@article {1271, title = {CUBN is a gene locus for albuminuria.}, journal = {J Am Soc Nephrol}, volume = {22}, year = {2011}, month = {2011 Mar}, pages = {555-70}, abstract = {

Identification of genetic risk factors for albuminuria may alter strategies for early prevention of CKD progression, particularly among patients with diabetes. Little is known about the influence of common genetic variants on albuminuria in both general and diabetic populations. We performed a meta-analysis of data from 63,153 individuals of European ancestry with genotype information from genome-wide association studies (CKDGen Consortium) and from a large candidate gene study (CARe Consortium) to identify susceptibility loci for the quantitative trait urinary albumin-to-creatinine ratio (UACR) and the clinical diagnosis microalbuminuria. We identified an association between a missense variant (I2984V) in the CUBN gene, which encodes cubilin, and both UACR (P = 1.1 {\texttimes} 10(-11)) and microalbuminuria (P = 0.001). We observed similar associations among 6981 African Americans in the CARe Consortium. The associations between this variant and both UACR and microalbuminuria were significant in individuals of European ancestry regardless of diabetes status. Finally, this variant associated with a 41\% increased risk for the development of persistent microalbuminuria during 20 years of follow-up among 1304 participants with type 1 diabetes in the prospective DCCT/EDIC Study. In summary, we identified a missense CUBN variant that associates with levels of albuminuria in both the general population and in individuals with diabetes.

}, keywords = {African Continental Ancestry Group, Albuminuria, European Continental Ancestry Group, Genetic Loci, Genetic Predisposition to Disease, Humans, Mutation, Missense, Receptors, Cell Surface}, issn = {1533-3450}, doi = {10.1681/ASN.2010060598}, author = {B{\"o}ger, Carsten A and Chen, Ming-Huei and Tin, Adrienne and Olden, Matthias and K{\"o}ttgen, Anna and de Boer, Ian H and Fuchsberger, Christian and O{\textquoteright}Seaghdha, Conall M and Pattaro, Cristian and Teumer, Alexander and Liu, Ching-Ti and Glazer, Nicole L and Li, Man and O{\textquoteright}Connell, Jeffrey R and Tanaka, Toshiko and Peralta, Carmen A and Kutalik, Zolt{\'a}n and Luan, Jian{\textquoteright}an and Zhao, Jing Hua and Hwang, Shih-Jen and Akylbekova, Ermeg and Kramer, Holly and van der Harst, Pim and Smith, Albert V and Lohman, Kurt and de Andrade, Mariza and Hayward, Caroline and Kollerits, Barbara and T{\"o}njes, Anke and Aspelund, Thor and Ingelsson, Erik and Eiriksdottir, Gudny and Launer, Lenore J and Harris, Tamara B and Shuldiner, Alan R and Mitchell, Braxton D and Arking, Dan E and Franceschini, Nora and Boerwinkle, Eric and Egan, Josephine and Hernandez, Dena and Reilly, Muredach and Townsend, Raymond R and Lumley, Thomas and Siscovick, David S and Psaty, Bruce M and Kestenbaum, Bryan and Haritunians, Talin and Bergmann, Sven and Vollenweider, Peter and Waeber, G{\'e}rard and Mooser, Vincent and Waterworth, Dawn and Johnson, Andrew D and Florez, Jose C and Meigs, James B and Lu, Xiaoning and Turner, Stephen T and Atkinson, Elizabeth J and Leak, Tennille S and Aasar{\o}d, Knut and Skorpen, Frank and Syv{\"a}nen, Ann-Christine and Illig, Thomas and Baumert, Jens and Koenig, Wolfgang and Kr{\"a}mer, Bernhard K and Devuyst, Olivier and Mychaleckyj, Josyf C and Minelli, Cosetta and Bakker, Stephan J L and Kedenko, Lyudmyla and Paulweber, Bernhard and Coassin, Stefan and Endlich, Karlhans and Kroemer, Heyo K and Biffar, Reiner and Stracke, Sylvia and V{\"o}lzke, Henry and Stumvoll, Michael and M{\"a}gi, Reedik and Campbell, Harry and Vitart, Veronique and Hastie, Nicholas D and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Polasek, Ozren and Curhan, Gary and Kronenberg, Florian and Prokopenko, Inga and Rudan, Igor and Arnl{\"o}v, Johan and Hallan, Stein and Navis, Gerjan and Parsa, Afshin and Ferrucci, Luigi and Coresh, Josef and Shlipak, Michael G and Bull, Shelley B and Paterson, Nicholas J and Wichmann, H-Erich and Wareham, Nicholas J and Loos, Ruth J F and Rotter, Jerome I and Pramstaller, Peter P and Cupples, L Adrienne and Beckmann, Jacques S and Yang, Qiong and Heid, Iris M and Rettig, Rainer and Dreisbach, Albert W and Bochud, Murielle and Fox, Caroline S and Kao, W H L} } @article {1327, title = {Genetic association for renal traits among participants of African ancestry reveals new loci for renal function.}, journal = {PLoS Genet}, volume = {7}, year = {2011}, month = {2011 Sep}, pages = {e1002264}, abstract = {

Chronic kidney disease (CKD) is an increasing global public health concern, particularly among populations of African ancestry. We performed an interrogation of known renal loci, genome-wide association (GWA), and IBC candidate-gene SNP association analyses in African Americans from the CARe Renal Consortium. In up to 8,110 participants, we performed meta-analyses of GWA and IBC array data for estimated glomerular filtration rate (eGFR), CKD (eGFR <60 mL/min/1.73 m(2)), urinary albumin-to-creatinine ratio (UACR), and microalbuminuria (UACR >30 mg/g) and interrogated the 250 kb flanking region around 24 SNPs previously identified in European Ancestry renal GWAS analyses. Findings were replicated in up to 4,358 African Americans. To assess function, individually identified genes were knocked down in zebrafish embryos by morpholino antisense oligonucleotides. Expression of kidney-specific genes was assessed by in situ hybridization, and glomerular filtration was evaluated by dextran clearance. Overall, 23 of 24 previously identified SNPs had direction-consistent associations with eGFR in African Americans, 2 of which achieved nominal significance (UMOD, PIP5K1B). Interrogation of the flanking regions uncovered 24 new index SNPs in African Americans, 12 of which were replicated (UMOD, ANXA9, GCKR, TFDP2, DAB2, VEGFA, ATXN2, GATM, SLC22A2, TMEM60, SLC6A13, and BCAS3). In addition, we identified 3 suggestive loci at DOK6 (p-value = 5.3{\texttimes}10(-7)) and FNDC1 (p-value = 3.0{\texttimes}10(-7)) for UACR, and KCNQ1 with eGFR (p = 3.6{\texttimes}10(-6)). Morpholino knockdown of kcnq1 in the zebrafish resulted in abnormal kidney development and filtration capacity. We identified several SNPs in association with eGFR in African Ancestry individuals, as well as 3 suggestive loci for UACR and eGFR. Functional genetic studies support a role for kcnq1 in glomerular development in zebrafish.

}, keywords = {Adaptor Proteins, Vesicular Transport, Adult, African Continental Ancestry Group, Aged, Animals, Female, Gene Knockdown Techniques, Genetic Association Studies, Genetic Loci, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, KCNQ1 Potassium Channel, Kidney, Kidney Failure, Chronic, Male, Middle Aged, Neoplasm Proteins, Phenotype, Polymorphism, Single Nucleotide, Zebrafish}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002264}, author = {Liu, Ching-Ti and Garnaas, Maija K and Tin, Adrienne and K{\"o}ttgen, Anna and Franceschini, Nora and Peralta, Carmen A and de Boer, Ian H and Lu, Xiaoning and Atkinson, Elizabeth and Ding, Jingzhong and Nalls, Michael and Shriner, Daniel and Coresh, Josef and Kutlar, Abdullah and Bibbins-Domingo, Kirsten and Siscovick, David and Akylbekova, Ermeg and Wyatt, Sharon and Astor, Brad and Mychaleckjy, Josef and Li, Man and Reilly, Muredach P and Townsend, Raymond R and Adeyemo, Adebowale and Zonderman, Alan B and de Andrade, Mariza and Turner, Stephen T and Mosley, Thomas H and Harris, Tamara B and Rotimi, Charles N and Liu, Yongmei and Kardia, Sharon L R and Evans, Michele K and Shlipak, Michael G and Kramer, Holly and Flessner, Michael F and Dreisbach, Albert W and Goessling, Wolfram and Cupples, L Adrienne and Kao, W Linda and Fox, Caroline S} } @article {1305, title = {Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele.}, journal = {Hum Mol Genet}, volume = {20}, year = {2011}, month = {2011 Oct 15}, pages = {4056-68}, abstract = {

Serum urate concentrations are highly heritable and elevated serum urate is a key risk factor for gout. Genome-wide association studies (GWAS) of serum urate in African American (AA) populations are lacking. We conducted a meta-analysis of GWAS of serum urate levels and gout among 5820 AA and a large candidate gene study among 6890 AA and 21 708 participants of European ancestry (EA) within the Candidate Gene Association Resource Consortium. Findings were tested for replication among 1996 independent AA individuals, and evaluated for their association among 28 283 EA participants of the CHARGE Consortium. Functional studies were conducted using (14)C-urate transport assays in mammalian Chinese hamster ovary cells. In the discovery GWAS of serum urate, three loci achieved genome-wide significance (P< 5.0 {\texttimes} 10(-8)): a novel locus near SGK1/SLC2A12 on chromosome 6 (rs9321453, P= 1.0 {\texttimes} 10(-9)), and two loci previously identified in EA participants, SLC2A9 (P= 3.8 {\texttimes} 10(-32)) and SLC22A12 (P= 2.1 {\texttimes} 10(-10)). A novel rare non-synonymous variant of large effect size in SLC22A12, rs12800450 (minor allele frequency 0.01, G65W), was identified and replicated (beta -1.19 mg/dl, P= 2.7 {\texttimes} 10(-16)). (14)C-urate transport assays showed reduced urate transport for the G65W URAT1 mutant. Finally, in analyses of 11 loci previously associated with serum urate in EA individuals, 10 of 11 lead single-nucleotide polymorphisms showed direction-consistent association with urate among AA. In summary, we identified and replicated one novel locus in association with serum urate levels and experimentally characterize the novel G65W variant in URAT1 as a functional allele. Our data support the importance of multi-ethnic GWAS in the identification of novel risk loci as well as functional variants.

}, keywords = {Adult, African Americans, Aged, Animals, CHO Cells, Cricetinae, European Continental Ancestry Group, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Gout, Humans, Loss of Heterozygosity, Male, Middle Aged, Organic Anion Transporters, Organic Cation Transport Proteins, Polymorphism, Single Nucleotide, Uric Acid, Young Adult}, issn = {1460-2083}, doi = {10.1093/hmg/ddr307}, author = {Tin, Adrienne and Woodward, Owen M and Kao, Wen Hong Linda and Liu, Ching-Ti and Lu, Xiaoning and Nalls, Michael A and Shriner, Daniel and Semmo, Mariam and Akylbekova, Ermeg L and Wyatt, Sharon B and Hwang, Shih-Jen and Yang, Qiong and Zonderman, Alan B and Adeyemo, Adebowale A and Palmer, Cameron and Meng, Yan and Reilly, Muredach and Shlipak, Michael G and Siscovick, David and Evans, Michele K and Rotimi, Charles N and Flessner, Michael F and K{\"o}ttgen, Michael and Cupples, L Adrienne and Fox, Caroline S and K{\"o}ttgen, Anna} } @article {1258, title = {Meta-analysis of gene-environment interaction: joint estimation of SNP and SNP {\texttimes} environment regression coefficients.}, journal = {Genet Epidemiol}, volume = {35}, year = {2011}, month = {2011 Jan}, pages = {11-8}, abstract = {

INTRODUCTION: Genetic discoveries are validated through the meta-analysis of genome-wide association scans in large international consortia. Because environmental variables may interact with genetic factors, investigation of differing genetic effects for distinct levels of an environmental exposure in these large consortia may yield additional susceptibility loci undetected by main effects analysis. We describe a method of joint meta-analysis (JMA) of SNP and SNP by Environment (SNP {\texttimes} E) regression coefficients for use in gene-environment interaction studies.

METHODS: In testing SNP {\texttimes} E interactions, one approach uses a two degree of freedom test to identify genetic variants that influence the trait of interest. This approach detects both main and interaction effects between the trait and the SNP. We propose a method to jointly meta-analyze the SNP and SNP {\texttimes} E coefficients using multivariate generalized least squares. This approach provides confidence intervals of the two estimates, a joint significance test for SNP and SNP {\texttimes} E terms, and a test of homogeneity across samples.

RESULTS: We present a simulation study comparing this method to four other methods of meta-analysis and demonstrate that the JMA performs better than the others when both main and interaction effects are present. Additionally, we implemented our methods in a meta-analysis of the association between SNPs from the type 2 diabetes-associated gene PPARG and log-transformed fasting insulin levels and interaction by body mass index in a combined sample of 19,466 individuals from five cohorts.

}, keywords = {Adult, Aged, Body Mass Index, Confidence Intervals, Diabetes Mellitus, Type 2, Environment, Fasting, Female, Genome, Human, Genome-Wide Association Study, Genotype, Humans, Insulin, Least-Squares Analysis, Male, Mathematical Computing, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide, PPAR gamma}, issn = {1098-2272}, doi = {10.1002/gepi.20546}, author = {Manning, Alisa K and LaValley, Michael and Liu, Ching-Ti and Rice, Kenneth and An, Ping and Liu, Yongmei and Miljkovic, Iva and Rasmussen-Torvik, Laura and Harris, Tamara B and Province, Michael A and Borecki, Ingrid B and Florez, Jose C and Meigs, James B and Cupples, L Adrienne and Dupuis, Jos{\'e}e} } @article {1556, title = {Assessment of gene-by-sex interaction effect on bone mineral density.}, journal = {J Bone Miner Res}, volume = {27}, year = {2012}, month = {2012 Oct}, pages = {2051-64}, abstract = {

Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts. In a second stage, we followed up the 12 top single-nucleotide polymorphisms (SNPs; p < 1 {\texttimes} 10(-5) ) in an additional set of 24,763 individuals. Gene-by-sex interaction and sex-specific effects were examined in these 12 SNPs. We detected one novel genome-wide significant interaction associated with LS-BMD at the Chr3p26.1-p25.1 locus, near the GRM7 gene (male effect = 0.02 and p = 3.0 {\texttimes} 10(-5) ; female effect = -0.007 and p = 3.3 {\texttimes} 10(-2) ), and 11 suggestive loci associated with either FN- or LS-BMD in discovery cohorts. However, there was no evidence for genome-wide significant (p < 5 {\texttimes} 10(-8) ) gene-by-sex interaction in the joint analysis of discovery and replication cohorts. Despite the large collaborative effort, no genome-wide significant evidence for gene-by-sex interaction was found to influence BMD variation in this screen of autosomal markers. If they exist, gene-by-sex interactions for BMD probably have weak effects, accounting for less than 0.08\% of the variation in these traits per implicated SNP. {\textcopyright} 2012 American Society for Bone and Mineral Research.

}, keywords = {Bone Density, Cohort Studies, Female, Genes, Genome-Wide Association Study, Humans, Male, Meta-Analysis as Topic, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Reproducibility of Results, Sex Characteristics}, issn = {1523-4681}, doi = {10.1002/jbmr.1679}, author = {Liu, Ching-Ti and Estrada, Karol and Yerges-Armstrong, Laura M and Amin, Najaf and Evangelou, Evangelos and Li, Guo and Minster, Ryan L and Carless, Melanie A and Kammerer, Candace M and Oei, Ling and Zhou, Yanhua and Alonso, Nerea and Dailiana, Zoe and Eriksson, Joel and Garc{\'\i}a-Giralt, Natalia and Giroux, Sylvie and Husted, Lise Bjerre and Khusainova, Rita I and Koromila, Theodora and Kung, Annie Waichee and Lewis, Joshua R and Masi, Laura and Mencej-Bedrac, Simona and Nogues, Xavier and Patel, Millan S and Prezelj, Janez and Richards, J Brent and Sham, Pak Chung and Spector, Timothy and Vandenput, Liesbeth and Xiao, Su-Mei and Zheng, Hou-Feng and Zhu, Kun and Balcells, Susana and Brandi, Maria Luisa and Frost, Morten and Goltzman, David and Gonz{\'a}lez-Mac{\'\i}as, Jes{\'u}s and Karlsson, Magnus and Khusnutdinova, Elza K and Kollia, Panagoula and Langdahl, Bente Lomholt and Ljunggren, Osten and Lorentzon, Mattias and Marc, Janja and Mellstr{\"o}m, Dan and Ohlsson, Claes and Olmos, Jos{\'e} M and Ralston, Stuart H and Riancho, Jos{\'e} A and Rousseau, Fran{\c c}ois and Urreizti, Roser and Van Hul, Wim and Zarrabeitia, Mar{\'\i}a T and Castano-Betancourt, Martha and Demissie, Serkalem and Grundberg, Elin and Herrera, Lizbeth and Kwan, Tony and Medina-G{\'o}mez, Carolina and Pastinen, Tomi and Sigurdsson, Gunnar and Thorleifsson, Gudmar and Vanmeurs, Joyce Bj and Blangero, John and Hofman, Albert and Liu, Yongmei and Mitchell, Braxton D and O{\textquoteright}Connell, Jeffrey R and Oostra, Ben A and Rotter, Jerome I and Stefansson, Kari and Streeten, Elizabeth A and Styrkarsdottir, Unnur and Thorsteinsdottir, Unnur and Tylavsky, Frances A and Uitterlinden, Andre and Cauley, Jane A and Harris, Tamara B and Ioannidis, John Pa and Psaty, Bruce M and Robbins, John A and Zillikens, M Carola and Vanduijn, Cornelia M and Prince, Richard L and Karasik, David and Rivadeneira, Fernando and Kiel, Douglas P and Cupples, L Adrienne and Hsu, Yi-Hsiang} } @article {1377, title = {Genome-wide association and functional follow-up reveals new loci for kidney function.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1002584}, abstract = {

Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

}, keywords = {African Americans, Aged, Animals, Caspase 9, Cyclin-Dependent Kinases, DEAD-box RNA Helicases, DNA Helicases, European Continental Ancestry Group, Female, Follow-Up Studies, Gene Knockdown Techniques, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Kidney, Kidney Failure, Chronic, Male, Middle Aged, Phosphoric Diester Hydrolases, Zebrafish}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002584}, author = {Pattaro, Cristian and K{\"o}ttgen, Anna and Teumer, Alexander and Garnaas, Maija and B{\"o}ger, Carsten A and Fuchsberger, Christian and Olden, Matthias and Chen, Ming-Huei and Tin, Adrienne and Taliun, Daniel and Li, Man and Gao, Xiaoyi and Gorski, Mathias and Yang, Qiong and Hundertmark, Claudia and Foster, Meredith C and O{\textquoteright}Seaghdha, Conall M and Glazer, Nicole and Isaacs, Aaron and Liu, Ching-Ti and Smith, Albert V and O{\textquoteright}Connell, Jeffrey R and Struchalin, Maksim and Tanaka, Toshiko and Li, Guo and Johnson, Andrew D and Gierman, Hinco J and Feitosa, Mary and Hwang, Shih-Jen and Atkinson, Elizabeth J and Lohman, Kurt and Cornelis, Marilyn C and Johansson, Asa and T{\"o}njes, Anke and Dehghan, Abbas and Chouraki, Vincent and Holliday, Elizabeth G and Sorice, Rossella and Kutalik, Zolt{\'a}n and Lehtim{\"a}ki, Terho and Esko, T{\~o}nu and Deshmukh, Harshal and Ulivi, Sheila and Chu, Audrey Y and Murgia, Federico and Trompet, Stella and Imboden, Medea and Kollerits, Barbara and Pistis, Giorgio and Harris, Tamara B and Launer, Lenore J and Aspelund, Thor and Eiriksdottir, Gudny and Mitchell, Braxton D and Boerwinkle, Eric and Schmidt, Helena and Cavalieri, Margherita and Rao, Madhumathi and Hu, Frank B and Demirkan, Ayse and Oostra, Ben A and de Andrade, Mariza and Turner, Stephen T and Ding, Jingzhong and Andrews, Jeanette S and Freedman, Barry I and Koenig, Wolfgang and Illig, Thomas and D{\"o}ring, Angela and Wichmann, H-Erich and Kolcic, Ivana and Zemunik, Tatijana and Boban, Mladen and Minelli, Cosetta and Wheeler, Heather E and Igl, Wilmar and Zaboli, Ghazal and Wild, Sarah H and Wright, Alan F and Campbell, Harry and Ellinghaus, David and N{\"o}thlings, Ute and Jacobs, Gunnar and Biffar, Reiner and Endlich, Karlhans and Ernst, Florian and Homuth, Georg and Kroemer, Heyo K and Nauck, Matthias and Stracke, Sylvia and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Kovacs, Peter and Stumvoll, Michael and M{\"a}gi, Reedik and Hofman, Albert and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Aulchenko, Yurii S and Polasek, Ozren and Hastie, Nick and Vitart, Veronique and Helmer, Catherine and Wang, Jie Jin and Ruggiero, Daniela and Bergmann, Sven and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Nikopensius, Tiit and Province, Michael and Ketkar, Shamika and Colhoun, Helen and Doney, Alex and Robino, Antonietta and Giulianini, Franco and Kr{\"a}mer, Bernhard K and Portas, Laura and Ford, Ian and Buckley, Brendan M and Adam, Martin and Thun, Gian-Andri and Paulweber, Bernhard and Haun, Margot and Sala, Cinzia and Metzger, Marie and Mitchell, Paul and Ciullo, Marina and Kim, Stuart K and Vollenweider, Peter and Raitakari, Olli and Metspalu, Andres and Palmer, Colin and Gasparini, Paolo and Pirastu, Mario and Jukema, J Wouter and Probst-Hensch, Nicole M and Kronenberg, Florian and Toniolo, Daniela and Gudnason, Vilmundur and Shuldiner, Alan R and Coresh, Josef and Schmidt, Reinhold and Ferrucci, Luigi and Siscovick, David S and van Duijn, Cornelia M and Borecki, Ingrid and Kardia, Sharon L R and Liu, Yongmei and Curhan, Gary C and Rudan, Igor and Gyllensten, Ulf and Wilson, James F and Franke, Andre and Pramstaller, Peter P and Rettig, Rainer and Prokopenko, Inga and Witteman, Jacqueline C M and Hayward, Caroline and Ridker, Paul and Parsa, Afshin and Bochud, Murielle and Heid, Iris M and Goessling, Wolfram and Chasman, Daniel I and Kao, W H Linda and Fox, Caroline S} } @article {8016, title = {Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.}, journal = {Nat Genet}, volume = {44}, year = {2012}, month = {2012 Apr 15}, pages = {491-501}, abstract = {

Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 {\texttimes} 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 {\texttimes} 10(-4), Bonferroni corrected), of which six reached P < 5 {\texttimes} 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.

}, keywords = {Bone Density, Computational Biology, European Continental Ancestry Group, Extracellular Matrix Proteins, Female, Femur Neck, Fractures, Bone, Gene Expression Profiling, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Glycoproteins, Humans, Intercellular Signaling Peptides and Proteins, Low Density Lipoprotein Receptor-Related Protein-5, Lumbar Vertebrae, Male, Mitochondrial Membrane Transport Proteins, Osteoporosis, Phosphoproteins, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Risk Factors, Spectrin}, issn = {1546-1718}, doi = {10.1038/ng.2249}, author = {Estrada, Karol and Styrkarsdottir, Unnur and Evangelou, Evangelos and Hsu, Yi-Hsiang and Duncan, Emma L and Ntzani, Evangelia E and Oei, Ling and Albagha, Omar M E and Amin, Najaf and Kemp, John P and Koller, Daniel L and Li, Guo and Liu, Ching-Ti and Minster, Ryan L and Moayyeri, Alireza and Vandenput, Liesbeth and Willner, Dana and Xiao, Su-Mei and Yerges-Armstrong, Laura M and Zheng, Hou-Feng and Alonso, Nerea and Eriksson, Joel and Kammerer, Candace M and Kaptoge, Stephen K and Leo, Paul J and Thorleifsson, Gudmar and Wilson, Scott G and Wilson, James F and Aalto, Ville and Alen, Markku and Aragaki, Aaron K and Aspelund, Thor and Center, Jacqueline R and Dailiana, Zoe and Duggan, David J and Garcia, Melissa and Garc{\'\i}a-Giralt, Natalia and Giroux, Sylvie and Hallmans, G{\"o}ran and Hocking, Lynne J and Husted, Lise Bjerre and Jameson, Karen A and Khusainova, Rita and Kim, Ghi Su and Kooperberg, Charles and Koromila, Theodora and Kruk, Marcin and Laaksonen, Marika and LaCroix, Andrea Z and Lee, Seung Hun and Leung, Ping C and Lewis, Joshua R and Masi, Laura and Mencej-Bedrac, Simona and Nguyen, Tuan V and Nogues, Xavier and Patel, Millan S and Prezelj, Janez and Rose, Lynda M and Scollen, Serena and Siggeirsdottir, Kristin and Smith, Albert V and Svensson, Olle and Trompet, Stella and Trummer, Olivia and van Schoor, Natasja M and Woo, Jean and Zhu, Kun and Balcells, Susana and Brandi, Maria Luisa and Buckley, Brendan M and Cheng, Sulin and Christiansen, Claus and Cooper, Cyrus and Dedoussis, George and Ford, Ian and Frost, Morten and Goltzman, David and Gonz{\'a}lez-Mac{\'\i}as, Jes{\'u}s and K{\"a}h{\"o}nen, Mika and Karlsson, Magnus and Khusnutdinova, Elza and Koh, Jung-Min and Kollia, Panagoula and Langdahl, Bente Lomholt and Leslie, William D and Lips, Paul and Ljunggren, Osten and Lorenc, Roman S and Marc, Janja and Mellstr{\"o}m, Dan and Obermayer-Pietsch, Barbara and Olmos, Jos{\'e} M and Pettersson-Kymmer, Ulrika and Reid, David M and Riancho, Jos{\'e} A and Ridker, Paul M and Rousseau, Fran{\c c}ois and Slagboom, P Eline and Tang, Nelson L S and Urreizti, Roser and Van Hul, Wim and Viikari, Jorma and Zarrabeitia, Mar{\'\i}a T and Aulchenko, Yurii S and Castano-Betancourt, Martha and Grundberg, Elin and Herrera, Lizbeth and Ingvarsson, Thorvaldur and Johannsdottir, Hrefna and Kwan, Tony and Li, Rui and Luben, Robert and Medina-G{\'o}mez, Carolina and Palsson, Stefan Th and Reppe, Sjur and Rotter, Jerome I and Sigurdsson, Gunnar and van Meurs, Joyce B J and Verlaan, Dominique and Williams, Frances M K and Wood, Andrew R and Zhou, Yanhua and Gautvik, Kaare M and Pastinen, Tomi and Raychaudhuri, Soumya and Cauley, Jane A and Chasman, Daniel I and Clark, Graeme R and Cummings, Steven R and Danoy, Patrick and Dennison, Elaine M and Eastell, Richard and Eisman, John A and Gudnason, Vilmundur and Hofman, Albert and Jackson, Rebecca D and Jones, Graeme and Jukema, J Wouter and Khaw, Kay-Tee and Lehtim{\"a}ki, Terho and Liu, Yongmei and Lorentzon, Mattias and McCloskey, Eugene and Mitchell, Braxton D and Nandakumar, Kannabiran and Nicholson, Geoffrey C and Oostra, Ben A and Peacock, Munro and Pols, Huibert A P and Prince, Richard L and Raitakari, Olli and Reid, Ian R and Robbins, John and Sambrook, Philip N and Sham, Pak Chung and Shuldiner, Alan R and Tylavsky, Frances A and van Duijn, Cornelia M and Wareham, Nick J and Cupples, L Adrienne and Econs, Michael J and Evans, David M and Harris, Tamara B and Kung, Annie Wai Chee and Psaty, Bruce M and Reeve, Jonathan and Spector, Timothy D and Streeten, Elizabeth A and Zillikens, M Carola and Thorsteinsdottir, Unnur and Ohlsson, Claes and Karasik, David and Richards, J Brent and Brown, Matthew A and Stefansson, Kari and Uitterlinden, Andr{\'e} G and Ralston, Stuart H and Ioannidis, John P A and Kiel, Douglas P and Rivadeneira, Fernando} } @article {6091, title = {Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.}, journal = {Nat Genet}, volume = {44}, year = {2012}, month = {2012 Sep}, pages = {991-1005}, abstract = {

Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.

