willer, Cristen J and Witte, Daniel R and Zeggini, Eleftheria and Saleheen, Danish and Butterworth, Adam S and Danesh, John and Asselbergs, Folkert W and Wain, Louise V and Ehret, Georg B and Chasman, Daniel I and Caulfield, Mark J and Elliott, Paul and Lindgren, Cecilia M and Levy, Daniel and Newton-Cheh, Christopher and Munroe, Patricia B and Howson, Joanna M M} } @article {7686, title = {A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure.}, journal = {Am J Hum Genet}, volume = {102}, year = {2018}, month = {2018 Mar 01}, pages = {375-400}, abstract = {

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined \~{}18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5~{\texttimes} 10) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5~{\texttimes} 10). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2018.01.015}, author = {Sung, Yun J and Winkler, Thomas W and de Las Fuentes, Lisa and Bentley, Amy R and Brown, Michael R and Kraja, Aldi T and Schwander, Karen and Ntalla, Ioanna and Guo, Xiuqing and Franceschini, Nora and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Marten, Jonathan and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Kilpel{\"a}inen, Tuomas O and Richard, Melissa A and Noordam, Raymond and Aslibekyan, Stella and Aschard, Hugues and Bartz, Traci M and Dorajoo, Rajkumar and Liu, Yongmei and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert Vernon and Tajuddin, Salman M and Tayo, Bamidele O and Warren, Helen R and Zhao, Wei and Zhou, Yanhua and Matoba, Nana and Sofer, Tamar and Alver, Maris and Amini, Marzyeh and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gandin, Ilaria and Gao, Chuan and Giulianini, Franco and Goel, Anuj and Harris, Sarah E and Hartwig, Fernando Pires and Horimoto, Andrea R V R and Hsu, Fang-Chi and Jackson, Anne U and K{\"a}h{\"o}nen, Mika and Kasturiratne, Anuradhani and Kuhnel, Brigitte and Leander, Karin and Lee, Wen-Jane and Lin, Keng-Hung and {\textquoteright}an Luan, Jian and McKenzie, Colin A and Meian, He and Nelson, Christopher P and Rauramaa, Rainer and Schupf, Nicole and Scott, Robert A and Sheu, Wayne H H and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and van der Most, Peter J and Varga, Tibor V and Wang, Heming and Wang, Yajuan and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Alfred, Tamuno and Amin, Najaf and Arking, Dan and Aung, Tin and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Braund, Peter S and Brody, Jennifer A and Broeckel, Ulrich and Cabrera, Claudia P and Cade, Brian and Caizheng, Yu and Campbell, Archie and Canouil, Micka{\"e}l and Chakravarti, Aravinda and Chauhan, Ganesh and Christensen, Kaare and Cocca, Massimiliano and Collins, Francis S and Connell, John M and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Debette, Stephanie and D{\"o}rr, Marcus and Duan, Qing and Eaton, Charles B and Ehret, Georg and Evangelou, Evangelos and Faul, Jessica D and Fisher, Virginia A and Forouhi, Nita G and Franco, Oscar H and Friedlander, Yechiel and Gao, He and Gigante, Bruna and Graff, Misa and Gu, C Charles and Gu, Dongfeng and Gupta, Preeti and Hagenaars, Saskia P and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hofman, Albert and Howard, Barbara V and Hunt, Steven and Irvin, Marguerite R and Jia, Yucheng and Joehanes, Roby and Justice, Anne E and Katsuya, Tomohiro and Kaufman, Joel and Kerrison, Nicola D and Khor, Chiea Chuen and Koh, Woon-Puay and Koistinen, Heikki A and Komulainen, Pirjo and Kooperberg, Charles and Krieger, Jose E and Kubo, Michiaki and Kuusisto, Johanna and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Lim, Sing Hui and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Jingmin and Liu, Kiang and Liu, Yeheng and Loh, Marie and Lohman, Kurt K and Long, Jirong and Louie, Tin and M{\"a}gi, Reedik and Mahajan, Anubha and Meitinger, Thomas and Metspalu, Andres and Milani, Lili and Momozawa, Yukihide and Morris, Andrew P and Mosley, Thomas H and Munson, Peter and Murray, Alison D and Nalls, Mike A and Nasri, Ubaydah and Norris, Jill M and North, Kari and Ogunniyi, Adesola and Padmanabhan, Sandosh and Palmas, Walter R and Palmer, Nicholette D and Pankow, James S and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Raitakari, Olli T and Renstrom, Frida and Rice, Treva K and Ridker, Paul M and Robino, Antonietta and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Sabanayagam, Charumathi and Salako, Babatunde L and Sandow, Kevin and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Seshadri, Sudha and Sever, Peter and Sitlani, Colleen M and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and Waldenberger, Melanie and Wang, Lihua and Wang, Ya X and Wei, Wen Bin and Williams, Christine and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Yuan, Jian-Min and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Chen, Yii-Der Ida and de Faire, Ulf and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Forrester, Terrence and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo Lessa and Hung, Yi-Jen and Jonas, Jost B and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Lehtim{\"a}ki, Terho and Liang, Kae-Woei and Magnusson, Patrik K E and Newman, Anne B and Oldehinkel, Albertine J and Pereira, Alexandre C and Redline, Susan and Rettig, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zheng, Wei and Kamatani, Yoichiro and Laurie, Cathy C and Bouchard, Claude and Cooper, Richard S and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Kritchevsky, Stephen B and Levy, Daniel and O{\textquoteright}Connell, Jeff R and Psaty, Bruce M and van Dam, Rob M and Sims, Mario and Arnett, Donna K and Mook-Kanamori, Dennis O and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and Fornage, Myriam and Rotimi, Charles N and Province, Michael A and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Reiner, Alex P and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Caulfield, Mark J and Elliott, Paul and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Cupples, L Adrienne and Rao, Dabeeru C and Chasman, Daniel I} } @article {7792, title = {Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries.}, journal = {PLoS One}, volume = {13}, year = {2018}, month = {2018}, pages = {e0198166}, abstract = {

Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.

}, issn = {1932-6203}, doi = {10.1371/journal.pone.0198166}, author = {Feitosa, Mary F and Kraja, Aldi T and Chasman, Daniel I and Sung, Yun J and Winkler, Thomas W and Ntalla, Ioanna and Guo, Xiuqing and Franceschini, Nora and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Marten, Jonathan and Musani, Solomon K and Li, Changwei and Bentley, Amy R and Brown, Michael R and Schwander, Karen and Richard, Melissa A and Noordam, Raymond and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Dorajoo, Rajkumar and Fisher, Virginia and Hartwig, Fernando P and Horimoto, Andrea R V R and Lohman, Kurt K and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Wojczynski, Mary K and Alver, Maris and Boissel, Mathilde and Cai, Qiuyin and Campbell, Archie and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Jackson, Anne U and K{\"a}h{\"o}nen, Mika and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Laguzzi, Federica and Luan, Jian{\textquoteright}an and Matoba, Nana and Nolte, Ilja M and Padmanabhan, Sandosh and Riaz, Muhammad and Rueedi, Rico and Robino, Antonietta and Said, M Abdullah and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Vitart, Veronique and Wang, Yajuan and Ware, Erin B and Warren, Helen R and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Aung, Tin and Boerwinkle, Eric and Borecki, Ingrid and Broeckel, Ulrich and Brown, Morris and Brumat, Marco and Burke, Gregory L and Canouil, Micka{\"e}l and Chakravarti, Aravinda and Charumathi, Sabanayagam and Ida Chen, Yii-Der and Connell, John M and Correa, Adolfo and de Las Fuentes, Lisa and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Deng, Xuan and Ding, Jingzhong and Duan, Qing and Eaton, Charles B and Ehret, Georg and Eppinga, Ruben N and Evangelou, Evangelos and Faul, Jessica D and Felix, Stephan B and Forouhi, Nita G and Forrester, Terrence and Franco, Oscar H and Friedlander, Yechiel and Gandin, Ilaria and Gao, He and Ghanbari, Mohsen and Gigante, Bruna and Gu, C Charles and Gu, Dongfeng and Hagenaars, Saskia P and Hallmans, G{\"o}ran and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Howard, Barbara V and Ikram, M Arfan and John, Ulrich and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Krieger, Jose E and Kritchevsky, Stephen B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Lin, Shiow and Liu, Jianjun and Liu, Jingmin and Loh, Marie and Louie, Tin and M{\"a}gi, Reedik and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Momozawa, Yukihide and Nalls, Mike A and Nelson, Christopher P and Sotoodehnia, Nona and Norris, Jill M and O{\textquoteright}Connell, Jeff R and Palmer, Nicholette D and Perls, Thomas and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Poulter, Neil and Raffel, Leslie J and Raitakari, Olli T and Roll, Kathryn and Rose, Lynda M and Rosendaal, Frits R and Rotter, Jerome I and Schmidt, Carsten O and Schreiner, Pamela J and Schupf, Nicole and Scott, William R and Sever, Peter S and Shi, Yuan and Sidney, Stephen and Sims, Mario and Sitlani, Colleen M and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Stringham, Heather M and Tan, Nicholas Y Q and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Turner, Stephen T and Uitterlinden, Andr{\'e} G and Vollenweider, Peter and Waldenberger, Melanie and Wang, Lihua and Wang, Ya Xing and Wei, Wen Bin and Williams, Christine and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Jonas, Jost Bruno and Kamatani, Yoichiro and Kato, Norihiro and Kooner, Jaspal S and Kutalik, Zolt{\'a}n and Laakso, Markku and Laurie, Cathy C and Leander, Karin and Lehtim{\"a}ki, Terho and Study, Lifelines Cohort and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Polasek, Ozren and Porteous, David J and Rauramaa, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zheng, Wei and Bouchard, Claude and Christensen, Kaare and Evans, Michele K and Gudnason, Vilmundur and Horta, Bernardo L and Kardia, Sharon L R and Liu, Yongmei and Pereira, Alexandre C and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Gauderman, W James and Zhu, Xiaofeng and Mook-Kanamori, Dennis O and Fornage, Myriam and Rotimi, Charles N and Cupples, L Adrienne and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Kooperberg, Charles and Palmas, Walter and Rice, Kenneth and Morrison, Alanna C and Elliott, Paul and Caulfield, Mark J and Munroe, Patricia B and Rao, Dabeeru C and Province, Michael A and Levy, Daniel} } @article {8198, title = {Associations of autozygosity with a broad range of human phenotypes.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 Oct 31}, pages = {4957}, abstract = {

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F) for >1.4 million individuals, we show that F is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F equivalent to the offspring of first cousins is associated with a 55\% decrease [95\% CI 44-66\%] in the odds of having children. Finally, the effects of F are confirmed within full-sibling pairs, where the variation in F is independent of all environmental confounding.