}, keywords = {Adult, Animals, Blood Glucose, Fasting, Female, Gene Frequency, Genome-Wide Association Study, Humans, Insulin, Male, Metabolic Networks and Pathways, Mice, Osmolar Concentration, Quantitative Trait Loci}, issn = {1546-1718}, doi = {10.1038/ng.2385}, author = {Scott, Robert A and Lagou, Vasiliki and Welch, Ryan P and Wheeler, Eleanor and Montasser, May E and Luan, Jian{\textquoteright}an and M{\"a}gi, Reedik and Strawbridge, Rona J and Rehnberg, Emil and Gustafsson, Stefan and Kanoni, Stavroula and Rasmussen-Torvik, Laura J and Yengo, Loic and Lecoeur, C{\'e}cile and Shungin, Dmitry and Sanna, Serena and Sidore, Carlo and Johnson, Paul C D and Jukema, J Wouter and Johnson, Toby and Mahajan, Anubha and Verweij, Niek and Thorleifsson, Gudmar and Hottenga, Jouke-Jan and Shah, Sonia and Smith, Albert V and Sennblad, Bengt and Gieger, Christian and Salo, Perttu and Perola, Markus and Timpson, Nicholas J and Evans, David M and Pourcain, Beate St and Wu, Ying and Andrews, Jeanette S and Hui, Jennie and Bielak, Lawrence F and Zhao, Wei and Horikoshi, Momoko and Navarro, Pau and Isaacs, Aaron and O{\textquoteright}Connell, Jeffrey R and Stirrups, Kathleen and Vitart, Veronique and Hayward, Caroline and Esko, T{\~o}nu and Mihailov, Evelin and Fraser, Ross M and Fall, Tove and Voight, Benjamin F and Raychaudhuri, Soumya and Chen, Han and Lindgren, Cecilia M and Morris, Andrew P and Rayner, Nigel W and Robertson, Neil and Rybin, Denis and Liu, Ching-Ti and Beckmann, Jacques S and Willems, Sara M and Chines, Peter S and Jackson, Anne U and Kang, Hyun Min and Stringham, Heather M and Song, Kijoung and Tanaka, Toshiko and Peden, John F and Goel, Anuj and Hicks, Andrew A and An, Ping and M{\"u}ller-Nurasyid, Martina and Franco-Cereceda, Anders and Folkersen, Lasse and Marullo, Letizia and Jansen, Hanneke and Oldehinkel, Albertine J and Bruinenberg, Marcel and Pankow, James S and North, Kari E and Forouhi, Nita G and Loos, Ruth J F and Edkins, Sarah and Varga, Tibor V and Hallmans, G{\"o}ran and Oksa, Heikki and Antonella, Mulas and Nagaraja, Ramaiah and Trompet, Stella and Ford, Ian and Bakker, Stephan J L and Kong, Augustine and Kumari, Meena and Gigante, Bruna and Herder, Christian and Munroe, Patricia B and Caulfield, Mark and Antti, Jula and Mangino, Massimo and Small, Kerrin and Miljkovic, Iva and Liu, Yongmei and Atalay, Mustafa and Kiess, Wieland and James, Alan L and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Palmer, Colin N A and Doney, Alex S F and Willemsen, Gonneke and Smit, Johannes H and Campbell, Susan and Polasek, Ozren and Bonnycastle, Lori L and Hercberg, Serge and Dimitriou, Maria and Bolton, Jennifer L and Fowkes, Gerard R and Kovacs, Peter and Lindstr{\"o}m, Jaana and Zemunik, Tatijana and Bandinelli, Stefania and Wild, Sarah H and Basart, Hanneke V and Rathmann, Wolfgang and Grallert, Harald and Maerz, Winfried and Kleber, Marcus E and Boehm, Bernhard O and Peters, Annette and Pramstaller, Peter P and Province, Michael A and Borecki, Ingrid B and Hastie, Nicholas D and Rudan, Igor and Campbell, Harry and Watkins, Hugh and Farrall, Martin and Stumvoll, Michael and Ferrucci, Luigi and Waterworth, Dawn M and Bergman, Richard N and Collins, Francis S and Tuomilehto, Jaakko and Watanabe, Richard M and de Geus, Eco J C and Penninx, Brenda W and Hofman, Albert and Oostra, Ben A and Psaty, Bruce M and Vollenweider, Peter and Wilson, James F and Wright, Alan F and Hovingh, G Kees and Metspalu, Andres and Uusitupa, Matti and Magnusson, Patrik K E and Kyvik, Kirsten O and Kaprio, Jaakko and Price, Jackie F and Dedoussis, George V and Deloukas, Panos and Meneton, Pierre and Lind, Lars and Boehnke, Michael and Shuldiner, Alan R and van Duijn, Cornelia M and Morris, Andrew D and Toenjes, Anke and Peyser, Patricia A and Beilby, John P and K{\"o}rner, Antje and Kuusisto, Johanna and Laakso, Markku and Bornstein, Stefan R and Schwarz, Peter E H and Lakka, Timo A and Rauramaa, Rainer and Adair, Linda S and Smith, George Davey and Spector, Tim D and Illig, Thomas and de Faire, Ulf and Hamsten, Anders and Gudnason, Vilmundur and Kivimaki, Mika and Hingorani, Aroon and Keinanen-Kiukaanniemi, Sirkka M and Saaristo, Timo E and Boomsma, Dorret I and Stefansson, Kari and van der Harst, Pim and Dupuis, Jos{\'e}e and Pedersen, Nancy L and Sattar, Naveed and Harris, Tamara B and Cucca, Francesco and Ripatti, Samuli and Salomaa, Veikko and Mohlke, Karen L and Balkau, Beverley and Froguel, Philippe and Pouta, Anneli and Jarvelin, Marjo-Riitta and Wareham, Nicholas J and Bouatia-Naji, Nabila and McCarthy, Mark I and Franks, Paul W and Meigs, James B and Teslovich, Tanya M and Florez, Jose C and Langenberg, Claudia and Ingelsson, Erik and Prokopenko, Inga and Barroso, In{\^e}s} } @article {1378, title = {Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1002607}, abstract = {

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5{\texttimes}10(-8)-1.2{\texttimes}10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3{\texttimes}10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3{\texttimes}10(-3), n = 22,044), increased triglycerides (p = 2.6{\texttimes}10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8{\texttimes}10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4{\texttimes}10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5{\texttimes}10(-13), n = 96,748) and decreased BMI (p = 1.4{\texttimes}10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

}, keywords = {Adiponectin, African Americans, Asian Continental Ancestry Group, Cholesterol, HDL, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Female, Gene Expression, Genetic Predisposition to Disease, Genome-Wide Association Study, Glucose Tolerance Test, Humans, Insulin Resistance, Male, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide, Waist-Hip Ratio}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002607}, author = {Dastani, Zari and Hivert, Marie-France and Timpson, Nicholas and Perry, John R B and Yuan, Xin and Scott, Robert A and Henneman, Peter and Heid, Iris M and Kizer, Jorge R and Lyytik{\"a}inen, Leo-Pekka and Fuchsberger, Christian and Tanaka, Toshiko and Morris, Andrew P and Small, Kerrin and Isaacs, Aaron and Beekman, Marian and Coassin, Stefan and Lohman, Kurt and Qi, Lu and Kanoni, Stavroula and Pankow, James S and Uh, Hae-Won and Wu, Ying and Bidulescu, Aurelian and Rasmussen-Torvik, Laura J and Greenwood, Celia M T and Ladouceur, Martin and Grimsby, Jonna and Manning, Alisa K and Liu, Ching-Ti and Kooner, Jaspal and Mooser, Vincent E and Vollenweider, Peter and Kapur, Karen A and Chambers, John and Wareham, Nicholas J and Langenberg, Claudia and Frants, Rune and Willems-Vandijk, Ko and Oostra, Ben A and Willems, Sara M and Lamina, Claudia and Winkler, Thomas W and Psaty, Bruce M and Tracy, Russell P and Brody, Jennifer and Chen, Ida and Viikari, Jorma and K{\"a}h{\"o}nen, Mika and Pramstaller, Peter P and Evans, David M and St Pourcain, Beate and Sattar, Naveed and Wood, Andrew R and Bandinelli, Stefania and Carlson, Olga D and Egan, Josephine M and B{\"o}hringer, Stefan and van Heemst, Diana and Kedenko, Lyudmyla and Kristiansson, Kati and Nuotio, Marja-Liisa and Loo, Britt-Marie and Harris, Tamara and Garcia, Melissa and Kanaya, Alka and Haun, Margot and Klopp, Norman and Wichmann, H-Erich and Deloukas, Panos and Katsareli, Efi and Couper, David J and Duncan, Bruce B and Kloppenburg, Margreet and Adair, Linda S and Borja, Judith B and Wilson, James G and Musani, Solomon and Guo, Xiuqing and Johnson, Toby and Semple, Robert and Teslovich, Tanya M and Allison, Matthew A and Redline, Susan and Buxbaum, Sarah G and Mohlke, Karen L and Meulenbelt, Ingrid and Ballantyne, Christie M and Dedoussis, George V and Hu, Frank B and Liu, Yongmei and Paulweber, Bernhard and Spector, Timothy D and Slagboom, P Eline and Ferrucci, Luigi and Jula, Antti and Perola, Markus and Raitakari, Olli and Florez, Jose C and Salomaa, Veikko and Eriksson, Johan G and Frayling, Timothy M and Hicks, Andrew A and Lehtim{\"a}ki, Terho and Smith, George Davey and Siscovick, David S and Kronenberg, Florian and van Duijn, Cornelia and Loos, Ruth J F and Waterworth, Dawn M and Meigs, James B and Dupuis, Jos{\'e}e and Richards, J Brent and Voight, Benjamin F and Scott, Laura J and Steinthorsdottir, Valgerdur and Dina, Christian and Welch, Ryan P and Zeggini, Eleftheria and Huth, Cornelia and Aulchenko, Yurii S and Thorleifsson, Gudmar and McCulloch, Laura J and Ferreira, Teresa and Grallert, Harald and Amin, Najaf and Wu, Guanming and Willer, Cristen J and Raychaudhuri, Soumya and McCarroll, Steve A and Hofmann, Oliver M and Segr{\`e}, Ayellet V and van Hoek, Mandy and Navarro, Pau and Ardlie, Kristin and Balkau, Beverley and Benediktsson, Rafn and Bennett, Amanda J and Blagieva, Roza and Boerwinkle, Eric and Bonnycastle, Lori L and Bostr{\"o}m, Kristina Bengtsson and Bravenboer, Bert and Bumpstead, Suzannah and Burtt, Noel P and Charpentier, Guillaume and Chines, Peter S and Cornelis, Marilyn and Crawford, Gabe and Doney, Alex S F and Elliott, Katherine S and Elliott, Amanda L and Erdos, Michael R and Fox, Caroline S and Franklin, Christopher S and Ganser, Martha and Gieger, Christian and Grarup, Niels and Green, Todd and Griffin, Simon and Groves, Christopher J and Guiducci, Candace and Hadjadj, Samy and Hassanali, Neelam and Herder, Christian and Isomaa, Bo and Jackson, Anne U and Johnson, Paul R V and J{\o}rgensen, Torben and Kao, Wen H L and Kong, Augustine and Kraft, Peter and Kuusisto, Johanna and Lauritzen, Torsten and Li, Man and Lieverse, Aloysius and Lindgren, Cecilia M and Lyssenko, Valeriya and Marre, Michel and Meitinger, Thomas and Midthjell, Kristian and Morken, Mario A and Narisu, Narisu and Nilsson, Peter and Owen, Katharine R and Payne, Felicity and Petersen, Ann-Kristin and Platou, Carl and Proen{\c c}a, Christine and Prokopenko, Inga and Rathmann, Wolfgang and Rayner, N William and Robertson, Neil R and Rocheleau, Ghislain and Roden, Michael and Sampson, Michael J and Saxena, Richa and Shields, Beverley M and Shrader, Peter and Sigurdsson, Gunnar and Spars{\o}, Thomas and Strassburger, Klaus and Stringham, Heather M and Sun, Qi and Swift, Amy J and Thorand, Barbara and Tichet, Jean and Tuomi, Tiinamaija and van Dam, Rob M and van Haeften, Timon W and van Herpt, Thijs and van Vliet-Ostaptchouk, Jana V and Walters, G Bragi and Weedon, Michael N and Wijmenga, Cisca and Witteman, Jacqueline and Bergman, Richard N and Cauchi, Stephane and Collins, Francis S and Gloyn, Anna L and Gyllensten, Ulf and Hansen, Torben and Hide, Winston A and Hitman, Graham A and Hofman, Albert and Hunter, David J and Hveem, Kristian and Laakso, Markku and Morris, Andrew D and Palmer, Colin N A and Rudan, Igor and Sijbrands, Eric and Stein, Lincoln D and Tuomilehto, Jaakko and Uitterlinden, Andre and Walker, Mark and Watanabe, Richard M and Abecasis, Goncalo R and Boehm, Bernhard O and Campbell, Harry and Daly, Mark J and Hattersley, Andrew T and Pedersen, Oluf and Barroso, In{\^e}s and Groop, Leif and Sladek, Rob and Thorsteinsdottir, Unnur and Wilson, James F and Illig, Thomas and Froguel, Philippe and van Duijn, Cornelia M and Stefansson, Kari and Altshuler, David and Boehnke, Michael and McCarthy, Mark I and Soranzo, Nicole and Wheeler, Eleanor and Glazer, Nicole L and Bouatia-Naji, Nabila and M{\"a}gi, Reedik and Randall, Joshua and Elliott, Paul and Rybin, Denis and Dehghan, Abbas and Hottenga, Jouke Jan and Song, Kijoung and Goel, Anuj and Lajunen, Taina and Doney, Alex and Cavalcanti-Proen{\c c}a, Christine and Kumari, Meena and Timpson, Nicholas J and Zabena, Carina and Ingelsson, Erik and An, Ping and O{\textquoteright}Connell, Jeffrey and Luan, Jian{\textquoteright}an and Elliott, Amanda and McCarroll, Steven A and Roccasecca, Rosa Maria and Pattou, Fran{\c c}ois and Sethupathy, Praveen and Ariyurek, Yavuz and Barter, Philip and Beilby, John P and Ben-Shlomo, Yoav and Bergmann, Sven and Bochud, Murielle and Bonnefond, Am{\'e}lie and Borch-Johnsen, Knut and B{\"o}ttcher, Yvonne and Brunner, Eric and Bumpstead, Suzannah J and Chen, Yii-Der Ida and Chines, Peter and Clarke, Robert and Coin, Lachlan J M and Cooper, Matthew N and Crisponi, Laura and Day, Ian N M and de Geus, Eco J C and Delplanque, Jerome and Fedson, Annette C and Fischer-Rosinsky, Antje and Forouhi, Nita G and Franzosi, Maria Grazia and Galan, Pilar and Goodarzi, Mark O and Graessler, J{\"u}rgen and Grundy, Scott and Gwilliam, Rhian and Hallmans, G{\"o}ran and Hammond, Naomi and Han, Xijing and Hartikainen, Anna-Liisa and Hayward, Caroline and Heath, Simon C and Hercberg, Serge and Hillman, David R and Hingorani, Aroon D and Hui, Jennie and Hung, Joe and Kaakinen, Marika and Kaprio, Jaakko and Kesaniemi, Y Antero and Kivimaki, Mika and Knight, Beatrice and Koskinen, Seppo and Kovacs, Peter and Kyvik, Kirsten Ohm and Lathrop, G Mark and Lawlor, Debbie A and Le Bacquer, Olivier and Lecoeur, C{\'e}cile and Li, Yun and Mahley, Robert and Mangino, Massimo and Mart{\'\i}nez-Larrad, Mar{\'\i}a Teresa and McAteer, Jarred B and McPherson, Ruth and Meisinger, Christa and Melzer, David and Meyre, David and Mitchell, Braxton D and Mukherjee, Sutapa and Naitza, Silvia and Neville, Matthew J and Orr{\`u}, Marco and Pakyz, Ruth and Paolisso, Giuseppe and Pattaro, Cristian and Pearson, Daniel and Peden, John F and Pedersen, Nancy L and Pfeiffer, Andreas F H and Pichler, Irene and Polasek, Ozren and Posthuma, Danielle and Potter, Simon C and Pouta, Anneli and Province, Michael A and Rayner, Nigel W and Rice, Kenneth and Ripatti, Samuli and Rivadeneira, Fernando and Rolandsson, Olov and Sandbaek, Annelli and Sandhu, Manjinder and Sanna, Serena and Sayer, Avan Aihie and Scheet, Paul and Seedorf, Udo and Sharp, Stephen J and Shields, Beverley and Sigur{\dh}sson, Gunnar and Sijbrands, Eric J G and Silveira, Angela and Simpson, Laila and Singleton, Andrew and Smith, Nicholas L and Sovio, Ulla and Swift, Amy and Syddall, Holly and Syv{\"a}nen, Ann-Christine and T{\"o}njes, Anke and Uitterlinden, Andr{\'e} G and van Dijk, Ko Willems and Varma, Dhiraj and Visvikis-Siest, Sophie and Vitart, Veronique and Vogelzangs, Nicole and Waeber, G{\'e}rard and Wagner, Peter J and Walley, Andrew and Ward, Kim L and Watkins, Hugh and Wild, Sarah H and Willemsen, Gonneke and Witteman, Jaqueline C M and Yarnell, John W G and Zelenika, Diana and Zethelius, Bj{\"o}rn and Zhai, Guangju and Zhao, Jing Hua and Zillikens, M Carola and Borecki, Ingrid B and Meneton, Pierre and Magnusson, Patrik K E and Nathan, David M and Williams, Gordon H and Silander, Kaisa and Bornstein, Stefan R and Schwarz, Peter and Spranger, Joachim and Karpe, Fredrik and Shuldiner, Alan R and Cooper, Cyrus and Serrano-R{\'\i}os, Manuel and Lind, Lars and Palmer, Lyle J and Hu, Frank B and Franks, Paul W and Ebrahim, Shah and Marmot, Michael and Kao, W H Linda and Pramstaller, Peter Paul and Wright, Alan F and Stumvoll, Michael and Hamsten, Anders and Buchanan, Thomas A and Valle, Timo T and Rotter, Jerome I and Penninx, Brenda W J H and Boomsma, Dorret I and Cao, Antonio and Scuteri, Angelo and Schlessinger, David and Uda, Manuela and Ruokonen, Aimo and Jarvelin, Marjo-Riitta and Peltonen, Leena and Mooser, Vincent and Sladek, Robert and Musunuru, Kiran and Smith, Albert V and Edmondson, Andrew C and Stylianou, Ioannis M and Koseki, Masahiro and Pirruccello, James P and Chasman, Daniel I and Johansen, Christopher T and Fouchier, Sigrid W and Peloso, Gina M and Barbalic, Maja and Ricketts, Sally L and Bis, Joshua C and Feitosa, Mary F and Orho-Melander, Marju and Melander, Olle and Li, Xiaohui and Li, Mingyao and Cho, Yoon Shin and Go, Min Jin and Kim, Young Jin and Lee, Jong-Young and Park, Taesung and Kim, Kyunga and Sim, Xueling and Ong, Rick Twee-Hee and Croteau-Chonka, Damien C and Lange, Leslie A and Smith, Joshua D and Ziegler, Andreas and Zhang, Weihua and Zee, Robert Y L and Whitfield, John B and Thompson, John R and Surakka, Ida and Spector, Tim D and Smit, Johannes H and Sinisalo, Juha and Scott, James and Saharinen, Juha and Sabatti, Chiara and Rose, Lynda M and Roberts, Robert and Rieder, Mark and Parker, Alex N and Par{\'e}, Guillaume and O{\textquoteright}Donnell, Christopher J and Nieminen, Markku S and Nickerson, Deborah A and Montgomery, Grant W and McArdle, Wendy and Masson, David and Martin, Nicholas G and Marroni, Fabio and Lucas, Gavin and Luben, Robert and Lokki, Marja-Liisa and Lettre, Guillaume and Launer, Lenore J and Lakatta, Edward G and Laaksonen, Reijo and Kyvik, Kirsten O and K{\"o}nig, Inke R and Khaw, Kay-Tee and Kaplan, Lee M and Johansson, Asa and Janssens, A Cecile J W and Igl, Wilmar and Hovingh, G Kees and Hengstenberg, Christian and Havulinna, Aki S and Hastie, Nicholas D and Harris, Tamara B and Haritunians, Talin and Hall, Alistair S and Groop, Leif C and Gonzalez, Elena and Freimer, Nelson B and Erdmann, Jeanette and Ejebe, Kenechi G and D{\"o}ring, Angela and Dominiczak, Anna F and Demissie, Serkalem and Deloukas, Panagiotis and de Faire, Ulf and Crawford, Gabriel and Chen, Yii-der I and Caulfield, Mark J and Boekholdt, S Matthijs and Assimes, Themistocles L and Quertermous, Thomas and Seielstad, Mark and Wong, Tien Y and Tai, E-Shyong and Feranil, Alan B and Kuzawa, Christopher W and Taylor, Herman A and Gabriel, Stacey B and Holm, Hilma and Gudnason, Vilmundur and Krauss, Ronald M and Ordovas, Jose M and Munroe, Patricia B and Kooner, Jaspal S and Tall, Alan R and Hegele, Robert A and Kastelein, John J P and Schadt, Eric E and Strachan, David P and Reilly, Muredach P and Samani, Nilesh J and Schunkert, Heribert and Cupples, L Adrienne and Sandhu, Manjinder S and Ridker, Paul M and Rader, Daniel J and Kathiresan, Sekar} } @article {1544, title = {Ultraconserved elements in the human genome: association and transmission analyses of highly constrained single-nucleotide polymorphisms.}, journal = {Genetics}, volume = {192}, year = {2012}, month = {2012 Sep}, pages = {253-66}, abstract = {

Ultraconserved elements in the human genome likely harbor important biological functions as they are dosage sensitive and are able to direct tissue-specific expression. Because they are under purifying selection, variants in these elements may have a lower frequency in the population but a higher likelihood of association with complex traits. We tested a set of highly constrained SNPs (hcSNPs) distributed genome-wide among ultraconserved and nearly ultraconserved elements for association with seven traits related to reproductive (age at natural menopause, number of children, age at first child, and age at last child) and overall [longevity, body mass index (BMI), and height] fitness. Using up to 24,047 European-American samples from the National Heart, Lung, and Blood Institute Candidate Gene Association Resource (CARe), we observed an excess of associations with BMI and height. In an independent replication panel the most strongly associated SNPs showed an 8.4-fold enrichment of associations at the nominal level, including three variants in previously identified loci and one in a locus (DENND1A) previously shown to be associated with polycystic ovary syndrome. Finally, using 1430 family trios, we showed that the transmissions from heterozygous parents to offspring of the derived alleles of rare (frequency <= 0.5\%) hcSNPs are not biased, particularly after adjusting for the rates of genotype missingness and error in the data. The lack of transmission bias ruled out an immediately and strongly deleterious effect due to the rare derived alleles, consistent with the observation that mice homozygous for the deletion of ultraconserved elements showed no overt phenotype. Our study also illustrated the importance of carefully modeling potential technical confounders when analyzing genotype data of rare variants.

}, keywords = {Alleles, Animals, Body Height, Body Mass Index, Child, Conserved Sequence, Dogs, Evolution, Molecular, Female, Genetic Fitness, Genetic Variation, Genome, Human, Genotype, Humans, Inheritance Patterns, Male, Mice, Pedigree, Phenotype, Polymorphism, Single Nucleotide, Rats, Reproduction, Young Adult}, issn = {1943-2631}, doi = {10.1534/genetics.112.141945}, author = {Chiang, Charleston W K and Liu, Ching-Ti and Lettre, Guillaume and Lange, Leslie A and Jorgensen, Neal W and Keating, Brendan J and Vedantam, Sailaja and Nock, Nora L and Franceschini, Nora and Reiner, Alex P and Demerath, Ellen W and Boerwinkle, Eric and Rotter, Jerome I and Wilson, James G and North, Kari E and Papanicolaou, George J and Cupples, L Adrienne and Murabito, Joanne M and Hirschhorn, Joel N} } @article {6287, title = {Genome-wide association of body fat distribution in African ancestry populations suggests new loci.}, journal = {PLoS Genet}, volume = {9}, year = {2013}, month = {2013}, pages = {e1003681}, abstract = {

Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0 {\texttimes} 10(-6) were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24{\texttimes}10(-8) for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48{\texttimes}10(-8) for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5 {\texttimes} 10(-8); RREB1: p = 5.7 {\texttimes} 10(-8)). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.

}, keywords = {Adiposity, African Continental Ancestry Group, Body Fat Distribution, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Obesity, Polymorphism, Single Nucleotide, Waist-Hip Ratio}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003681}, author = {Liu, Ching-Ti and Monda, Keri L and Taylor, Kira C and Lange, Leslie and Demerath, Ellen W and Palmas, Walter and Wojczynski, Mary K and Ellis, Jaclyn C and Vitolins, Mara Z and Liu, Simin and Papanicolaou, George J and Irvin, Marguerite R and Xue, Luting and Griffin, Paula J and Nalls, Michael A and Adeyemo, Adebowale and Liu, Jiankang and Li, Guo and Ruiz-Narvaez, Edward A and Chen, Wei-Min and Chen, Fang and Henderson, Brian E and Millikan, Robert C and Ambrosone, Christine B and Strom, Sara S and Guo, Xiuqing and Andrews, Jeanette S and Sun, Yan V and Mosley, Thomas H and Yanek, Lisa R and Shriner, Daniel and Haritunians, Talin and Rotter, Jerome I and Speliotes, Elizabeth K and Smith, Megan and Rosenberg, Lynn and Mychaleckyj, Josyf and Nayak, Uma and Spruill, Ida and Garvey, W Timothy and Pettaway, Curtis and Nyante, Sarah and Bandera, Elisa V and Britton, Angela F and Zonderman, Alan B and Rasmussen-Torvik, Laura J and Chen, Yii-Der Ida and Ding, Jingzhong and Lohman, Kurt and Kritchevsky, Stephen B and Zhao, Wei and Peyser, Patricia A and Kardia, Sharon L R and Kabagambe, Edmond and Broeckel, Ulrich and Chen, Guanjie and Zhou, Jie and Wassertheil-Smoller, Sylvia and Neuhouser, Marian L and Rampersaud, Evadnie and Psaty, Bruce and Kooperberg, Charles and Manson, JoAnn E and Kuller, Lewis H and Ochs-Balcom, Heather M and Johnson, Karen C and Sucheston, Lara and Ordovas, Jose M and Palmer, Julie R and Haiman, Christopher A and McKnight, Barbara and Howard, Barbara V and Becker, Diane M and Bielak, Lawrence F and Liu, Yongmei and Allison, Matthew A and Grant, Struan F A and Burke, Gregory L and Patel, Sanjay R and Schreiner, Pamela J and Borecki, Ingrid B and Evans, Michele K and Taylor, Herman and Sale, Mich{\`e}le M and Howard, Virginia and Carlson, Christopher S and Rotimi, Charles N and Cushman, Mary and Harris, Tamara B and Reiner, Alexander P and Cupples, L Adrienne and North, Kari E and Fox, Caroline S} } @article {6555, title = {Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {374-382}, abstract = {

BACKGROUND: Common variation at the 11p11.2 locus, encompassing MADD, ACP2, NR1H3, MYBPC3, and SPI1, has been associated in genome-wide association studies with fasting glucose and insulin (FI). In the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study, we sequenced 5 gene regions at 11p11.2 to identify rare, potentially functional variants influencing fasting glucose or FI levels.

METHODS AND RESULTS: Sequencing (mean depth, 38{\texttimes}) across 16.1 kb in 3566 individuals without diabetes mellitus identified 653 variants, 79.9\% of which were rare (minor allele frequency <1\%) and novel. We analyzed rare variants in 5 gene regions with FI or fasting glucose using the sequence kernel association test. At NR1H3, 53 rare variants were jointly associated with FI (P=2.73{\texttimes}10(-3)); of these, 7 were predicted to have regulatory function and showed association with FI (P=1.28{\texttimes}10(-3)). Conditioning on 2 previously associated variants at MADD (rs7944584, rs10838687) did not attenuate this association, suggesting that there are >2 independent signals at 11p11.2. One predicted regulatory variant, chr11:47227430 (hg18; minor allele frequency=0.00068), contributed 20.6\% to the overall sequence kernel association test score at NR1H3, lies in intron 2 of NR1H3, and is a predicted binding site for forkhead box A1 (FOXA1), a transcription factor associated with insulin regulation. In human HepG2 hepatoma cells, the rare chr11:47227430 A allele disrupted FOXA1 binding and reduced FOXA1-dependent transcriptional activity.

CONCLUSIONS: Sequencing at 11p11.2-NR1H3 identified rare variation associated with FI. One variant, chr11:47227430, seems to be functional, with the rare A allele reducing transcription factor FOXA1 binding and FOXA1-dependent transcriptional activity.

}, keywords = {Aged, Aged, 80 and over, Aging, Blood Glucose, Chromosomes, Human, Pair 11, Cohort Studies, Death Domain Receptor Signaling Adaptor Proteins, Diabetes Mellitus, Type 2, Fasting, Female, Gene Frequency, Genetic Variation, Genome-Wide Association Study, Genomics, Guanine Nucleotide Exchange Factors, Heart Diseases, Humans, Insulin, Male, Middle Aged, Polymorphism, Single Nucleotide, Sequence Analysis, DNA}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000169}, author = {Cornes, Belinda K and Brody, Jennifer A and Nikpoor, Naghmeh and Morrison, Alanna C and Chu, Huan and Ahn, Byung Soo and Wang, Shuai and Dauriz, Marco and Barzilay, Joshua I and Dupuis, Jos{\'e}e and Florez, Jose C and Coresh, Josef and Gibbs, Richard A and Kao, W H Linda and Liu, Ching-Ti and McKnight, Barbara and Muzny, Donna and Pankow, James S and Reid, Jeffrey G and White, Charles C and Johnson, Andrew D and Wong, Tien Y and Psaty, Bruce M and Boerwinkle, Eric and Rotter, Jerome I and Siscovick, David S and Sladek, Robert and Meigs, James B} } @article {6552, title = {Meta-analysis of loci associated with age at natural menopause in African-American women.}, journal = {Hum Mol Genet}, volume = {23}, year = {2014}, month = {2014 Jun 15}, pages = {3327-42}, abstract = {

Age at menopause marks the end of a woman{\textquoteright}s reproductive life and its timing associates with risks for cancer, cardiovascular and bone disorders. GWAS and candidate gene studies conducted in women of European ancestry have identified 27 loci associated with age at menopause. The relevance of these loci to women of African ancestry has not been previously studied. We therefore sought to uncover additional menopause loci and investigate the relevance of European menopause loci by performing a GWAS meta-analysis in 6510 women with African ancestry derived from 11 studies across the USA. We did not identify any additional loci significantly associated with age at menopause in African Americans. We replicated the associations between six loci and age at menopause (P-value < 0.05): AMHR2, RHBLD2, PRIM1, HK3/UMC1, BRSK1/TMEM150B and MCM8. In addition, associations of 14 loci are directionally consistent with previous reports. We provide evidence that genetic variants influencing reproductive traits identified in European populations are also important in women of African ancestry residing in USA.

}, keywords = {African Americans, Age Factors, Chromosomes, Human, European Continental Ancestry Group, Female, Genetic Loci, Genetic Variation, Genome-Wide Association Study, Humans, Menopause, United States}, issn = {1460-2083}, doi = {10.1093/hmg/ddu041}, author = {Chen, Christina T L and Liu, Ching-Ti and Chen, Gary K and Andrews, Jeanette S and Arnold, Alice M and Dreyfus, Jill and Franceschini, Nora and Garcia, Melissa E and Kerr, Kathleen F and Li, Guo and Lohman, Kurt K and Musani, Solomon K and Nalls, Michael A and Raffel, Leslie J and Smith, Jennifer and Ambrosone, Christine B and Bandera, Elisa V and Bernstein, Leslie and Britton, Angela and Brzyski, Robert G and Cappola, Anne and Carlson, Christopher S and Couper, David and Deming, Sandra L and Goodarzi, Mark O and Heiss, Gerardo and John, Esther M and Lu, Xiaoning and Le Marchand, Lo{\"\i}c and Marciante, Kristin and McKnight, Barbara and Millikan, Robert and Nock, Nora L and Olshan, Andrew F and Press, Michael F and Vaiyda, Dhananjay and Woods, Nancy F and Taylor, Herman A and Zhao, Wei and Zheng, Wei and Evans, Michele K and Harris, Tamara B and Henderson, Brian E and Kardia, Sharon L R and Kooperberg, Charles and Liu, Yongmei and Mosley, Thomas H and Psaty, Bruce and Wellons, Melissa and Windham, Beverly G and Zonderman, Alan B and Cupples, L Adrienne and Demerath, Ellen W and Haiman, Christopher and Murabito, Joanne M and Rajkovic, Aleksandar} } @article {6591, title = {Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.}, journal = {Nat Commun}, volume = {5}, year = {2014}, month = {2014 Oct 28}, pages = {5068}, abstract = {

Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.

}, keywords = {Cholesterol, LDL, Genome-Wide Association Study, Humans, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Pharmacogenetics, Polymorphism, Single Nucleotide}, issn = {2041-1723}, doi = {10.1038/ncomms6068}, author = {Postmus, Iris and Trompet, Stella and Deshmukh, Harshal A and Barnes, Michael R and Li, Xiaohui and Warren, Helen R and Chasman, Daniel I and Zhou, Kaixin and Arsenault, Benoit J and Donnelly, Louise A and Wiggins, Kerri L and Avery, Christy L and Griffin, Paula and Feng, QiPing and Taylor, Kent D and Li, Guo and Evans, Daniel S and Smith, Albert V and de Keyser, Catherine E and Johnson, Andrew D and de Craen, Anton J M and Stott, David J and Buckley, Brendan M and Ford, Ian and Westendorp, Rudi G J and Slagboom, P Eline and Sattar, Naveed and Munroe, Patricia B and Sever, Peter and Poulter, Neil and Stanton, Alice and Shields, Denis C and O{\textquoteright}Brien, Eoin and Shaw-Hawkins, Sue and Chen, Y-D Ida and Nickerson, Deborah A and Smith, Joshua D and Dub{\'e}, Marie Pierre and Boekholdt, S Matthijs and Hovingh, G Kees and Kastelein, John J P and McKeigue, Paul M and Betteridge, John and Neil, Andrew and Durrington, Paul N and Doney, Alex and Carr, Fiona and Morris, Andrew and McCarthy, Mark I and Groop, Leif and Ahlqvist, Emma and Bis, Joshua C and Rice, Kenneth and Smith, Nicholas L and Lumley, Thomas and Whitsel, Eric A and St{\"u}rmer, Til and Boerwinkle, Eric and Ngwa, Julius S and O{\textquoteright}Donnell, Christopher J and Vasan, Ramachandran S and Wei, Wei-Qi and Wilke, Russell A and Liu, Ching-Ti and Sun, Fangui and Guo, Xiuqing and Heckbert, Susan R and Post, Wendy and Sotoodehnia, Nona and Arnold, Alice M and Stafford, Jeanette M and Ding, Jingzhong and Herrington, David M and Kritchevsky, Stephen B and Eiriksdottir, Gudny and Launer, Leonore J and Harris, Tamara B and Chu, Audrey Y and Giulianini, Franco and MacFadyen, Jean G and Barratt, Bryan J and Nyberg, Fredrik and Stricker, Bruno H and Uitterlinden, Andr{\'e} G and Hofman, Albert and Rivadeneira, Fernando and Emilsson, Valur and Franco, Oscar H and Ridker, Paul M and Gudnason, Vilmundur and Liu, Yongmei and Denny, Joshua C and Ballantyne, Christie M and Rotter, Jerome I and Adrienne Cupples, L and Psaty, Bruce M and Palmer, Colin N A and Tardif, Jean-Claude and Colhoun, Helen M and Hitman, Graham and Krauss, Ronald M and Wouter Jukema, J and Caulfield, Mark J} } @article {6579, title = {Sequence variation in TMEM18 in association with body mass index: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {344-9}, abstract = {

BACKGROUND: Genome-wide association studies for body mass index (BMI) previously identified a locus near TMEM18. We conducted targeted sequencing of this region to investigate the role of common, low-frequency, and rare variants influencing BMI.

METHODS AND RESULTS: We sequenced TMEM18 and regions downstream of TMEM18 on chromosome 2 in 3976 individuals of European ancestry from 3 community-based cohorts (Atherosclerosis Risk in Communities, Cardiovascular Health Study, and Framingham Heart Study), including 200 adults selected for high BMI. We examined the association between BMI and variants identified in the region from nucleotide position 586 432 to 677 539 (hg18). Rare variants (minor allele frequency, <1\%) were analyzed using a burden test and the sequence kernel association test. Results from the 3 cohort studies were meta-analyzed. We estimate that mean BMI is 0.43 kg/m(2) higher for each copy of the G allele of single-nucleotide polymorphism rs7596758 (minor allele frequency, 29\%; P=3.46{\texttimes}10(-4)) using a Bonferroni threshold of P<4.6{\texttimes}10(-4). Analyses conditional on previous genome-wide association study single-nucleotide polymorphisms associated with BMI in the region led to attenuation of this signal and uncovered another independent (r(2)<0.2), statistically significant association, rs186019316 (P=2.11{\texttimes}10(-4)). Both rs186019316 and rs7596758 or proxies are located in transcription factor binding regions. No significant association with rare variants was found in either the exons of TMEM18 or the 3{\textquoteright} genome-wide association study region.

CONCLUSIONS: Targeted sequencing around TMEM18 identified 2 novel BMI variants with possible regulatory function.

}, keywords = {Adult, Aged, Aging, Body Mass Index, Cohort Studies, Female, Genetic Association Studies, Genetic Variation, Genome-Wide Association Study, Genomics, Heart Diseases, Humans, Male, Membrane Proteins, Middle Aged, Polymorphism, Single Nucleotide, Sequence Analysis, DNA, Young Adult}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.13.000067}, author = {Liu, Ching-Ti and Young, Kristin L and Brody, Jennifer A and Olden, Matthias and Wojczynski, Mary K and Heard-Costa, Nancy and Li, Guo and Morrison, Alanna C and Muzny, Donna and Gibbs, Richard A and Reid, Jeffrey G and Shao, Yaming and Zhou, Yanhua and Boerwinkle, Eric and Heiss, Gerardo and Wagenknecht, Lynne and McKnight, Barbara and Borecki, Ingrid B and Fox, Caroline S and North, Kari E and Cupples, L Adrienne} } @article {6583, title = {Sequencing of SCN5A identifies rare and common variants associated with cardiac conduction: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {365-73}, abstract = {

BACKGROUND: The cardiac sodium channel SCN5A regulates atrioventricular and ventricular conduction. Genetic variants in this gene are associated with PR and QRS intervals. We sought to characterize further the contribution of rare and common coding variation in SCN5A to cardiac conduction.

METHODS AND RESULTS: In Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study, we performed targeted exonic sequencing of SCN5A (n=3699, European ancestry individuals) and identified 4 common (minor allele frequency >1\%) and 157 rare variants. Common and rare SCN5A coding variants were examined for association with PR and QRS intervals through meta-analysis of European ancestry participants from CHARGE, National Heart, Lung, and Blood Institute{\textquoteright}s Exome Sequencing Project (n=607), and the UK10K (n=1275) and by examining Exome Sequencing Project African ancestry participants (n=972). Rare coding SCN5A variants in aggregate were associated with PR interval in European and African ancestry participants (P=1.3{\texttimes}10(-3)). Three common variants were associated with PR and QRS interval duration among European ancestry participants and one among African ancestry participants. These included 2 well-known missense variants: rs1805124 (H558R) was associated with PR and QRS shortening in European ancestry participants (P=6.25{\texttimes}10(-4) and P=5.2{\texttimes}10(-3), respectively) and rs7626962 (S1102Y) was associated with PR shortening in those of African ancestry (P=2.82{\texttimes}10(-3)). Among European ancestry participants, 2 novel synonymous variants, rs1805126 and rs6599230, were associated with cardiac conduction. Our top signal, rs1805126 was associated with PR and QRS lengthening (P=3.35{\texttimes}10(-7) and P=2.69{\texttimes}10(-4), respectively) and rs6599230 was associated with PR shortening (P=2.67{\texttimes}10(-5)).

CONCLUSIONS: By sequencing SCN5A, we identified novel common and rare coding variants associated with cardiac conduction.

}, keywords = {Adult, Aged, Aged, 80 and over, Aging, Cohort Studies, Female, Genetic Variation, Genome-Wide Association Study, Genomics, Heart Conduction System, Heart Diseases, Humans, Male, Middle Aged, NAV1.5 Voltage-Gated Sodium Channel, Polymorphism, Single Nucleotide, Sequence Analysis, DNA}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000098}, author = {Magnani, Jared W and Brody, Jennifer A and Prins, Bram P and Arking, Dan E and Lin, Honghuang and Yin, Xiaoyan and Liu, Ching-Ti and Morrison, Alanna C and Zhang, Feng and Spector, Tim D and Alonso, Alvaro and Bis, Joshua C and Heckbert, Susan R and Lumley, Thomas and Sitlani, Colleen M and Cupples, L Adrienne and Lubitz, Steven A and Soliman, Elsayed Z and Pulit, Sara L and Newton-Cheh, Christopher and O{\textquoteright}Donnell, Christopher J and Ellinor, Patrick T and Benjamin, Emelia J and Muzny, Donna M and Gibbs, Richard A and Santibanez, Jireh and Taylor, Herman A and Rotter, Jerome I and Lange, Leslie A and Psaty, Bruce M and Jackson, Rebecca and Rich, Stephen S and Boerwinkle, Eric and Jamshidi, Yalda and Sotoodehnia, Nona} } @article {6578, title = {Strategies to design and analyze targeted sequencing data: cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {335-43}, abstract = {

BACKGROUND: Genome-wide association studies have identified thousands of genetic variants that influence a variety of diseases and health-related quantitative traits. However, the causal variants underlying the majority of genetic associations remain unknown. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study aims to follow up genome-wide association study signals and identify novel associations of the allelic spectrum of identified variants with cardiovascular-related traits.

METHODS AND RESULTS: The study included 4231 participants from 3 CHARGE cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, and the Framingham Heart Study. We used a case-cohort design in which we selected both a random sample of participants and participants with extreme phenotypes for each of 14 traits. We sequenced and analyzed 77 genomic loci, which had previously been associated with >=1 of 14 phenotypes. A total of 52 736 variants were characterized by sequencing and passed our stringent quality control criteria. For common variants (minor allele frequency >=1\%), we performed unweighted regression analyses to obtain P values for associations and weighted regression analyses to obtain effect estimates that accounted for the sampling design. For rare variants, we applied 2 approaches: collapsed aggregate statistics and joint analysis of variants using the sequence kernel association test.

CONCLUSIONS: We sequenced 77 genomic loci in participants from 3 cohorts. We established a set of filters to identify high-quality variants and implemented statistical and bioinformatics strategies to analyze the sequence data and identify potentially functional variants within genome-wide association study loci.

}, keywords = {Adult, Aged, Aged, 80 and over, Aging, Cohort Studies, Female, Genetic Variation, Genome-Wide Association Study, Genomics, Heart Diseases, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Research Design, Sequence Analysis, DNA}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000350}, author = {Lin, Honghuang and Wang, Min and Brody, Jennifer A and Bis, Joshua C and Dupuis, Jos{\'e}e and Lumley, Thomas and McKnight, Barbara and Rice, Kenneth M and Sitlani, Colleen M and Reid, Jeffrey G and Bressler, Jan and Liu, Xiaoming and Davis, Brian C and Johnson, Andrew D and O{\textquoteright}Donnell, Christopher J and Kovar, Christie L and Dinh, Huyen and Wu, Yuanqing and Newsham, Irene and Chen, Han and Broka, Andi and DeStefano, Anita L and Gupta, Mayetri and Lunetta, Kathryn L and Liu, Ching-Ti and White, Charles C and Xing, Chuanhua and Zhou, Yanhua and Benjamin, Emelia J and Schnabel, Renate B and Heckbert, Susan R and Psaty, Bruce M and Muzny, Donna M and Cupples, L Adrienne and Morrison, Alanna C and Boerwinkle, Eric} } @article {7005, title = {Association of the IGF1 gene with fasting insulin levels.}, journal = {Eur J Hum Genet}, volume = {24}, year = {2016}, month = {2016 Aug}, pages = {1337-43}, abstract = {

Insulin-like growth factor 1 (IGF-I) has been associated with insulin resistance. Genome-wide association studies (GWASs) of fasting insulin (FI) identified single-nucleotide variants (SNVs) near the IGF1 gene, raising two hypotheses: (1) these associations are mediated by IGF-I levels and (2) these noncoding variants either tag other functional variants in the region or are directly functional. In our study, analyses including 5141 individuals from population-based cohorts suggest that FI associations near IGF1 are not mediated by IGF-I. Analyses of targeted sequencing data in 3539 individuals reveal a large number of novel rare variants at the IGF1 locus and show a FI association with a subset of rare nonsynonymous variants (PSKAT=5.7 {\texttimes} 10(-4)). Conditional analyses suggest that this association is partly explained by the GWAS signal and the presence of a residual independent rare variant effect (Pconditional=0.019). Annotation using ENCODE data suggests that the GWAS variants may have a direct functional role in insulin biology. In conclusion, our study provides insight into variation present at the IGF1 locus and into the genetic architecture underlying FI levels, suggesting that FI associations of SNVs near IGF1 are not mediated by IGF-I and suggesting a role for both rare nonsynonymous and common functional variants in insulin biology.

}, issn = {1476-5438}, doi = {10.1038/ejhg.2016.4}, author = {Willems, Sara M and Cornes, Belinda K and Brody, Jennifer A and Morrison, Alanna C and Lipovich, Leonard and Dauriz, Marco and Chen, Yuning and Liu, Ching-Ti and Rybin, Denis V and Gibbs, Richard A and Muzny, Donna and Pankow, James S and Psaty, Bruce M and Boerwinkle, Eric and Rotter, Jerome I and Siscovick, David S and Vasan, Ramachandran S and Kaplan, Robert C and Isaacs, Aaron and Dupuis, Jos{\'e}e and van Duijn, Cornelia M and Meigs, James B} } @article {7167, title = {Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci.}, journal = {Diabetes}, volume = {65}, year = {2016}, month = {2016 Oct}, pages = {3200-11}, abstract = {

Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 {\texttimes} 10(-11)), rs12454712 (BCL2; P = 2.7 {\texttimes} 10(-8)), and rs10506418 (FAM19A2; P = 1.9 {\texttimes} 10(-8)). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci.

}, issn = {1939-327X}, doi = {10.2337/db16-0199}, author = {Walford, Geoffrey A and Gustafsson, Stefan and Rybin, Denis and Stan{\v c}{\'a}kov{\'a}, Alena and Chen, Han and Liu, Ching-Ti and Hong, Jaeyoung and Jensen, Richard A and Rice, Ken and Morris, Andrew P and M{\"a}gi, Reedik and T{\"o}njes, Anke and Prokopenko, Inga and Kleber, Marcus E and Delgado, Graciela and Silbernagel, G{\"u}nther and Jackson, Anne U and Appel, Emil V and Grarup, Niels and Lewis, Joshua P and Montasser, May E and Landenvall, Claes and Staiger, Harald and Luan, Jian{\textquoteright}an and Frayling, Timothy M and Weedon, Michael N and Xie, Weijia and Morcillo, Sonsoles and Mart{\'\i}nez-Larrad, Mar{\'\i}a Teresa and Biggs, Mary L and Chen, Yii-Der Ida and Corbaton-Anchuelo, Arturo and F{\ae}rch, Kristine and G{\'o}mez-Zumaquero, Juan Miguel and Goodarzi, Mark O and Kizer, Jorge R and Koistinen, Heikki A and Leong, Aaron and Lind, Lars and Lindgren, Cecilia and Machicao, Fausto and Manning, Alisa K and Mart{\'\i}n-N{\'u}{\~n}ez, Gracia Mar{\'\i}a and Rojo-Mart{\'\i}nez, Gemma and Rotter, Jerome I and Siscovick, David S and Zmuda, Joseph M and Zhang, Zhongyang and Serrano-R{\'\i}os, Manuel and Smith, Ulf and Soriguer, Federico and Hansen, Torben and J{\o}rgensen, Torben J and Linnenberg, Allan and Pedersen, Oluf and Walker, Mark and Langenberg, Claudia and Scott, Robert A and Wareham, Nicholas J and Fritsche, Andreas and H{\"a}ring, Hans-Ulrich and Stefan, Norbert and Groop, Leif and O{\textquoteright}Connell, Jeff R and Boehnke, Michael and Bergman, Richard N and Collins, Francis S and Mohlke, Karen L and Tuomilehto, Jaakko and M{\"a}rz, Winfried and Kovacs, Peter and Stumvoll, Michael and Psaty, Bruce M and Kuusisto, Johanna and Laakso, Markku and Meigs, James B and Dupuis, Jos{\'e}e and Ingelsson, Erik and Florez, Jose C} } @article {7358, title = {Meta-analysis of genome-wide association studies of HDL cholesterol response to statins.}, journal = {J Med Genet}, volume = {53}, year = {2016}, month = {2016 Dec}, pages = {835-845}, abstract = {

BACKGROUND: In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation.

METHODS AND RESULTS: We performed a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced high density lipoprotein cholesterol (HDL-C) changes. The 123 most promising signals with p<1{\texttimes}10(-4) from the 16 769 statin-treated participants in the first analysis stage were followed up in an independent group of 10 951 statin-treated individuals, providing a total sample size of 27 720 individuals. The only associations of genome-wide significance (p<5{\texttimes}10(-8)) were between minor alleles at the CETP locus and greater HDL-C response to statin treatment.

CONCLUSIONS: Based on results from this study that included a relatively large sample size, we suggest that CETP may be the only detectable locus with common genetic variants that influence HDL-C response to statins substantially in individuals of European descent. Although CETP is known to be associated with HDL-C, we provide evidence that this pharmacogenetic effect is independent of its association with baseline HDL-C levels.

}, issn = {1468-6244}, doi = {10.1136/jmedgenet-2016-103966}, author = {Postmus, Iris and Warren, Helen R and Trompet, Stella and Arsenault, Benoit J and Avery, Christy L and Bis, Joshua C and Chasman, Daniel I and de Keyser, Catherine E and Deshmukh, Harshal A and Evans, Daniel S and Feng, QiPing and Li, Xiaohui and Smit, Roelof A J and Smith, Albert V and Sun, Fangui and Taylor, Kent D and Arnold, Alice M and Barnes, Michael R and Barratt, Bryan J and Betteridge, John and Boekholdt, S Matthijs and Boerwinkle, Eric and Buckley, Brendan M and Chen, Y-D Ida and de Craen, Anton J M and Cummings, Steven R and Denny, Joshua C and Dub{\'e}, Marie Pierre and Durrington, Paul N and Eiriksdottir, Gudny and Ford, Ian and Guo, Xiuqing and Harris, Tamara B and Heckbert, Susan R and Hofman, Albert and Hovingh, G Kees and Kastelein, John J P and Launer, Leonore J and Liu, Ching-Ti and Liu, Yongmei and Lumley, Thomas and McKeigue, Paul M and Munroe, Patricia B and Neil, Andrew and Nickerson, Deborah A and Nyberg, Fredrik and O{\textquoteright}Brien, Eoin and O{\textquoteright}Donnell, Christopher J and Post, Wendy and Poulter, Neil and Vasan, Ramachandran S and Rice, Kenneth and Rich, Stephen S and Rivadeneira, Fernando and Sattar, Naveed and Sever, Peter and Shaw-Hawkins, Sue and Shields, Denis C and Slagboom, P Eline and Smith, Nicholas L and Smith, Joshua D and Sotoodehnia, Nona and Stanton, Alice and Stott, David J and Stricker, Bruno H and St{\"u}rmer, Til and Uitterlinden, Andr{\'e} G and Wei, Wei-Qi and Westendorp, Rudi G J and Whitsel, Eric A and Wiggins, Kerri L and Wilke, Russell A and Ballantyne, Christie M and Colhoun, Helen M and Cupples, L Adrienne and Franco, Oscar H and Gudnason, Vilmundur and Hitman, Graham and Palmer, Colin N A and Psaty, Bruce M and Ridker, Paul M and Stafford, Jeanette M and Stein, Charles M and Tardif, Jean-Claude and Caulfield, Mark J and Jukema, J Wouter and Rotter, Jerome I and Krauss, Ronald M} } @article {7246, title = {Targeted Sequencing of Genome Wide Significant Loci Associated with Bone Mineral Density (BMD) Reveals Significant Novel and Rare Variants: The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Targeted Sequencing Study.}, journal = {Hum Mol Genet}, year = {2016}, month = {2016 Sep 11}, abstract = {

BACKGROUND: Bone mineral density (BMD) is a heritable phenotype that predicts fracture risk. We performed fine-mapping by targeted sequencing at WLS, MEF2C, ARHGAP1/F2 and JAG1 loci prioritized by eQTL and bioinformatic approaches among 56 BMD loci from our previous GWAS meta-analysis.

METHODS AND RESULTS: Targeted sequencing was conducted in 1,291 Caucasians from the Framingham Heart Study (n=925) and Cardiovascular Health Study (n=366), including 206 women and men with extreme low femoral neck (FN) BMD. A total of 4,964 sequence variants (SNVs) were observed and 80\% were rare with MAF <1\%. The associations between previously identified SNPs in these loci and BMD, while nominally significant in sequenced participants, were no longer significant after multiple testing corrections. Conditional analyses did not find protein-coding variants that may be responsible for GWAS signals. On the other hand, in the sequenced subjects, we identified novel associations in WLS, ARHGAP1, and 5{\textquoteright} of MEF2C (p-values < 8x10(-5); false discovery rate (FDR) q-values < 0.01) that were much more strongly associated with BMD compared to the GWAS SNPs. These associated SNVs are less-common; independent from previous GWAS signals in the same loci; and located in gene regulatory elements.

CONCLUSIONS: Our findings suggest that protein-coding variants in selected GWAS loci did not contribute to GWAS signals. By performing targeted sequencing in GWAS loci, we identified less-common and rare non-coding SNVs associated with BMD independently from GWAS common SNPs, suggesting both common and less-common variants may associate with disease risks and phenotypes in the same loci.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddw289}, author = {Hsu, Yi-Hsiang and Li, Guo and Liu, Ching-Ti and Brody, Jennifer A and Karasik, David and Chou, Wen-Chi and Demissie, Serkalem and Nandakumar, Kannabiran and Zhou, Yanhua and Cheng, Chia-Ho and Gill, Richard and Gibbs, Richard A and Muzny, Donna and Santibanez, Jireh and Estrada, Karol and Rivadeneira, Fernando and Harris, Tamara and Gudnason, Vilmundur and Uitterlinden, Andre and Psaty, Bruce M and Robbins, John A and Adrienne Cupples, L and Kiel, Douglas P} } @article {7141, title = {Trans-ethnic Meta-analysis and Functional Annotation Illuminates the~Genetic Architecture of Fasting Glucose and Insulin.}, journal = {Am J Hum Genet}, volume = {99}, year = {2016}, month = {2016 Jul 7}, pages = {56-75}, abstract = {

Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2016.05.006}, author = {Liu, Ching-Ti and Raghavan, Sridharan and Maruthur, Nisa and Kabagambe, Edmond Kato and Hong, Jaeyoung and Ng, Maggie C Y and Hivert, Marie-France and Lu, Yingchang and An, Ping and Bentley, Amy R and Drolet, Anne M and Gaulton, Kyle J and Guo, Xiuqing and Armstrong, Loren L and Irvin, Marguerite R and Li, Man and Lipovich, Leonard and Rybin, Denis V and Taylor, Kent D and Agyemang, Charles and Palmer, Nicholette D and Cade, Brian E and Chen, Wei-Min and Dauriz, Marco and Delaney, Joseph A C and Edwards, Todd L and Evans, Daniel S and Evans, Michele K and Lange, Leslie A and Leong, Aaron and Liu, Jingmin and Liu, Yongmei and Nayak, Uma and Patel, Sanjay R and Porneala, Bianca C and Rasmussen-Torvik, Laura J and Snijder, Marieke B and Stallings, Sarah C and Tanaka, Toshiko and Yanek, Lisa R and Zhao, Wei and Becker, Diane M and Bielak, Lawrence F and Biggs, Mary L and Bottinger, Erwin P and Bowden, Donald W and Chen, Guanjie and Correa, Adolfo and Couper, David J and Crawford, Dana C and Cushman, Mary and Eicher, John D and Fornage, Myriam and Franceschini, Nora and Fu, Yi-Ping and Goodarzi, Mark O and Gottesman, Omri and Hara, Kazuo and Harris, Tamara B and Jensen, Richard A and Johnson, Andrew D and Jhun, Min A and Karter, Andrew J and Keller, Margaux F and Kho, Abel N and Kizer, Jorge R and Krauss, Ronald M and Langefeld, Carl D and Li, Xiaohui and Liang, Jingling and Liu, Simin and Lowe, William L and Mosley, Thomas H and North, Kari E and Pacheco, Jennifer A and Peyser, Patricia A and Patrick, Alan L and Rice, Kenneth M and Selvin, Elizabeth and Sims, Mario and Smith, Jennifer A and Tajuddin, Salman M and Vaidya, Dhananjay and Wren, Mary P and Yao, Jie and Zhu, Xiaofeng and Ziegler, Julie T and Zmuda, Joseph M and Zonderman, Alan B and Zwinderman, Aeilko H and Adeyemo, Adebowale and Boerwinkle, Eric and Ferrucci, Luigi and Hayes, M Geoffrey and Kardia, Sharon L R and Miljkovic, Iva and Pankow, James S and Rotimi, Charles N and Sale, Mich{\`e}le M and Wagenknecht, Lynne E and Arnett, Donna K and Chen, Yii-Der Ida and Nalls, Michael A and Province, Michael A and Kao, W H Linda and Siscovick, David S and Psaty, Bruce M and Wilson, James G and Loos, Ruth J F and Dupuis, Jos{\'e}e and Rich, Stephen S and Florez, Jose C and Rotter, Jerome I and Morris, Andrew P and Meigs, James B} } @article {7352, title = {Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African ancestry anthropometry genetics consortium.}, journal = {PLoS Genet}, volume = {13}, year = {2017}, month = {2017 Apr 21}, pages = {e1006719}, abstract = {

Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5{\texttimes}10-8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5\%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained <= 20 variants in the credible sets that jointly account for 99\% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations.