}, issn = {2041-1723}, doi = {10.1038/s41467-019-12283-6}, author = {Clark, David W and Okada, Yukinori and Moore, Kristjan H S and Mason, Dan and Pirastu, Nicola and Gandin, Ilaria and Mattsson, Hannele and Barnes, Catriona L K and Lin, Kuang and Zhao, Jing Hua and Deelen, Patrick and Rohde, Rebecca and Schurmann, Claudia and Guo, Xiuqing and Giulianini, Franco and Zhang, Weihua and Medina-G{\'o}mez, Carolina and Karlsson, Robert and Bao, Yanchun and Bartz, Traci M and Baumbach, Clemens and Biino, Ginevra and Bixley, Matthew J and Brumat, Marco and Chai, Jin-Fang and Corre, Tanguy and Cousminer, Diana L and Dekker, Annelot M and Eccles, David A and van Eijk, Kristel R and Fuchsberger, Christian and Gao, He and Germain, Marine and Gordon, Scott D and de Haan, Hugoline G and Harris, Sarah E and Hofer, Edith and Huerta-Chagoya, Alicia and Igartua, Catherine and Jansen, Iris E and Jia, Yucheng and Kacprowski, Tim and Karlsson, Torgny and Kleber, Marcus E and Li, Shengchao Alfred and Li-Gao, Ruifang and Mahajan, Anubha and Matsuda, Koichi and Meidtner, Karina and Meng, Weihua and Montasser, May E and van der Most, Peter J and Munz, Matthias and Nutile, Teresa and Palviainen, Teemu and Prasad, Gauri and Prasad, Rashmi B and Priyanka, Tallapragada Divya Sri and Rizzi, Federica and Salvi, Erika and Sapkota, Bishwa R and Shriner, Daniel and Skotte, Line and Smart, Melissa C and Smith, Albert Vernon and van der Spek, Ashley and Spracklen, Cassandra N and Strawbridge, Rona J and Tajuddin, Salman M and Trompet, Stella and Turman, Constance and Verweij, Niek and Viberti, Clara and Wang, Lihua and Warren, Helen R and Wootton, Robyn E and Yanek, Lisa R and Yao, Jie and Yousri, Noha A and Zhao, Wei and Adeyemo, Adebowale A and Afaq, Saima and Aguilar-Salinas, Carlos Alberto and Akiyama, Masato and Albert, Matthew L and Allison, Matthew A and Alver, Maris and Aung, Tin and Azizi, Fereidoun and Bentley, Amy R and Boeing, Heiner and Boerwinkle, Eric and Borja, Judith B and de Borst, Gert J and Bottinger, Erwin P and Broer, Linda and Campbell, Harry and Chanock, Stephen and Chee, Miao-Li and Chen, Guanjie and Chen, Yii-der I and Chen, Zhengming and Chiu, Yen-Feng and Cocca, Massimiliano and Collins, Francis S and Concas, Maria Pina and Corley, Janie and Cugliari, Giovanni and van Dam, Rob M and Damulina, Anna and Daneshpour, Maryam S and Day, Felix R and Delgado, Graciela E and Dhana, Klodian and Doney, Alexander S F and D{\"o}rr, Marcus and Doumatey, Ayo P and Dzimiri, Nduna and Ebenesersd{\'o}ttir, S Sunna and Elliott, Joshua and Elliott, Paul and Ewert, Ralf and Felix, Janine F and Fischer, Krista and Freedman, Barry I and Girotto, Giorgia and Goel, Anuj and G{\"o}gele, Martin and Goodarzi, Mark O and Graff, Mariaelisa and Granot-Hershkovitz, Einat and Grodstein, Francine and Guarrera, Simonetta and Gudbjartsson, Daniel F and Guity, Kamran and Gunnarsson, Bjarni and Guo, Yu and Hagenaars, Saskia P and Haiman, Christopher A and Halevy, Avner and Harris, Tamara B and Hedayati, Mehdi and van Heel, David A and Hirata, Makoto and H{\"o}fer, Imo and Hsiung, Chao Agnes and Huang, Jinyan and Hung, Yi-Jen and Ikram, M Arfan and Jagadeesan, Anuradha and Jousilahti, Pekka and Kamatani, Yoichiro and Kanai, Masahiro and Kerrison, Nicola D and Kessler, Thorsten and Khaw, Kay-Tee and Khor, Chiea Chuen and de Kleijn, Dominique P V and Koh, Woon-Puay and Kolcic, Ivana and Kraft, Peter and Kr{\"a}mer, Bernhard K and Kutalik, Zolt{\'a}n and Kuusisto, Johanna and Langenberg, Claudia and Launer, Lenore J and Lawlor, Deborah A and Lee, I-Te and Lee, Wen-Jane and Lerch, Markus M and Li, Liming and Liu, Jianjun and Loh, Marie and London, Stephanie J and Loomis, Stephanie and Lu, Yingchang and Luan, Jian{\textquoteright}an and M{\"a}gi, Reedik and Manichaikul, Ani W and Manunta, Paolo and M{\'a}sson, G{\'\i}sli and Matoba, Nana and Mei, Xue W and Meisinger, Christa and Meitinger, Thomas and Mezzavilla, Massimo and Milani, Lili and Millwood, Iona Y and Momozawa, Yukihide and Moore, Amy and Morange, Pierre-Emmanuel and Moreno-Macias, Hortensia and Mori, Trevor A and Morrison, Alanna C and Muka, Taulant and Murakami, Yoshinori and Murray, Alison D and de Mutsert, Ren{\'e}e and Mychaleckyj, Josyf C and Nalls, Mike A and Nauck, Matthias and Neville, Matt J and Nolte, Ilja M and Ong, Ken K and Orozco, Lorena and Padmanabhan, Sandosh and P{\'a}lsson, Gunnar and Pankow, James S and Pattaro, Cristian and Pattie, Alison and Polasek, Ozren and Poulter, Neil and Pramstaller, Peter P and Quintana-Murci, Lluis and R{\"a}ikk{\"o}nen, Katri and Ralhan, Sarju and Rao, Dabeeru C and van Rheenen, Wouter and Rich, Stephen S and Ridker, Paul M and Rietveld, Cornelius A and Robino, Antonietta and van Rooij, Frank J A and Ruggiero, Daniela and Saba, Yasaman and Sabanayagam, Charumathi and Sabater-Lleal, Maria and Sala, Cinzia Felicita and Salomaa, Veikko and Sandow, Kevin and Schmidt, Helena and Scott, Laura J and Scott, William R and Sedaghati-Khayat, Bahareh and Sennblad, Bengt and van Setten, Jessica and Sever, Peter J and Sheu, Wayne H-H and Shi, Yuan and Shrestha, Smeeta and Shukla, Sharvari Rahul and Sigurdsson, Jon K and Sikka, Timo Tonis and Singh, Jai Rup and Smith, Blair H and Stan{\v c}{\'a}kov{\'a}, Alena and Stanton, Alice and Starr, John M and Stefansdottir, Lilja and Straker, Leon and Sulem, Patrick and Sveinbjornsson, Gardar and Swertz, Morris A and Taylor, Adele M and Taylor, Kent D and Terzikhan, Natalie and Tham, Yih-Chung and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tillander, Annika and Tracy, Russell P and Tusi{\'e}-Luna, Teresa and Tzoulaki, Ioanna and Vaccargiu, Simona and Vangipurapu, Jagadish and Veldink, Jan H and Vitart, Veronique and V{\"o}lker, Uwe and Vuoksimaa, Eero and Wakil, Salma M and Waldenberger, Melanie and Wander, Gurpreet S and Wang, Ya Xing and Wareham, Nicholas J and Wild, Sarah and Yajnik, Chittaranjan S and Yuan, Jian-Min and Zeng, Lingyao and Zhang, Liang and Zhou, Jie and Amin, Najaf and Asselbergs, Folkert W and Bakker, Stephan J L and Becker, Diane M and Lehne, Benjamin and Bennett, David A and van den Berg, Leonard H and Berndt, Sonja I and Bharadwaj, Dwaipayan and Bielak, Lawrence F and Bochud, Murielle and Boehnke, Mike and Bouchard, Claude and Bradfield, Jonathan P and Brody, Jennifer A and Campbell, Archie and Carmi, Shai and Caulfield, Mark J and Cesarini, David and Chambers, John C and Chandak, Giriraj Ratan and Cheng, Ching-Yu and Ciullo, Marina and Cornelis, Marilyn and Cusi, Daniele and Smith, George Davey and Deary, Ian J and Dorajoo, Rajkumar and van Duijn, Cornelia M and Ellinghaus, David and Erdmann, Jeanette and Eriksson, Johan G and Evangelou, Evangelos and Evans, Michele K and Faul, Jessica D and Feenstra, Bjarke and Feitosa, Mary and Foisy, Sylvain and Franke, Andre and Friedlander, Yechiel and Gasparini, Paolo and Gieger, Christian and Gonzalez, Clicerio and Goyette, Philippe and Grant, Struan F A and Griffiths, Lyn R and Groop, Leif and Gudnason, Vilmundur and Gyllensten, Ulf and Hakonarson, Hakon and Hamsten, Anders and van der Harst, Pim and Heng, Chew-Kiat and Hicks, Andrew A and Hochner, Hagit and Huikuri, Heikki and Hunt, Steven C and Jaddoe, Vincent W V and De Jager, Philip L and Johannesson, Magnus and Johansson, Asa and Jonas, Jost B and Jukema, J Wouter and Junttila, Juhani and Kaprio, Jaakko and Kardia, Sharon L R and Karpe, Fredrik and Kumari, Meena and Laakso, Markku and van der Laan, Sander W and Lahti, Jari and Laudes, Matthias and Lea, Rodney A and Lieb, Wolfgang and Lumley, Thomas and Martin, Nicholas G and M{\"a}rz, Winfried and Matullo, Giuseppe and McCarthy, Mark I and Medland, Sarah E and Merriman, Tony R and Metspalu, Andres and Meyer, Brian F and Mohlke, Karen L and Montgomery, Grant W and Mook-Kanamori, Dennis and Munroe, Patricia B and North, Kari E and Nyholt, Dale R and O{\textquoteright}Connell, Jeffery R and Ober, Carole and Oldehinkel, Albertine J and Palmas, Walter and Palmer, Colin and Pasterkamp, Gerard G and Patin, Etienne and Pennell, Craig E and Perusse, Louis and Peyser, Patricia A and Pirastu, Mario and Polderman, Tinca J C and Porteous, David J and Posthuma, Danielle and Psaty, Bruce M and Rioux, John D and Rivadeneira, Fernando and Rotimi, Charles and Rotter, Jerome I and Rudan, Igor and den Ruijter, Hester M and Sanghera, Dharambir K and Sattar, Naveed and Schmidt, Reinhold and Schulze, Matthias B and Schunkert, Heribert and Scott, Robert A and Shuldiner, Alan R and Sim, Xueling and Small, Neil and Smith, Jennifer A and Sotoodehnia, Nona and Tai, E-Shyong and Teumer, Alexander and Timpson, Nicholas J and Toniolo, Daniela and Tr{\'e}gou{\"e}t, David-Alexandre and Tuomi, Tiinamaija and Vollenweider, Peter and Wang, Carol A and Weir, David R and Whitfield, John B and Wijmenga, Cisca and Wong, Tien-Yin and Wright, John and Yang, Jingyun and Yu, Lei and Zemel, Babette S and Zonderman, Alan B and Perola, Markus and Magnusson, Patrik K E and Uitterlinden, Andr{\'e} G and Kooner, Jaspal S and Chasman, Daniel I and Loos, Ruth J F and Franceschini, Nora and Franke, Lude and Haley, Chris S and Hayward, Caroline and Walters, Robin G and Perry, John R B and Esko, T{\~o}nu and Helgason, Agnar and Stefansson, Kari and Joshi, Peter K and Kubo, Michiaki and Wilson, James F} } @article {8109, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 06}, pages = {957-972}, abstract = {

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.

}, keywords = {Chromosome Mapping, European Continental Ancestry Group, Genetic Association Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Inheritance Patterns, Kidney Function Tests, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable, Renal Insufficiency, Chronic, Uromodulin}, issn = {1546-1718}, doi = {10.1038/s41588-019-0407-x}, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B and Feitosa, Mary F and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and van der Most, Peter J and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer S and Almgren, Peter and Amin, Najaf and Arnl{\"o}v, Johan and Bakker, Stephan J L and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and Bottinger, Erwin P and Boutin, Thibaud S and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Micka{\"e}l and Carroll, Robert J and Catamo, Eulalia and Chambers, John C and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E Warwick and de Borst, Martin H and De Grandi, Alessandro and de Mutsert, Ren{\'e}e and de Vries, Aiko P J and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K and Felix, Janine F and Foo, Valencia Hui Xian and Franco, Oscar H and Franke, Andre and Freedman, Barry I and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T and Gao, He and Gasparini, Paolo and Gaziano, J Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and G{\"o}gele, Martin and Gordon, Scott D and Gudbjartsson, Daniel F and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B and Hartman, Catharina A and Hayward, Caroline and Hellwege, Jacklyn N and Heng, Chew-Kiat and Hicks, Andrew A and Hofer, Edith and Huang, Wei and Hutri-K{\"a}h{\"o}nen, Nina and Hwang, Shih-Jen and Ikram, M Arfan and Indridason, Olafur S and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W V and Jakobsdottir, Johanna and Jonas, Jost B and Joshi, Peter K and Josyula, Navya Shilpa and Jung, Bettina and K{\"a}h{\"o}nen, Mika and Kamatani, Yoichiro and Kammerer, Candace M and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E and Koenig, Wolfgang and Kooner, Jaspal S and K{\"o}rner, Antje and Kovacs, Peter and Kraja, Aldi T and Krajcoviechova, Alena and Kramer, Holly and Kr{\"a}mer, Bernhard K and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A and Langefeld, Carl D and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtim{\"a}ki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J F and Lucae, Susanne and Lukas, Mary Ann and Lyytik{\"a}inen, Leo-Pekka and M{\"a}gi, Reedik and Magnusson, Patrik K E and Mahajan, Anubha and Martin, Nicholas G and Martins, Jade and M{\"a}rz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P and Mohlke, Karen L and Mononen, Nina and Montgomery, Grant W and Mook-Kanamori, Dennis O and Mychaleckyj, Josyf C and Nadkarni, Girish N and Nalls, Mike A and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M and Noordam, Raymond and O{\textquoteright}Connell, Jeffrey and O{\textquoteright}Donoghue, Michelle L and Olafsson, Isleifur and Oldehinkel, Albertine J and Orho-Melander, Marju and Ouwehand, Willem H and Padmanabhan, Sandosh and Palmer, Nicholette D and Palsson, Runolfur and Penninx, Brenda W J H and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I and Polasek, Ozren and Ponte, Belen and Porteous, David J and Poulain, Tanja and Pramstaller, Peter P and Preuss, Michael H and Prins, Bram P and Province, Michael A and Rabelink, Ton J and Raffield, Laura M and Raitakari, Olli T and Reilly, Dermot F and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M and Ridker, Paul M and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Sch{\"o}ttker, Ben and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M and Shi, Yuan and Smith, Albert V and Smith, Blair H and Soranzo, Nicole and Spracklen, Cassandra N and Strauch, Konstantin and Stringham, Heather M and Stumvoll, Michael and Svensson, Per O and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M and Tan, Nicholas Y Q and Taylor, Kent D and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H L and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and T{\"o}njes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andr{\'e} G and Vaccargiu, Simona and van Dam, Rob M and van der Harst, Pim and van Duijn, Cornelia M and Velez Edward, Digna R and Verweij, Niek and Vogelezang, Suzanne and V{\"o}lker, Uwe and Vollenweider, Peter and Waeber, G{\'e}rard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M and Bin Wei, Wen and White, Harvey and Whitfield, John B and Wild, Sarah H and Wilson, James F and Wojczynski, Mary K and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M and Zhang, Weihua and Zonderman, Alan B and Rotter, Jerome I and Bochud, Murielle and Psaty, Bruce M and Vitart, Veronique and Wilson, James G and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I and Ho, Kevin and Morris, Andrew P and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A and Sim, Xueling and B{\"o}ger, Carsten A and Okada, Yukinori and Edwards, Todd L and Snieder, Harold and Stefansson, Kari and Hung, Adriana M and Heid, Iris M and Scholz, Markus and Teumer, Alexander and K{\"o}ttgen, Anna and Pattaro, Cristian} } @article {7970, title = {Multi-Ancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions.}, journal = {Am J Epidemiol}, year = {2019}, month = {2019 Jan 29}, abstract = {

An individual{\textquoteright}s lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multi-ancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in Stage 1 (genome-wide discovery) and 66 studies in Stage 2 (focused follow-up), for a total of 394,584 individuals from five ancestry groups. Genetic main and interaction effects were jointly assessed by a 2 degrees of freedom (DF) test, and a 1 DF test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P~<~1~{\texttimes}~10-6) with lipid levels in Stage 1 and were evaluated in Stage 2, followed by combined analyses of Stage 1 and Stage 2. In the combined analysis of Stage 1 and Stage 2, 147 independent loci were associated with lipid levels at P~<~5~{\texttimes}~10-8 using 2 DF tests, of which 18 were novel. No genome-wide significant associations were found testing the interaction effect alone. The novel loci included several genes (PCSK5, VEGFB, and A1CF) with a putative role in lipid metabolism based on existing evidence from cellular and experimental models.

}, issn = {1476-6256}, doi = {10.1093/aje/kwz005}, author = {de Vries, Paul S and Brown, Michael R and Bentley, Amy R and Sung, Yun J and Winkler, Thomas W and Ntalla, Ioanna and Schwander, Karen and Kraja, Aldi T and Guo, Xiuqing and Franceschini, Nora and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Huffman, Jennifer E and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Richard, Melissa A and Noordam, Raymond and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Deng, Xuan and Dorajoo, Rajkumar and Lohman, Kurt K and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Evangelou, Evangelos and Graff, Mariaelisa and Alver, Maris and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gandin, Ilaria and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and Hartwig, Fernando P and He, Meian and Horimoto, Andrea R V R and Hsu, Fang-Chi and Jackson, Anne U and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Laguzzi, Federica and Lee, Joseph H and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Matoba, Nana and Nolte, Ilja M and Pietzner, Maik and Riaz, Muhammad and Said, M Abdullah and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Wang, Yajuan and Ware, Erin B and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Aung, Tin and Ballantyne, Christie and Boerwinkle, Eric and Broeckel, Ulrich and Campbell, Archie and Canouil, Micka{\"e}l and Charumathi, Sabanayagam and Chen, Yii-Der Ida and Connell, John M and de Faire, Ulf and de Las Fuentes, Lisa and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Ding, Jingzhong and Dominiczak, Anna F and Duan, Qing and Eaton, Charles B and Eppinga, Ruben N and Faul, Jessica D and Fisher, Virginia and Forrester, Terrence and Franco, Oscar H and Friedlander, Yechiel and Ghanbari, Mohsen and Giulianini, Franco and Grabe, Hans J and Grove, Megan L and Gu, C Charles and Harris, Tamara B and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hixson, James E and Howard, Barbara V and Ikram, M Arfan and Jacobs, David R and Johnson, Craig and Jonas, Jost Bruno and Kammerer, Candace M and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Koistinen, Heikki A and Kolcic, Ivana and Kooperberg, Charles and Krieger, Jose E and Kritchevsky, Steve B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lemaitre, Rozenn N and Li, Yize and Liang, Jingjing and Liu, Jianjun and Liu, Kiang and Loh, Marie and Louie, Tin and M{\"a}gi, Reedik and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Mosley, Thomas H and Mukamal, Kenneth J and Nalls, Mike A and Nauck, Matthias and Nelson, Christopher P and Sotoodehnia, Nona and O{\textquoteright}Connell, Jeff R and Palmer, Nicholette D and Pazoki, Raha and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Poulter, Neil and Raffel, Leslie J and Raitakari, Olli T and Reiner, Alex P and Rice, Treva K and Rich, Stephen S and Robino, Antonietta and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Sever, Peter and Shi, Yuan and Sidney, Stephen and Sims, Mario and Smith, Blair H and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Tan, Nicholas and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Vuckovic, Dragana and Waldenberger, Melanie and Wang, Lihua and Wang, Yujie and Wang, Zhe and Wei, Wen Bin and Williams, Christine and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Yu, Bing and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo L and Kamatani, Yoichiro and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Penninx, Brenda and Pereira, Alexandre C and Rauramaa, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wang, Ya Xing and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Zheng, Wei and Elliott, Paul and North, Kari E and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Liu, Ching-Ti and Liu, Yongmei and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Kardia, Sharon L R and Zhu, Xiaofeng and Rotimi, Charles N and Mook-Kanamori, Dennis O and Fornage, Myriam and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Liu, Jingmin and Rotter, Jerome I and Gauderman, W James and Province, Michael A and Munroe, Patricia B and Rice, Kenneth and Chasman, Daniel I and Cupples, L Adrienne and Rao, Dabeeru C and Morrison, Alanna C} } @article {8005, title = {Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 Apr}, pages = {636-648}, abstract = {

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.

}, issn = {1546-1718}, doi = {10.1038/s41588-019-0378-y}, author = {Bentley, Amy R and Sung, Yun J and Brown, Michael R and Winkler, Thomas W and Kraja, Aldi T and Ntalla, Ioanna and Schwander, Karen and Chasman, Daniel I and Lim, Elise and Deng, Xuan and Guo, Xiuqing and Liu, Jingmin and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Huffman, Jennifer E and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Richard, Melissa A and Noordam, Raymond and Baker, Jenna and Chen, Guanjie and Aschard, Hugues and Bartz, Traci M and Ding, Jingzhong and Dorajoo, Rajkumar and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Zhao, Wei and Graff, Mariaelisa and Alver, Maris and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and Hartwig, Fernando P and He, Meian and Horimoto, Andrea R V R and Hsu, Fang-Chi and Hung, Yi-Jen and Jackson, Anne U and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Leander, Karin and Lin, Keng-Hung and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Matoba, Nana and Nolte, Ilja M and Pietzner, Maik and Prins, Bram and Riaz, Muhammad and Robino, Antonietta and Said, M Abdullah and Schupf, Nicole and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Wang, Tzung-Dau and Wang, Yajuan and Ware, Erin B and Wen, Wanqing and Xiang, Yong-Bing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Adeyemo, Adebowale and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Arzumanyan, Zorayr and Aung, Tin and Ballantyne, Christie and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Broeckel, Ulrich and Brown, Morris and Cade, Brian E and Campbell, Archie and Canouil, Micka{\"e}l and Charumathi, Sabanayagam and Chen, Yii-Der Ida and Christensen, Kaare and Concas, Maria Pina and Connell, John M and de Las Fuentes, Lisa and de Silva, H Janaka and de Vries, Paul S and Doumatey, Ayo and Duan, Qing and Eaton, Charles B and Eppinga, Ruben N and Faul, Jessica D and Floyd, James S and Forouhi, Nita G and Forrester, Terrence and Friedlander, Yechiel and Gandin, Ilaria and Gao, He and Ghanbari, Mohsen and Gharib, Sina A and Gigante, Bruna and Giulianini, Franco and Grabe, Hans J and Gu, C Charles and Harris, Tamara B and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hixson, James E and Ikram, M Arfan and Jia, Yucheng and Joehanes, Roby and Johnson, Craig and Jonas, Jost Bruno and Justice, Anne E and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Kolcic, Ivana and Kooperberg, Charles and Krieger, Jose E and Kritchevsky, Stephen B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Liang, Jingjing and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Kiang and Loh, Marie and Lohman, Kurt K and Louie, Tin and Luzzi, Anna and M{\"a}gi, Reedik and Mahajan, Anubha and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Momozawa, Yukihide and Morris, Andrew P and Murray, Alison D and Nalls, Mike A and Nauck, Matthias and Nelson, Christopher P and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Papanicolau, George J and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Poulter, Neil and Raitakari, Olli T and Reiner, Alex P and Renstrom, Frida and Rice, Treva K and Rich, Stephen S and Robinson, Jennifer G and Rose, Lynda M and Rosendaal, Frits R and Rudan, Igor and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Sever, Peter and Shi, Yuan and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Stringham, Heather M and Tan, Nicholas Y Q and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Tiemeier, Henning and Turner, Stephen T and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Waldenberger, Melanie and Wang, Heming and Wang, Lan and Wang, Lihua and Wei, Wen Bin and Williams, Christine A and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Young, Kristin and Yu, Caizheng and Yuan, Jian-Min and Zhou, Jie and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Cooper, Richard S and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo L and Juang, Jyh-Ming Jimmy and Kamatani, Yoichiro and Kammerer, Candace M and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Laurie, Cathy C and Lee, I-Te and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Pereira, Alexandre C and Rauramaa, Rainer and Redline, Susan and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wang, Jun-Sing and Wang, Ya Xing and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zeggini, Eleftheria and Zheng, Wei and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Mook-Kanamori, Dennis O and Fornage, Myriam and Province, Michael A and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Franceschini, Nora and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Rao, Dabeeru C and Rotimi, Charles N and Cupples, L Adrienne} } @article {7976, title = {Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 01 22}, pages = {376}, abstract = {

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.

}, keywords = {Adolescent, Adult, African Continental Ancestry Group, Aged, Aged, 80 and over, Asian Continental Ancestry Group, Brazil, Calcium-Binding Proteins, Cholesterol, Cholesterol, HDL, Cholesterol, LDL, European Continental Ancestry Group, Exercise, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Hispanic Americans, Humans, LIM-Homeodomain Proteins, Lipid Metabolism, Lipids, Male, Membrane Proteins, Microtubule-Associated Proteins, Middle Aged, Muscle Proteins, Nerve Tissue Proteins, Transcription Factors, Triglycerides, Young Adult}, issn = {2041-1723}, doi = {10.1038/s41467-018-08008-w}, author = {Kilpel{\"a}inen, Tuomas O and Bentley, Amy R and Noordam, Raymond and Sung, Yun Ju and Schwander, Karen and Winkler, Thomas W and Jakupovi{\'c}, Hermina and Chasman, Daniel I and Manning, Alisa and Ntalla, Ioanna and Aschard, Hugues and Brown, Michael R and de Las Fuentes, Lisa and Franceschini, Nora and Guo, Xiuqing and Vojinovic, Dina and Aslibekyan, Stella and Feitosa, Mary F and Kho, Minjung and Musani, Solomon K and Richard, Melissa and Wang, Heming and Wang, Zhe and Bartz, Traci M and Bielak, Lawrence F and Campbell, Archie and Dorajoo, Rajkumar and Fisher, Virginia and Hartwig, Fernando P and Horimoto, Andrea R V R and Li, Changwei and Lohman, Kurt K and Marten, Jonathan and Sim, Xueling and Smith, Albert V and Tajuddin, Salman M and Alver, Maris and Amini, Marzyeh and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Graff, Mariaelisa and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Jackson, Anne U and Zhao, Jing Hua and Kraja, Aldi T and Kuhnel, Brigitte and Laguzzi, Federica and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Rauramaa, Rainer and Riaz, Muhammad and Robino, Antonietta and Rueedi, Rico and Stringham, Heather M and Takeuchi, Fumihiko and van der Most, Peter J and Varga, Tibor V and Verweij, Niek and Ware, Erin B and Wen, Wanqing and Li, Xiaoyin and Yanek, Lisa R and Amin, Najaf and Arnett, Donna K and Boerwinkle, Eric and Brumat, Marco and Cade, Brian and Canouil, Micka{\"e}l and Chen, Yii-Der Ida and Concas, Maria Pina and Connell, John and de Mutsert, Ren{\'e}e and de Silva, H Janaka and de Vries, Paul S and Demirkan, Ayse and Ding, Jingzhong and Eaton, Charles B and Faul, Jessica D and Friedlander, Yechiel and Gabriel, Kelley P and Ghanbari, Mohsen and Giulianini, Franco and Gu, Chi Charles and Gu, Dongfeng and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hunt, Steven C and Ikram, M Arfan and Jonas, Jost B and Koh, Woon-Puay and Komulainen, Pirjo and Krieger, Jose E and Kritchevsky, Stephen B and Kutalik, Zolt{\'a}n and Kuusisto, Johanna and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Leander, Karin and Lemaitre, Rozenn N and Lewis, Cora E and Liang, Jingjing and Liu, Jianjun and M{\"a}gi, Reedik and Manichaikul, Ani and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Mohlke, Karen L and Mosley, Thomas H and Murray, Alison D and Nalls, Mike A and Nang, Ei-Ei Khaing and Nelson, Christopher P and Nona, Sotoodehnia and Norris, Jill M and Nwuba, Chiamaka Vivian and O{\textquoteright}Connell, Jeff and Palmer, Nicholette D and Papanicolau, George J and Pazoki, Raha and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Porteous, David J and Poveda, Alaitz and Raitakari, Olli T and Rich, Stephen S and Risch, Neil and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Schreiner, Pamela J and Scott, Robert A and Sidney, Stephen S and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Sofer, Tamar and Starr, John M and Sternfeld, Barbara and Strauch, Konstantin and Tang, Hua and Taylor, Kent D and Tsai, Michael Y and Tuomilehto, Jaakko and Uitterlinden, Andr{\'e} G and van der Ende, M Yldau and van Heemst, Diana and Voortman, Trudy and Waldenberger, Melanie and Wennberg, Patrik and Wilson, Gregory and Xiang, Yong-Bing and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Kato, Norihiro and Laakso, Markku and Lakka, Timo A and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Samani, Nilesh J and Shu, Xiao-Ou and van der Harst, Pim and van Vliet-Ostaptchouk, Jana V and Vollenweider, Peter and Wagenknecht, Lynne E and Wang, Ya X and Wareham, Nicholas J and Weir, David R and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Evans, Michele K and Franks, Paul W and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kelly, Tanika N and Liu, Yongmei and North, Kari E and Pereira, Alexandre C and Ridker, Paul M and Tai, E Shyong and van Dam, Rob M and Fox, Ervin R and Kardia, Sharon L R and Liu, Ching-Ti and Mook-Kanamori, Dennis O and Province, Michael A and Redline, Susan and van Duijn, Cornelia M and Rotter, Jerome I and Kooperberg, Charles B and Gauderman, W James and Psaty, Bruce M and Rice, Kenneth and Munroe, Patricia B and Fornage, Myriam and Cupples, L Adrienne and Rotimi, Charles N and Morrison, Alanna C and Rao, Dabeeru C and Loos, Ruth J F} } @article {8381, title = {Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.}, journal = {Mol Psychiatry}, year = {2020}, month = {2020 May 05}, abstract = {

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 {\texttimes} 10). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.

}, issn = {1476-5578}, doi = {10.1038/s41380-020-0719-3}, author = {de Las Fuentes, Lisa and Sung, Yun Ju and Noordam, Raymond and Winkler, Thomas and Feitosa, Mary F and Schwander, Karen and Bentley, Amy R and Brown, Michael R and Guo, Xiuqing and Manning, Alisa and Chasman, Daniel I and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Campbell, Archie and Cheng, Ching-Yu and Dorajoo, Rajkumar and Hartwig, Fernando P and Horimoto, A R V R and Li, Changwei and Li-Gao, Ruifang and Liu, Yongmei and Marten, Jonathan and Musani, Solomon K and Ntalla, Ioanna and Rankinen, Tuomo and Richard, Melissa and Sim, Xueling and Smith, Albert V and Tajuddin, Salman M and Tayo, Bamidele O and Vojinovic, Dina and Warren, Helen R and Xuan, Deng and Alver, Maris and Boissel, Mathilde and Chai, Jin-Fang and Chen, Xu and Christensen, Kaare and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Girotto, Giorgia and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Kuhnel, Brigitte and Laguzzi, Federica and Li, Xiaoyin and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Poveda, Alaitz and Rauramaa, Rainer and Riaz, Muhammad and Rueedi, Rico and Shu, Xiao-Ou and Snieder, Harold and Sofer, Tamar and Takeuchi, Fumihiko and Verweij, Niek and Ware, Erin B and Weiss, Stefan and Yanek, Lisa R and Amin, Najaf and Arking, Dan E and Arnett, Donna K and Bergmann, Sven and Boerwinkle, Eric and Brody, Jennifer A and Broeckel, Ulrich and Brumat, Marco and Burke, Gregory and Cabrera, Claudia P and Canouil, Micka{\"e}l and Chee, Miao Li and Chen, Yii-Der Ida and Cocca, Massimiliano and Connell, John and de Silva, H Janaka and de Vries, Paul S and Eiriksdottir, Gudny and Faul, Jessica D and Fisher, Virginia and Forrester, Terrence and Fox, Ervin F and Friedlander, Yechiel and Gao, He and Gigante, Bruna and Giulianini, Franco and Gu, Chi Charles and Gu, Dongfeng and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hunt, Steven and Ikram, M Arfan and Irvin, Marguerite R and K{\"a}h{\"o}nen, Mika and Kavousi, Maryam and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Komulainen, Pirjo and Kraja, Aldi T and Krieger, J E and Langefeld, Carl D and Li, Yize and Liang, Jingjing and Liewald, David C M and Liu, Ching-Ti and Liu, Jianjun and Lohman, Kurt K and M{\"a}gi, Reedik and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mook-Kanamori, Dennis O and Nalls, Mike A and Nelson, Christopher P and Norris, Jill M and O{\textquoteright}Connell, Jeff and Ogunniyi, Adesola and Padmanabhan, Sandosh and Palmer, Nicholette D and Pedersen, Nancy L and Perls, Thomas and Peters, Annette and Petersmann, Astrid and Peyser, Patricia A and Polasek, Ozren and Porteous, David J and Raffel, Leslie J and Rice, Treva K and Rotter, Jerome I and Rudan, Igor and Rueda-Ochoa, Oscar-Leonel and Sabanayagam, Charumathi and Salako, Babatunde L and Schreiner, Pamela J and Shikany, James M and Sidney, Stephen S and Sims, Mario and Sitlani, Colleen M and Smith, Jennifer A and Starr, John M and Strauch, Konstantin and Swertz, Morris A and Teumer, Alexander and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and Vaidya, Dhananjay and van der Ende, M Yldau and Waldenberger, Melanie and Wang, Lihua and Wang, Ya-Xing and Wei, Wen-Bin and Weir, David R and Wen, Wanqing and Yao, Jie and Yu, Bing and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Bowden, Donald W and Deary, Ian J and D{\"o}rr, Marcus and Esko, T{\~o}nu and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Jonas, Jost Bruno and Kammerer, Candace M and Kato, Norihiro and Lakka, Timo A and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Marques-Vidal, Pedro and Penninx, Brenda W J H and Samani, Nilesh J and van der Harst, Pim and Wagenknecht, Lynne E and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Bouchard, Claude and Cooper, Richard S and Correa, Adolfo and Evans, Michele K and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kelly, Tanika N and Kritchevsky, Stephen B and Levy, Daniel and Palmas, Walter R and Pereira, A C and Province, Michael M and Psaty, Bruce M and Ridker, Paul M and Rotimi, Charles N and Tai, E Shyong and van Dam, Rob M and van Duijn, Cornelia M and Wong, Tien Yin and Rice, Kenneth and Gauderman, W James and Morrison, Alanna C and North, Kari E and Kardia, Sharon L R and Caulfield, Mark J and Elliott, Paul and Munroe, Patricia B and Franks, Paul W and Rao, Dabeeru C and Fornage, Myriam} } @article {8410, title = {Mendelian randomization analysis does not support causal associations of birth weight with hypertension risk and blood pressure in adulthood.}, journal = {Eur J Epidemiol}, volume = {35}, year = {2020}, month = {2020 Jul}, pages = {685-697}, abstract = {