}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1006719}, author = {Ng, Maggie C Y and Graff, Mariaelisa and Lu, Yingchang and Justice, Anne E and Mudgal, Poorva and Liu, Ching-Ti and Young, Kristin and Yanek, Lisa R and Feitosa, Mary F and Wojczynski, Mary K and Rand, Kristin and Brody, Jennifer A and Cade, Brian E and Dimitrov, Latchezar and Duan, Qing and Guo, Xiuqing and Lange, Leslie A and Nalls, Michael A and Okut, Hayrettin and Tajuddin, Salman M and Tayo, Bamidele O and Vedantam, Sailaja and Bradfield, Jonathan P and Chen, Guanjie and Chen, Wei-Min and Chesi, Alessandra and Irvin, Marguerite R and Padhukasahasram, Badri and Smith, Jennifer A and Zheng, Wei and Allison, Matthew A and Ambrosone, Christine B and Bandera, Elisa V and Bartz, Traci M and Berndt, Sonja I and Bernstein, Leslie and Blot, William J and Bottinger, Erwin P and Carpten, John and Chanock, Stephen J and Chen, Yii-Der Ida and Conti, David V and Cooper, Richard S and Fornage, Myriam and Freedman, Barry I and Garcia, Melissa and Goodman, Phyllis J and Hsu, Yu-Han H and Hu, Jennifer and Huff, Chad D and Ingles, Sue A and John, Esther M and Kittles, Rick and Klein, Eric and Li, Jin and McKnight, Barbara and Nayak, Uma and Nemesure, Barbara and Ogunniyi, Adesola and Olshan, Andrew and Press, Michael F and Rohde, Rebecca and Rybicki, Benjamin A and Salako, Babatunde and Sanderson, Maureen and Shao, Yaming and Siscovick, David S and Stanford, Janet L and Stevens, Victoria L and Stram, Alex and Strom, Sara S and Vaidya, Dhananjay and Witte, John S and Yao, Jie and Zhu, Xiaofeng and Ziegler, Regina G and Zonderman, Alan B and Adeyemo, Adebowale and Ambs, Stefan and Cushman, Mary and Faul, Jessica D and Hakonarson, Hakon and Levin, Albert M and Nathanson, Katherine L and Ware, Erin B and Weir, David R and Zhao, Wei and Zhi, Degui and Arnett, Donna K and Grant, Struan F A and Kardia, Sharon L R and Oloapde, Olufunmilayo I and Rao, D C and Rotimi, Charles N and Sale, Mich{\`e}le M and Williams, L Keoki and Zemel, Babette S and Becker, Diane M and Borecki, Ingrid B and Evans, Michele K and Harris, Tamara B and Hirschhorn, Joel N and Li, Yun and Patel, Sanjay R and Psaty, Bruce M and Rotter, Jerome I and Wilson, James G and Bowden, Donald W and Cupples, L Adrienne and Haiman, Christopher A and Loos, Ruth J F and North, Kari E} } @article {7596, title = {Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis.}, journal = {PLoS Med}, volume = {14}, year = {2017}, month = {2017 Sep}, pages = {e1002383}, abstract = {

BACKGROUND: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.

METHODS \& FINDINGS: Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95\% CI 1.04-1.06, per HbA1c-raising allele, p = 3 {\texttimes} 10-29); whereas GS-E was not (OR = 1.00, 95\% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11\%) was associated with an absolute decrease in HbA1c of 0.81\%-units (95\% CI 0.66-0.96) per allele in hemizygous men, and 0.68\%-units (95\% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2\% (N = 0.65 million, 95\% CI 0.55-0.74) of African American adults with T2D to remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants.

CONCLUSIONS: As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.

}, keywords = {Diabetes Mellitus, Type 2, Genetic Variation, Genome-Wide Association Study, Glycated Hemoglobin A, Humans, Phenotype, Risk}, issn = {1549-1676}, doi = {10.1371/journal.pmed.1002383}, author = {Wheeler, Eleanor and Leong, Aaron and Liu, Ching-Ti and Hivert, Marie-France and Strawbridge, Rona J and Podmore, Clara and Li, Man and Yao, Jie and Sim, Xueling and Hong, Jaeyoung and Chu, Audrey Y and Zhang, Weihua and Wang, Xu and Chen, Peng and Maruthur, Nisa M and Porneala, Bianca C and Sharp, Stephen J and Jia, Yucheng and Kabagambe, Edmond K and Chang, Li-Ching and Chen, Wei-Min and Elks, Cathy E and Evans, Daniel S and Fan, Qiao and Giulianini, Franco and Go, Min Jin and Hottenga, Jouke-Jan and Hu, Yao and Jackson, Anne U and Kanoni, Stavroula and Kim, Young Jin and Kleber, Marcus E and Ladenvall, Claes and Lecoeur, C{\'e}cile and Lim, Sing-Hui and Lu, Yingchang and Mahajan, Anubha and Marzi, Carola and Nalls, Mike A and Navarro, Pau and Nolte, Ilja M and Rose, Lynda M and Rybin, Denis V and Sanna, Serena and Shi, Yuan and Stram, Daniel O and Takeuchi, Fumihiko and Tan, Shu Pei and van der Most, Peter J and van Vliet-Ostaptchouk, Jana V and Wong, Andrew and Yengo, Loic and Zhao, Wanting and Goel, Anuj and Martinez Larrad, Maria Teresa and Radke, D{\"o}rte and Salo, Perttu and Tanaka, Toshiko and van Iperen, Erik P A and Abecasis, Goncalo and Afaq, Saima and Alizadeh, Behrooz Z and Bertoni, Alain G and Bonnefond, Am{\'e}lie and B{\"o}ttcher, Yvonne and Bottinger, Erwin P and Campbell, Harry and Carlson, Olga D and Chen, Chien-Hsiun and Cho, Yoon Shin and Garvey, W Timothy and Gieger, Christian and Goodarzi, Mark O and Grallert, Harald and Hamsten, Anders and Hartman, Catharina A and Herder, Christian and Hsiung, Chao Agnes and Huang, Jie and Igase, Michiya and Isono, Masato and Katsuya, Tomohiro and Khor, Chiea-Chuen and Kiess, Wieland and Kohara, Katsuhiko and Kovacs, Peter and Lee, Juyoung and Lee, Wen-Jane and Lehne, Benjamin and Li, Huaixing and Liu, Jianjun and Lobbens, Stephane and Luan, Jian{\textquoteright}an and Lyssenko, Valeriya and Meitinger, Thomas and Miki, Tetsuro and Miljkovic, Iva and Moon, Sanghoon and Mulas, Antonella and M{\"u}ller, Gabriele and M{\"u}ller-Nurasyid, Martina and Nagaraja, Ramaiah and Nauck, Matthias and Pankow, James S and Polasek, Ozren and Prokopenko, Inga and Ramos, Paula S and Rasmussen-Torvik, Laura and Rathmann, Wolfgang and Rich, Stephen S and Robertson, Neil R and Roden, Michael and Roussel, Ronan and Rudan, Igor and Scott, Robert A and Scott, William R and Sennblad, Bengt and Siscovick, David S and Strauch, Konstantin and Sun, Liang and Swertz, Morris and Tajuddin, Salman M and Taylor, Kent D and Teo, Yik-Ying and Tham, Yih Chung and T{\"o}njes, Anke and Wareham, Nicholas J and Willemsen, Gonneke and Wilsgaard, Tom and Hingorani, Aroon D and Egan, Josephine and Ferrucci, Luigi and Hovingh, G Kees and Jula, Antti and Kivimaki, Mika and Kumari, Meena and Nj{\o}lstad, Inger and Palmer, Colin N A and Serrano R{\'\i}os, Manuel and Stumvoll, Michael and Watkins, Hugh and Aung, Tin and Bl{\"u}her, Matthias and Boehnke, Michael and Boomsma, Dorret I and Bornstein, Stefan R and Chambers, John C and Chasman, Daniel I and Chen, Yii-Der Ida and Chen, Yduan-Tsong and Cheng, Ching-Yu and Cucca, Francesco and de Geus, Eco J C and Deloukas, Panos and Evans, Michele K and Fornage, Myriam and Friedlander, Yechiel and Froguel, Philippe and Groop, Leif and Gross, Myron D and Harris, Tamara B and Hayward, Caroline and Heng, Chew-Kiat and Ingelsson, Erik and Kato, Norihiro and Kim, Bong-Jo and Koh, Woon-Puay and Kooner, Jaspal S and K{\"o}rner, Antje and Kuh, Diana and Kuusisto, Johanna and Laakso, Markku and Lin, Xu and Liu, Yongmei and Loos, Ruth J F and Magnusson, Patrik K E and M{\"a}rz, Winfried and McCarthy, Mark I and Oldehinkel, Albertine J and Ong, Ken K and Pedersen, Nancy L and Pereira, Mark A and Peters, Annette and Ridker, Paul M and Sabanayagam, Charumathi and Sale, Michele and Saleheen, Danish and Saltevo, Juha and Schwarz, Peter Eh and Sheu, Wayne H H and Snieder, Harold and Spector, Timothy D and Tabara, Yasuharu and Tuomilehto, Jaakko and van Dam, Rob M and Wilson, James G and Wilson, James F and Wolffenbuttel, Bruce H R and Wong, Tien Yin and Wu, Jer-Yuarn and Yuan, Jian-Min and Zonderman, Alan B and Soranzo, Nicole and Guo, Xiuqing and Roberts, David J and Florez, Jose C and Sladek, Robert and Dupuis, Jos{\'e}e and Morris, Andrew P and Tai, E-Shyong and Selvin, Elizabeth and Rotter, Jerome I and Langenberg, Claudia and Barroso, In{\^e}s and Meigs, James B} } @article {7487, title = {Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis.}, journal = {Am J Hum Genet}, volume = {101}, year = {2017}, month = {2017 Aug 03}, pages = {227-238}, abstract = {

Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5\%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (-0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5~{\texttimes} 10(-88)). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95\% confidence interval [CI] = 1.78-2.78, p = 1.26~{\texttimes} 10(-12)). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95\% CI = 1.19-1.64, p = 2.63~{\texttimes} 10(-5)) in a sample of 5,927 case and 5,599 control subjects. In~conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis.

}, keywords = {Cholestanetriol 26-Monooxygenase, Cytochrome P450 Family 2, Gene Frequency, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Multiple Sclerosis, Polymorphism, Single Nucleotide, Risk Factors, Vitamin D, Vitamin D Deficiency}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2017.06.014}, author = {Manousaki, Despoina and Dudding, Tom and Haworth, Simon and Hsu, Yi-Hsiang and Liu, Ching-Ti and Medina-G{\'o}mez, Carolina and Voortman, Trudy and van der Velde, Nathalie and Melhus, H{\r a}kan and Robinson-Cohen, Cassianne and Cousminer, Diana L and Nethander, Maria and Vandenput, Liesbeth and Noordam, Raymond and Forgetta, Vincenzo and Greenwood, Celia M T and Biggs, Mary L and Psaty, Bruce M and Rotter, Jerome I and Zemel, Babette S and Mitchell, Jonathan A and Taylor, Bruce and Lorentzon, Mattias and Karlsson, Magnus and Jaddoe, Vincent V W and Tiemeier, Henning and Campos-Obando, Natalia and Franco, Oscar H and Utterlinden, Andre G and Broer, Linda and van Schoor, Natasja M and Ham, Annelies C and Ikram, M Arfan and Karasik, David and de Mutsert, Ren{\'e}e and Rosendaal, Frits R and den Heijer, Martin and Wang, Thomas J and Lind, Lars and Orwoll, Eric S and Mook-Kanamori, Dennis O and Micha{\"e}lsson, Karl and Kestenbaum, Bryan and Ohlsson, Claes and Mellstr{\"o}m, Dan and de Groot, Lisette C P G M and Grant, Struan F A and Kiel, Douglas P and Zillikens, M Carola and Rivadeneira, Fernando and Sawcer, Stephen and Timpson, Nicholas J and Richards, J Brent} } @article {7802, title = {Common Coding Variants in Are Associated With the Nav1.8 Late Current and Cardiac Conduction.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 May}, pages = {e001663}, abstract = {

BACKGROUND: Genetic variants at the / locus are strongly associated with electrocardiographic PR and QRS intervals. While is the canonical cardiac sodium channel gene, the role of in cardiac conduction is less well characterized.

METHODS: We sequenced the locus in 3699 European-ancestry individuals to identify variants associated with cardiac conduction, and replicated our findings in 21,000 individuals of European ancestry. We examined association with expression in human atrial tissue. We explored the biophysical effect of variation on channel function using cellular electrophysiology.

RESULTS: We identified 2 intronic single nucleotide polymorphisms in high linkage disequilibrium ( =0.86) with each other to be the strongest signals for PR (rs10428132, β=-4.74, =1.52{\texttimes}10) and QRS intervals (rs6599251, QRS β=-0.73; =1.2{\texttimes}10), respectively. Although these variants were not associated with or expression in human atrial tissue (n=490), they were in high linkage disequilibrium ( >=0.72) with a common missense variant, rs6795970 (V1073A). In total, we identified 7 missense variants, 4 of which (I962V, P1045T, V1073A, and L1092P) were associated with cardiac conduction. These 4 missense variants cluster in the cytoplasmic linker of the second and third domains of the SCN10A protein and together form 6 common haplotypes. Using cellular electrophysiology, we found that haplotypes associated with shorter PR intervals had a significantly larger percentage of late current compared with wild-type (I962V+V1073A+L1092P, 20.2{\textpm}3.3\%, =0.03, and I962V+V1073A, 22.4{\textpm}0.8\%, =0.0004 versus wild-type 11.7{\textpm}1.6\%), and the haplotype associated with the longest PR interval had a significantly smaller late current percentage (P1045T, 6.4{\textpm}1.2\%, =0.03).

CONCLUSIONS: Our findings suggest an association between genetic variation in , the late sodium current, and alterations in cardiac conduction.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.116.001663}, author = {Macri, Vincenzo and Brody, Jennifer A and Arking, Dan E and Hucker, William J and Yin, Xiaoyan and Lin, Honghuang and Mills, Robert W and Sinner, Moritz F and Lubitz, Steven A and Liu, Ching-Ti and Morrison, Alanna C and Alonso, Alvaro and Li, Ning and Fedorov, Vadim V and Janssen, Paul M and Bis, Joshua C and Heckbert, Susan R and Dolmatova, Elena V and Lumley, Thomas and Sitlani, Colleen M and Cupples, L Adrienne and Pulit, Sara L and Newton-Cheh, Christopher and Barnard, John and Smith, Jonathan D and Van Wagoner, David R and Chung, Mina K and Vlahakes, Gus J and O{\textquoteright}Donnell, Christopher J and Rotter, Jerome I and Margulies, Kenneth B and Morley, Michael P and Cappola, Thomas P and Benjamin, Emelia J and Muzny, Donna and Gibbs, Richard A and Jackson, Rebecca D and Magnani, Jared W and Herndon, Caroline N and Rich, Stephen S and Psaty, Bruce M and Milan, David J and Boerwinkle, Eric and Mohler, Peter J and Sotoodehnia, Nona and Ellinor, Patrick T} } @article {7809, title = {Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6.}, journal = {Genome Biol}, volume = {19}, year = {2018}, month = {2018 07 17}, pages = {87}, abstract = {

BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear.

RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874~individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction.

CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.

}, issn = {1474-760X}, doi = {10.1186/s13059-018-1457-6}, author = {Prins, Bram P and Mead, Timothy J and Brody, Jennifer A and Sveinbjornsson, Gardar and Ntalla, Ioanna and Bihlmeyer, Nathan A and van den Berg, Marten and Bork-Jensen, Jette and Cappellani, Stefania and Van Duijvenboden, Stefan and Klena, Nikolai T and Gabriel, George C and Liu, Xiaoqin and Gulec, Cagri and Grarup, Niels and Haessler, Jeffrey and Hall, Leanne M and Iorio, Annamaria and Isaacs, Aaron and Li-Gao, Ruifang and Lin, Honghuang and Liu, Ching-Ti and Lyytik{\"a}inen, Leo-Pekka and Marten, Jonathan and Mei, Hao and M{\"u}ller-Nurasyid, Martina and Orini, Michele and Padmanabhan, Sandosh and Radmanesh, Farid and Ramirez, Julia and Robino, Antonietta and Schwartz, Molly and van Setten, Jessica and Smith, Albert V and Verweij, Niek and Warren, Helen R and Weiss, Stefan and Alonso, Alvaro and Arnar, David O and Bots, Michiel L and de Boer, Rudolf A and Dominiczak, Anna F and Eijgelsheim, Mark and Ellinor, Patrick T and Guo, Xiuqing and Felix, Stephan B and Harris, Tamara B and Hayward, Caroline and Heckbert, Susan R and Huang, Paul L and Jukema, J W and K{\"a}h{\"o}nen, Mika and Kors, Jan A and Lambiase, Pier D and Launer, Lenore J and Li, Man and Linneberg, Allan and Nelson, Christopher P and Pedersen, Oluf and Perez, Marco and Peters, Annette and Polasek, Ozren and Psaty, Bruce M and Raitakari, Olli T and Rice, Kenneth M and Rotter, Jerome I and Sinner, Moritz F and Soliman, Elsayed Z and Spector, Tim D and Strauch, Konstantin and Thorsteinsdottir, Unnur and Tinker, Andrew and Trompet, Stella and Uitterlinden, Andre and Vaartjes, Ilonca and van der Meer, Peter and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Waldenberger, Melanie and Wilson, James G and Xie, Zhijun and Asselbergs, Folkert W and D{\"o}rr, Marcus and van Duijn, Cornelia M and Gasparini, Paolo and Gudbjartsson, Daniel F and Gudnason, Vilmundur and Hansen, Torben and K{\"a}{\"a}b, Stefan and Kanters, J{\o}rgen K and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Lin, Henry J and Lubitz, Steven A and Mook-Kanamori, Dennis O and Conti, Francesco J and Newton-Cheh, Christopher H and Rosand, Jonathan and Rudan, Igor and Samani, Nilesh J and Sinagra, Gianfranco and Smith, Blair H and Holm, Hilma and Stricker, Bruno H and Ulivi, Sheila and Sotoodehnia, Nona and Apte, Suneel S and van der Harst, Pim and Stefansson, Kari and Munroe, Patricia B and Arking, Dan E and Lo, Cecilia W and Jamshidi, Yalda} } @article {7784, title = {ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 Jan}, pages = {e001758}, abstract = {

BACKGROUND: QT interval, measured through a standard ECG, captures the time it takes for the cardiac ventricles to depolarize and repolarize. JT interval is the component of the QT interval that reflects ventricular repolarization alone. Prolonged QT interval has been linked to higher risk of sudden cardiac arrest.

METHODS AND RESULTS: We performed an ExomeChip-wide analysis for both QT and JT intervals, including 209 449 variants, both common and rare, in 17 341 genes from the Illumina Infinium HumanExome BeadChip. We identified 10 loci that modulate QT and JT interval duration that have not been previously reported in the literature using single-variant statistical models in a meta-analysis of 95 626 individuals from 23 cohorts (comprised 83 884 European ancestry individuals, 9610 blacks, 1382 Hispanics, and 750 Asians). This brings the total number of ventricular repolarization associated loci to 45. In addition, our approach of using coding variants has highlighted the role of 17 specific genes for involvement in ventricular repolarization, 7 of which are in novel loci.

CONCLUSIONS: Our analyses show a role for myocyte internal structure and interconnections in modulating QT interval duration, adding to previous known roles of potassium, sodium, and calcium ion regulation, as well as autonomic control. We anticipate that these discoveries will open new paths to the goal of making novel remedies for the prevention of lethal ventricular arrhythmias and sudden cardiac arrest.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.117.001758}, author = {Bihlmeyer, Nathan A and Brody, Jennifer A and Smith, Albert Vernon and Warren, Helen R and Lin, Honghuang and Isaacs, Aaron and Liu, Ching-Ti and Marten, Jonathan and Radmanesh, Farid and Hall, Leanne M and Grarup, Niels and Mei, Hao and M{\"u}ller-Nurasyid, Martina and Huffman, Jennifer E and Verweij, Niek and Guo, Xiuqing and Yao, Jie and Li-Gao, Ruifang and van den Berg, Marten and Weiss, Stefan and Prins, Bram P and van Setten, Jessica and Haessler, Jeffrey and Lyytik{\"a}inen, Leo-Pekka and Li, Man and Alonso, Alvaro and Soliman, Elsayed Z and Bis, Joshua C and Austin, Tom and Chen, Yii-Der Ida and Psaty, Bruce M and Harrris, Tamara B and Launer, Lenore J and Padmanabhan, Sandosh and Dominiczak, Anna and Huang, Paul L and Xie, Zhijun and Ellinor, Patrick T and Kors, Jan A and Campbell, Archie and Murray, Alison D and Nelson, Christopher P and Tobin, Martin D and Bork-Jensen, Jette and Hansen, Torben and Pedersen, Oluf and Linneberg, Allan and Sinner, Moritz F and Peters, Annette and Waldenberger, Melanie and Meitinger, Thomas and Perz, Siegfried and Kolcic, Ivana and Rudan, Igor and de Boer, Rudolf A and van der Meer, Peter and Lin, Henry J and Taylor, Kent D and de Mutsert, Ren{\'e}e and Trompet, Stella and Jukema, J Wouter and Maan, Arie C and Stricker, Bruno H C and Rivadeneira, Fernando and Uitterlinden, Andre and V{\"o}lker, Uwe and Homuth, Georg and V{\"o}lzke, Henry and Felix, Stephan B and Mangino, Massimo and Spector, Timothy D and Bots, Michiel L and Perez, Marco and Raitakari, Olli T and K{\"a}h{\"o}nen, Mika and Mononen, Nina and Gudnason, Vilmundur and Munroe, Patricia B and Lubitz, Steven A and van Duijn, Cornelia M and Newton-Cheh, Christopher H and Hayward, Caroline and Rosand, Jonathan and Samani, Nilesh J and Kanters, J{\o}rgen K and Wilson, James G and K{\"a}{\"a}b, Stefan and Polasek, Ozren and van der Harst, Pim and Heckbert, Susan R and Rotter, Jerome I and Mook-Kanamori, Dennis O and Eijgelsheim, Mark and D{\"o}rr, Marcus and Jamshidi, Yalda and Asselbergs, Folkert W and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Arking, Dan E and Sotoodehnia, Nona} } @article {7667, title = {Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Jan 17}, pages = {260}, abstract = {

Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7{\texttimes}10 at rs8018720 in SEC23A, and P = 1.9{\texttimes}10 at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5\%, with statistically significant loci explaining 38\% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.

}, issn = {2041-1723}, doi = {10.1038/s41467-017-02662-2}, author = {Jiang, Xia and O{\textquoteright}Reilly, Paul F and Aschard, Hugues and Hsu, Yi-Hsiang and Richards, J Brent and Dupuis, Jos{\'e}e and Ingelsson, Erik and Karasik, David and Pilz, Stefan and Berry, Diane and Kestenbaum, Bryan and Zheng, Jusheng and Luan, Jianan and Sofianopoulou, Eleni and Streeten, Elizabeth A and Albanes, Demetrius and Lutsey, Pamela L and Yao, Lu and Tang, Weihong and Econs, Michael J and Wallaschofski, Henri and V{\"o}lzke, Henry and Zhou, Ang and Power, Chris and McCarthy, Mark I and Michos, Erin D and Boerwinkle, Eric and Weinstein, Stephanie J and Freedman, Neal D and Huang, Wen-Yi and van Schoor, Natasja M and van der Velde, Nathalie and Groot, Lisette C P G M de and Enneman, Anke and Cupples, L Adrienne and Booth, Sarah L and Vasan, Ramachandran S and Liu, Ching-Ti and Zhou, Yanhua and Ripatti, Samuli and Ohlsson, Claes and Vandenput, Liesbeth and Lorentzon, Mattias and Eriksson, Johan G and Shea, M Kyla and Houston, Denise K and Kritchevsky, Stephen B and Liu, Yongmei and Lohman, Kurt K and Ferrucci, Luigi and Peacock, Munro and Gieger, Christian and Beekman, Marian and Slagboom, Eline and Deelen, Joris and Heemst, Diana van and Kleber, Marcus E and M{\"a}rz, Winfried and de Boer, Ian H and Wood, Alexis C and Rotter, Jerome I and Rich, Stephen S and Robinson-Cohen, Cassianne and den Heijer, Martin and Jarvelin, Marjo-Riitta and Cavadino, Alana and Joshi, Peter K and Wilson, James F and Hayward, Caroline and Lind, Lars and Micha{\"e}lsson, Karl and Trompet, Stella and Zillikens, M Carola and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Broer, Linda and Zgaga, Lina and Campbell, Harry and Theodoratou, Evropi and Farrington, Susan M and Timofeeva, Maria and Dunlop, Malcolm G and Valdes, Ana M and Tikkanen, Emmi and Lehtim{\"a}ki, Terho and Lyytik{\"a}inen, Leo-Pekka and K{\"a}h{\"o}nen, Mika and Raitakari, Olli T and Mikkil{\"a}, Vera and Ikram, M Arfan and Sattar, Naveed and Jukema, J Wouter and Wareham, Nicholas J and Langenberg, Claudia and Forouhi, Nita G and Gundersen, Thomas E and Khaw, Kay-Tee and Butterworth, Adam S and Danesh, John and Spector, Timothy and Wang, Thomas J and Hypp{\"o}nen, Elina and Kraft, Peter and Kiel, Douglas P} } @article {7686, title = {A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure.}, journal = {Am J Hum Genet}, volume = {102}, year = {2018}, month = {2018 Mar 01}, pages = {375-400}, abstract = {