Epidemiology studies suggested that low birthweight was associated with a higher risk of hypertension in later life. However, little is known about the causality of such associations. In our study, we evaluated the causal association of low birthweight with adulthood hypertension following a standard analytic protocol using the study-level data of 183,433 participants from 60 studies (CHARGE-BIG consortium), as well as that with blood pressure using publicly available summary-level genome-wide association data from EGG consortium of 153,781 participants, ICBP consortium and UK Biobank cohort together of 757,601 participants. We used seven SNPs as the instrumental variable in the study-level analysis and 47 SNPs in the summary-level analysis. In the study-level analyses, decreased birthweight was associated with a higher risk of hypertension in adults (the odds ratio per 1 standard deviation (SD) lower birthweight, 1.22; 95\% CI 1.16 to 1.28), while no association was found between genetically instrumented birthweight and hypertension risk (instrumental odds ratio for causal effect per 1 SD lower birthweight, 0.97; 95\% CI 0.68 to 1.41). Such results were consistent with that from the summary-level analyses, where the genetically determined low birthweight was not associated with blood pressure measurements either. One SD lower genetically determined birthweight was not associated with systolic blood pressure (β = - 0.76, 95\% CI - 2.45 to 1.08~mmHg), 0.06~mmHg lower diastolic blood pressure (β = - 0.06, 95\% CI - 0.93 to 0.87~mmHg), or pulse pressure (β = - 0.65, 95\% CI - 1.38 to 0.69~mmHg, all p > 0.05). Our findings suggest that the inverse association of birthweight with hypertension risk from observational studies was not supported by large Mendelian randomization analyses.

}, issn = {1573-7284}, doi = {10.1007/s10654-020-00638-z}, author = {Zheng, Yan and Huang, Tao and Wang, Tiange and Mei, Zhendong and Sun, Zhonghan and Zhang, Tao and Ellervik, Christina and Chai, Jin-Fang and Sim, Xueling and van Dam, Rob M and Tai, E-Shyong and Koh, Woon-Puay and Dorajoo, Rajkumar and Saw, Seang-Mei and Sabanayagam, Charumathi and Wong, Tien Yin and Gupta, Preeti and Rossing, Peter and Ahluwalia, Tarunveer S and Vinding, Rebecca K and Bisgaard, Hans and B{\o}nnelykke, Klaus and Wang, Yujie and Graff, Mariaelisa and Voortman, Trudy and van Rooij, Frank J A and Hofman, Albert and van Heemst, Diana and Noordam, Raymond and Estampador, Angela C and Varga, Tibor V and Enzenbach, Cornelia and Scholz, Markus and Thiery, Joachim and Burkhardt, Ralph and Orho-Melander, Marju and Schulz, Christina-Alexandra and Ericson, Ulrika and Sonestedt, Emily and Kubo, Michiaki and Akiyama, Masato and Zhou, Ang and Kilpel{\"a}inen, Tuomas O and Hansen, Torben and Kleber, Marcus E and Delgado, Graciela and McCarthy, Mark and Lemaitre, Rozenn N and Felix, Janine F and Jaddoe, Vincent W V and Wu, Ying and Mohlke, Karen L and Lehtim{\"a}ki, Terho and Wang, Carol A and Pennell, Craig E and Schunkert, Heribert and Kessler, Thorsten and Zeng, Lingyao and Willenborg, Christina and Peters, Annette and Lieb, Wolfgang and Grote, Veit and Rzehak, Peter and Koletzko, Berthold and Erdmann, Jeanette and Munz, Matthias and Wu, Tangchun and He, Meian and Yu, Caizheng and Lecoeur, C{\'e}cile and Froguel, Philippe and Corella, Dolores and Moreno, Luis A and Lai, Chao-Qiang and Pitk{\"a}nen, Niina and Boreham, Colin A and Ridker, Paul M and Rosendaal, Frits R and de Mutsert, Ren{\'e}e and Power, Chris and Paternoster, Lavinia and S{\o}rensen, Thorkild I A and Tj{\o}nneland, Anne and Overvad, Kim and Djouss{\'e}, Luc and Rivadeneira, Fernando and Lee, Nanette R and Raitakari, Olli T and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Langhendries, Jean-Paul and Escribano, Joaquin and Verduci, Elvira and Dedoussis, George and K{\"o}nig, Inke and Balkau, Beverley and Coltell, Oscar and Dallongeville, Jean and Meirhaeghe, Aline and Amouyel, Philippe and Gottrand, Fr{\'e}d{\'e}ric and Pahkala, Katja and Niinikoski, Harri and Hypp{\"o}nen, Elina and M{\"a}rz, Winfried and Mackey, David A and Gruszfeld, Dariusz and Tucker, Katherine L and Fumeron, Fr{\'e}d{\'e}ric and Estruch, Ramon and Ordovas, Jose M and Arnett, Donna K and Mook-Kanamori, Dennis O and Mozaffarian, Dariush and Psaty, Bruce M and North, Kari E and Chasman, Daniel I and Qi, Lu} } @article {8774, title = {Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes.}, journal = {Nat Commun}, volume = {12}, year = {2021}, month = {2021 06 09}, pages = {3505}, abstract = {

Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1\% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60\% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias.

}, keywords = {Adult, Biological Variation, Population, Biomarkers, Diabetes Mellitus, Type 2, Dyslipidemias, Exome, Genetic Predisposition to Disease, Genotype, Humans, Multifactorial Inheritance, Penetrance, Risk Assessment}, issn = {2041-1723}, doi = {10.1038/s41467-021-23556-4}, author = {Goodrich, Julia K and Singer-Berk, Moriel and Son, Rachel and Sveden, Abigail and Wood, Jordan and England, Eleina and Cole, Joanne B and Weisburd, Ben and Watts, Nick and Caulkins, Lizz and Dornbos, Peter and Koesterer, Ryan and Zappala, Zachary and Zhang, Haichen and Maloney, Kristin A and Dahl, Andy and Aguilar-Salinas, Carlos A and Atzmon, Gil and Barajas-Olmos, Francisco and Barzilai, Nir and Blangero, John and Boerwinkle, Eric and Bonnycastle, Lori L and Bottinger, Erwin and Bowden, Donald W and Centeno-Cruz, Federico and Chambers, John C and Chami, Nathalie and Chan, Edmund and Chan, Juliana and Cheng, Ching-Yu and Cho, Yoon Shin and Contreras-Cubas, Cecilia and C{\'o}rdova, Emilio and Correa, Adolfo and DeFronzo, Ralph A and Duggirala, Ravindranath and Dupuis, Jos{\'e}e and Garay-Sevilla, Ma Eugenia and Garc{\'\i}a-Ortiz, Humberto and Gieger, Christian and Glaser, Benjamin and Gonz{\'a}lez-Villalpando, Clicerio and Gonzalez, Ma Elena and Grarup, Niels and Groop, Leif and Gross, Myron and Haiman, Christopher and Han, Sohee and Hanis, Craig L and Hansen, Torben and Heard-Costa, Nancy L and Henderson, Brian E and Hernandez, Juan Manuel Malacara and Hwang, Mi Yeong and Islas-Andrade, Sergio and J{\o}rgensen, Marit E and Kang, Hyun Min and Kim, Bong-Jo and Kim, Young Jin and Koistinen, Heikki A and Kooner, Jaspal Singh and Kuusisto, Johanna and Kwak, Soo-Heon and Laakso, Markku and Lange, Leslie and Lee, Jong-Young and Lee, Juyoung and Lehman, Donna M and Linneberg, Allan and Liu, Jianjun and Loos, Ruth J F and Lyssenko, Valeriya and Ma, Ronald C W and Mart{\'\i}nez-Hern{\'a}ndez, Ang{\'e}lica and Meigs, James B and Meitinger, Thomas and Mendoza-Caamal, Elvia and Mohlke, Karen L and Morris, Andrew D and Morrison, Alanna C and Ng, Maggie C Y and Nilsson, Peter M and O{\textquoteright}Donnell, Christopher J and Orozco, Lorena and Palmer, Colin N A and Park, Kyong Soo and Post, Wendy S and Pedersen, Oluf and Preuss, Michael and Psaty, Bruce M and Reiner, Alexander P and Revilla-Monsalve, Cristina and Rich, Stephen S and Rotter, Jerome I and Saleheen, Danish and Schurmann, Claudia and Sim, Xueling and Sladek, Rob and Small, Kerrin S and So, Wing Yee and Spector, Timothy D and Strauch, Konstantin and Strom, Tim M and Tai, E Shyong and Tam, Claudia H T and Teo, Yik Ying and Thameem, Farook and Tomlinson, Brian and Tracy, Russell P and Tuomi, Tiinamaija and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and van Dam, Rob M and Vasan, Ramachandran S and Wilson, James G and Witte, Daniel R and Wong, Tien-Yin and Burtt, Noel P and Zaitlen, Noah and McCarthy, Mark I and Boehnke, Michael and Pollin, Toni I and Flannick, Jason and Mercader, Josep M and O{\textquoteright}Donnell-Luria, Anne and Baxter, Samantha and Florez, Jose C and MacArthur, Daniel G and Udler, Miriam S} } @article {9005, title = {Multi-Ancestry Genome-wide Association Study Accounting for Gene-Psychosocial Factor Interactions Identifies Novel Loci for Blood Pressure Traits.}, journal = {HGG Adv}, volume = {2}, year = {2021}, month = {2021 Jan 14}, abstract = {

Psychological and social factors are known to influence blood pressure (BP) and risk of hypertension and associated cardiovascular diseases. To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptoms, anxiety symptoms, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from 5 ancestry groups. In the combined meta-analyses of Stages 1 and 2, we identified 59 loci (p value <5e-8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response (), synaptic function and neurotransmission (), as well as genes previously implicated in neuropsychiatric or stress-related disorders (). These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.

}, issn = {2666-2477}, doi = {10.1016/j.xhgg.2020.100013}, author = {Sun, Daokun and Richard, Melissa and Musani, Solomon K and Sung, Yun Ju and Winkler, Thomas W and Schwander, Karen and Chai, Jin Fang and Guo, Xiuqing and Kilpel{\"a}inen, Tuomas O and Vojinovic, Dina and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Brown, Michael R and Chitrala, Kumaraswamy and Hartwig, Fernando P and Horimoto, Andrea R V R and Liu, Yongmei and Manning, Alisa K and Noordam, Raymond and Smith, Albert V and Harris, Sarah E and Kuhnel, Brigitte and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Rauramaa, Rainer and van der Most, Peter J and Wang, Rujia and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Arking, Dan E and Arnett, Donna K and Barac, Ana and Boerwinkle, Eric and Broeckel, Ulrich and Chakravarti, Aravinda and Chen, Yii-Der Ida and Cupples, L Adrienne and Davigulus, Martha L and de Las Fuentes, Lisa and de Mutsert, Ren{\'e}e and de Vries, Paul S and Delaney, Joseph A C and Roux, Ana V Diez and D{\"o}rr, Marcus and Faul, Jessica D and Fretts, Amanda M and Gallo, Linda C and Grabe, Hans J{\"o}rgen and Gu, C Charles and Harris, Tamara B and Hartman, Catharina C A and Heikkinen, Sami and Ikram, M Arfan and Isasi, Carmen and Johnson, W Craig and Jonas, Jost Bruno and Kaplan, Robert C and Komulainen, Pirjo and Krieger, Jose E and Levy, Daniel and Liu, Jianjun and Lohman, Kurt and Luik, Annemarie I and Martin, Lisa W and Meitinger, Thomas and Milaneschi, Yuri and O{\textquoteright}Connell, Jeff R and Palmas, Walter R and Peters, Annette and Peyser, Patricia A and Pulkki-R{\r a}back, Laura and Raffel, Leslie J and Reiner, Alex P and Rice, Kenneth and Robinson, Jennifer G and Rosendaal, Frits R and Schmidt, Carsten Oliver and Schreiner, Pamela J and Schwettmann, Lars and Shikany, James M and Shu, Xiao-Ou and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Sotoodehnia, Nona and Strauch, Konstantin and Tai, E Shyong and Taylor, Kent and Uitterlinden, Andr{\'e} G and van Duijn, Cornelia M and Waldenberger, Melanie and Wee, Hwee-Lin and Wei, Wen-Bin and Wilson, Gregory and Xuan, Deng and Yao, Jie and Zeng, Donglin and Zhao, Wei and Zhu, Xiaofeng and Zonderman, Alan B and Becker, Diane M and Deary, Ian J and Gieger, Christian and Lakka, Timo A and Lehtim{\"a}ki, Terho and North, Kari E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Snieder, Harold and Wang, Ya-Xing and Weir, David R and Zheng, Wei and Evans, Michele K and Gauderman, W James and Gudnason, Vilmundur and Horta, Bernardo L and Liu, Ching-Ti and Mook-Kanamori, Dennis O and Morrison, Alanna C and Pereira, Alexandre C and Psaty, Bruce M and Amin, Najaf and Fox, Ervin R and Kooperberg, Charles and Sim, Xueling and Bierut, Laura and Rotter, Jerome I and Kardia, Sharon L R and Franceschini, Nora and Rao, Dabeeru C and Fornage, Myriam} } @article {9112, title = {Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals.}, journal = {Commun Biol}, volume = {5}, year = {2022}, month = {2022 Jun 13}, pages = {580}, abstract = {

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (n = 178,691, n = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.

}, keywords = {Creatinine, Diabetes Mellitus, Diabetic Nephropathies, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Kidney}, issn = {2399-3642}, doi = {10.1038/s42003-022-03448-z}, author = {Winkler, Thomas W and Rasheed, Humaira and Teumer, Alexander and Gorski, Mathias and Rowan, Bryce X and Stanzick, Kira J and Thomas, Laurent F and Tin, Adrienne and Hoppmann, Anselm and Chu, Audrey Y and Tayo, Bamidele and Thio, Chris H L and Cusi, Daniele and Chai, Jin-Fang and Sieber, Karsten B and Horn, Katrin and Li, Man and Scholz, Markus and Cocca, Massimiliano and Wuttke, Matthias and van der Most, Peter J and Yang, Qiong and Ghasemi, Sahar and Nutile, Teresa and Li, Yong and Pontali, Giulia and G{\"u}nther, Felix and Dehghan, Abbas and Correa, Adolfo and Parsa, Afshin and Feresin, Agnese and de Vries, Aiko P J and Zonderman, Alan B and Smith, Albert V and Oldehinkel, Albertine J and De Grandi, Alessandro and Rosenkranz, Alexander R and Franke, Andre and Teren, Andrej and Metspalu, Andres and Hicks, Andrew A and Morris, Andrew P and T{\"o}njes, Anke and Morgan, Anna and Podgornaia, Anna I and Peters, Annette and K{\"o}rner, Antje and Mahajan, Anubha and Campbell, Archie and Freedman, Barry I and Spedicati, Beatrice and Ponte, Belen and Sch{\"o}ttker, Ben and Brumpton, Ben and Banas, Bernhard and Kr{\"a}mer, Bernhard K and Jung, Bettina and {\r A}svold, Bj{\o}rn Olav and Smith, Blair H and Ning, Boting and Penninx, Brenda W J H and Vanderwerff, Brett R and Psaty, Bruce M and Kammerer, Candace M and Langefeld, Carl D and Hayward, Caroline and Spracklen, Cassandra N and Robinson-Cohen, Cassianne and Hartman, Catharina A and Lindgren, Cecilia M and Wang, Chaolong and Sabanayagam, Charumathi and Heng, Chew-Kiat and Lanzani, Chiara and Khor, Chiea-Chuen and Cheng, Ching-Yu and Fuchsberger, Christian and Gieger, Christian and Shaffer, Christian M and Schulz, Christina-Alexandra and Willer, Cristen J and Chasman, Daniel I and Gudbjartsson, Daniel F and Ruggiero, Daniela and Toniolo, Daniela and Czamara, Darina and Porteous, David J and Waterworth, Dawn M and Mascalzoni, Deborah and Mook-Kanamori, Dennis O and Reilly, Dermot F and Daw, E Warwick and Hofer, Edith and Boerwinkle, Eric and Salvi, Erika and Bottinger, Erwin P and Tai, E-Shyong and Catamo, Eulalia and Rizzi, Federica and Guo, Feng and Rivadeneira, Fernando and Guilianini, Franco and Sveinbjornsson, Gardar and Ehret, Georg and Waeber, G{\'e}rard and Biino, Ginevra and Girotto, Giorgia and Pistis, Giorgio and Nadkarni, Girish N and Delgado, Graciela E and Montgomery, Grant W and Snieder, Harold and Campbell, Harry and White, Harvey D and Gao, He and Stringham, Heather M and Schmidt, Helena and Li, Hengtong and Brenner, Hermann and Holm, Hilma and Kirsten, Holgen and Kramer, Holly and Rudan, Igor and Nolte, Ilja M and Tzoulaki, Ioanna and Olafsson, Isleifur and Martins, Jade and Cook, James P and Wilson, James F and Halbritter, Jan and Felix, Janine F and Divers, Jasmin and Kooner, Jaspal S and Lee, Jeannette Jen-Mai and O{\textquoteright}Connell, Jeffrey and Rotter, Jerome I and Liu, Jianjun and Xu, Jie and Thiery, Joachim and Arnl{\"o}v, Johan and Kuusisto, Johanna and Jakobsdottir, Johanna and Tremblay, Johanne and Chambers, John C and Whitfield, John B and Gaziano, John M and Marten, Jonathan and Coresh, Josef and Jonas, Jost B and Mychaleckyj, Josyf C and Christensen, Kaare and Eckardt, Kai-Uwe and Mohlke, Karen L and Endlich, Karlhans and Dittrich, Katalin and Ryan, Kathleen A and Rice, Kenneth M and Taylor, Kent D and Ho, Kevin and Nikus, Kjell and Matsuda, Koichi and Strauch, Konstantin and Miliku, Kozeta and Hveem, Kristian and Lind, Lars and Wallentin, Lars and Yerges-Armstrong, Laura M and Raffield, Laura M and Phillips, Lawrence S and Launer, Lenore J and Lyytik{\"a}inen, Leo-Pekka and Lange, Leslie A and Citterio, Lorena and Klaric, Lucija and Ikram, M Arfan and Ising, Marcus and Kleber, Marcus E and Francescatto, Margherita and Concas, Maria Pina and Ciullo, Marina and Piratsu, Mario and Orho-Melander, Marju and Laakso, Markku and Loeffler, Markus and Perola, Markus and de Borst, Martin H and G{\"o}gele, Martin and Bianca, Martina La and Lukas, Mary Ann and Feitosa, Mary F and Biggs, Mary L and Wojczynski, Mary K and Kavousi, Maryam and Kanai, Masahiro and Akiyama, Masato and Yasuda, Masayuki and Nauck, Matthias and Waldenberger, Melanie and Chee, Miao-Li and Chee, Miao-Ling and Boehnke, Michael and Preuss, Michael H and Stumvoll, Michael and Province, Michael A and Evans, Michele K and O{\textquoteright}Donoghue, Michelle L and Kubo, Michiaki and K{\"a}h{\"o}nen, Mika and Kastarinen, Mika and Nalls, Mike A and Kuokkanen, Mikko and Ghanbari, Mohsen and Bochud, Murielle and Josyula, Navya Shilpa and Martin, Nicholas G and Tan, Nicholas Y Q and Palmer, Nicholette D and Pirastu, Nicola and Schupf, Nicole and Verweij, Niek and Hutri-K{\"a}h{\"o}nen, Nina and Mononen, Nina and Bansal, Nisha and Devuyst, Olivier and Melander, Olle and Raitakari, Olli T and Polasek, Ozren and Manunta, Paolo and Gasparini, Paolo and Mishra, Pashupati P and Sulem, Patrick and Magnusson, Patrik K E and Elliott, Paul and Ridker, Paul M and Hamet, Pavel and Svensson, Per O and Joshi, Peter K and Kovacs, Peter and Pramstaller, Peter P and Rossing, Peter and Vollenweider, Peter and van der Harst, Pim and Dorajoo, Rajkumar and Sim, Ralene Z H and Burkhardt, Ralph and Tao, Ran and Noordam, Raymond and M{\"a}gi, Reedik and Schmidt, Reinhold and de Mutsert, Ren{\'e}e and Rueedi, Rico and van Dam, Rob M and Carroll, Robert J and Gansevoort, Ron T and Loos, Ruth J F and Felicita, Sala Cinzia and Sedaghat, Sanaz and Padmanabhan, Sandosh and Freitag-Wolf, Sandra and Pendergrass, Sarah A and Graham, Sarah E and Gordon, Scott D and Hwang, Shih-Jen and Kerr, Shona M and Vaccargiu, Simona and Patil, Snehal B and Hallan, Stein and Bakker, Stephan J L and Lim, Su-Chi and Lucae, Susanne and Vogelezang, Suzanne and Bergmann, Sven and Corre, Tanguy and Ahluwalia, Tarunveer S and Lehtim{\"a}ki, Terho and Boutin, Thibaud S and Meitinger, Thomas and Wong, Tien-Yin and Bergler, Tobias and Rabelink, Ton J and Esko, T{\~o}nu and Haller, Toomas and Thorsteinsdottir, Unnur and V{\"o}lker, Uwe and Foo, Valencia Hui Xian and Salomaa, Veikko and Vitart, Veronique and Giedraitis, Vilmantas and Gudnason, Vilmundur and Jaddoe, Vincent W V and Huang, Wei and Zhang, Weihua and Wei, Wen Bin and Kiess, Wieland and M{\"a}rz, Winfried and Koenig, Wolfgang and Lieb, Wolfgang and G{\`a}o, Xin and Sim, Xueling and Wang, Ya Xing and Friedlander, Yechiel and Tham, Yih-Chung and Kamatani, Yoichiro and Okada, Yukinori and Milaneschi, Yuri and Yu, Zhi and Stark, Klaus J and Stefansson, Kari and B{\"o}ger, Carsten A and Hung, Adriana M and Kronenberg, Florian and K{\"o}ttgen, Anna and Pattaro, Cristian and Heid, Iris M} } @article {9093, title = {Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies.}, journal = {Kidney Int}, year = {2022}, month = {2022 Jun 16}, abstract = {

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95\% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95\% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.

}, issn = {1523-1755}, doi = {10.1016/j.kint.2022.05.021}, author = {Gorski, Mathias and Rasheed, Humaira and Teumer, Alexander and Thomas, Laurent F and Graham, Sarah E and Sveinbjornsson, Gardar and Winkler, Thomas W and G{\"u}nther, Felix and Stark, Klaus J and Chai, Jin-Fang and Tayo, Bamidele O and Wuttke, Matthias and Li, Yong and Tin, Adrienne and Ahluwalia, Tarunveer S and Arnl{\"o}v, Johan and {\r A}svold, Bj{\o}rn Olav and Bakker, Stephan J L and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L and Biino, Ginevra and B{\"o}hnke, Michael and Boerwinkle, Eric and Bottinger, Erwin P and Brenner, Hermann and Brumpton, Ben and Carroll, Robert J and Chaker, Layal and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Chu, Audrey Y and Ciullo, Marina and Cocca, Massimiliano and Cook, James P and Coresh, Josef and Cusi, Daniele and de Borst, Martin H and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Evans, Michele K and Feitosa, Mary F and Franke, Andre and Freitag-Wolf, Sandra and Fuchsberger, Christian and Gampawar, Piyush and Gansevoort, Ron T and Ghanbari, Mohsen and Ghasemi, Sahar and Giedraitis, Vilmantas and Gieger, Christian and Gudbjartsson, Daniel F and Hallan, Stein and Hamet, Pavel and Hishida, Asahi and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Holm, Hilma and Hoppmann, Anselm and Horn, Katrin and Hutri-K{\"a}h{\"o}nen, Nina and Hveem, Kristian and Hwang, Shih-Jen and Ikram, M Arfan and Josyula, Navya Shilpa and Jung, Bettina and K{\"a}h{\"o}nen, Mika and Karabegovi{\'c}, Irma and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kr{\"a}mer, Bernhard K and Kuhnel, Brigitte and Kuusisto, Johanna and Laakso, Markku and Lange, Leslie A and Lehtim{\"a}ki, Terho and Li, Man and Lieb, Wolfgang and Lind, Lars and Lindgren, Cecilia M and Loos, Ruth J F and Lukas, Mary Ann and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Matias-Garcia, Pamela R and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P and Mononen, Nina and Morris, Andrew P and Mychaleckyj, Josyf C and Nadkarni, Girish N and Naito, Mariko and Nakatochi, Masahiro and Nalls, Mike A and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M and Nutile, Teresa and O{\textquoteright}Donoghue, Michelle L and O{\textquoteright}Connell, Jeffrey and Olafsson, Isleifur and Orho-Melander, Marju and Parsa, Afshin and Pendergrass, Sarah A and Penninx, Brenda W J H and Pirastu, Mario and Preuss, Michael H and Psaty, Bruce M and Raffield, Laura M and Raitakari, Olli T and Rheinberger, Myriam and Rice, Kenneth M and Rizzi, Federica and Rosenkranz, Alexander R and Rossing, Peter and Rotter, Jerome I and Ruggiero, Daniela and Ryan, Kathleen A and Sabanayagam, Charumathi and Salvi, Erika and Schmidt, Helena and Schmidt, Reinhold and Scholz, Markus and Sch{\"o}ttker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M and Sieber, Karsten B and Sim, Xueling and Sims, Mario and Snieder, Harold and Stanzick, Kira J and Thorsteinsdottir, Unnur and Stocker, Hannah and Strauch, Konstantin and Stringham, Heather M and Sulem, Patrick and Szymczak, Silke and Taylor, Kent D and Thio, Chris H L and Tremblay, Johanne and Vaccargiu, Simona and van der Harst, Pim and van der Most, Peter J and Verweij, Niek and V{\"o}lker, Uwe and Wakai, Kenji and Waldenberger, Melanie and Wallentin, Lars and Wallner, Stefan and Wang, Judy and Waterworth, Dawn M and White, Harvey D and Willer, Cristen J and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yerges-Armstrong, Laura M and Zimmermann, Martina and Zonderman, Alan B and Bergler, Tobias and Stefansson, Kari and B{\"o}ger, Carsten A and Pattaro, Cristian and K{\"o}ttgen, Anna and Kronenberg, Florian and Heid, Iris M} } @article {9104, title = {Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation.}, journal = {Nat Genet}, volume = {54}, year = {2022}, month = {2022 May}, pages = {560-572}, abstract = {

We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9\% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 {\texttimes} 10), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4\% of T2D associations to a single variant with >50\% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.