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined \~{}18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5~{\texttimes} 10) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5~{\texttimes} 10). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2018.01.015}, author = {Sung, Yun J and Winkler, Thomas W and de Las Fuentes, Lisa and Bentley, Amy R and Brown, Michael R and Kraja, Aldi T and Schwander, Karen and Ntalla, Ioanna and Guo, Xiuqing and Franceschini, Nora and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Marten, Jonathan and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Kilpel{\"a}inen, Tuomas O and Richard, Melissa A and Noordam, Raymond and Aslibekyan, Stella and Aschard, Hugues and Bartz, Traci M and Dorajoo, Rajkumar and Liu, Yongmei and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert Vernon and Tajuddin, Salman M and Tayo, Bamidele O and Warren, Helen R and Zhao, Wei and Zhou, Yanhua and Matoba, Nana and Sofer, Tamar and Alver, Maris and Amini, Marzyeh and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gandin, Ilaria and Gao, Chuan and Giulianini, Franco and Goel, Anuj and Harris, Sarah E and Hartwig, Fernando Pires and Horimoto, Andrea R V R and Hsu, Fang-Chi and Jackson, Anne U and K{\"a}h{\"o}nen, Mika and Kasturiratne, Anuradhani and Kuhnel, Brigitte and Leander, Karin and Lee, Wen-Jane and Lin, Keng-Hung and {\textquoteright}an Luan, Jian and McKenzie, Colin A and Meian, He and Nelson, Christopher P and Rauramaa, Rainer and Schupf, Nicole and Scott, Robert A and Sheu, Wayne H H and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and van der Most, Peter J and Varga, Tibor V and Wang, Heming and Wang, Yajuan and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Alfred, Tamuno and Amin, Najaf and Arking, Dan and Aung, Tin and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Braund, Peter S and Brody, Jennifer A and Broeckel, Ulrich and Cabrera, Claudia P and Cade, Brian and Caizheng, Yu and Campbell, Archie and Canouil, Micka{\"e}l and Chakravarti, Aravinda and Chauhan, Ganesh and Christensen, Kaare and Cocca, Massimiliano and Collins, Francis S and Connell, John M and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Debette, Stephanie and D{\"o}rr, Marcus and Duan, Qing and Eaton, Charles B and Ehret, Georg and Evangelou, Evangelos and Faul, Jessica D and Fisher, Virginia A and Forouhi, Nita G and Franco, Oscar H and Friedlander, Yechiel and Gao, He and Gigante, Bruna and Graff, Misa and Gu, C Charles and Gu, Dongfeng and Gupta, Preeti and Hagenaars, Saskia P and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hofman, Albert and Howard, Barbara V and Hunt, Steven and Irvin, Marguerite R and Jia, Yucheng and Joehanes, Roby and Justice, Anne E and Katsuya, Tomohiro and Kaufman, Joel and Kerrison, Nicola D and Khor, Chiea Chuen and Koh, Woon-Puay and Koistinen, Heikki A and Komulainen, Pirjo and Kooperberg, Charles and Krieger, Jose E and Kubo, Michiaki and Kuusisto, Johanna and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Lim, Sing Hui and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Jingmin and Liu, Kiang and Liu, Yeheng and Loh, Marie and Lohman, Kurt K and Long, Jirong and Louie, Tin and M{\"a}gi, Reedik and Mahajan, Anubha and Meitinger, Thomas and Metspalu, Andres and Milani, Lili and Momozawa, Yukihide and Morris, Andrew P and Mosley, Thomas H and Munson, Peter and Murray, Alison D and Nalls, Mike A and Nasri, Ubaydah and Norris, Jill M and North, Kari and Ogunniyi, Adesola and Padmanabhan, Sandosh and Palmas, Walter R and Palmer, Nicholette D and Pankow, James S and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Raitakari, Olli T and Renstrom, Frida and Rice, Treva K and Ridker, Paul M and Robino, Antonietta and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Sabanayagam, Charumathi and Salako, Babatunde L and Sandow, Kevin and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Seshadri, Sudha and Sever, Peter and Sitlani, Colleen M and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and Waldenberger, Melanie and Wang, Lihua and Wang, Ya X and Wei, Wen Bin and Williams, Christine and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Yuan, Jian-Min and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Chen, Yii-Der Ida and de Faire, Ulf and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Forrester, Terrence and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo Lessa and Hung, Yi-Jen and Jonas, Jost B and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Lehtim{\"a}ki, Terho and Liang, Kae-Woei and Magnusson, Patrik K E and Newman, Anne B and Oldehinkel, Albertine J and Pereira, Alexandre C and Redline, Susan and Rettig, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zheng, Wei and Kamatani, Yoichiro and Laurie, Cathy C and Bouchard, Claude and Cooper, Richard S and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Kritchevsky, Stephen B and Levy, Daniel and O{\textquoteright}Connell, Jeff R and Psaty, Bruce M and van Dam, Rob M and Sims, Mario and Arnett, Donna K and Mook-Kanamori, Dennis O and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and Fornage, Myriam and Rotimi, Charles N and Province, Michael A and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Reiner, Alex P and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Caulfield, Mark J and Elliott, Paul and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Cupples, L Adrienne and Rao, Dabeeru C and Chasman, Daniel I} } @article {7668, title = {Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Apr}, pages = {559-571}, abstract = {

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 {\texttimes} 10); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio <=1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent {\textquoteright}false leads{\textquoteright} with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0084-1}, author = {Mahajan, Anubha and Wessel, Jennifer and Willems, Sara M and Zhao, Wei and Robertson, Neil R and Chu, Audrey Y and Gan, Wei and Kitajima, Hidetoshi and Taliun, Daniel and Rayner, N William and Guo, Xiuqing and Lu, Yingchang and Li, Man and Jensen, Richard A and Hu, Yao and Huo, Shaofeng and Lohman, Kurt K and Zhang, Weihua and Cook, James P and Prins, Bram Peter and Flannick, Jason and Grarup, Niels and Trubetskoy, Vassily Vladimirovich and Kravic, Jasmina and Kim, Young Jin and Rybin, Denis V and Yaghootkar, Hanieh and M{\"u}ller-Nurasyid, Martina and Meidtner, Karina and Li-Gao, Ruifang and Varga, Tibor V and Marten, Jonathan and Li, Jin and Smith, Albert Vernon and An, Ping and Ligthart, Symen and Gustafsson, Stefan and Malerba, Giovanni and Demirkan, Ayse and Tajes, Juan Fernandez and Steinthorsdottir, Valgerdur and Wuttke, Matthias and Lecoeur, C{\'e}cile and Preuss, Michael and Bielak, Lawrence F and Graff, Marielisa and Highland, Heather M and Justice, Anne E and Liu, Dajiang J and Marouli, Eirini and Peloso, Gina Marie and Warren, Helen R and Afaq, Saima and Afzal, Shoaib and Ahlqvist, Emma and Almgren, Peter and Amin, Najaf and Bang, Lia B and Bertoni, Alain G and Bombieri, Cristina and Bork-Jensen, Jette and Brandslund, Ivan and Brody, Jennifer A and Burtt, Noel P and Canouil, Micka{\"e}l and Chen, Yii-Der Ida and Cho, Yoon Shin and Christensen, Cramer and Eastwood, Sophie V and Eckardt, Kai-Uwe and Fischer, Krista and Gambaro, Giovanni and Giedraitis, Vilmantas and Grove, Megan L and de Haan, Hugoline G and Hackinger, Sophie and Hai, Yang and Han, Sohee and Tybj{\ae}rg-Hansen, Anne and Hivert, Marie-France and Isomaa, Bo and J{\"a}ger, Susanne and J{\o}rgensen, Marit E and J{\o}rgensen, Torben and K{\"a}r{\"a}j{\"a}m{\"a}ki, AnneMari and Kim, Bong-Jo and Kim, Sung Soo and Koistinen, Heikki A and Kovacs, Peter and Kriebel, Jennifer and Kronenberg, Florian and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Jung-Jin and Lehne, Benjamin and Li, Huaixing and Lin, Keng-Hung and Linneberg, Allan and Liu, Ching-Ti and Liu, Jun and Loh, Marie and M{\"a}gi, Reedik and Mamakou, Vasiliki and McKean-Cowdin, Roberta and Nadkarni, Girish and Neville, Matt and Nielsen, Sune F and Ntalla, Ioanna and Peyser, Patricia A and Rathmann, Wolfgang and Rice, Kenneth and Rich, Stephen S and Rode, Line and Rolandsson, Olov and Sch{\"o}nherr, Sebastian and Selvin, Elizabeth and Small, Kerrin S and Stan{\v c}{\'a}kov{\'a}, Alena and Surendran, Praveen and Taylor, Kent D and Teslovich, Tanya M and Thorand, Barbara and Thorleifsson, Gudmar and Tin, Adrienne and T{\"o}njes, Anke and Varbo, Anette and Witte, Daniel R and Wood, Andrew R and Yajnik, Pranav and Yao, Jie and Yengo, Loic and Young, Robin and Amouyel, Philippe and Boeing, Heiner and Boerwinkle, Eric and Bottinger, Erwin P and Chowdhury, Rajiv and Collins, Francis S and Dedoussis, George and Dehghan, Abbas and Deloukas, Panos and Ferrario, Marco M and Ferrieres, Jean and Florez, Jose C and Frossard, Philippe and Gudnason, Vilmundur and Harris, Tamara B and Heckbert, Susan R and Howson, Joanna M M and Ingelsson, Martin and Kathiresan, Sekar and Kee, Frank and Kuusisto, Johanna and Langenberg, Claudia and Launer, Lenore J and Lindgren, Cecilia M and M{\"a}nnist{\"o}, Satu and Meitinger, Thomas and Melander, Olle and Mohlke, Karen L and Moitry, Marie and Morris, Andrew D and Murray, Alison D and de Mutsert, Ren{\'e}e and Orho-Melander, Marju and Owen, Katharine R and Perola, Markus and Peters, Annette and Province, Michael A and Rasheed, Asif and Ridker, Paul M and Rivadineira, Fernando and Rosendaal, Frits R and Rosengren, Anders H and Salomaa, Veikko and Sheu, Wayne H-H and Sladek, Rob and Smith, Blair H and Strauch, Konstantin and Uitterlinden, Andr{\'e} G and Varma, Rohit and Willer, Cristen J and Bl{\"u}her, Matthias and Butterworth, Adam S and Chambers, John Campbell and Chasman, Daniel I and Danesh, John and van Duijn, Cornelia and Dupuis, Jos{\'e}e and Franco, Oscar H and Franks, Paul W and Froguel, Philippe and Grallert, Harald and Groop, Leif and Han, Bok-Ghee and Hansen, Torben and Hattersley, Andrew T and Hayward, Caroline and Ingelsson, Erik and Kardia, Sharon L R and Karpe, Fredrik and Kooner, Jaspal Singh and K{\"o}ttgen, Anna and Kuulasmaa, Kari and Laakso, Markku and Lin, Xu and Lind, Lars and Liu, Yongmei and Loos, Ruth J F and Marchini, Jonathan and Metspalu, Andres and Mook-Kanamori, Dennis and Nordestgaard, B{\o}rge G and Palmer, Colin N A and Pankow, James S and Pedersen, Oluf and Psaty, Bruce M and Rauramaa, Rainer and Sattar, Naveed and Schulze, Matthias B and Soranzo, Nicole and Spector, Timothy D and Stefansson, Kari and Stumvoll, Michael and Thorsteinsdottir, Unnur and Tuomi, Tiinamaija and Tuomilehto, Jaakko and Wareham, Nicholas J and Wilson, James G and Zeggini, Eleftheria and Scott, Robert A and Barroso, In{\^e}s and Frayling, Timothy M and Goodarzi, Mark O and Meigs, James B and Boehnke, Michael and Saleheen, Danish and Morris, Andrew P and Rotter, Jerome I and McCarthy, Mark I} } @article {7681, title = {Trans-ethnic Evaluation Identifies Novel Low Frequency Loci Associated with 25-Hydroxyvitamin D Concentrations.}, journal = {J Clin Endocrinol Metab}, year = {2018}, month = {2018 Jan 09}, abstract = {

Context: Vitamin D inadequacy is common in the adult population of the United States. While the genetic determinants underlying vitamin D inadequacy have been studied in people of European ancestry, less is known in Hispanic or African ancestry populations.

Objective: The TRANSCEN-D (TRANS-ethniC Evaluation of vitamiN D GWAS) consortium was assembled to replicate genetic associations with 25-hydroxyvitamin D (25(OH)D) concentrations from the meta-analyses of European ancestry (SUNLIGHT) and to identify novel genetic variants related to vitamin D concentrations in African and Hispanic ancestries.

Design: Ancestry-specific (Hispanic and African) and trans-ethnic (Hispanic, African and European) meta-analyses were performed using the METAL software.

Patients or Other Participants: In total, 8,541 African-American and 3,485 Hispanic-American (from North America) participants from twelve cohorts, and 16,124 European participants from SUNLIGHT were included in the study.

Main Outcome Measure(s): Blood concentrations of 25(OH)D were measured for all participants.

Results: Ancestry-specific analyses in African and Hispanic Americans replicated SNPs in GC (2 and 4 SNPs, respectively). A potentially novel SNP (rs79666294) near the KIF4B gene was identified in the African-American cohort. Trans-ethnic evaluation replicated GC and DHCR7 region SNPs. Additionally, the trans-ethnic analyses revealed novel SNPs rs719700 and rs1410656 near the ANO6/ARID2 and HTR2A genes, respectively.

Conclusions: Ancestry-specific and trans-ethnic GWAS of 25(OH)D confirmed findings in GC and DHCR7 for African and Hispanic American samples and revealed novel findings near KIF4B, ANO6/ARID2, and HTR2A. The biological mechanisms that link these regions with 25(OH)D metabolism require further investigation.

}, issn = {1945-7197}, doi = {10.1210/jc.2017-01802}, author = {Hong, Jaeyoung and Hatchell, Kathryn E and Bradfield, Jonathan P and Andrew, Bjonnes and Alessandra, Chesi and Chao-Qiang, Lai and Langefeld, Carl D and Lu, Lingyi and Lu, Yingchang and Lutsey, Pamela L and Musani, Solomon K and Nalls, Mike A and Robinson-Cohen, Cassianne and Roizen, Jeffery D and Saxena, Richa and Tucker, Katherine L and Ziegler, Julie T and Arking, Dan E and Bis, Joshua C and Boerwinkle, Eric and Bottinger, Erwin P and Bowden, Donald W and Gilsanz, Vincente and Houston, Denise K and Kalkwarf, Heidi J and Kelly, Andrea and Lappe, Joan M and Liu, Yongmei and Michos, Erin D and Oberfield, Sharon E and Palmer, Nicholette D and Rotter, Jerome I and Sapkota, Bishwa and Shepherd, John A and Wilson, James G and Basu, Saonli and de Boer, Ian H and Divers, Jasmin and Freedman, Barry I and Grant, Struan F A and Hakanarson, Hakon and Harris, Tamara B and Kestenbaum, Bryan R and Kritchevsky, Stephen B and Loos, Ruth J F and Norris, Jill M and Norwood, Arnita F and Ordovas, Jose M and Pankow, James S and Psaty, Bruce M and Sanhgera, Dharambir K and Wagenknecht, Lynne E and Zemel, Babette S and Meigs, James and Dupuis, Jos{\'e}e and Florez, Jose C and Wang, Thomas and Liu, Ching-Ti and Engelman, Corinne D and Billings, Liana K} } @article {9372, title = {Genome-Wide Association Study of Apparent Treatment-Resistant Hypertension in the CHARGE Consortium: The CHARGE Pharmacogenetics Working Group.}, journal = {Am J Hypertens}, volume = {32}, year = {2019}, month = {2019 Nov 15}, pages = {1146-1153}, abstract = {

BACKGROUND: Only a handful of genetic discovery efforts in apparent treatment-resistant hypertension (aTRH) have been described.

METHODS: We conducted a case-control genome-wide association study of aTRH among persons treated for hypertension, using data from 10 cohorts of European ancestry (EA) and 5 cohorts of African ancestry (AA). Cases were treated with 3 different antihypertensive medication classes and had blood pressure (BP) above goal (systolic BP >= 140 mm Hg and/or diastolic BP >= 90 mm Hg) or 4 or more medication classes regardless of BP control (nEA = 931, nAA = 228). Both a normotensive control group and a treatment-responsive control group were considered in separate analyses. Normotensive controls were untreated (nEA = 14,210, nAA = 2,480) and had systolic BP/diastolic BP < 140/90 mm Hg. Treatment-responsive controls (nEA = 5,266, nAA = 1,817) had BP at goal (<140/90 mm Hg), while treated with one antihypertensive medication class. Individual cohorts used logistic regression with adjustment for age, sex, study site, and principal components for ancestry to examine the association of single-nucleotide polymorphisms with case-control status. Inverse variance-weighted fixed-effects meta-analyses were carried out using METAL.

RESULTS: The known hypertension locus, CASZ1, was a top finding among EAs (P = 1.1 {\texttimes} 10-8) and in the race-combined analysis (P = 1.5 {\texttimes} 10-9) using the normotensive control group (rs12046278, odds ratio = 0.71 (95\% confidence interval: 0.6-0.8)). Single-nucleotide polymorphisms in this locus were robustly replicated in the Million Veterans Program (MVP) study in consideration of a treatment-responsive control group. There were no statistically significant findings for the discovery analyses including treatment-responsive controls.

CONCLUSION: This genomic discovery effort for aTRH identified CASZ1 as an aTRH risk locus.

}, keywords = {Aged, Antihypertensive Agents, Black or African American, Blood Pressure, Case-Control Studies, DNA (Cytosine-5-)-Methyltransferases, DNA Methyltransferase 3A, DNA-Binding Proteins, Drug Resistance, Dystrophin-Associated Proteins, Europe, Female, Genetic Loci, Genome-Wide Association Study, Humans, Hypertension, Male, Middle Aged, Myosin Heavy Chains, Myosin Type V, Neuropeptides, Pharmacogenetics, Pharmacogenomic Variants, Polymorphism, Single Nucleotide, Risk Assessment, Risk Factors, Transcription Factors, United States, White People}, issn = {1941-7225}, doi = {10.1093/ajh/hpz150}, author = {Irvin, Marguerite R and Sitlani, Colleen M and Floyd, James S and Psaty, Bruce M and Bis, Joshua C and Wiggins, Kerri L and Whitsel, Eric A and St{\"u}rmer, Til and Stewart, James and Raffield, Laura and Sun, Fangui and Liu, Ching-Ti and Xu, Hanfei and Cupples, Adrienne L and Tanner, Rikki M and Rossing, Peter and Smith, Albert and Zilh{\~a}o, Nuno R and Launer, Lenore J and Noordam, Raymond and Rotter, Jerome I and Yao, Jie and Li, Xiaohui and Guo, Xiuqing and Limdi, Nita and Sundaresan, Aishwarya and Lange, Leslie and Correa, Adolfo and Stott, David J and Ford, Ian and Jukema, J Wouter and Gudnason, Vilmundur and Mook-Kanamori, Dennis O and Trompet, Stella and Palmas, Walter and Warren, Helen R and Hellwege, Jacklyn N and Giri, Ayush and O{\textquoteright}donnell, Christopher and Hung, Adriana M and Edwards, Todd L and Ahluwalia, Tarunveer S and Arnett, Donna K and Avery, Christy L} } @article {8205, title = {Impact of Rare and Common Genetic Variants on Diabetes Diagnosis by Hemoglobin A1c in Multi-Ancestry Cohorts: The Trans-Omics for Precision Medicine Program.}, journal = {Am J Hum Genet}, volume = {105}, year = {2019}, month = {2019 Oct 03}, pages = {706-718}, abstract = {

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12\% in African-Americans, MAF = 2\% in Hispanics) lowered HbA1c (-0.88\% in hemizygous males, -0.34\% in heterozygous females) and explained 23\% of HbA1c variance in African-Americans and 4\% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5\%; -0.98\% in hemizygous males, -0.46\% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2019.08.010}, author = {Sarnowski, Chloe and Leong, Aaron and Raffield, Laura M and Wu, Peitao and de Vries, Paul S and DiCorpo, Daniel and Guo, Xiuqing and Xu, Huichun and Liu, Yongmei and Zheng, Xiuwen and Hu, Yao and Brody, Jennifer A and Goodarzi, Mark O and Hidalgo, Bertha A and Highland, Heather M and Jain, Deepti and Liu, Ching-Ti and Naik, Rakhi P and O{\textquoteright}Connell, Jeffrey R and Perry, James A and Porneala, Bianca C and Selvin, Elizabeth and Wessel, Jennifer and Psaty, Bruce M and Curran, Joanne E and Peralta, Juan M and Blangero, John and Kooperberg, Charles and Mathias, Rasika and Johnson, Andrew D and Reiner, Alexander P and Mitchell, Braxton D and Cupples, L Adrienne and Vasan, Ramachandran S and Correa, Adolfo and Morrison, Alanna C and Boerwinkle, Eric and Rotter, Jerome I and Rich, Stephen S and Manning, Alisa K and Dupuis, Jos{\'e}e and Meigs, James B} } @article {7970, title = {Multi-Ancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions.}, journal = {Am J Epidemiol}, year = {2019}, month = {2019 Jan 29}, abstract = {

An individual{\textquoteright}s lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multi-ancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in Stage 1 (genome-wide discovery) and 66 studies in Stage 2 (focused follow-up), for a total of 394,584 individuals from five ancestry groups. Genetic main and interaction effects were jointly assessed by a 2 degrees of freedom (DF) test, and a 1 DF test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P~<~1~{\texttimes}~10-6) with lipid levels in Stage 1 and were evaluated in Stage 2, followed by combined analyses of Stage 1 and Stage 2. In the combined analysis of Stage 1 and Stage 2, 147 independent loci were associated with lipid levels at P~<~5~{\texttimes}~10-8 using 2 DF tests, of which 18 were novel. No genome-wide significant associations were found testing the interaction effect alone. The novel loci included several genes (PCSK5, VEGFB, and A1CF) with a putative role in lipid metabolism based on existing evidence from cellular and experimental models.

}, issn = {1476-6256}, doi = {10.1093/aje/kwz005}, author = {de Vries, Paul S and Brown, Michael R and Bentley, Amy R and Sung, Yun J and Winkler, Thomas W and Ntalla, Ioanna and Schwander, Karen and Kraja, Aldi T and Guo, Xiuqing and Franceschini, Nora and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Huffman, Jennifer E and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Richard, Melissa A and Noordam, Raymond and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Deng, Xuan and Dorajoo, Rajkumar and Lohman, Kurt K and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Evangelou, Evangelos and Graff, Mariaelisa and Alver, Maris and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gandin, Ilaria and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and Hartwig, Fernando P and He, Meian and Horimoto, Andrea R V R and Hsu, Fang-Chi and Jackson, Anne U and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Laguzzi, Federica and Lee, Joseph H and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Matoba, Nana and Nolte, Ilja M and Pietzner, Maik and Riaz, Muhammad and Said, M Abdullah and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Wang, Yajuan and Ware, Erin B and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Aung, Tin and Ballantyne, Christie and Boerwinkle, Eric and Broeckel, Ulrich and Campbell, Archie and Canouil, Micka{\"e}l and Charumathi, Sabanayagam and Chen, Yii-Der Ida and Connell, John M and de Faire, Ulf and de Las Fuentes, Lisa and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Ding, Jingzhong and Dominiczak, Anna F and Duan, Qing and Eaton, Charles B and Eppinga, Ruben N and Faul, Jessica D and Fisher, Virginia and Forrester, Terrence and Franco, Oscar H and Friedlander, Yechiel and Ghanbari, Mohsen and Giulianini, Franco and Grabe, Hans J and Grove, Megan L and Gu, C Charles and Harris, Tamara B and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hixson, James E and Howard, Barbara V and Ikram, M Arfan and Jacobs, David R and Johnson, Craig and Jonas, Jost Bruno and Kammerer, Candace M and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Koistinen, Heikki A and Kolcic, Ivana and Kooperberg, Charles and Krieger, Jose E and Kritchevsky, Steve B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lemaitre, Rozenn N and Li, Yize and Liang, Jingjing and Liu, Jianjun and Liu, Kiang and Loh, Marie and Louie, Tin and M{\"a}gi, Reedik and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Mosley, Thomas H and Mukamal, Kenneth J and Nalls, Mike A and Nauck, Matthias and Nelson, Christopher P and Sotoodehnia, Nona and O{\textquoteright}Connell, Jeff R and Palmer, Nicholette D and Pazoki, Raha and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Poulter, Neil and Raffel, Leslie J and Raitakari, Olli T and Reiner, Alex P and Rice, Treva K and Rich, Stephen S and Robino, Antonietta and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Sever, Peter and Shi, Yuan and Sidney, Stephen and Sims, Mario and Smith, Blair H and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Tan, Nicholas and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Vuckovic, Dragana and Waldenberger, Melanie and Wang, Lihua and Wang, Yujie and Wang, Zhe and Wei, Wen Bin and Williams, Christine and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Yu, Bing and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo L and Kamatani, Yoichiro and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Penninx, Brenda and Pereira, Alexandre C and Rauramaa, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wang, Ya Xing and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Zheng, Wei and Elliott, Paul and North, Kari E and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Liu, Ching-Ti and Liu, Yongmei and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Kardia, Sharon L R and Zhu, Xiaofeng and Rotimi, Charles N and Mook-Kanamori, Dennis O and Fornage, Myriam and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Liu, Jingmin and Rotter, Jerome I and Gauderman, W James and Province, Michael A and Munroe, Patricia B and Rice, Kenneth and Chasman, Daniel I and Cupples, L Adrienne and Rao, Dabeeru C and Morrison, Alanna C} } @article {8005, title = {Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 Apr}, pages = {636-648}, abstract = {

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.

}, issn = {1546-1718}, doi = {10.1038/s41588-019-0378-y}, author = {Bentley, Amy R and Sung, Yun J and Brown, Michael R and Winkler, Thomas W and Kraja, Aldi T and Ntalla, Ioanna and Schwander, Karen and Chasman, Daniel I and Lim, Elise and Deng, Xuan and Guo, Xiuqing and Liu, Jingmin and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Huffman, Jennifer E and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Richard, Melissa A and Noordam, Raymond and Baker, Jenna and Chen, Guanjie and Aschard, Hugues and Bartz, Traci M and Ding, Jingzhong and Dorajoo, Rajkumar and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Zhao, Wei and Graff, Mariaelisa and Alver, Maris and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and Hartwig, Fernando P and He, Meian and Horimoto, Andrea R V R and Hsu, Fang-Chi and Hung, Yi-Jen and Jackson, Anne U and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Leander, Karin and Lin, Keng-Hung and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Matoba, Nana and Nolte, Ilja M and Pietzner, Maik and Prins, Bram and Riaz, Muhammad and Robino, Antonietta and Said, M Abdullah and Schupf, Nicole and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Wang, Tzung-Dau and Wang, Yajuan and Ware, Erin B and Wen, Wanqing and Xiang, Yong-Bing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Adeyemo, Adebowale and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Arzumanyan, Zorayr and Aung, Tin and Ballantyne, Christie and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Broeckel, Ulrich and Brown, Morris and Cade, Brian E and Campbell, Archie and Canouil, Micka{\"e}l and Charumathi, Sabanayagam and Chen, Yii-Der Ida and Christensen, Kaare and Concas, Maria Pina and Connell, John M and de Las Fuentes, Lisa and de Silva, H Janaka and de Vries, Paul S and Doumatey, Ayo and Duan, Qing and Eaton, Charles B and Eppinga, Ruben N and Faul, Jessica D and Floyd, James S and Forouhi, Nita G and Forrester, Terrence and Friedlander, Yechiel and Gandin, Ilaria and Gao, He and Ghanbari, Mohsen and Gharib, Sina A and Gigante, Bruna and Giulianini, Franco and Grabe, Hans J and Gu, C Charles and Harris, Tamara B and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hixson, James E and Ikram, M Arfan and Jia, Yucheng and Joehanes, Roby and Johnson, Craig and Jonas, Jost Bruno and Justice, Anne E and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Kolcic, Ivana and Kooperberg, Charles and Krieger, Jose E and Kritchevsky, Stephen B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Liang, Jingjing and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Kiang and Loh, Marie and Lohman, Kurt K and Louie, Tin and Luzzi, Anna and M{\"a}gi, Reedik and Mahajan, Anubha and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Momozawa, Yukihide and Morris, Andrew P and Murray, Alison D and Nalls, Mike A and Nauck, Matthias and Nelson, Christopher P and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Papanicolau, George J and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Poulter, Neil and Raitakari, Olli T and Reiner, Alex P and Renstrom, Frida and Rice, Treva K and Rich, Stephen S and Robinson, Jennifer G and Rose, Lynda M and Rosendaal, Frits R and Rudan, Igor and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Sever, Peter and Shi, Yuan and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Stringham, Heather M and Tan, Nicholas Y Q and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Tiemeier, Henning and Turner, Stephen T and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Waldenberger, Melanie and Wang, Heming and Wang, Lan and Wang, Lihua and Wei, Wen Bin and Williams, Christine A and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Young, Kristin and Yu, Caizheng and Yuan, Jian-Min and Zhou, Jie and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Cooper, Richard S and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo L and Juang, Jyh-Ming Jimmy and Kamatani, Yoichiro and Kammerer, Candace M and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Laurie, Cathy C and Lee, I-Te and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Pereira, Alexandre C and Rauramaa, Rainer and Redline, Susan and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wang, Jun-Sing and Wang, Ya Xing and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zeggini, Eleftheria and Zheng, Wei and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Mook-Kanamori, Dennis O and Fornage, Myriam and Province, Michael A and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Franceschini, Nora and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Rao, Dabeeru C and Rotimi, Charles N and Cupples, L Adrienne} } @article {8202, title = {Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 Nov 12}, pages = {5121}, abstract = {

Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25\% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.

}, issn = {2041-1723}, doi = {10.1038/s41467-019-12958-0}, author = {Noordam, Raymond and Bos, Maxime M and Wang, Heming and Winkler, Thomas W and Bentley, Amy R and Kilpel{\"a}inen, Tuomas O and de Vries, Paul S and Sung, Yun Ju and Schwander, Karen and Cade, Brian E and Manning, Alisa and Aschard, Hugues and Brown, Michael R and Chen, Han and Franceschini, Nora and Musani, Solomon K and Richard, Melissa and Vojinovic, Dina and Aslibekyan, Stella and Bartz, Traci M and de Las Fuentes, Lisa and Feitosa, Mary and Horimoto, Andrea R and Ilkov, Marjan and Kho, Minjung and Kraja, Aldi and Li, Changwei and Lim, Elise and Liu, Yongmei and Mook-Kanamori, Dennis O and Rankinen, Tuomo and Tajuddin, Salman M and van der Spek, Ashley and Wang, Zhe and Marten, Jonathan and Laville, Vincent and Alver, Maris and Evangelou, Evangelos and Graff, Maria E and He, Meian and Kuhnel, Brigitte and Lyytik{\"a}inen, Leo-Pekka and Marques-Vidal, Pedro and Nolte, Ilja M and Palmer, Nicholette D and Rauramaa, Rainer and Shu, Xiao-Ou and Snieder, Harold and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Adolfo, Correa and Ballantyne, Christie and Bielak, Larry and Biermasz, Nienke R and Boerwinkle, Eric and Dimou, Niki and Eiriksdottir, Gudny and Gao, Chuan and Gharib, Sina A and Gottlieb, Daniel J and Haba-Rubio, Jos{\'e} and Harris, Tamara B and Heikkinen, Sami and Heinzer, Raphael and Hixson, James E and Homuth, Georg and Ikram, M Arfan and Komulainen, Pirjo and Krieger, Jose E and Lee, Jiwon and Liu, Jingmin and Lohman, Kurt K and Luik, Annemarie I and M{\"a}gi, Reedik and Martin, Lisa W and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Nalls, Mike A and O{\textquoteright}Connell, Jeff and Peters, Annette and Peyser, Patricia and Raitakari, Olli T and Reiner, Alex P and Rensen, Patrick C N and Rice, Treva K and Rich, Stephen S and Roenneberg, Till and Rotter, Jerome I and Schreiner, Pamela J and Shikany, James and Sidney, Stephen S and Sims, Mario and Sitlani, Colleen M and Sofer, Tamar and Strauch, Konstantin and Swertz, Morris A and Taylor, Kent D and Uitterlinden, Andr{\'e} G and van Duijn, Cornelia M and V{\"o}lzke, Henry and Waldenberger, Melanie and Wallance, Robert B and van Dijk, Ko Willems and Yu, Caizheng and Zonderman, Alan B and Becker, Diane M and Elliott, Paul and Esko, T{\~o}nu and Gieger, Christian and Grabe, Hans J and Lakka, Timo A and Lehtim{\"a}ki, Terho and North, Kari E and Penninx, Brenda W J H and Vollenweider, Peter and Wagenknecht, Lynne E and Wu, Tangchun and Xiang, Yong-Bing and Zheng, Wei and Arnett, Donna K and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon and Kelly, Tanika N and Kritchevsky, Stephen B and Loos, Ruth J F and Pereira, Alexandre C and Province, Mike and Psaty, Bruce M and Rotimi, Charles and Zhu, Xiaofeng and Amin, Najaf and Cupples, L Adrienne and Fornage, Myriam and Fox, Ervin F and Guo, Xiuqing and Gauderman, W James and Rice, Kenneth and Kooperberg, Charles and Munroe, Patricia B and Liu, Ching-Ti and Morrison, Alanna C and Rao, Dabeeru C and van Heemst, Diana and Redline, Susan} } @article {7976, title = {Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 01 22}, pages = {376}, abstract = {

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.

}, keywords = {Adolescent, Adult, African Continental Ancestry Group, Aged, Aged, 80 and over, Asian Continental Ancestry Group, Brazil, Calcium-Binding Proteins, Cholesterol, Cholesterol, HDL, Cholesterol, LDL, European Continental Ancestry Group, Exercise, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Hispanic Americans, Humans, LIM-Homeodomain Proteins, Lipid Metabolism, Lipids, Male, Membrane Proteins, Microtubule-Associated Proteins, Middle Aged, Muscle Proteins, Nerve Tissue Proteins, Transcription Factors, Triglycerides, Young Adult}, issn = {2041-1723}, doi = {10.1038/s41467-018-08008-w}, author = {Kilpel{\"a}inen, Tuomas O and Bentley, Amy R and Noordam, Raymond and Sung, Yun Ju and Schwander, Karen and Winkler, Thomas W and Jakupovi{\'c}, Hermina and Chasman, Daniel I and Manning, Alisa and Ntalla, Ioanna and Aschard, Hugues and Brown, Michael R and de Las Fuentes, Lisa and Franceschini, Nora and Guo, Xiuqing and Vojinovic, Dina and Aslibekyan, Stella and Feitosa, Mary F and Kho, Minjung and Musani, Solomon K and Richard, Melissa and Wang, Heming and Wang, Zhe and Bartz, Traci M and Bielak, Lawrence F and Campbell, Archie and Dorajoo, Rajkumar and Fisher, Virginia and Hartwig, Fernando P and Horimoto, Andrea R V R and Li, Changwei and Lohman, Kurt K and Marten, Jonathan and Sim, Xueling and Smith, Albert V and Tajuddin, Salman M and Alver, Maris and Amini, Marzyeh and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Graff, Mariaelisa and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Jackson, Anne U and Zhao, Jing Hua and Kraja, Aldi T and Kuhnel, Brigitte and Laguzzi, Federica and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Rauramaa, Rainer and Riaz, Muhammad and Robino, Antonietta and Rueedi, Rico and Stringham, Heather M and Takeuchi, Fumihiko and van der Most, Peter J and Varga, Tibor V and Verweij, Niek and Ware, Erin B and Wen, Wanqing and Li, Xiaoyin and Yanek, Lisa R and Amin, Najaf and Arnett, Donna K and Boerwinkle, Eric and Brumat, Marco and Cade, Brian and Canouil, Micka{\"e}l and Chen, Yii-Der Ida and Concas, Maria Pina and Connell, John and de Mutsert, Ren{\'e}e and de Silva, H Janaka and de Vries, Paul S and Demirkan, Ayse and Ding, Jingzhong and Eaton, Charles B and Faul, Jessica D and Friedlander, Yechiel and Gabriel, Kelley P and Ghanbari, Mohsen and Giulianini, Franco and Gu, Chi Charles and Gu, Dongfeng and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hunt, Steven C and Ikram, M Arfan and Jonas, Jost B and Koh, Woon-Puay and Komulainen, Pirjo and Krieger, Jose E and Kritchevsky, Stephen B and Kutalik, Zolt{\'a}n and Kuusisto, Johanna and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Leander, Karin and Lemaitre, Rozenn N and Lewis, Cora E and Liang, Jingjing and Liu, Jianjun and M{\"a}gi, Reedik and Manichaikul, Ani and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Mohlke, Karen L and Mosley, Thomas H and Murray, Alison D and Nalls, Mike A and Nang, Ei-Ei Khaing and Nelson, Christopher P and Nona, Sotoodehnia and Norris, Jill M and Nwuba, Chiamaka Vivian and O{\textquoteright}Connell, Jeff and Palmer, Nicholette D and Papanicolau, George J and Pazoki, Raha and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Porteous, David J and Poveda, Alaitz and Raitakari, Olli T and Rich, Stephen S and Risch, Neil and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Schreiner, Pamela J and Scott, Robert A and Sidney, Stephen S and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Sofer, Tamar and Starr, John M and Sternfeld, Barbara and Strauch, Konstantin and Tang, Hua and Taylor, Kent D and Tsai, Michael Y and Tuomilehto, Jaakko and Uitterlinden, Andr{\'e} G and van der Ende, M Yldau and van Heemst, Diana and Voortman, Trudy and Waldenberger, Melanie and Wennberg, Patrik and Wilson, Gregory and Xiang, Yong-Bing and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Kato, Norihiro and Laakso, Markku and Lakka, Timo A and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Samani, Nilesh J and Shu, Xiao-Ou and van der Harst, Pim and van Vliet-Ostaptchouk, Jana V and Vollenweider, Peter and Wagenknecht, Lynne E and Wang, Ya X and Wareham, Nicholas J and Weir, David R and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Evans, Michele K and Franks, Paul W and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kelly, Tanika N and Liu, Yongmei and North, Kari E and Pereira, Alexandre C and Ridker, Paul M and Tai, E Shyong and van Dam, Rob M and Fox, Ervin R and Kardia, Sharon L R and Liu, Ching-Ti and Mook-Kanamori, Dennis O and Province, Michael A and Redline, Susan and van Duijn, Cornelia M and Rotter, Jerome I and Kooperberg, Charles B and Gauderman, W James and Psaty, Bruce M and Rice, Kenneth and Munroe, Patricia B and Fornage, Myriam and Cupples, L Adrienne and Rotimi, Charles N and Morrison, Alanna C and Rao, Dabeeru C and Loos, Ruth J F} } @article {8381, title = {Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.}, journal = {Mol Psychiatry}, year = {2020}, month = {2020 May 05}, abstract = {

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 {\texttimes} 10). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.

}, issn = {1476-5578}, doi = {10.1038/s41380-020-0719-3}, author = {de Las Fuentes, Lisa and Sung, Yun Ju and Noordam, Raymond and Winkler, Thomas and Feitosa, Mary F and Schwander, Karen and Bentley, Amy R and Brown, Michael R and Guo, Xiuqing and Manning, Alisa and Chasman, Daniel I and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Campbell, Archie and Cheng, Ching-Yu and Dorajoo, Rajkumar and Hartwig, Fernando P and Horimoto, A R V R and Li, Changwei and Li-Gao, Ruifang and Liu, Yongmei and Marten, Jonathan and Musani, Solomon K and Ntalla, Ioanna and Rankinen, Tuomo and Richard, Melissa and Sim, Xueling and Smith, Albert V and Tajuddin, Salman M and Tayo, Bamidele O and Vojinovic, Dina and Warren, Helen R and Xuan, Deng and Alver, Maris and Boissel, Mathilde and Chai, Jin-Fang and Chen, Xu and Christensen, Kaare and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Girotto, Giorgia and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Kuhnel, Brigitte and Laguzzi, Federica and Li, Xiaoyin and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Poveda, Alaitz and Rauramaa, Rainer and Riaz, Muhammad and Rueedi, Rico and Shu, Xiao-Ou and Snieder, Harold and Sofer, Tamar and Takeuchi, Fumihiko and Verweij, Niek and Ware, Erin B and Weiss, Stefan and Yanek, Lisa R and Amin, Najaf and Arking, Dan E and Arnett, Donna K and Bergmann, Sven and Boerwinkle, Eric and Brody, Jennifer A and Broeckel, Ulrich and Brumat, Marco and Burke, Gregory and Cabrera, Claudia P and Canouil, Micka{\"e}l and Chee, Miao Li and Chen, Yii-Der Ida and Cocca, Massimiliano and Connell, John and de Silva, H Janaka and de Vries, Paul S and Eiriksdottir, Gudny and Faul, Jessica D and Fisher, Virginia and Forrester, Terrence and Fox, Ervin F and Friedlander, Yechiel and Gao, He and Gigante, Bruna and Giulianini, Franco and Gu, Chi Charles and Gu, Dongfeng and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hunt, Steven and Ikram, M Arfan and Irvin, Marguerite R and K{\"a}h{\"o}nen, Mika and Kavousi, Maryam and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Komulainen, Pirjo and Kraja, Aldi T and Krieger, J E and Langefeld, Carl D and Li, Yize and Liang, Jingjing and Liewald, David C M and Liu, Ching-Ti and Liu, Jianjun and Lohman, Kurt K and M{\"a}gi, Reedik and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mook-Kanamori, Dennis O and Nalls, Mike A and Nelson, Christopher P and Norris, Jill M and O{\textquoteright}Connell, Jeff and Ogunniyi, Adesola and Padmanabhan, Sandosh and Palmer, Nicholette D and Pedersen, Nancy L and Perls, Thomas and Peters, Annette and Petersmann, Astrid and Peyser, Patricia A and Polasek, Ozren and Porteous, David J and Raffel, Leslie J and Rice, Treva K and Rotter, Jerome I and Rudan, Igor and Rueda-Ochoa, Oscar-Leonel and Sabanayagam, Charumathi and Salako, Babatunde L and Schreiner, Pamela J and Shikany, James M and Sidney, Stephen S and Sims, Mario and Sitlani, Colleen M and Smith, Jennifer A and Starr, John M and Strauch, Konstantin and Swertz, Morris A and Teumer, Alexander and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and Vaidya, Dhananjay and van der Ende, M Yldau and Waldenberger, Melanie and Wang, Lihua and Wang, Ya-Xing and Wei, Wen-Bin and Weir, David R and Wen, Wanqing and Yao, Jie and Yu, Bing and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Bowden, Donald W and Deary, Ian J and D{\"o}rr, Marcus and Esko, T{\~o}nu and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Jonas, Jost Bruno and Kammerer, Candace M and Kato, Norihiro and Lakka, Timo A and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Marques-Vidal, Pedro and Penninx, Brenda W J H and Samani, Nilesh J and van der Harst, Pim and Wagenknecht, Lynne E and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Bouchard, Claude and Cooper, Richard S and Correa, Adolfo and Evans, Michele K and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kelly, Tanika N and Kritchevsky, Stephen B and Levy, Daniel and Palmas, Walter R and Pereira, A C and Province, Michael M and Psaty, Bruce M and Ridker, Paul M and Rotimi, Charles N and Tai, E Shyong and van Dam, Rob M and van Duijn, Cornelia M and Wong, Tien Yin and Rice, Kenneth and Gauderman, W James and Morrison, Alanna C and North, Kari E and Kardia, Sharon L R and Caulfield, Mark J and Elliott, Paul and Munroe, Patricia B and Franks, Paul W and Rao, Dabeeru C and Fornage, Myriam} } @article {8407, title = {Role of Rare and Low-Frequency Variants in Gene-Alcohol Interactions on Plasma Lipid Levels.}, journal = {Circ Genom Precis Med}, volume = {13}, year = {2020}, month = {2020 Aug}, pages = {e002772}, abstract = {

BACKGROUND: Alcohol intake influences plasma lipid levels, and such effects may be moderated by genetic variants. We aimed to characterize the role of aggregated rare and low-frequency protein-coding variants in gene by alcohol consumption interactions associated with fasting plasma lipid levels.

METHODS: In the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, fasting plasma triglycerides and high- and low-density lipoprotein cholesterol were measured in 34 153 individuals with European ancestry from 5 discovery studies and 32 277 individuals from 6 replication studies. Rare and low-frequency functional protein-coding variants (minor allele frequency, <=5\%) measured by an exome array were aggregated by genes and evaluated by a gene-environment interaction test and a joint test of genetic main and gene-environment interaction effects. Two dichotomous self-reported alcohol consumption variables, current drinker, defined as any recurrent drinking behavior, and regular drinker, defined as the subset of current drinkers who consume at least 2 drinks per week, were considered.

RESULTS: We discovered and replicated 21 gene-lipid associations at 13 known lipid loci through the joint test. Eight loci (, , , , , , , and ) remained significant after conditioning on the common index single-nucleotide polymorphism identified by previous genome-wide association studies, suggesting an independent role for rare and low-frequency variants at these loci. One significant gene-alcohol interaction on triglycerides in a novel locus was significantly discovered (=6.65{\texttimes}10 for the interaction test) and replicated at nominal significance level (=0.013) in .

CONCLUSIONS: In conclusion, this study applied new gene-based statistical approaches and suggested that rare and low-frequency genetic variants interacted with alcohol consumption on lipid levels.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.119.002772}, author = {Wang, Zhe and Chen, Han and Bartz, Traci M and Bielak, Lawrence F and Chasman, Daniel I and Feitosa, Mary F and Franceschini, Nora and Guo, Xiuqing and Lim, Elise and Noordam, Raymond and Richard, Melissa A and Wang, Heming and Cade, Brian and Cupples, L Adrienne and de Vries, Paul S and Giulanini, Franco and Lee, Jiwon and Lemaitre, Rozenn N and Martin, Lisa W and Reiner, Alex P and Rich, Stephen S and Schreiner, Pamela J and Sidney, Stephen and Sitlani, Colleen M and Smith, Jennifer A and Willems van Dijk, Ko and Yao, Jie and Zhao, Wei and Fornage, Myriam and Kardia, Sharon L R and Kooperberg, Charles and Liu, Ching-Ti and Mook-Kanamori, Dennis O and Province, Michael A and Psaty, Bruce M and Redline, Susan and Ridker, Paul M and Rotter, Jerome I and Boerwinkle, Eric and Morrison, Alanna C} } @article {8705, title = {Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry.}, journal = {Am J Hum Genet}, volume = {108}, year = {2021}, month = {2021 Apr 01}, pages = {564-582}, abstract = {

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5\%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained <=20 variants in the credible sets that jointly account for 99\% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2021.02.011}, author = {Graff, Mariaelisa and Justice, Anne E and Young, Kristin L and Marouli, Eirini and Zhang, Xinruo and Fine, Rebecca S and Lim, Elise and Buchanan, Victoria and Rand, Kristin and Feitosa, Mary F and Wojczynski, Mary K and Yanek, Lisa R and Shao, Yaming and Rohde, Rebecca and Adeyemo, Adebowale A and Aldrich, Melinda C and Allison, Matthew A and Ambrosone, Christine B and Ambs, Stefan and Amos, Christopher and Arnett, Donna K and Atwood, Larry and Bandera, Elisa V and Bartz, Traci and Becker, Diane M and Berndt, Sonja I and Bernstein, Leslie and Bielak, Lawrence F and Blot, William J and Bottinger, Erwin P and Bowden, Donald W and Bradfield, Jonathan P and Brody, Jennifer A and Broeckel, Ulrich and Burke, Gregory and Cade, Brian E and Cai, Qiuyin and Caporaso, Neil and Carlson, Chris and Carpten, John and Casey, Graham and Chanock, Stephen J and Chen, Guanjie and Chen, Minhui and Chen, Yii-der I and Chen, Wei-Min and Chesi, Alessandra and Chiang, Charleston W K and Chu, Lisa and Coetzee, Gerry A and Conti, David V and Cooper, Richard S and Cushman, Mary and Demerath, Ellen and Deming, Sandra L and Dimitrov, Latchezar and Ding, Jingzhong and Diver, W Ryan and Duan, Qing and Evans, Michele K and Falusi, Adeyinka G and Faul, Jessica D and Fornage, Myriam and Fox, Caroline and Freedman, Barry I and Garcia, Melissa and Gillanders, Elizabeth M and Goodman, Phyllis and Gottesman, Omri and Grant, Struan F A and Guo, Xiuqing and Hakonarson, Hakon and Haritunians, Talin and Harris, Tamara B and Harris, Curtis C and Henderson, Brian E and Hennis, Anselm and Hernandez, Dena G and Hirschhorn, Joel N and McNeill, Lorna Haughton and Howard, Timothy D and Howard, Barbara and Hsing, Ann W and Hsu, Yu-Han H and Hu, Jennifer J and Huff, Chad D and Huo, Dezheng and Ingles, Sue A and Irvin, Marguerite R and John, Esther M and Johnson, Karen C and Jordan, Joanne M and Kabagambe, Edmond K and Kang, Sun J and Kardia, Sharon L and Keating, Brendan J and Kittles, Rick A and Klein, Eric A and Kolb, Suzanne and Kolonel, Laurence N and Kooperberg, Charles and Kuller, Lewis and Kutlar, Abdullah and Lange, Leslie and Langefeld, Carl D and Le Marchand, Lo{\"\i}c and Leonard, Hampton and Lettre, Guillaume and Levin, Albert M and Li, Yun and Li, Jin and Liu, Yongmei and Liu, Youfang and Liu, Simin and Lohman, Kurt and Lotay, Vaneet and Lu, Yingchang and Maixner, William and Manson, JoAnn E and McKnight, Barbara and Meng, Yan and Monda, Keri L and Monroe, Kris and Moore, Jason H and Mosley, Thomas H and Mudgal, Poorva and Murphy, Adam B and Nadukuru, Rajiv and Nalls, Mike A and Nathanson, Katherine L and Nayak, Uma and N{\textquoteright}diaye, Amidou and Nemesure, Barbara and Neslund-Dudas, Christine and Neuhouser, Marian L and Nyante, Sarah and Ochs-Balcom, Heather and Ogundiran, Temidayo O and Ogunniyi, Adesola and Ojengbede, Oladosu and Okut, Hayrettin and Olopade, Olufunmilayo I and Olshan, Andrew and Padhukasahasram, Badri and Palmer, Julie and Palmer, Cameron D and Palmer, Nicholette D and Papanicolaou, George and Patel, Sanjay R and Pettaway, Curtis A and Peyser, Patricia A and Press, Michael F and Rao, D C and Rasmussen-Torvik, Laura J and Redline, Susan and Reiner, Alex P and Rhie, Suhn K and Rodriguez-Gil, Jorge L and Rotimi, Charles N and Rotter, Jerome I and Ruiz-Narvaez, Edward A and Rybicki, Benjamin A and Salako, Babatunde and Sale, Mich{\`e}le M and Sanderson, Maureen and Schadt, Eric and Schreiner, Pamela J and Schurmann, Claudia and Schwartz, Ann G and Shriner, Daniel A and Signorello, Lisa B and Singleton, Andrew B and Siscovick, David S and Smith, Jennifer A and Smith, Shad and Speliotes, Elizabeth and Spitz, Margaret and Stanford, Janet L and Stevens, Victoria L and Stram, Alex and Strom, Sara S and Sucheston, Lara and Sun, Yan V and Tajuddin, Salman M and Taylor, Herman and Taylor, Kira and Tayo, Bamidele O and Thun, Michael J and Tucker, Margaret A and Vaidya, Dhananjay and Van Den Berg, David J and Vedantam, Sailaja and Vitolins, Mara and Wang, Zhaoming and Ware, Erin B and Wassertheil-Smoller, Sylvia and Weir, David R and Wiencke, John K and Williams, Scott M and Williams, L Keoki and Wilson, James G and Witte, John S and Wrensch, Margaret and Wu, Xifeng and Yao, Jie and Zakai, Neil and Zanetti, Krista and Zemel, Babette S and Zhao, Wei and Zhao, Jing Hua and Zheng, Wei and Zhi, Degui and Zhou, Jie and Zhu, Xiaofeng and Ziegler, Regina G and Zmuda, Joe and Zonderman, Alan B and Psaty, Bruce M and Borecki, Ingrid B and Cupples, L Adrienne and Liu, Ching-Ti and Haiman, Christopher A and Loos, Ruth and Ng, Maggie C Y and North, Kari E} } @article {9005, title = {Multi-Ancestry Genome-wide Association Study Accounting for Gene-Psychosocial Factor Interactions Identifies Novel Loci for Blood Pressure Traits.}, journal = {HGG Adv}, volume = {2}, year = {2021}, month = {2021 Jan 14}, abstract = {

Psychological and social factors are known to influence blood pressure (BP) and risk of hypertension and associated cardiovascular diseases. To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptoms, anxiety symptoms, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from 5 ancestry groups. In the combined meta-analyses of Stages 1 and 2, we identified 59 loci (p value <5e-8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response (), synaptic function and neurotransmission (), as well as genes previously implicated in neuropsychiatric or stress-related disorders (). These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.

}, issn = {2666-2477}, doi = {10.1016/j.xhgg.2020.100013}, author = {Sun, Daokun and Richard, Melissa and Musani, Solomon K and Sung, Yun Ju and Winkler, Thomas W and Schwander, Karen and Chai, Jin Fang and Guo, Xiuqing and Kilpel{\"a}inen, Tuomas O and Vojinovic, Dina and Aschard, Hugues and Bartz, Traci M and Bielak, Lawrence F and Brown, Michael R and Chitrala, Kumaraswamy and Hartwig, Fernando P and Horimoto, Andrea R V R and Liu, Yongmei and Manning, Alisa K and Noordam, Raymond and Smith, Albert V and Harris, Sarah E and Kuhnel, Brigitte and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Rauramaa, Rainer and van der Most, Peter J and Wang, Rujia and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Arking, Dan E and Arnett, Donna K and Barac, Ana and Boerwinkle, Eric and Broeckel, Ulrich and Chakravarti, Aravinda and Chen, Yii-Der Ida and Cupples, L Adrienne and Davigulus, Martha L and de Las Fuentes, Lisa and de Mutsert, Ren{\'e}e and de Vries, Paul S and Delaney, Joseph A C and Roux, Ana V Diez and D{\"o}rr, Marcus and Faul, Jessica D and Fretts, Amanda M and Gallo, Linda C and Grabe, Hans J{\"o}rgen and Gu, C Charles and Harris, Tamara B and Hartman, Catharina C A and Heikkinen, Sami and Ikram, M Arfan and Isasi, Carmen and Johnson, W Craig and Jonas, Jost Bruno and Kaplan, Robert C and Komulainen, Pirjo and Krieger, Jose E and Levy, Daniel and Liu, Jianjun and Lohman, Kurt and Luik, Annemarie I and Martin, Lisa W and Meitinger, Thomas and Milaneschi, Yuri and O{\textquoteright}Connell, Jeff R and Palmas, Walter R and Peters, Annette and Peyser, Patricia A and Pulkki-R{\r a}back, Laura and Raffel, Leslie J and Reiner, Alex P and Rice, Kenneth and Robinson, Jennifer G and Rosendaal, Frits R and Schmidt, Carsten Oliver and Schreiner, Pamela J and Schwettmann, Lars and Shikany, James M and Shu, Xiao-Ou and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Sotoodehnia, Nona and Strauch, Konstantin and Tai, E Shyong and Taylor, Kent and Uitterlinden, Andr{\'e} G and van Duijn, Cornelia M and Waldenberger, Melanie and Wee, Hwee-Lin and Wei, Wen-Bin and Wilson, Gregory and Xuan, Deng and Yao, Jie and Zeng, Donglin and Zhao, Wei and Zhu, Xiaofeng and Zonderman, Alan B and Becker, Diane M and Deary, Ian J and Gieger, Christian and Lakka, Timo A and Lehtim{\"a}ki, Terho and North, Kari E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Snieder, Harold and Wang, Ya-Xing and Weir, David R and Zheng, Wei and Evans, Michele K and Gauderman, W James and Gudnason, Vilmundur and Horta, Bernardo L and Liu, Ching-Ti and Mook-Kanamori, Dennis O and Morrison, Alanna C and Pereira, Alexandre C and Psaty, Bruce M and Amin, Najaf and Fox, Ervin R and Kooperberg, Charles and Sim, Xueling and Bierut, Laura and Rotter, Jerome I and Kardia, Sharon L R and Franceschini, Nora and Rao, Dabeeru C and Fornage, Myriam} } @article {8714, title = {Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure.}, journal = {Mol Psychiatry}, year = {2021}, month = {2021 Apr 15}, abstract = {

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 P < 5 {\texttimes} 10), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (P < 5 {\texttimes} 10). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (P = 2 {\texttimes} 10). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (P < 10). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.

}, issn = {1476-5578}, doi = {10.1038/s41380-021-01087-0}, author = {Wang, Heming and Noordam, Raymond and Cade, Brian E and Schwander, Karen and Winkler, Thomas W and Lee, Jiwon and Sung, Yun Ju and Bentley, Amy R and Manning, Alisa K and Aschard, Hugues and Kilpel{\"a}inen, Tuomas O and Ilkov, Marjan and Brown, Michael R and Horimoto, Andrea R and Richard, Melissa and Bartz, Traci M and Vojinovic, Dina and Lim, Elise and Nierenberg, Jovia L and Liu, Yongmei and Chitrala, Kumaraswamynaidu and Rankinen, Tuomo and Musani, Solomon K and Franceschini, Nora and Rauramaa, Rainer and Alver, Maris and Zee, Phyllis C and Harris, Sarah E and van der Most, Peter J and Nolte, Ilja M and Munroe, Patricia B and Palmer, Nicholette D and Kuhnel, Brigitte and Weiss, Stefan and Wen, Wanqing and Hall, Kelly A and Lyytik{\"a}inen, Leo-Pekka and O{\textquoteright}Connell, Jeff and Eiriksdottir, Gudny and Launer, Lenore J and de Vries, Paul S and Arking, Dan E and Chen, Han and Boerwinkle, Eric and Krieger, Jose E and Schreiner, Pamela J and Sidney, Stephen and Shikany, James M and Rice, Kenneth and Chen, Yii-Der Ida and Gharib, Sina A and Bis, Joshua C and Luik, Annemarie I and Ikram, M Arfan and Uitterlinden, Andr{\'e} G and Amin, Najaf and Xu, Hanfei and Levy, Daniel and He, Jiang and Lohman, Kurt K and Zonderman, Alan B and Rice, Treva K and Sims, Mario and Wilson, Gregory and Sofer, Tamar and Rich, Stephen S and Palmas, Walter and Yao, Jie and Guo, Xiuqing and Rotter, Jerome I and Biermasz, Nienke R and Mook-Kanamori, Dennis O and Martin, Lisa W and Barac, Ana and Wallace, Robert B and Gottlieb, Daniel J and Komulainen, Pirjo and Heikkinen, Sami and M{\"a}gi, Reedik and Milani, Lili and Metspalu, Andres and Starr, John M and Milaneschi, Yuri and Waken, R J and Gao, Chuan and Waldenberger, Melanie and Peters, Annette and Strauch, Konstantin and Meitinger, Thomas and Roenneberg, Till and V{\"o}lker, Uwe and D{\"o}rr, Marcus and Shu, Xiao-Ou and Mukherjee, Sutapa and Hillman, David R and K{\"a}h{\"o}nen, Mika and Wagenknecht, Lynne E and Gieger, Christian and Grabe, Hans J and Zheng, Wei and Palmer, Lyle J and Lehtim{\"a}ki, Terho and Gudnason, Vilmundur and Morrison, Alanna C and Pereira, Alexandre C and Fornage, Myriam and Psaty, Bruce M and van Duijn, Cornelia M and Liu, Ching-Ti and Kelly, Tanika N and Evans, Michele K and Bouchard, Claude and Fox, Ervin R and Kooperberg, Charles and Zhu, Xiaofeng and Lakka, Timo A and Esko, T{\~o}nu and North, Kari E and Deary, Ian J and Snieder, Harold and Penninx, Brenda W J H and Gauderman, W James and Rao, Dabeeru C and Redline, Susan and van Heemst, Diana} } @article {9042, title = {Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data.}, journal = {Nat Genet}, volume = {54}, year = {2022}, month = {2022 Mar}, pages = {263-273}, abstract = {

Analyses of data from genome-wide association studies on unrelated individuals have shown that, for human traits and diseases, approximately one-third to two-thirds of heritability is captured by common SNPs. However, it is not known whether the remaining heritability is due to the imperfect tagging of causal variants by common SNPs, in particular whether the causal variants are rare, or whether it is overestimated due to bias in inference from pedigree data. Here we estimated heritability for height and body mass index (BMI) from whole-genome sequence data on 25,465 unrelated individuals of European ancestry. The estimated heritability was 0.68 (standard error 0.10) for height and 0.30 (standard error 0.10) for body mass index. Low minor allele frequency variants in low linkage disequilibrium (LD) with neighboring variants were enriched for heritability, to a greater extent for protein-altering variants, consistent with negative selection. Our results imply that rare variants, in particular those in regions of low linkage disequilibrium, are a major source of the still missing heritability of complex traits and disease.