}, keywords = {Diabetes Mellitus, Type 2, Ethnicity, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1546-1718}, doi = {10.1038/s41588-022-01058-3}, author = {Mahajan, Anubha and Spracklen, Cassandra N and Zhang, Weihua and Ng, Maggie C Y and Petty, Lauren E and Kitajima, Hidetoshi and Yu, Grace Z and R{\"u}eger, Sina and Speidel, Leo and Kim, Young Jin and Horikoshi, Momoko and Mercader, Josep M and Taliun, Daniel and Moon, Sanghoon and Kwak, Soo-Heon and Robertson, Neil R and Rayner, Nigel W and Loh, Marie and Kim, Bong-Jo and Chiou, Joshua and Miguel-Escalada, Irene and Della Briotta Parolo, Pietro and Lin, Kuang and Bragg, Fiona and Preuss, Michael H and Takeuchi, Fumihiko and Nano, Jana and Guo, Xiuqing and Lamri, Amel and Nakatochi, Masahiro and Scott, Robert A and Lee, Jung-Jin and Huerta-Chagoya, Alicia and Graff, Mariaelisa and Chai, Jin-Fang and Parra, Esteban J and Yao, Jie and Bielak, Lawrence F and Tabara, Yasuharu and Hai, Yang and Steinthorsdottir, Valgerdur and Cook, James P and Kals, Mart and Grarup, Niels and Schmidt, Ellen M and Pan, Ian and Sofer, Tamar and Wuttke, Matthias and Sarnowski, Chloe and Gieger, Christian and Nousome, Darryl and Trompet, Stella and Long, Jirong and Sun, Meng and Tong, Lin and Chen, Wei-Min and Ahmad, Meraj and Noordam, Raymond and Lim, Victor J Y and Tam, Claudia H T and Joo, Yoonjung Yoonie and Chen, Chien-Hsiun and Raffield, Laura M and Lecoeur, C{\'e}cile and Prins, Bram Peter and Nicolas, Aude and Yanek, Lisa R and Chen, Guanjie and Jensen, Richard A and Tajuddin, Salman and Kabagambe, Edmond K and An, Ping and Xiang, Anny H and Choi, Hyeok Sun and Cade, Brian E and Tan, Jingyi and Flanagan, Jack and Abaitua, Fernando and Adair, Linda S and Adeyemo, Adebowale and Aguilar-Salinas, Carlos A and Akiyama, Masato and Anand, Sonia S and Bertoni, Alain and Bian, Zheng and Bork-Jensen, Jette and Brandslund, Ivan and Brody, Jennifer A and Brummett, Chad M and Buchanan, Thomas A and Canouil, Micka{\"e}l and Chan, Juliana C N and Chang, Li-Ching and Chee, Miao-Li and Chen, Ji and Chen, Shyh-Huei and Chen, Yuan-Tsong and Chen, Zhengming and Chuang, Lee-Ming and Cushman, Mary and Das, Swapan K and de Silva, H Janaka and Dedoussis, George and Dimitrov, Latchezar and Doumatey, Ayo P and Du, Shufa and Duan, Qing and Eckardt, Kai-Uwe and Emery, Leslie S and Evans, Daniel S and Evans, Michele K and Fischer, Krista and Floyd, James S and Ford, Ian and Fornage, Myriam and Franco, Oscar H and Frayling, Timothy M and Freedman, Barry I and Fuchsberger, Christian and Genter, Pauline and Gerstein, Hertzel C and Giedraitis, Vilmantas and Gonz{\'a}lez-Villalpando, Clicerio and Gonzalez-Villalpando, Maria Elena and Goodarzi, Mark O and Gordon-Larsen, Penny and Gorkin, David and Gross, Myron and Guo, Yu and Hackinger, Sophie and Han, Sohee and Hattersley, Andrew T and Herder, Christian and Howard, Annie-Green and Hsueh, Willa and Huang, Mengna and Huang, Wei and Hung, Yi-Jen and Hwang, Mi Yeong and Hwu, Chii-Min and Ichihara, Sahoko and Ikram, Mohammad Arfan and Ingelsson, Martin and Islam, Md Tariqul and Isono, Masato and Jang, Hye-Mi and Jasmine, Farzana and Jiang, Guozhi and Jonas, Jost B and J{\o}rgensen, Marit E and J{\o}rgensen, Torben and Kamatani, Yoichiro and Kandeel, Fouad R and Kasturiratne, Anuradhani and Katsuya, Tomohiro and Kaur, Varinderpal and Kawaguchi, Takahisa and Keaton, Jacob M and Kho, Abel N and Khor, Chiea-Chuen and Kibriya, Muhammad G and Kim, Duk-Hwan and Kohara, Katsuhiko and Kriebel, Jennifer and Kronenberg, Florian and Kuusisto, Johanna and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Myung-Shik and Lee, Nanette R and Leong, Aaron and Li, Liming and Li, Yun and Li-Gao, Ruifang and Ligthart, Symen and Lindgren, Cecilia M and Linneberg, Allan and Liu, Ching-Ti and Liu, Jianjun and Locke, Adam E and Louie, Tin and Luan, Jian{\textquoteright}an and Luk, Andrea O and Luo, Xi and Lv, Jun and Lyssenko, Valeriya and Mamakou, Vasiliki and Mani, K Radha and Meitinger, Thomas and Metspalu, Andres and Morris, Andrew D and Nadkarni, Girish N and Nadler, Jerry L and Nalls, Michael A and Nayak, Uma and Nongmaithem, Suraj S and Ntalla, Ioanna and Okada, Yukinori and Orozco, Lorena and Patel, Sanjay R and Pereira, Mark A and Peters, Annette and Pirie, Fraser J and Porneala, Bianca and Prasad, Gauri and Preissl, Sebastian and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Roden, Michael and Rohde, Rebecca and Roll, Kathryn and Sabanayagam, Charumathi and Sander, Maike and Sandow, Kevin and Sattar, Naveed and Sch{\"o}nherr, Sebastian and Schurmann, Claudia and Shahriar, Mohammad and Shi, Jinxiu and Shin, Dong Mun and Shriner, Daniel and Smith, Jennifer A and So, Wing Yee and Stan{\v c}{\'a}kov{\'a}, Alena and Stilp, Adrienne M and Strauch, Konstantin and Suzuki, Ken and Takahashi, Atsushi and Taylor, Kent D and Thorand, Barbara and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tomlinson, Brian and Torres, Jason M and Tsai, Fuu-Jen and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and Valladares-Salgado, Adan and van Dam, Rob M and van Klinken, Jan B and Varma, Rohit and Vujkovic, Marijana and Wacher-Rodarte, Niels and Wheeler, Eleanor and Whitsel, Eric A and Wickremasinghe, Ananda R and van Dijk, Ko Willems and Witte, Daniel R and Yajnik, Chittaranjan S and Yamamoto, Ken and Yamauchi, Toshimasa and Yengo, Loic and Yoon, Kyungheon and Yu, Canqing and Yuan, Jian-Min and Yusuf, Salim and Zhang, Liang and Zheng, Wei and Raffel, Leslie J and Igase, Michiya and Ipp, Eli and Redline, Susan and Cho, Yoon Shin and Lind, Lars and Province, Michael A and Hanis, Craig L and Peyser, Patricia A and Ingelsson, Erik and Zonderman, Alan B and Psaty, Bruce M and Wang, Ya-Xing and Rotimi, Charles N and Becker, Diane M and Matsuda, Fumihiko and Liu, Yongmei and Zeggini, Eleftheria and Yokota, Mitsuhiro and Rich, Stephen S and Kooperberg, Charles and Pankow, James S and Engert, James C and Chen, Yii-Der Ida and Froguel, Philippe and Wilson, James G and Sheu, Wayne H H and Kardia, Sharon L R and Wu, Jer-Yuarn and Hayes, M Geoffrey and Ma, Ronald C W and Wong, Tien-Yin and Groop, Leif and Mook-Kanamori, Dennis O and Chandak, Giriraj R and Collins, Francis S and Bharadwaj, Dwaipayan and Par{\'e}, Guillaume and Sale, Mich{\`e}le M and Ahsan, Habibul and Motala, Ayesha A and Shu, Xiao-Ou and Park, Kyong-Soo and Jukema, J Wouter and Cruz, Miguel and McKean-Cowdin, Roberta and Grallert, Harald and Cheng, Ching-Yu and Bottinger, Erwin P and Dehghan, Abbas and Tai, E-Shyong and Dupuis, Jos{\'e}e and Kato, Norihiro and Laakso, Markku and K{\"o}ttgen, Anna and Koh, Woon-Puay and Palmer, Colin N A and Liu, Simin and Abecasis, Goncalo and Kooner, Jaspal S and Loos, Ruth J F and North, Kari E and Haiman, Christopher A and Florez, Jose C and Saleheen, Danish and Hansen, Torben and Pedersen, Oluf and M{\"a}gi, Reedik and Langenberg, Claudia and Wareham, Nicholas J and Maeda, Shiro and Kadowaki, Takashi and Lee, Juyoung and Millwood, Iona Y and Walters, Robin G and Stefansson, Kari and Myers, Simon R and Ferrer, Jorge and Gaulton, Kyle J and Meigs, James B and Mohlke, Karen L and Gloyn, Anna L and Bowden, Donald W and Below, Jennifer E and Chambers, John C and Sim, Xueling and Boehnke, Michael and Rotter, Jerome I and McCarthy, Mark I and Morris, Andrew P} } @article {8975, title = {Rare coding variants in 35 genes associate with circulating lipid levels-A multi-ancestry analysis of 170,000 exomes.}, journal = {Am J Hum Genet}, volume = {109}, year = {2022}, month = {2022 01 06}, pages = {81-96}, abstract = {

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1\%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.

}, keywords = {Alleles, Blood Glucose, Case-Control Studies, Computational Biology, Databases, Genetic, Diabetes Mellitus, Type 2, Exome, Genetic Predisposition to Disease, Genetic Variation, Genetics, Population, Genome-Wide Association Study, Humans, Lipid Metabolism, Lipids, Liver, Molecular Sequence Annotation, Multifactorial Inheritance, Open Reading Frames, Phenotype, Polymorphism, Single Nucleotide}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2021.11.021}, author = {Hindy, George and Dornbos, Peter and Chaffin, Mark D and Liu, Dajiang J and Wang, Minxian and Selvaraj, Margaret Sunitha and Zhang, David and Park, Joseph and Aguilar-Salinas, Carlos A and Antonacci-Fulton, Lucinda and Ardissino, Diego and Arnett, Donna K and Aslibekyan, Stella and Atzmon, Gil and Ballantyne, Christie M and Barajas-Olmos, Francisco and Barzilai, Nir and Becker, Lewis C and Bielak, Lawrence F and Bis, Joshua C and Blangero, John and Boerwinkle, Eric and Bonnycastle, Lori L and Bottinger, Erwin and Bowden, Donald W and Bown, Matthew J and Brody, Jennifer A and Broome, Jai G and Burtt, Noel P and Cade, Brian E and Centeno-Cruz, Federico and Chan, Edmund and Chang, Yi-Cheng and Chen, Yii-der I and Cheng, Ching-Yu and Choi, Won Jung and Chowdhury, Rajiv and Contreras-Cubas, Cecilia and C{\'o}rdova, Emilio J and Correa, Adolfo and Cupples, L Adrienne and Curran, Joanne E and Danesh, John and de Vries, Paul S and DeFronzo, Ralph A and Doddapaneni, Harsha and Duggirala, Ravindranath and Dutcher, Susan K and Ellinor, Patrick T and Emery, Leslie S and Florez, Jose C and Fornage, Myriam and Freedman, Barry I and Fuster, Valentin and Garay-Sevilla, Ma Eugenia and Garc{\'\i}a-Ortiz, Humberto and Germer, Soren and Gibbs, Richard A and Gieger, Christian and Glaser, Benjamin and Gonzalez, Clicerio and Gonzalez-Villalpando, Maria Elena and Graff, Mariaelisa and Graham, Sarah E and Grarup, Niels and Groop, Leif C and Guo, Xiuqing and Gupta, Namrata and Han, Sohee and Hanis, Craig L and Hansen, Torben and He, Jiang and Heard-Costa, Nancy L and Hung, Yi-Jen and Hwang, Mi Yeong and Irvin, Marguerite R and Islas-Andrade, Sergio and Jarvik, Gail P and Kang, Hyun Min and Kardia, Sharon L R and Kelly, Tanika and Kenny, Eimear E and Khan, Alyna T and Kim, Bong-Jo and Kim, Ryan W and Kim, Young Jin and Koistinen, Heikki A and Kooperberg, Charles and Kuusisto, Johanna and Kwak, Soo Heon and Laakso, Markku and Lange, Leslie A and Lee, Jiwon and Lee, Juyoung and Lee, Seonwook and Lehman, Donna M and Lemaitre, Rozenn N and Linneberg, Allan and Liu, Jianjun and Loos, Ruth J F and Lubitz, Steven A and Lyssenko, Valeriya and Ma, Ronald C W and Martin, Lisa Warsinger and Mart{\'\i}nez-Hern{\'a}ndez, Ang{\'e}lica and Mathias, Rasika A and McGarvey, Stephen T and McPherson, Ruth and Meigs, James B and Meitinger, Thomas and Melander, Olle and Mendoza-Caamal, Elvia and Metcalf, Ginger A and Mi, Xuenan and Mohlke, Karen L and Montasser, May E and Moon, Jee-Young and Moreno-Macias, Hortensia and Morrison, Alanna C and Muzny, Donna M and Nelson, Sarah C and Nilsson, Peter M and O{\textquoteright}Connell, Jeffrey R and Orho-Melander, Marju and Orozco, Lorena and Palmer, Colin N A and Palmer, Nicholette D and Park, Cheol Joo and Park, Kyong Soo and Pedersen, Oluf and Peralta, Juan M and Peyser, Patricia A and Post, Wendy S and Preuss, Michael and Psaty, Bruce M and Qi, Qibin and Rao, D C and Redline, Susan and Reiner, Alexander P and Revilla-Monsalve, Cristina and Rich, Stephen S and Samani, Nilesh and Schunkert, Heribert and Schurmann, Claudia and Seo, Daekwan and Seo, Jeong-Sun and Sim, Xueling and Sladek, Rob and Small, Kerrin S and So, Wing Yee and Stilp, Adrienne M and Tai, E Shyong and Tam, Claudia H T and Taylor, Kent D and Teo, Yik Ying and Thameem, Farook and Tomlinson, Brian and Tsai, Michael Y and Tuomi, Tiinamaija and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and van Dam, Rob M and Vasan, Ramachandran S and Viaud Martinez, Karine A and Wang, Fei Fei and Wang, Xuzhi and Watkins, Hugh and Weeks, Daniel E and Wilson, James G and Witte, Daniel R and Wong, Tien-Yin and Yanek, Lisa R and Kathiresan, Sekar and Rader, Daniel J and Rotter, Jerome I and Boehnke, Michael and McCarthy, Mark I and Willer, Cristen J and Natarajan, Pradeep and Flannick, Jason A and Khera, Amit V and Peloso, Gina M} } @article {9535, title = {Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci.}, journal = {Front Genet}, volume = {14}, year = {2023}, month = {2023}, pages = {1235337}, abstract = {

Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant ( < 5 {\texttimes} 10) and suggestive ( < 1 {\texttimes} 10) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (), brain (), and liver () biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