}, issn = {1546-1718}, doi = {10.1038/s41588-021-00997-7}, author = {Wainschtein, Pierrick and Jain, Deepti and Zheng, Zhili and Cupples, L Adrienne and Shadyab, Aladdin H and McKnight, Barbara and Shoemaker, Benjamin M and Mitchell, Braxton D and Psaty, Bruce M and Kooperberg, Charles and Liu, Ching-Ti and Albert, Christine M and Roden, Dan and Chasman, Daniel I and Darbar, Dawood and Lloyd-Jones, Donald M and Arnett, Donna K and Regan, Elizabeth A and Boerwinkle, Eric and Rotter, Jerome I and O{\textquoteright}Connell, Jeffrey R and Yanek, Lisa R and de Andrade, Mariza and Allison, Matthew A and McDonald, Merry-Lynn N and Chung, Mina K and Fornage, Myriam and Chami, Nathalie and Smith, Nicholas L and Ellinor, Patrick T and Vasan, Ramachandran S and Mathias, Rasika A and Loos, Ruth J F and Rich, Stephen S and Lubitz, Steven A and Heckbert, Susan R and Redline, Susan and Guo, Xiuqing and Chen, Y -D Ida and Laurie, Cecelia A and Hernandez, Ryan D and McGarvey, Stephen T and Goddard, Michael E and Laurie, Cathy C and North, Kari E and Lange, Leslie A and Weir, Bruce S and Yengo, Loic and Yang, Jian and Visscher, Peter M} } @article {9104, title = {Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation.}, journal = {Nat Genet}, volume = {54}, year = {2022}, month = {2022 May}, pages = {560-572}, abstract = {

We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9\% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 {\texttimes} 10), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4\% of T2D associations to a single variant with >50\% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.

}, keywords = {Diabetes Mellitus, Type 2, Ethnicity, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1546-1718}, doi = {10.1038/s41588-022-01058-3}, author = {Mahajan, Anubha and Spracklen, Cassandra N and Zhang, Weihua and Ng, Maggie C Y and Petty, Lauren E and Kitajima, Hidetoshi and Yu, Grace Z and R{\"u}eger, Sina and Speidel, Leo and Kim, Young Jin and Horikoshi, Momoko and Mercader, Josep M and Taliun, Daniel and Moon, Sanghoon and Kwak, Soo-Heon and Robertson, Neil R and Rayner, Nigel W and Loh, Marie and Kim, Bong-Jo and Chiou, Joshua and Miguel-Escalada, Irene and Della Briotta Parolo, Pietro and Lin, Kuang and Bragg, Fiona and Preuss, Michael H and Takeuchi, Fumihiko and Nano, Jana and Guo, Xiuqing and Lamri, Amel and Nakatochi, Masahiro and Scott, Robert A and Lee, Jung-Jin and Huerta-Chagoya, Alicia and Graff, Mariaelisa and Chai, Jin-Fang and Parra, Esteban J and Yao, Jie and Bielak, Lawrence F and Tabara, Yasuharu and Hai, Yang and Steinthorsdottir, Valgerdur and Cook, James P and Kals, Mart and Grarup, Niels and Schmidt, Ellen M and Pan, Ian and Sofer, Tamar and Wuttke, Matthias and Sarnowski, Chloe and Gieger, Christian and Nousome, Darryl and Trompet, Stella and Long, Jirong and Sun, Meng and Tong, Lin and Chen, Wei-Min and Ahmad, Meraj and Noordam, Raymond and Lim, Victor J Y and Tam, Claudia H T and Joo, Yoonjung Yoonie and Chen, Chien-Hsiun and Raffield, Laura M and Lecoeur, C{\'e}cile and Prins, Bram Peter and Nicolas, Aude and Yanek, Lisa R and Chen, Guanjie and Jensen, Richard A and Tajuddin, Salman and Kabagambe, Edmond K and An, Ping and Xiang, Anny H and Choi, Hyeok Sun and Cade, Brian E and Tan, Jingyi and Flanagan, Jack and Abaitua, Fernando and Adair, Linda S and Adeyemo, Adebowale and Aguilar-Salinas, Carlos A and Akiyama, Masato and Anand, Sonia S and Bertoni, Alain and Bian, Zheng and Bork-Jensen, Jette and Brandslund, Ivan and Brody, Jennifer A and Brummett, Chad M and Buchanan, Thomas A and Canouil, Micka{\"e}l and Chan, Juliana C N and Chang, Li-Ching and Chee, Miao-Li and Chen, Ji and Chen, Shyh-Huei and Chen, Yuan-Tsong and Chen, Zhengming and Chuang, Lee-Ming and Cushman, Mary and Das, Swapan K and de Silva, H Janaka and Dedoussis, George and Dimitrov, Latchezar and Doumatey, Ayo P and Du, Shufa and Duan, Qing and Eckardt, Kai-Uwe and Emery, Leslie S and Evans, Daniel S and Evans, Michele K and Fischer, Krista and Floyd, James S and Ford, Ian and Fornage, Myriam and Franco, Oscar H and Frayling, Timothy M and Freedman, Barry I and Fuchsberger, Christian and Genter, Pauline and Gerstein, Hertzel C and Giedraitis, Vilmantas and Gonz{\'a}lez-Villalpando, Clicerio and Gonzalez-Villalpando, Maria Elena and Goodarzi, Mark O and Gordon-Larsen, Penny and Gorkin, David and Gross, Myron and Guo, Yu and Hackinger, Sophie and Han, Sohee and Hattersley, Andrew T and Herder, Christian and Howard, Annie-Green and Hsueh, Willa and Huang, Mengna and Huang, Wei and Hung, Yi-Jen and Hwang, Mi Yeong and Hwu, Chii-Min and Ichihara, Sahoko and Ikram, Mohammad Arfan and Ingelsson, Martin and Islam, Md Tariqul and Isono, Masato and Jang, Hye-Mi and Jasmine, Farzana and Jiang, Guozhi and Jonas, Jost B and J{\o}rgensen, Marit E and J{\o}rgensen, Torben and Kamatani, Yoichiro and Kandeel, Fouad R and Kasturiratne, Anuradhani and Katsuya, Tomohiro and Kaur, Varinderpal and Kawaguchi, Takahisa and Keaton, Jacob M and Kho, Abel N and Khor, Chiea-Chuen and Kibriya, Muhammad G and Kim, Duk-Hwan and Kohara, Katsuhiko and Kriebel, Jennifer and Kronenberg, Florian and Kuusisto, Johanna and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Myung-Shik and Lee, Nanette R and Leong, Aaron and Li, Liming and Li, Yun and Li-Gao, Ruifang and Ligthart, Symen and Lindgren, Cecilia M and Linneberg, Allan and Liu, Ching-Ti and Liu, Jianjun and Locke, Adam E and Louie, Tin and Luan, Jian{\textquoteright}an and Luk, Andrea O and Luo, Xi and Lv, Jun and Lyssenko, Valeriya and Mamakou, Vasiliki and Mani, K Radha and Meitinger, Thomas and Metspalu, Andres and Morris, Andrew D and Nadkarni, Girish N and Nadler, Jerry L and Nalls, Michael A and Nayak, Uma and Nongmaithem, Suraj S and Ntalla, Ioanna and Okada, Yukinori and Orozco, Lorena and Patel, Sanjay R and Pereira, Mark A and Peters, Annette and Pirie, Fraser J and Porneala, Bianca and Prasad, Gauri and Preissl, Sebastian and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Roden, Michael and Rohde, Rebecca and Roll, Kathryn and Sabanayagam, Charumathi and Sander, Maike and Sandow, Kevin and Sattar, Naveed and Sch{\"o}nherr, Sebastian and Schurmann, Claudia and Shahriar, Mohammad and Shi, Jinxiu and Shin, Dong Mun and Shriner, Daniel and Smith, Jennifer A and So, Wing Yee and Stan{\v c}{\'a}kov{\'a}, Alena and Stilp, Adrienne M and Strauch, Konstantin and Suzuki, Ken and Takahashi, Atsushi and Taylor, Kent D and Thorand, Barbara and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tomlinson, Brian and Torres, Jason M and Tsai, Fuu-Jen and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and Valladares-Salgado, Adan and van Dam, Rob M and van Klinken, Jan B and Varma, Rohit and Vujkovic, Marijana and Wacher-Rodarte, Niels and Wheeler, Eleanor and Whitsel, Eric A and Wickremasinghe, Ananda R and van Dijk, Ko Willems and Witte, Daniel R and Yajnik, Chittaranjan S and Yamamoto, Ken and Yamauchi, Toshimasa and Yengo, Loic and Yoon, Kyungheon and Yu, Canqing and Yuan, Jian-Min and Yusuf, Salim and Zhang, Liang and Zheng, Wei and Raffel, Leslie J and Igase, Michiya and Ipp, Eli and Redline, Susan and Cho, Yoon Shin and Lind, Lars and Province, Michael A and Hanis, Craig L and Peyser, Patricia A and Ingelsson, Erik and Zonderman, Alan B and Psaty, Bruce M and Wang, Ya-Xing and Rotimi, Charles N and Becker, Diane M and Matsuda, Fumihiko and Liu, Yongmei and Zeggini, Eleftheria and Yokota, Mitsuhiro and Rich, Stephen S and Kooperberg, Charles and Pankow, James S and Engert, James C and Chen, Yii-Der Ida and Froguel, Philippe and Wilson, James G and Sheu, Wayne H H and Kardia, Sharon L R and Wu, Jer-Yuarn and Hayes, M Geoffrey and Ma, Ronald C W and Wong, Tien-Yin and Groop, Leif and Mook-Kanamori, Dennis O and Chandak, Giriraj R and Collins, Francis S and Bharadwaj, Dwaipayan and Par{\'e}, Guillaume and Sale, Mich{\`e}le M and Ahsan, Habibul and Motala, Ayesha A and Shu, Xiao-Ou and Park, Kyong-Soo and Jukema, J Wouter and Cruz, Miguel and McKean-Cowdin, Roberta and Grallert, Harald and Cheng, Ching-Yu and Bottinger, Erwin P and Dehghan, Abbas and Tai, E-Shyong and Dupuis, Jos{\'e}e and Kato, Norihiro and Laakso, Markku and K{\"o}ttgen, Anna and Koh, Woon-Puay and Palmer, Colin N A and Liu, Simin and Abecasis, Goncalo and Kooner, Jaspal S and Loos, Ruth J F and North, Kari E and Haiman, Christopher A and Florez, Jose C and Saleheen, Danish and Hansen, Torben and Pedersen, Oluf and M{\"a}gi, Reedik and Langenberg, Claudia and Wareham, Nicholas J and Maeda, Shiro and Kadowaki, Takashi and Lee, Juyoung and Millwood, Iona Y and Walters, Robin G and Stefansson, Kari and Myers, Simon R and Ferrer, Jorge and Gaulton, Kyle J and Meigs, James B and Mohlke, Karen L and Gloyn, Anna L and Bowden, Donald W and Below, Jennifer E and Chambers, John C and Sim, Xueling and Boehnke, Michael and Rotter, Jerome I and McCarthy, Mark I and Morris, Andrew P} } @article {9109, title = {The Value of Rare Genetic Variation in the Prediction of Common Obesity in European Ancestry Populations.}, journal = {Front Endocrinol (Lausanne)}, volume = {13}, year = {2022}, month = {2022}, pages = {863893}, abstract = {

Polygenic risk scores (PRSs) aggregate the effects of genetic variants across the genome and are used to predict risk of complex diseases, such as obesity. Current PRSs only include common variants (minor allele frequency (MAF) >=1\%), whereas the contribution of rare variants in PRSs to predict disease remains unknown. Here, we examine whether augmenting the standard common variant PRS (PRS) with a rare variant PRS (PRS) improves prediction of obesity. We used genome-wide genotyped and imputed data on 451,145 European-ancestry participants of the UK Biobank, as well as whole exome sequencing (WES) data on 184,385 participants. We performed single variant analyses (for both common and rare variants) and gene-based analyses (for rare variants) for association with BMI (kg/m), obesity (BMI >= 30 kg/m), and extreme obesity (BMI >= 40 kg/m). We built PRSs and PRSs using a range of methods (Clumping+Thresholding [C+T], PRS-CS, lassosum, gene-burden test). We selected the best-performing PRSs and assessed their performance in 36,757 European-ancestry unrelated participants with whole genome sequencing (WGS) data from the Trans-Omics for Precision Medicine (TOPMed) program. The best-performing PRS explained 10.1\% of variation in BMI, and 18.3\% and 22.5\% of the susceptibility to obesity and extreme obesity, respectively, whereas the best-performing PRS explained 1.49\%, and 2.97\% and 3.68\%, respectively. The PRS was associated with an increased risk of obesity and extreme obesity (OR = 1.37 per SD, = 1.7x10; OR = 1.55 per SD, = 3.8x10), which was attenuated, after adjusting for PRS (OR = 1.08 per SD, = 9.8x10; OR= 1.09 per SD, = 0.02). When PRS and PRS are combined, the increase in explained variance attributed to PRS was small (incremental Nagelkerke R = 0.24\% for obesity and 0.51\% for extreme obesity). Consistently, combining PRS to PRS provided little improvement to the prediction of obesity (PRS AUC = 0.591; PRS AUC = 0.708; PRS AUC = 0.710). In summary, while rare variants show convincing association with BMI, obesity and extreme obesity, the PRS provides limited improvement over PRS in the prediction of obesity risk, based on these large populations.

}, keywords = {Gene Frequency, Genetic Variation, Genome-Wide Association Study, Humans, Obesity, Whole Genome Sequencing}, issn = {1664-2392}, doi = {10.3389/fendo.2022.863893}, author = {Wang, Zhe and Choi, Shing Wan and Chami, Nathalie and Boerwinkle, Eric and Fornage, Myriam and Redline, Susan and Bis, Joshua C and Brody, Jennifer A and Psaty, Bruce M and Kim, Wonji and McDonald, Merry-Lynn N and Regan, Elizabeth A and Silverman, Edwin K and Liu, Ching-Ti and Vasan, Ramachandran S and Kalyani, Rita R and Mathias, Rasika A and Yanek, Lisa R and Arnett, Donna K and Justice, Anne E and North, Kari E and Kaplan, Robert and Heckbert, Susan R and de Andrade, Mariza and Guo, Xiuqing and Lange, Leslie A and Rich, Stephen S and Rotter, Jerome I and Ellinor, Patrick T and Lubitz, Steven A and Blangero, John and Shoemaker, M Benjamin and Darbar, Dawood and Gladwin, Mark T and Albert, Christine M and Chasman, Daniel I and Jackson, Rebecca D and Kooperberg, Charles and Reiner, Alexander P and O{\textquoteright}Reilly, Paul F and Loos, Ruth J F} } @article {9158, title = {Whole genome sequence association analysis of fasting glucose and fasting insulin levels in diverse cohorts from the NHLBI TOPMed program.}, journal = {Commun Biol}, volume = {5}, year = {2022}, month = {2022 07 28}, pages = {756}, abstract = {

The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI{\textquoteright}s Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.

}, keywords = {Diabetes Mellitus, Type 2, Fasting, Glucose, Humans, Insulin, National Heart, Lung, and Blood Institute (U.S.), Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Precision Medicine, Receptors, Immunologic, United States}, issn = {2399-3642}, doi = {10.1038/s42003-022-03702-4}, author = {DiCorpo, Daniel and Gaynor, Sheila M and Russell, Emily M and Westerman, Kenneth E and Raffield, Laura M and Majarian, Timothy D and Wu, Peitao and Sarnowski, Chloe and Highland, Heather M and Jackson, Anne and Hasbani, Natalie R and de Vries, Paul S and Brody, Jennifer A and Hidalgo, Bertha and Guo, Xiuqing and Perry, James A and O{\textquoteright}Connell, Jeffrey R and Lent, Samantha and Montasser, May E and Cade, Brian E and Jain, Deepti and Wang, Heming and D{\textquoteright}Oliveira Albanus, Ricardo and Varshney, Arushi and Yanek, Lisa R and Lange, Leslie and Palmer, Nicholette D and Almeida, Marcio and Peralta, Juan M and Aslibekyan, Stella and Baldridge, Abigail S and Bertoni, Alain G and Bielak, Lawrence F and Chen, Chung-Shiuan and Chen, Yii-Der Ida and Choi, Won Jung and Goodarzi, Mark O and Floyd, James S and Irvin, Marguerite R and Kalyani, Rita R and Kelly, Tanika N and Lee, Seonwook and Liu, Ching-Ti and Loesch, Douglas and Manson, JoAnn E and Minster, Ryan L and Naseri, Take and Pankow, James S and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Reupena, Muagututi{\textquoteright}a Sefuiva and Selvin, Elizabeth and Smith, Jennifer A and Weeks, Daniel E and Xu, Huichun and Yao, Jie and Zhao, Wei and Parker, Stephen and Alonso, Alvaro and Arnett, Donna K and Blangero, John and Boerwinkle, Eric and Correa, Adolfo and Cupples, L Adrienne and Curran, Joanne E and Duggirala, Ravindranath and He, Jiang and Heckbert, Susan R and Kardia, Sharon L R and Kim, Ryan W and Kooperberg, Charles and Liu, Simin and Mathias, Rasika A and McGarvey, Stephen T and Mitchell, Braxton D and Morrison, Alanna C and Peyser, Patricia A and Psaty, Bruce M and Redline, Susan and Shuldiner, Alan R and Taylor, Kent D and Vasan, Ramachandran S and Viaud-Martinez, Karine A and Florez, Jose C and Wilson, James G and Sladek, Robert and Rich, Stephen S and Rotter, Jerome I and Lin, Xihong and Dupuis, Jos{\'e}e and Meigs, James B and Wessel, Jennifer and Manning, Alisa K} } @article {9535, title = {Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci.}, journal = {Front Genet}, volume = {14}, year = {2023}, month = {2023}, pages = {1235337}, abstract = {

Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant ( < 5 {\texttimes} 10) and suggestive ( < 1 {\texttimes} 10) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (), brain (), and liver () biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

}, issn = {1664-8021}, doi = {10.3389/fgene.2023.1235337}, author = {de Las Fuentes, Lisa and Schwander, Karen L and Brown, Michael R and Bentley, Amy R and Winkler, Thomas W and Sung, Yun Ju and Munroe, Patricia B and Miller, Clint L and Aschard, Hugo and Aslibekyan, Stella and Bartz, Traci M and Bielak, Lawrence F and Chai, Jin Fang and Cheng, Ching-Yu and Dorajoo, Rajkumar and Feitosa, Mary F and Guo, Xiuqing and Hartwig, Fernando P and Horimoto, Andrea and Kolcic, Ivana and Lim, Elise and Liu, Yongmei and Manning, Alisa K and Marten, Jonathan and Musani, Solomon K and Noordam, Raymond and Padmanabhan, Sandosh and Rankinen, Tuomo and Richard, Melissa A and Ridker, Paul M and Smith, Albert V and Vojinovic, Dina and Zonderman, Alan B and Alver, Maris and Boissel, Mathilde and Christensen, Kaare and Freedman, Barry I and Gao, Chuan and Giulianini, Franco and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Kuhnel, Brigitte and Laguzzi, Federica and Li, Xiaoyin and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Poveda, Alaitz and Rauramaa, Rainer and Riaz, Muhammad and Robino, Antonietta and Sofer, Tamar and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Verweij, Niek and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhan, Yiqiang and Amin, Najaf and Arking, Dan E and Ballantyne, Christie and Boerwinkle, Eric and Brody, Jennifer A and Broeckel, Ulrich and Campbell, Archie and Canouil, Micka{\"e}l and Chai, Xiaoran and Chen, Yii-Der Ida and Chen, Xu and Chitrala, Kumaraswamy Naidu and Concas, Maria Pina and de Faire, Ulf and de Mutsert, Ren{\'e}e and de Silva, H Janaka and de Vries, Paul S and Do, Ahn and Faul, Jessica D and Fisher, Virginia and Floyd, James S and Forrester, Terrence and Friedlander, Yechiel and Girotto, Giorgia and Gu, C Charles and Hallmans, G{\"o}ran and Heikkinen, Sami and Heng, Chew-Kiat and Homuth, Georg and Hunt, Steven and Ikram, M Arfan and Jacobs, David R and Kavousi, Maryam and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Komulainen, Pirjo and Langefeld, Carl D and Liang, Jingjing and Liu, Kiang and Liu, Jianjun and Lohman, Kurt and M{\"a}gi, Reedik and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Milaneschi, Yuri and Nauck, Matthias and Nelson, Christopher P and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Pereira, Alexandre C and Perls, Thomas and Peters, Annette and Polasek, Ozren and Raitakari, Olli T and Rice, Kenneth and Rice, Treva K and Rich, Stephen S and Sabanayagam, Charumathi and Schreiner, Pamela J and Shu, Xiao-Ou and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Starr, John M and Strauch, Konstantin and Tai, E Shyong and Taylor, Kent D and Tsai, Michael Y and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Waldenberger, Melanie and Wang, Ya-Xing and Wei, Wen-Bin and Wilson, Gregory and Xuan, Deng and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Becker, Diane M and Bonnefond, Am{\'e}lie and Bowden, Donald W and Cooper, Richard S and Deary, Ian J and Divers, Jasmin and Esko, T{\~o}nu and Franks, Paul W and Froguel, Philippe and Gieger, Christian and Jonas, Jost B and Kato, Norihiro and Lakka, Timo A and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and North, Kari E and Ntalla, Ioanna and Penninx, Brenda and Samani, Nilesh J and Snieder, Harold and Spedicati, Beatrice and van der Harst, Pim and V{\"o}lzke, Henry and Wagenknecht, Lynne E and Weir, David R and Wojczynski, Mary K and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Bouchard, Claude and Chasman, Daniel I and Evans, Michele K and Fox, Ervin R and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kardia, Sharon L R and Krieger, Jose Eduardo and Mook-Kanamori, Dennis O and Peyser, Patricia A and Province, Michael M and Psaty, Bruce M and Rudan, Igor and Sim, Xueling and Smith, Blair H and van Dam, Rob M and van Duijn, Cornelia M and Wong, Tien Yin and Arnett, Donna K and Rao, Dabeeru C and Gauderman, James and Liu, Ching-Ti and Morrison, Alanna C and Rotter, Jerome I and Fornage, Myriam} } @article {9583, title = {Genome-Wide Interaction Analysis with DASH Diet Score Identified Novel Loci for Systolic Blood Pressure.}, journal = {medRxiv}, year = {2023}, month = {2023 Nov 11}, abstract = {

OBJECTIVE: We examined interactions between genotype and a Dietary Approaches to Stop Hypertension (DASH) diet score in relation to systolic blood pressure (SBP).

METHODS: We analyzed up to 9,420,585 biallelic imputed single nucleotide polymorphisms (SNPs) in up to 127,282 individuals of six population groups (91\% of European population) from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (CHARGE; n=35,660) and UK Biobank (n=91,622) and performed European population-specific and cross-population meta-analyses.

RESULTS: We identified three loci in European-specific analyses and an additional four loci in cross-population analyses at P for interaction < 5e-8. We observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency = 0.03) and the DASH diet score (P for interaction = 4e-8; P for heterogeneity = 0.35) in European population, where the interaction effect size was 0.42{\textpm}0.09 mm Hg (P for interaction = 9.4e-7) and 0.20{\textpm}0.06 mm Hg (P for interaction = 0.001) in CHARGE and the UK Biobank, respectively. The 1 Mb region surrounding rs117878928 was enriched with -expression quantitative trait loci (eQTL) variants (P = 4e-273) and -DNA methylation quantitative trait loci (mQTL) variants (P = 1e-300). While the closest gene for rs117878928 is , the highest narrow sense heritability accounted by SNPs potentially interacting with the DASH diet score in this locus was for gene at 15q25.1.

CONCLUSION: We demonstrated gene-DASH diet score interaction effects on SBP in several loci. Studies with larger diverse populations are needed to validate our findings.

}, doi = {10.1101/2023.11.10.23298402}, author = {Guirette, Melanie and Lan, Jessie and McKeown, Nicola and Brown, Michael R and Chen, Han and de Vries, Paul S and Kim, Hyunju and Rebholz, Casey M and Morrison, Alanna C and Bartz, Traci M and Fretts, Amanda M and Guo, Xiuqing and Lemaitre, Rozenn N and Liu, Ching-Ti and Noordam, Raymond and de Mutsert, Ren{\'e}e and Rosendaal, Frits R and Wang, Carol A and Beilin, Lawrence and Mori, Trevor A and Oddy, Wendy H and Pennell, Craig E and Chai, Jin Fang and Whitton, Clare and van Dam, Rob M and Liu, Jianjun and Tai, E Shyong and Sim, Xueling and Neuhouser, Marian L and Kooperberg, Charles and Tinker, Lesley and Franceschini, Nora and Huan, Tianxiao and Winkler, Thomas W and Bentley, Amy R and Gauderman, W James and Heerkens, Luc and Tanaka, Toshiko and van Rooij, Jeroen and Munroe, Patricia B and Warren, Helen R and Voortman, Trudy and Chen, Honglei and Rao, D C and Levy, Daniel and Ma, Jiantao} } @article {9385, title = {Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications.}, journal = {medRxiv}, year = {2023}, month = {2023 Mar 31}, abstract = {

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7\% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5{\texttimes}10 ) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

}, doi = {10.1101/2023.03.31.23287839}, author = {Suzuki, Ken and Hatzikotoulas, Konstantinos and Southam, Lorraine and Taylor, Henry J and Yin, Xianyong and Lorenz, Kim M and Mandla, Ravi and Huerta-Chagoya, Alicia and Rayner, Nigel W and Bocher, Ozvan and Ana Luiza de, S V Arruda and Sonehara, Kyuto and Namba, Shinichi and Lee, Simon S K and Preuss, Michael H and Petty, Lauren E and Schroeder, Philip and Vanderwerff, Brett and Kals, Mart and Bragg, Fiona and Lin, Kuang and Guo, Xiuqing and Zhang, Weihua and Yao, Jie and Kim, Young Jin and Graff, Mariaelisa and Takeuchi, Fumihiko and Nano, Jana and Lamri, Amel and Nakatochi, Masahiro and Moon, Sanghoon and Scott, Robert A and Cook, James P and Lee, Jung-Jin and Pan, Ian and Taliun, Daniel and Parra, Esteban J and Chai, Jin-Fang and Bielak, Lawrence F and Tabara, Yasuharu and Hai, Yang and Thorleifsson, Gudmar and Grarup, Niels and Sofer, Tamar and Wuttke, Matthias and Sarnowski, Chloe and Gieger, Christian and Nousome, Darryl and Trompet, Stella and Kwak, Soo-Heon and Long, Jirong and Sun, Meng and Tong, Lin and Chen, Wei-Min and Nongmaithem, Suraj S and Noordam, Raymond and Lim, Victor J Y and Tam, Claudia H T and Joo, Yoonjung Yoonie and Chen, Chien-Hsiun and Raffield, Laura M and Prins, Bram Peter and Nicolas, Aude and Yanek, Lisa R and Chen, Guanjie and Brody, Jennifer A and Kabagambe, Edmond and An, Ping and Xiang, Anny H and Choi, Hyeok Sun and Cade, Brian E and Tan, Jingyi and Alaine Broadaway, K and Williamson, Alice and Kamali, Zoha and Cui, Jinrui and Adair, Linda S and Adeyemo, Adebowale and Aguilar-Salinas, Carlos A and Ahluwalia, Tarunveer S and Anand, Sonia S and Bertoni, Alain and Bork-Jensen, Jette and Brandslund, Ivan and Buchanan, Thomas A and Burant, Charles F and Butterworth, Adam S and Canouil, Micka{\"e}l and Chan, Juliana C N and Chang, Li-Ching and Chee, Miao-Li and Chen, Ji and Chen, Shyh-Huei and Chen, Yuan-Tsong and Chen, Zhengming and Chuang, Lee-Ming and Cushman, Mary and Danesh, John and Das, Swapan K and Janaka de Silva, H and Dedoussis, George and Dimitrov, Latchezar and Doumatey, Ayo P and Du, Shufa and Duan, Qing and Eckardt, Kai-Uwe and Emery, Leslie S and Evans, Daniel S and Evans, Michele K and Fischer, Krista and Floyd, James S and Ford, Ian and Franco, Oscar H and Frayling, Timothy M and Freedman, Barry I and Genter, Pauline and Gerstein, Hertzel C and Giedraitis, Vilmantas and Gonz{\'a}lez-Villalpando, Clicerio and Gonzalez-Villalpando, Maria Elena and Gordon-Larsen, Penny and Gross, Myron and Guare, Lindsay A and Hackinger, Sophie and Han, Sohee and Hattersley, Andrew T and Herder, Christian and Horikoshi, Momoko and Howard, Annie-Green and Hsueh, Willa and Huang, Mengna and Huang, Wei and Hung, Yi-Jen and Hwang, Mi Yeong and Hwu, Chii-Min and Ichihara, Sahoko and Ikram, Mohammad Arfan and Ingelsson, Martin and Islam, Md Tariqul and Isono, Masato and Jang, Hye-Mi and Jasmine, Farzana and Jiang, Guozhi and Jonas, Jost B and J{\o}rgensen, Torben and Kandeel, Fouad R and Kasturiratne, Anuradhani and Katsuya, Tomohiro and Kaur, Varinderpal and Kawaguchi, Takahisa and Keaton, Jacob M and Kho, Abel N and Khor, Chiea-Chuen and Kibriya, Muhammad G and Kim, Duk-Hwan and Kronenberg, Florian and Kuusisto, Johanna and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Kyung Min and Lee, Myung-Shik and Lee, Nanette R and Leong, Aaron and Li, Liming and Li, Yun and Li-Gao, Ruifang and Lithgart, Symen and Lindgren, Cecilia M and Linneberg, Allan and Liu, Ching-Ti and Liu, Jianjun and Locke, Adam E and Louie, Tin and Luan, Jian{\textquoteright}an and Luk, Andrea O and Luo, Xi and Lv, Jun and Lynch, Julie A and Lyssenko, Valeriya and Maeda, Shiro and Mamakou, Vasiliki and Mansuri, Sohail Rafik and Matsuda, Koichi and Meitinger, Thomas and Metspalu, Andres and Mo, Huan and Morris, Andrew D and Nadler, Jerry L and Nalls, Michael A and Nayak, Uma and Ntalla, Ioanna and Okada, Yukinori and Orozco, Lorena and Patel, Sanjay R and Patil, Snehal and Pei, Pei and Pereira, Mark A and Peters, Annette and Pirie, Fraser J and Polikowsky, Hannah G and Porneala, Bianca and Prasad, Gauri and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Roden, Michael and Rohde, Rebecca and Roll, Katheryn and Sabanayagam, Charumathi and Sandow, Kevin and Sankareswaran, Alagu and Sattar, Naveed and Sch{\"o}nherr, Sebastian and Shahriar, Mohammad and Shen, Botong and Shi, Jinxiu and Shin, Dong Mun and Shojima, Nobuhiro and Smith, Jennifer A and So, Wing Yee and Stan{\v c}{\'a}kov{\'a}, Alena and Steinthorsdottir, Valgerdur and Stilp, Adrienne M and Strauch, Konstantin and Taylor, Kent D and Thorand, Barbara and Thorsteinsdottir, Unnur and Tomlinson, Brian and Tran, Tam C and Tsai, Fuu-Jen and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and Valladares-Salgado, Adan and van Dam, Rob M and van Klinken, Jan B and Varma, Rohit and Wacher-Rodarte, Niels and Wheeler, Eleanor and Wickremasinghe, Ananda R and van Dijk, Ko Willems and Witte, Daniel R and Yajnik, Chittaranjan S and Yamamoto, Ken and Yamamoto, Kenichi and Yoon, Kyungheon and Yu, Canqing and Yuan, Jian-Min and Yusuf, Salim and Zawistowski, Matthew and Zhang, Liang and Zheng, Wei and Project, Biobank Japan and BioBank, Penn Medicine and Center, Regeneron Genetics and Consortium, eMERGE and Raffel, Leslie J and Igase, Michiya and Ipp, Eli and Redline, Susan and Cho, Yoon Shin and Lind, Lars and Province, Michael A and Fornage, Myriam and Hanis, Craig L and Ingelsson, Erik and Zonderman, Alan B and Psaty, Bruce M and Wang, Ya-Xing and Rotimi, Charles N and Becker, Diane M and Matsuda, Fumihiko and Liu, Yongmei and Yokota, Mitsuhiro and Kardia, Sharon L R and Peyser, Patricia A and Pankow, James S and Engert, James C and Bonnefond, Am{\'e}lie and Froguel, Philippe and Wilson, James G and Sheu, Wayne H H and Wu, Jer-Yuarn and Geoffrey Hayes, M and Ma, Ronald C W and Wong, Tien-Yin and Mook-Kanamori, Dennis O and Tuomi, Tiinamaija and Chandak, Giriraj R and Collins, Francis S and Bharadwaj, Dwaipayan and Par{\'e}, Guillaume and Sale, Mich{\`e}le M and Ahsan, Habibul and Motala, Ayesha A and Shu, Xiao-Ou and Park, Kyong-Soo and Jukema, J Wouter and Cruz, Miguel and Chen, Yii-Der Ida and Rich, Stephen S and McKean-Cowdin, Roberta and Grallert, Harald and Cheng, Ching-Yu and Ghanbari, Mohsen and Tai, E-Shyong and Dupuis, Jos{\'e}e and Kato, Norihiro and Laakso, Markku and K{\"o}ttgen, Anna and Koh, Woon-Puay and Bowden, Donald W and Palmer, Colin N A and Kooner, Jaspal S and Kooperberg, Charles and Liu, Simin and North, Kari E and Saleheen, Danish and Hansen, Torben and Pedersen, Oluf and Wareham, Nicholas J and Lee, Juyoung and Kim, Bong-Jo and Millwood, Iona Y and Walters, Robin G and Stefansson, Kari and Goodarzi, Mark O and Mohlke, Karen L and Langenberg, Claudia and Haiman, Christopher A and Loos, Ruth J F and Florez, Jose C and Rader, Daniel J and Ritchie, Marylyn D and Z{\"o}llner, Sebastian and M{\"a}gi, Reedik and Denny, Joshua C and Yamauchi, Toshimasa and Kadowaki, Takashi and Chambers, John C and Ng, Maggie C Y and Sim, Xueling and Below, Jennifer E and Tsao, Philip S and Chang, Kyong-Mi and McCarthy, Mark I and Meigs, James B and Mahajan, Anubha and Spracklen, Cassandra N and Mercader, Josep M and Boehnke, Michael and Rotter, Jerome I and Vujkovic, Marijana and Voight, Benjamin F and Morris, Andrew P and Zeggini, Eleftheria} } @article {9450, title = {Time-to-Event Genome-Wide Association Study for Incident Cardiovascular Disease in People with Type 2 Diabetes Mellitus.}, journal = {medRxiv}, year = {2023}, month = {2023 Jul 28}, abstract = {

BACKGROUND: Type 2 diabetes mellitus (T2D) confers a two- to three-fold increased risk of cardiovascular disease (CVD). However, the mechanisms underlying increased CVD risk among people with T2D are only partially understood. We hypothesized that a genetic association study among people with T2D at risk for developing incident cardiovascular complications could provide insights into molecular genetic aspects underlying CVD.

METHODS: From 16 studies of the Cohorts for Heart \& Aging Research in Genomic Epidemiology (CHARGE) Consortium, we conducted a multi-ancestry time-to-event genome-wide association study (GWAS) for incident CVD among people with T2D using Cox proportional hazards models. Incident CVD was defined based on a composite of coronary artery disease (CAD), stroke, and cardiovascular death that occurred at least one year after the diagnosis of T2D. Cohort-level estimated effect sizes were combined using inverse variance weighted fixed effects meta-analysis. We also tested 204 known CAD variants for association with incident CVD among patients with T2D.

RESULTS: A total of 49,230 participants with T2D were included in the analyses (31,118 European ancestries and 18,112 non-European ancestries) which consisted of 8,956 incident CVD cases over a range of mean follow-up duration between 3.2 and 33.7 years (event rate 18.2\%). We identified three novel, distinct genetic loci for incident CVD among individuals with T2D that reached the threshold for genome-wide significance ( <5.0{\texttimes}10 ): rs147138607 (intergenic variant between and ) with a hazard ratio (HR) 1.23, 95\% confidence interval (CI) 1.15 - 1.32, =3.6{\texttimes}10 , rs11444867 (intergenic variant near ) with HR 1.89, 95\% CI 1.52 - 2.35, =9.9{\texttimes}10 , and rs335407 (intergenic variant between and ) HR 1.25, 95\% CI 1.16 - 1.35, =1.5{\texttimes}10 . Among 204 known CAD loci, 32 were associated with incident CVD in people with T2D with <0.05, and 5 were significant after Bonferroni correction ( <0.00024, 0.05/204). A polygenic score of these 204 variants was significantly associated with incident CVD with HR 1.14 (95\% CI 1.12 - 1.16) per 1 standard deviation increase ( =1.0{\texttimes}10 ).

CONCLUSIONS: The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.

CLINICAL PERSPECTIVE: We conducted a large-scale multi-ancestry time-to-event GWAS to identify genetic variants associated with CVD among people with T2D. Three variants were significantly associated with incident CVD in people with T2D: rs147138607 (intergenic variant between and ), rs11444867 (intergenic variant near ), and rs335407 (intergenic variant between and ). A polygenic score composed of known CAD variants identified in the general population was significantly associated with the risk of CVD in people with T2D. There are genetic risk factors specific to T2D that could at least partially explain the excess risk of CVD in people with T2D.In addition, we show that people with T2D have enrichment of known CAD association signals which could also explain the excess risk of CVD.

}, doi = {10.1101/2023.07.25.23293180}, author = {Kwak, Soo Heon and Hernandez-Cancela, Ryan B and DiCorpo, Daniel A and Condon, David E and Merino, Jordi and Wu, Peitao and Brody, Jennifer A and Yao, Jie and Guo, Xiuqing and Ahmadizar, Fariba and Meyer, Mariah and Sincan, Murat and Mercader, Josep M and Lee, Sujin and Haessler, Jeffrey and Vy, Ha My T and Lin, Zhaotong and Armstrong, Nicole D and Gu, Shaopeng and Tsao, Noah L and Lange, Leslie A and Wang, Ningyuan and Wiggins, Kerri L and Trompet, Stella and Liu, Simin and Loos, Ruth J F and Judy, Renae and Schroeder, Philip H and Hasbani, Natalie R and Bos, Maxime M and Morrison, Alanna C and Jackson, Rebecca D and Reiner, Alexander P and Manson, JoAnn E and Chaudhary, Ninad S and Carmichael, Lynn K and Chen, Yii-Der Ida and Taylor, Kent D and Ghanbari, Mohsen and van Meurs, Joyce and Pitsillides, Achilleas N and Psaty, Bruce M and Noordam, Raymond and Do, Ron and Park, Kyong Soo and Jukema, J Wouter and Kavousi, Maryam and Correa, Adolfo and Rich, Stephen S and Damrauer, Scott M and Hajek, Catherine and Cho, Nam H and Irvin, Marguerite R and Pankow, James S and Nadkarni, Girish N and Sladek, Robert and Goodarzi, Mark O and Florez, Jose C and Chasman, Daniel I and Heckbert, Susan R and Kooperberg, Charles and Dupuis, Jos{\'e}e and Malhotra, Rajeev and de Vries, Paul S and Liu, Ching-Ti and Rotter, Jerome I and Meigs, James B} } @article {9544, title = {A Type 1 Diabetes Polygenic Score Is Not Associated With Prevalent Type 2 Diabetes in Large Population Studies.}, journal = {J Endocr Soc}, volume = {7}, year = {2023}, month = {2023 Oct 09}, pages = {bvad123}, abstract = {

CONTEXT: Both type 1 diabetes (T1D) and type 2 diabetes (T2D) have significant genetic contributions to risk and understanding their overlap can offer clinical insight.

OBJECTIVE: We examined whether a T1D polygenic score (PS) was associated with a diagnosis of T2D in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium.

METHODS: We constructed a T1D PS using 79 known single nucleotide polymorphisms associated with T1D risk. We analyzed 13 792 T2D cases and 14 169 controls from CHARGE cohorts to determine the association between the T1D PS and T2D prevalence. We validated findings in an independent sample of 2256 T2D cases and 27 052 controls from the Mass General Brigham Biobank (MGB Biobank). As secondary analyses in 5228 T2D cases from CHARGE, we used multivariable regression models to assess the association of the T1D PS with clinical outcomes associated with T1D.

RESULTS: The T1D PS was not associated with T2D both in CHARGE ( = .15) and in the MGB Biobank ( = .87). The partitioned human leukocyte antigens only PS was associated with T2D in CHARGE (OR 1.02 per 1 SD increase in PS, 95\% CI 1.01-1.03, = .006) but not in the MGB Biobank. The T1D PS was weakly associated with insulin use (OR 1.007, 95\% CI 1.001-1.012, = .03) in CHARGE T2D cases but not with other outcomes.

CONCLUSION: In large biobank samples, a common variant PS for T1D was not consistently associated with prevalent T2D. However, possible heterogeneity in T2D cannot be ruled out and future studies are needed do subphenotyping.

}, issn = {2472-1972}, doi = {10.1210/jendso/bvad123}, author = {Srinivasan, Shylaja and Wu, Peitao and Mercader, Josep M and Udler, Miriam S and Porneala, Bianca C and Bartz, Traci M and Floyd, James S and Sitlani, Colleen and Guo, Xiquing and Haessler, Jeffrey and Kooperberg, Charles and Liu, Jun and Ahmad, Shahzad and van Duijn, Cornelia and Liu, Ching-Ti and Goodarzi, Mark O and Florez, Jose C and Meigs, James B and Rotter, Jerome I and Rich, Stephen S and Dupuis, Jos{\'e}e and Leong, Aaron} } @article {9484, title = {WHOLE GENOME SEQUENCING ANALYSIS OF BODY MASS INDEX IDENTIFIES NOVEL AFRICAN ANCESTRY-SPECIFIC RISK ALLELE.}, journal = {medRxiv}, year = {2023}, month = {2023 Aug 22}, abstract = {

Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51\% were of non-European population groups. We discovered 18 BMI-associated signals ( < 5 {\texttimes} 10 ). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the and loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.

}, doi = {10.1101/2023.08.21.23293271}, author = {Zhang, Xinruo and Brody, Jennifer A and Graff, Mariaelisa and Highland, Heather M and Chami, Nathalie and Xu, Hanfei and Wang, Zhe and Ferrier, Kendra and Chittoor, Geetha and Josyula, Navya S and Li, Xihao and Li, Zilin and Allison, Matthew A and Becker, Diane M and Bielak, Lawrence F and Bis, Joshua C and Boorgula, Meher Preethi and Bowden, Donald W and Broome, Jai G and Buth, Erin J and Carlson, Christopher S and Chang, Kyong-Mi and Chavan, Sameer and Chiu, Yen-Feng and Chuang, Lee-Ming and Conomos, Matthew P and DeMeo, Dawn L and Du, Margaret and Duggirala, Ravindranath and Eng, Celeste and Fohner, Alison E and Freedman, Barry I and Garrett, Melanie E and Guo, Xiuqing and Haiman, Chris and Heavner, Benjamin D and Hidalgo, Bertha and Hixson, James E and Ho, Yuk-Lam and Hobbs, Brian D and Hu, Donglei and Hui, Qin and Hwu, Chii-Min and Jackson, Rebecca D and Jain, Deepti and Kalyani, Rita R and Kardia, Sharon L R and Kelly, Tanika N and Lange, Ethan M and LeNoir, Michael and Li, Changwei and Marchand, Loic Le and McDonald, Merry-Lynn N and McHugh, Caitlin P and Morrison, Alanna C and Naseri, Take and O{\textquoteright}Connell, Jeffrey and O{\textquoteright}Donnell, Christopher J and Palmer, Nicholette D and Pankow, James S and Perry, James A and Peters, Ulrike and Preuss, Michael H and Rao, D C and Regan, Elizabeth A and Reupena, Sefuiva M and Roden, Dan M and Rodriguez-Santana, Jose and Sitlani, Colleen M and Smith, Jennifer A and Tiwari, Hemant K and Vasan, Ramachandran S and Wang, Zeyuan and Weeks, Daniel E and Wessel, Jennifer and Wiggins, Kerri L and Wilkens, Lynne R and Wilson, Peter W F and Yanek, Lisa R and Yoneda, Zachary T and Zhao, Wei and Z{\"o}llner, Sebastian and Arnett, Donna K and Ashley-Koch, Allison E and Barnes, Kathleen C and Blangero, John and Boerwinkle, Eric and Burchard, Esteban G and Carson, April P and Chasman, Daniel I and Chen, Yii-Der Ida and Curran, Joanne E and Fornage, Myriam and Gordeuk, Victor R and He, Jiang and Heckbert, Susan R and Hou, Lifang and Irvin, Marguerite R and Kooperberg, Charles and Minster, Ryan L and Mitchell, Braxton D and Nouraie, Mehdi and Psaty, Bruce M and Raffield, Laura M and Reiner, Alexander P and Rich, Stephen S and Rotter, Jerome I and Shoemaker, M Benjamin and Smith, Nicholas L and Taylor, Kent D and Telen, Marilyn J and Weiss, Scott T and Zhang, Yingze and Costa, Nancy Heard- and Sun, Yan V and Lin, Xihong and Cupples, L Adrienne and Lange, Leslie A and Liu, Ching-Ti and Loos, Ruth J F and North, Kari E and Justice, Anne E} } @article {9619, title = {Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.}, journal = {Nature}, year = {2024}, month = {2024 Feb 19}, abstract = {

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes and molecular mechanisms that are often specific to cell type. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7\% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 {\texttimes} 10) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.

}, issn = {1476-4687}, doi = {10.1038/s41586-024-07019-6}, author = {Suzuki, Ken and Hatzikotoulas, Konstantinos and Southam, Lorraine and Taylor, Henry J and Yin, Xianyong and Lorenz, Kim M and Mandla, Ravi and Huerta-Chagoya, Alicia and Melloni, Giorgio E M and Kanoni, Stavroula and Rayner, Nigel W and Bocher, Ozvan and Arruda, Ana Luiza and Sonehara, Kyuto and Namba, Shinichi and Lee, Simon S K and Preuss, Michael H and Petty, Lauren E and Schroeder, Philip and Vanderwerff, Brett and Kals, Mart and Bragg, Fiona and Lin, Kuang and Guo, Xiuqing and Zhang, Weihua and Yao, Jie and Kim, Young Jin and Graff, Mariaelisa and Takeuchi, Fumihiko and Nano, Jana and Lamri, Amel and Nakatochi, Masahiro and Moon, Sanghoon and Scott, Robert A and Cook, James P and Lee, Jung-Jin and Pan, Ian and Taliun, Daniel and Parra, Esteban J and Chai, Jin-Fang and Bielak, Lawrence F and Tabara, Yasuharu and Hai, Yang and Thorleifsson, Gudmar and Grarup, Niels and Sofer, Tamar and Wuttke, Matthias and Sarnowski, Chloe and Gieger, Christian and Nousome, Darryl and Trompet, Stella and Kwak, Soo-Heon and Long, Jirong and Sun, Meng and Tong, Lin and Chen, Wei-Min and Nongmaithem, Suraj S and Noordam, Raymond and Lim, Victor J Y and Tam, Claudia H T and Joo, Yoonjung Yoonie and Chen, Chien-Hsiun and Raffield, Laura M and Prins, Bram Peter and Nicolas, Aude and Yanek, Lisa R and Chen, Guanjie and Brody, Jennifer A and Kabagambe, Edmond and An, Ping and Xiang, Anny H and Choi, Hyeok Sun and Cade, Brian E and Tan, Jingyi and Broadaway, K Alaine and Williamson, Alice and Kamali, Zoha and Cui, Jinrui and Thangam, Manonanthini and Adair, Linda S and Adeyemo, Adebowale and Aguilar-Salinas, Carlos A and Ahluwalia, Tarunveer S and Anand, Sonia S and Bertoni, Alain and Bork-Jensen, Jette and Brandslund, Ivan and Buchanan, Thomas A and Burant, Charles F and Butterworth, Adam S and Canouil, Micka{\"e}l and Chan, Juliana C N and Chang, Li-Ching and Chee, Miao-Li and Chen, Ji and Chen, Shyh-Huei and Chen, Yuan-Tsong and Chen, Zhengming and Chuang, Lee-Ming and Cushman, Mary and Danesh, John and Das, Swapan K and de Silva, H Janaka and Dedoussis, George and Dimitrov, Latchezar and Doumatey, Ayo P and Du, Shufa and Duan, Qing and Eckardt, Kai-Uwe and Emery, Leslie S and Evans, Daniel S and Evans, Michele K and Fischer, Krista and Floyd, James S and Ford, Ian and Franco, Oscar H and Frayling, Timothy M and Freedman, Barry I and Genter, Pauline and Gerstein, Hertzel C and Giedraitis, Vilmantas and Gonz{\'a}lez-Villalpando, Clicerio and Gonzalez-Villalpando, Maria Elena and Gordon-Larsen, Penny and Gross, Myron and Guare, Lindsay A and Hackinger, Sophie and Hakaste, Liisa and Han, Sohee and Hattersley, Andrew T and Herder, Christian and Horikoshi, Momoko and Howard, Annie-Green and Hsueh, Willa and Huang, Mengna and Huang, Wei and Hung, Yi-Jen and Hwang, Mi Yeong and Hwu, Chii-Min and Ichihara, Sahoko and Ikram, Mohammad Arfan and Ingelsson, Martin and Islam, Md Tariqul and Isono, Masato and Jang, Hye-Mi and Jasmine, Farzana and Jiang, Guozhi and Jonas, Jost B and J{\o}rgensen, Torben and Kamanu, Frederick K and Kandeel, Fouad R and Kasturiratne, Anuradhani and Katsuya, Tomohiro and Kaur, Varinderpal and Kawaguchi, Takahisa and Keaton, Jacob M and Kho, Abel N and Khor, Chiea-Chuen and Kibriya, Muhammad G and Kim, Duk-Hwan and Kronenberg, Florian and Kuusisto, Johanna and L{\"a}ll, Kristi and Lange, Leslie A and Lee, Kyung Min and Lee, Myung-Shik and Lee, Nanette R and Leong, Aaron and Li, Liming and Li, Yun and Li-Gao, Ruifang and Ligthart, Symen and Lindgren, Cecilia M and Linneberg, Allan and Liu, Ching-Ti and Liu, Jianjun and Locke, Adam E and Louie, Tin and Luan, Jian{\textquoteright}an and Luk, Andrea O and Luo, Xi and Lv, Jun and Lynch, Julie A and Lyssenko, Valeriya and Maeda, Shiro and Mamakou, Vasiliki and Mansuri, Sohail Rafik and Matsuda, Koichi and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mo, Huan and Morris, Andrew D and Moura, Filipe A and Nadler, Jerry L and Nalls, Michael A and Nayak, Uma and Ntalla, Ioanna and Okada, Yukinori and Orozco, Lorena and Patel, Sanjay R and Patil, Snehal and Pei, Pei and Pereira, Mark A and Peters, Annette and Pirie, Fraser J and Polikowsky, Hannah G and Porneala, Bianca and Prasad, Gauri and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Roden, Michael and Rohde, Rebecca and Roll, Katheryn and Sabanayagam, Charumathi and Sandow, Kevin and Sankareswaran, Alagu and Sattar, Naveed and Sch{\"o}nherr, Sebastian and Shahriar, Mohammad and Shen, Botong and Shi, Jinxiu and Shin, Dong Mun and Shojima, Nobuhiro and Smith, Jennifer A and So, Wing Yee and Stan{\v c}{\'a}kov{\'a}, Alena and Steinthorsdottir, Valgerdur and Stilp, Adrienne M and Strauch, Konstantin and Taylor, Kent D and Thorand, Barbara and Thorsteinsdottir, Unnur and Tomlinson, Brian and Tran, Tam C and Tsai, Fuu-Jen and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and Valladares-Salgado, Adan and van Dam, Rob M and van Klinken, Jan B and Varma, Rohit and Wacher-Rodarte, Niels and Wheeler, Eleanor and Wickremasinghe, Ananda R and van Dijk, Ko Willems and Witte, Daniel R and Yajnik, Chittaranjan S and Yamamoto, Ken and Yamamoto, Kenichi and Yoon, Kyungheon and Yu, Canqing and Yuan, Jian-Min and Yusuf, Salim and Zawistowski, Matthew and Zhang, Liang and Zheng, Wei and Raffel, Leslie J and Igase, Michiya and Ipp, Eli and Redline, Susan and Cho, Yoon Shin and Lind, Lars and Province, Michael A and Fornage, Myriam and Hanis, Craig L and Ingelsson, Erik and Zonderman, Alan B and Psaty, Bruce M and Wang, Ya-Xing and Rotimi, Charles N and Becker, Diane M and Matsuda, Fumihiko and Liu, Yongmei and Yokota, Mitsuhiro and Kardia, Sharon L R and Peyser, Patricia A and Pankow, James S and Engert, James C and Bonnefond, Am{\'e}lie and Froguel, Philippe and Wilson, James G and Sheu, Wayne H H and Wu, Jer-Yuarn and Hayes, M Geoffrey and Ma, Ronald C W and Wong, Tien-Yin and Mook-Kanamori, Dennis O and Tuomi, Tiinamaija and Chandak, Giriraj R and Collins, Francis S and Bharadwaj, Dwaipayan and Par{\'e}, Guillaume and Sale, Mich{\`e}le M and Ahsan, Habibul and Motala, Ayesha A and Shu, Xiao-Ou and Park, Kyong-Soo and Jukema, J Wouter and Cruz, Miguel and Chen, Yii-Der Ida and Rich, Stephen S and McKean-Cowdin, Roberta and Grallert, Harald and Cheng, Ching-Yu and Ghanbari, Mohsen and Tai, E-Shyong and Dupuis, Jos{\'e}e and Kato, Norihiro and Laakso, Markku and K{\"o}ttgen, Anna and Koh, Woon-Puay and Bowden, Donald W and Palmer, Colin N A and Kooner, Jaspal S and Kooperberg, Charles and Liu, Simin and North, Kari E and Saleheen, Danish and Hansen, Torben and Pedersen, Oluf and Wareham, Nicholas J and Lee, Juyoung and Kim, Bong-Jo and Millwood, Iona Y and Walters, Robin G and Stefansson, Kari and Ahlqvist, Emma and Goodarzi, Mark O and Mohlke, Karen L and Langenberg, Claudia and Haiman, Christopher A and Loos, Ruth J F and Florez, Jose C and Rader, Daniel J and Ritchie, Marylyn D and Z{\"o}llner, Sebastian and M{\"a}gi, Reedik and Marston, Nicholas A and Ruff, Christian T and van Heel, David A and Finer, Sarah and Denny, Joshua C and Yamauchi, Toshimasa and Kadowaki, Takashi and Chambers, John C and Ng, Maggie C Y and Sim, Xueling and Below, Jennifer E and Tsao, Philip S and Chang, Kyong-Mi and McCarthy, Mark I and Meigs, James B and Mahajan, Anubha and Spracklen, Cassandra N and Mercader, Josep M and Boehnke, Michael and Rotter, Jerome I and Vujkovic, Marijana and Voight, Benjamin F and Morris, Andrew P and Zeggini, Eleftheria} }