}, issn = {1664-8021}, doi = {10.3389/fgene.2023.1235337}, author = {de Las Fuentes, Lisa and Schwander, Karen L and Brown, Michael R and Bentley, Amy R and Winkler, Thomas W and Sung, Yun Ju and Munroe, Patricia B and Miller, Clint L and Aschard, Hugo and Aslibekyan, Stella and Bartz, Traci M and Bielak, Lawrence F and Chai, Jin Fang and Cheng, Ching-Yu and Dorajoo, Rajkumar and Feitosa, Mary F and Guo, Xiuqing and Hartwig, Fernando P and Horimoto, Andrea and Kolcic, Ivana and Lim, Elise and Liu, Yongmei and Manning, Alisa K and Marten, Jonathan and Musani, Solomon K and Noordam, Raymond and Padmanabhan, Sandosh and Rankinen, Tuomo and Richard, Melissa A and Ridker, Paul M and Smith, Albert V and Vojinovic, Dina and Zonderman, Alan B and Alver, Maris and Boissel, Mathilde and Christensen, Kaare and Freedman, Barry I and Gao, Chuan and Giulianini, Franco and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Kuhnel, Brigitte and Laguzzi, Federica and Li, Xiaoyin and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Poveda, Alaitz and Rauramaa, Rainer and Riaz, Muhammad and Robino, Antonietta and Sofer, Tamar and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Verweij, Niek and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhan, Yiqiang and Amin, Najaf and Arking, Dan E and Ballantyne, Christie and Boerwinkle, Eric and Brody, Jennifer A and Broeckel, Ulrich and Campbell, Archie and Canouil, Micka{\"e}l and Chai, Xiaoran and Chen, Yii-Der Ida and Chen, Xu and Chitrala, Kumaraswamy Naidu and Concas, Maria Pina and de Faire, Ulf and de Mutsert, Ren{\'e}e and de Silva, H Janaka and de Vries, Paul S and Do, Ahn and Faul, Jessica D and Fisher, Virginia and Floyd, James S and Forrester, Terrence and Friedlander, Yechiel and Girotto, Giorgia and Gu, C Charles and Hallmans, G{\"o}ran and Heikkinen, Sami and Heng, Chew-Kiat and Homuth, Georg and Hunt, Steven and Ikram, M Arfan and Jacobs, David R and Kavousi, Maryam and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Komulainen, Pirjo and Langefeld, Carl D and Liang, Jingjing and Liu, Kiang and Liu, Jianjun and Lohman, Kurt and M{\"a}gi, Reedik and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Milaneschi, Yuri and Nauck, Matthias and Nelson, Christopher P and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Pereira, Alexandre C and Perls, Thomas and Peters, Annette and Polasek, Ozren and Raitakari, Olli T and Rice, Kenneth and Rice, Treva K and Rich, Stephen S and Sabanayagam, Charumathi and Schreiner, Pamela J and Shu, Xiao-Ou and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Starr, John M and Strauch, Konstantin and Tai, E Shyong and Taylor, Kent D and Tsai, Michael Y and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Waldenberger, Melanie and Wang, Ya-Xing and Wei, Wen-Bin and Wilson, Gregory and Xuan, Deng and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Becker, Diane M and Bonnefond, Am{\'e}lie and Bowden, Donald W and Cooper, Richard S and Deary, Ian J and Divers, Jasmin and Esko, T{\~o}nu and Franks, Paul W and Froguel, Philippe and Gieger, Christian and Jonas, Jost B and Kato, Norihiro and Lakka, Timo A and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and North, Kari E and Ntalla, Ioanna and Penninx, Brenda and Samani, Nilesh J and Snieder, Harold and Spedicati, Beatrice and van der Harst, Pim and V{\"o}lzke, Henry and Wagenknecht, Lynne E and Weir, David R and Wojczynski, Mary K and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Bouchard, Claude and Chasman, Daniel I and Evans, Michele K and Fox, Ervin R and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kardia, Sharon L R and Krieger, Jose Eduardo and Mook-Kanamori, Dennis O and Peyser, Patricia A and Province, Michael M and Psaty, Bruce M and Rudan, Igor and Sim, Xueling and Smith, Blair H and van Dam, Rob M and van Duijn, Cornelia M and Wong, Tien Yin and Arnett, Donna K and Rao, Dabeeru C and Gauderman, James and Liu, Ching-Ti and Morrison, Alanna C and Rotter, Jerome I and Fornage, Myriam} } @article {9583, title = {Genome-Wide Interaction Analysis with DASH Diet Score Identified Novel Loci for Systolic Blood Pressure.}, journal = {medRxiv}, year = {2023}, month = {2023 Nov 11}, abstract = {

OBJECTIVE: We examined interactions between genotype and a Dietary Approaches to Stop Hypertension (DASH) diet score in relation to systolic blood pressure (SBP).

METHODS: We analyzed up to 9,420,585 biallelic imputed single nucleotide polymorphisms (SNPs) in up to 127,282 individuals of six population groups (91\% of European population) from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (CHARGE; n=35,660) and UK Biobank (n=91,622) and performed European population-specific and cross-population meta-analyses.

RESULTS: We identified three loci in European-specific analyses and an additional four loci in cross-population analyses at P for interaction < 5e-8. We observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency = 0.03) and the DASH diet score (P for interaction = 4e-8; P for heterogeneity = 0.35) in European population, where the interaction effect size was 0.42{\textpm}0.09 mm Hg (P for interaction = 9.4e-7) and 0.20{\textpm}0.06 mm Hg (P for interaction = 0.001) in CHARGE and the UK Biobank, respectively. The 1 Mb region surrounding rs117878928 was enriched with -expression quantitative trait loci (eQTL) variants (P = 4e-273) and -DNA methylation quantitative trait loci (mQTL) variants (P = 1e-300). While the closest gene for rs117878928 is , the highest narrow sense heritability accounted by SNPs potentially interacting with the DASH diet score in this locus was for gene at 15q25.1.

CONCLUSION: We demonstrated gene-DASH diet score interaction effects on SBP in several loci. Studies with larger diverse populations are needed to validate our findings.

}, doi = {10.1101/2023.11.10.23298402}, author = {Guirette, Melanie and Lan, Jessie and McKeown, Nicola and Brown, Michael R and Chen, Han and de Vries, Paul S and Kim, Hyunju and Rebholz, Casey M and Morrison, Alanna C and Bartz, Traci M and Fretts, Amanda M and Guo, Xiuqing and Lemaitre, Rozenn N and Liu, Ching-Ti and Noordam, Raymond and de Mutsert, Ren{\'e}e and Rosendaal, Frits R and Wang, Carol A and Beilin, Lawrence and Mori, Trevor A and Oddy, Wendy H and Pennell, Craig E and Chai, Jin Fang and Whitton, Clare and van Dam, Rob M and Liu, Jianjun and Tai, E Shyong and Sim, Xueling and Neuhouser, Marian L and Kooperberg, Charles and Tinker, Lesley and Franceschini, Nora and Huan, Tianxiao and Winkler, Thomas W and Bentley, Amy R and Gauderman, W James and Heerkens, Luc and Tanaka, Toshiko and van Rooij, Jeroen and Munroe, Patricia B and Warren, Helen R and Voortman, Trudy and Chen, Honglei and Rao, D C and Levy, Daniel and Ma, Jiantao} } @article {9385, title = {Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications.}, journal = {medRxiv}, year = {2023}, month = {2023 Mar 31}, abstract = {

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7\% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5{\texttimes}10 ) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

}, doi = {10.1101/2023.03.31.23287839}, author = {Suzuki, Ken and Hatzikotoulas, Konstantinos and Southam, Lorraine and Taylor, Henry J and Yin, Xianyong and Lorenz, Kim M and Mandla, Ravi and Huerta-Chagoya, Alicia and Rayner, Nigel W and Bocher, Ozvan and Ana Luiza de, S V Arruda and Sonehara, Kyuto and Namba, Shinichi and Lee, Simon S K and Preuss, Michael H and Petty, Lauren E and Schroeder, Philip and Vanderwerff, Brett and Kals, Mart and Bragg, Fiona and Lin, Kuang and Guo, Xiuqing and Zhang, Weihua and Yao, Jie and Kim, Young Jin and Graff, Mariaelisa and Takeuchi, Fumihiko and Nano, Jana and Lamri, Amel and Nakatochi, Masahiro and Moon, Sanghoon and Scott, Robert A and Cook, James P and Lee, Jung-Jin and Pan, Ian and Taliun, Daniel and Parra, Esteban J and Chai, Jin-Fang and Bielak, Lawrence F and Tabara, Yasuharu and Hai, Yang and Thorleifsson, Gudmar and Grarup, Niels and Sofer, Tamar and Wuttke, Matthias and Sarnowski, Chloe and Gieger, Christian and Nousome, Darryl and Trompet, Stella and Kwak, Soo-Heon and Long, Jirong and Sun, Meng and Tong, Lin and Chen, Wei-Min and Nongmaithem, Suraj S and Noordam, Raymond and Lim, Victor J Y and Tam, Claudia H T and Joo, Yoonjung Yoonie and Chen, Chien-Hsiun and Raffield, Laura M and Prins, Bram Peter and Nicolas, Aude and Yanek, Lisa R and Chen, Guanjie and Brody, Jennifer A and Kabagambe, Edmond and An, Ping and Xiang, Anny H and Choi, Hyeok Sun and Cade, Brian E and Tan, Jingyi and Alaine Broadaway, K and Williamson, Alice and Kamali, Zoha and Cui, Jinrui and Adair, Linda S and Adeyemo, Adebowale and Aguilar-Salinas, Carlos A and Ahluwalia, Tarunveer S and Anand, Sonia S and Bertoni, Alain and Bork-Jensen, Jette and Brandslund, Ivan and Buchanan, Thomas A and Burant, Charles F and Butterworth, Adam S and Canouil, Micka{\"e}l and Chan, Juliana C N and Chang, Li-Ching and Chee, Miao-Li and Chen, Ji and Chen, Shyh-Huei and Chen, Yuan-Tsong and Chen, Zhengming and Chuang, Lee-Ming and Cushman, Mary and Danesh, John and Das, Swapan K and Janaka de Silva, H and Dedoussis, George and Dimitrov, Latchezar and Doumatey, Ayo P and Du, Shufa and Duan, Qing and Eckardt, Kai-Uwe and Emery, Leslie S and Evans, Daniel S and Evans, Michele K and Fischer, Krista and Floyd, James S and Ford, Ian and Franco, Oscar H and Frayling, Timothy M and Freedman, Barry I and Genter, Pauline and Gerstein, Hertzel C and Giedraitis, Vilmantas and Gonz{\'a}lez-Villalpando, Clicerio and Gonzalez-Villalpando, Maria Elena and Gordon-Larsen, Penny and Gross, Myron and Guare, Lindsay A and Hackinger, Sophie and Han, Sohee and Hattersley, Andrew T and Herder, Christian and Horikoshi, Momoko and Howard, Annie-Green and Hsueh, Willa and Huang, Mengna and Huang, Wei and Hung, Yi-Jen and Hwang, Mi Yeong and Hwu, Chii-Min and Ichihara, Sahoko and Ikram, Mohammad Arfan and Ingelsson, Martin and Islam, Md Tariqul and Isono, Masato and Jang, Hye-Mi and Jasmine, Farzana and Jiang, Guozhi and Jonas, Jost B and J{\o}rgensen, Torben and Kandeel, Fouad R and Kasturiratne, Anuradhani and Katsuya, Tomohiro and Kaur, Varinderpal and Kawaguchi, Takahisa and Keaton, Jacob M and Kho, Abel N and Khor, Chiea-Chuen and Kibriya, Muhammad G and Kim, Duk-Hwan and Kronenberg, Florian and Kuusisto, Johanna and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Kyung Min and Lee, Myung-Shik and Lee, Nanette R and Leong, Aaron and Li, Liming and Li, Yun and Li-Gao, Ruifang and Lithgart, Symen and Lindgren, Cecilia M and Linneberg, Allan and Liu, Ching-Ti and Liu, Jianjun and Locke, Adam E and Louie, Tin and Luan, Jian{\textquoteright}an and Luk, Andrea O and Luo, Xi and Lv, Jun and Lynch, Julie A and Lyssenko, Valeriya and Maeda, Shiro and Mamakou, Vasiliki and Mansuri, Sohail Rafik and Matsuda, Koichi and Meitinger, Thomas and Metspalu, Andres and Mo, Huan and Morris, Andrew D and Nadler, Jerry L and Nalls, Michael A and Nayak, Uma and Ntalla, Ioanna and Okada, Yukinori and Orozco, Lorena and Patel, Sanjay R and Patil, Snehal and Pei, Pei and Pereira, Mark A and Peters, Annette and Pirie, Fraser J and Polikowsky, Hannah G and Porneala, Bianca and Prasad, Gauri and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Roden, Michael and Rohde, Rebecca and Roll, Katheryn and Sabanayagam, Charumathi and Sandow, Kevin and Sankareswaran, Alagu and Sattar, Naveed and Sch{\"o}nherr, Sebastian and Shahriar, Mohammad and Shen, Botong and Shi, Jinxiu and Shin, Dong Mun and Shojima, Nobuhiro and Smith, Jennifer A and So, Wing Yee and Stan{\v c}{\'a}kov{\'a}, Alena and Steinthorsdottir, Valgerdur and Stilp, Adrienne M and Strauch, Konstantin and Taylor, Kent D and Thorand, Barbara and Thorsteinsdottir, Unnur and Tomlinson, Brian and Tran, Tam C and Tsai, Fuu-Jen and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and Valladares-Salgado, Adan and van Dam, Rob M and van Klinken, Jan B and Varma, Rohit and Wacher-Rodarte, Niels and Wheeler, Eleanor and Wickremasinghe, Ananda R and van Dijk, Ko Willems and Witte, Daniel R and Yajnik, Chittaranjan S and Yamamoto, Ken and Yamamoto, Kenichi and Yoon, Kyungheon and Yu, Canqing and Yuan, Jian-Min and Yusuf, Salim and Zawistowski, Matthew and Zhang, Liang and Zheng, Wei and Project, Biobank Japan and BioBank, Penn Medicine and Center, Regeneron Genetics and Consortium, eMERGE and Raffel, Leslie J and Igase, Michiya and Ipp, Eli and Redline, Susan and Cho, Yoon Shin and Lind, Lars and Province, Michael A and Fornage, Myriam and Hanis, Craig L and Ingelsson, Erik and Zonderman, Alan B and Psaty, Bruce M and Wang, Ya-Xing and Rotimi, Charles N and Becker, Diane M and Matsuda, Fumihiko and Liu, Yongmei and Yokota, Mitsuhiro and Kardia, Sharon L R and Peyser, Patricia A and Pankow, James S and Engert, James C and Bonnefond, Am{\'e}lie and Froguel, Philippe and Wilson, James G and Sheu, Wayne H H and Wu, Jer-Yuarn and Geoffrey Hayes, M and Ma, Ronald C W and Wong, Tien-Yin and Mook-Kanamori, Dennis O and Tuomi, Tiinamaija and Chandak, Giriraj R and Collins, Francis S and Bharadwaj, Dwaipayan and Par{\'e}, Guillaume and Sale, Mich{\`e}le M and Ahsan, Habibul and Motala, Ayesha A and Shu, Xiao-Ou and Park, Kyong-Soo and Jukema, J Wouter and Cruz, Miguel and Chen, Yii-Der Ida and Rich, Stephen S and McKean-Cowdin, Roberta and Grallert, Harald and Cheng, Ching-Yu and Ghanbari, Mohsen and Tai, E-Shyong and Dupuis, Jos{\'e}e and Kato, Norihiro and Laakso, Markku and K{\"o}ttgen, Anna and Koh, Woon-Puay and Bowden, Donald W and Palmer, Colin N A and Kooner, Jaspal S and Kooperberg, Charles and Liu, Simin and North, Kari E and Saleheen, Danish and Hansen, Torben and Pedersen, Oluf and Wareham, Nicholas J and Lee, Juyoung and Kim, Bong-Jo and Millwood, Iona Y and Walters, Robin G and Stefansson, Kari and Goodarzi, Mark O and Mohlke, Karen L and Langenberg, Claudia and Haiman, Christopher A and Loos, Ruth J F and Florez, Jose C and Rader, Daniel J and Ritchie, Marylyn D and Z{\"o}llner, Sebastian and M{\"a}gi, Reedik and Denny, Joshua C and Yamauchi, Toshimasa and Kadowaki, Takashi and Chambers, John C and Ng, Maggie C Y and Sim, Xueling and Below, Jennifer E and Tsao, Philip S and Chang, Kyong-Mi and McCarthy, Mark I and Meigs, James B and Mahajan, Anubha and Spracklen, Cassandra N and Mercader, Josep M and Boehnke, Michael and Rotter, Jerome I and Vujkovic, Marijana and Voight, Benjamin F and Morris, Andrew P and Zeggini, Eleftheria} } @article {9619, title = {Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.}, journal = {Nature}, year = {2024}, month = {2024 Feb 19}, abstract = {

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes and molecular mechanisms that are often specific to cell type. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7\% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 {\texttimes} 10) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.

}, issn = {1476-4687}, doi = {10.1038/s41586-024-07019-6}, author = {Suzuki, Ken and Hatzikotoulas, Konstantinos and Southam, Lorraine and Taylor, Henry J and Yin, Xianyong and Lorenz, Kim M and Mandla, Ravi and Huerta-Chagoya, Alicia and Melloni, Giorgio E M and Kanoni, Stavroula and Rayner, Nigel W and Bocher, Ozvan and Arruda, Ana Luiza and Sonehara, Kyuto and Namba, Shinichi and Lee, Simon S K and Preuss, Michael H and Petty, Lauren E and Schroeder, Philip and Vanderwerff, Brett and Kals, Mart and Bragg, Fiona and Lin, Kuang and Guo, Xiuqing and Zhang, Weihua and Yao, Jie and Kim, Young Jin and Graff, Mariaelisa and Takeuchi, Fumihiko and Nano, Jana and Lamri, Amel and Nakatochi, Masahiro and Moon, Sanghoon and Scott, Robert A and Cook, James P and Lee, Jung-Jin and Pan, Ian and Taliun, Daniel and Parra, Esteban J and Chai, Jin-Fang and Bielak, Lawrence F and Tabara, Yasuharu and Hai, Yang and Thorleifsson, Gudmar and Grarup, Niels and Sofer, Tamar and Wuttke, Matthias and Sarnowski, Chloe and Gieger, Christian and Nousome, Darryl and Trompet, Stella and Kwak, Soo-Heon and Long, Jirong and Sun, Meng and Tong, Lin and Chen, Wei-Min and Nongmaithem, Suraj S and Noordam, Raymond and Lim, Victor J Y and Tam, Claudia H T and Joo, Yoonjung Yoonie and Chen, Chien-Hsiun and Raffield, Laura M and Prins, Bram Peter and Nicolas, Aude and Yanek, Lisa R and Chen, Guanjie and Brody, Jennifer A and Kabagambe, Edmond and An, Ping and Xiang, Anny H and Choi, Hyeok Sun and Cade, Brian E and Tan, Jingyi and Broadaway, K Alaine and Williamson, Alice and Kamali, Zoha and Cui, Jinrui and Thangam, Manonanthini and Adair, Linda S and Adeyemo, Adebowale and Aguilar-Salinas, Carlos A and Ahluwalia, Tarunveer S and Anand, Sonia S and Bertoni, Alain and Bork-Jensen, Jette and Brandslund, Ivan and Buchanan, Thomas A and Burant, Charles F and Butterworth, Adam S and Canouil, Micka{\"e}l and Chan, Juliana C N and Chang, Li-Ching and Chee, Miao-Li and Chen, Ji and Chen, Shyh-Huei and Chen, Yuan-Tsong and Chen, Zhengming and Chuang, Lee-Ming and Cushman, Mary and Danesh, John and Das, Swapan K and de Silva, H Janaka and Dedoussis, George and Dimitrov, Latchezar and Doumatey, Ayo P and Du, Shufa and Duan, Qing and Eckardt, Kai-Uwe and Emery, Leslie S and Evans, Daniel S and Evans, Michele K and Fischer, Krista and Floyd, James S and Ford, Ian and Franco, Oscar H and Frayling, Timothy M and Freedman, Barry I and Genter, Pauline and Gerstein, Hertzel C and Giedraitis, Vilmantas and Gonz{\'a}lez-Villalpando, Clicerio and Gonzalez-Villalpando, Maria Elena and Gordon-Larsen, Penny and Gross, Myron and Guare, Lindsay A and Hackinger, Sophie and Hakaste, Liisa and Han, Sohee and Hattersley, Andrew T and Herder, Christian and Horikoshi, Momoko and Howard, Annie-Green and Hsueh, Willa and Huang, Mengna and Huang, Wei and Hung, Yi-Jen and Hwang, Mi Yeong and Hwu, Chii-Min and Ichihara, Sahoko and Ikram, Mohammad Arfan and Ingelsson, Martin and Islam, Md Tariqul and Isono, Masato and Jang, Hye-Mi and Jasmine, Farzana and Jiang, Guozhi and Jonas, Jost B and J{\o}rgensen, Torben and Kamanu, Frederick K and Kandeel, Fouad R and Kasturiratne, Anuradhani and Katsuya, Tomohiro and Kaur, Varinderpal and Kawaguchi, Takahisa and Keaton, Jacob M and Kho, Abel N and Khor, Chiea-Chuen and Kibriya, Muhammad G and Kim, Duk-Hwan and Kronenberg, Florian and Kuusisto, Johanna and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Kyung Min and Lee, Myung-Shik and Lee, Nanette R and Leong, Aaron and Li, Liming and Li, Yun and Li-Gao, Ruifang and Ligthart, Symen and Lindgren, Cecilia M and Linneberg, Allan and Liu, Ching-Ti and Liu, Jianjun and Locke, Adam E and Louie, Tin and Luan, Jian{\textquoteright}an and Luk, Andrea O and Luo, Xi and Lv, Jun and Lynch, Julie A and Lyssenko, Valeriya and Maeda, Shiro and Mamakou, Vasiliki and Mansuri, Sohail Rafik and Matsuda, Koichi and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mo, Huan and Morris, Andrew D and Moura, Filipe A and Nadler, Jerry L and Nalls, Michael A and Nayak, Uma and Ntalla, Ioanna and Okada, Yukinori and Orozco, Lorena and Patel, Sanjay R and Patil, Snehal and Pei, Pei and Pereira, Mark A and Peters, Annette and Pirie, Fraser J and Polikowsky, Hannah G and Porneala, Bianca and Prasad, Gauri and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Roden, Michael and Rohde, Rebecca and Roll, Katheryn and Sabanayagam, Charumathi and Sandow, Kevin and Sankareswaran, Alagu and Sattar, Naveed and Sch{\"o}nherr, Sebastian and Shahriar, Mohammad and Shen, Botong and Shi, Jinxiu and Shin, Dong Mun and Shojima, Nobuhiro and Smith, Jennifer A and So, Wing Yee and Stan{\v c}{\'a}kov{\'a}, Alena and Steinthorsdottir, Valgerdur and Stilp, Adrienne M and Strauch, Konstantin and Taylor, Kent D and Thorand, Barbara and Thorsteinsdottir, Unnur and Tomlinson, Brian and Tran, Tam C and Tsai, Fuu-Jen and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and Valladares-Salgado, Adan and van Dam, Rob M and van Klinken, Jan B and Varma, Rohit and Wacher-Rodarte, Niels and Wheeler, Eleanor and Wickremasinghe, Ananda R and van Dijk, Ko Willems and Witte, Daniel R and Yajnik, Chittaranjan S and Yamamoto, Ken and Yamamoto, Kenichi and Yoon, Kyungheon and Yu, Canqing and Yuan, Jian-Min and Yusuf, Salim and Zawistowski, Matthew and Zhang, Liang and Zheng, Wei and Raffel, Leslie J and Igase, Michiya and Ipp, Eli and Redline, Susan and Cho, Yoon Shin and Lind, Lars and Province, Michael A and Fornage, Myriam and Hanis, Craig L and Ingelsson, Erik and Zonderman, Alan B and Psaty, Bruce M and Wang, Ya-Xing and Rotimi, Charles N and Becker, Diane M and Matsuda, Fumihiko and Liu, Yongmei and Yokota, Mitsuhiro and Kardia, Sharon L R and Peyser, Patricia A and Pankow, James S and Engert, James C and Bonnefond, Am{\'e}lie and Froguel, Philippe and Wilson, James G and Sheu, Wayne H H and Wu, Jer-Yuarn and Hayes, M Geoffrey and Ma, Ronald C W and Wong, Tien-Yin and Mook-Kanamori, Dennis O and Tuomi, Tiinamaija and Chandak, Giriraj R and Collins, Francis S and Bharadwaj, Dwaipayan and Par{\'e}, Guillaume and Sale, Mich{\`e}le M and Ahsan, Habibul and Motala, Ayesha A and Shu, Xiao-Ou and Park, Kyong-Soo and Jukema, J Wouter and Cruz, Miguel and Chen, Yii-Der Ida and Rich, Stephen S and McKean-Cowdin, Roberta and Grallert, Harald and Cheng, Ching-Yu and Ghanbari, Mohsen and Tai, E-Shyong and Dupuis, Jos{\'e}e and Kato, Norihiro and Laakso, Markku and K{\"o}ttgen, Anna and Koh, Woon-Puay and Bowden, Donald W and Palmer, Colin N A and Kooner, Jaspal S and Kooperberg, Charles and Liu, Simin and North, Kari E and Saleheen, Danish and Hansen, Torben and Pedersen, Oluf and Wareham, Nicholas J and Lee, Juyoung and Kim, Bong-Jo and Millwood, Iona Y and Walters, Robin G and Stefansson, Kari and Ahlqvist, Emma and Goodarzi, Mark O and Mohlke, Karen L and Langenberg, Claudia and Haiman, Christopher A and Loos, Ruth J F and Florez, Jose C and Rader, Daniel J and Ritchie, Marylyn D and Z{\"o}llner, Sebastian and M{\"a}gi, Reedik and Marston, Nicholas A and Ruff, Christian T and van Heel, David A and Finer, Sarah and Denny, Joshua C and Yamauchi, Toshimasa and Kadowaki, Takashi and Chambers, John C and Ng, Maggie C Y and Sim, Xueling and Below, Jennifer E and Tsao, Philip S and Chang, Kyong-Mi and McCarthy, Mark I and Meigs, James B and Mahajan, Anubha and Spracklen, Cassandra N and Mercader, Josep M and Boehnke, Michael and Rotter, Jerome I and Vujkovic, Marijana and Voight, Benjamin F and Morris, Andrew P and Zeggini, Eleftheria} } @article {9579, title = {X-chromosome and kidney function: evidence from a multi-trait genetic analysis of 908,697 individuals reveals sex-specific and sex-differential findings in genes regulated by androgen response elements.}, journal = {Nat Commun}, volume = {15}, year = {2024}, month = {2024 Jan 18}, pages = {586}, abstract = {

X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.

}, keywords = {Androgens, Chromosomes, Human, X, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Kidney, Male, Polymorphism, Single Nucleotide, Response Elements, Tetraspanins}, issn = {2041-1723}, doi = {10.1038/s41467-024-44709-1}, author = {Scholz, Markus and Horn, Katrin and Pott, Janne and Wuttke, Matthias and K{\"u}hnapfel, Andreas and Nasr, M Kamal and Kirsten, Holger and Li, Yong and Hoppmann, Anselm and Gorski, Mathias and Ghasemi, Sahar and Li, Man and Tin, Adrienne and Chai, Jin-Fang and Cocca, Massimiliano and Wang, Judy and Nutile, Teresa and Akiyama, Masato and {\r A}svold, Bj{\o}rn Olav and Bansal, Nisha and Biggs, Mary L and Boutin, Thibaud and Brenner, Hermann and Brumpton, Ben and Burkhardt, Ralph and Cai, Jianwen and Campbell, Archie and Campbell, Harry and Chalmers, John and Chasman, Daniel I and Chee, Miao Ling and Chee, Miao Li and Chen, Xu and Cheng, Ching-Yu and Cifkova, Renata and Daviglus, Martha and Delgado, Graciela and Dittrich, Katalin and Edwards, Todd L and Endlich, Karlhans and Michael Gaziano, J and Giri, Ayush and Giulianini, Franco and Gordon, Scott D and Gudbjartsson, Daniel F and Hallan, Stein and Hamet, Pavel and Hartman, Catharina A and Hayward, Caroline and Heid, Iris M and Hellwege, Jacklyn N and Holleczek, Bernd and Holm, Hilma and Hutri-K{\"a}h{\"o}nen, Nina and Hveem, Kristian and Isermann, Berend and Jonas, Jost B and Joshi, Peter K and Kamatani, Yoichiro and Kanai, Masahiro and Kastarinen, Mika and Khor, Chiea Chuen and Kiess, Wieland and Kleber, Marcus E and K{\"o}rner, Antje and Kovacs, Peter and Krajcoviechova, Alena and Kramer, Holly and Kr{\"a}mer, Bernhard K and Kuokkanen, Mikko and K{\"a}h{\"o}nen, Mika and Lange, Leslie A and Lash, James P and Lehtim{\"a}ki, Terho and Li, Hengtong and Lin, Bridget M and Liu, Jianjun and Loeffler, Markus and Lyytik{\"a}inen, Leo-Pekka and Magnusson, Patrik K E and Martin, Nicholas G and Matsuda, Koichi and Milaneschi, Yuri and Mishra, Pashupati P and Mononen, Nina and Montgomery, Grant W and Mook-Kanamori, Dennis O and Mychaleckyj, Josyf C and M{\"a}rz, Winfried and Nauck, Matthias and Nikus, Kjell and Nolte, Ilja M and Noordam, Raymond and Okada, Yukinori and Olafsson, Isleifur and Oldehinkel, Albertine J and Penninx, Brenda W J H and Perola, Markus and Pirastu, Nicola and Polasek, Ozren and Porteous, David J and Poulain, Tanja and Psaty, Bruce M and Rabelink, Ton J and Raffield, Laura M and Raitakari, Olli T and Rasheed, Humaira and Reilly, Dermot F and Rice, Kenneth M and Richmond, Anne and Ridker, Paul M and Rotter, Jerome I and Rudan, Igor and Sabanayagam, Charumathi and Salomaa, Veikko and Schneiderman, Neil and Sch{\"o}ttker, Ben and Sims, Mario and Snieder, Harold and Stark, Klaus J and Stefansson, Kari and Stocker, Hannah and Stumvoll, Michael and Sulem, Patrick and Sveinbjornsson, Gardar and Svensson, Per O and Tai, E-Shyong and Taylor, Kent D and Tayo, Bamidele O and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H L and Thomas, Laurent F and Tremblay, Johanne and T{\"o}njes, Anke and van der Most, Peter J and Vitart, Veronique and V{\"o}lker, Uwe and Wang, Ya Xing and Wang, Chaolong and Wei, Wen Bin and Whitfield, John B and Wild, Sarah H and Wilson, James F and Winkler, Thomas W and Wong, Tien-Yin and Woodward, Mark and Sim, Xueling and Chu, Audrey Y and Feitosa, Mary F and Thorsteinsdottir, Unnur and Hung, Adriana M and Teumer, Alexander and Franceschini, Nora and Parsa, Afshin and K{\"o}ttgen, Anna and Schlosser, Pascal and Pattaro, Cristian} }