@article {932, title = {Association of polymorphisms in the CRP gene with circulating C-reactive protein levels and cardiovascular events.}, journal = {JAMA}, volume = {296}, year = {2006}, month = {2006 Dec 13}, pages = {2703-11}, abstract = {

CONTEXT: C-reactive protein (CRP) is an inflammation protein that may play a role in the pathogenesis of cardiovascular disease (CVD).

OBJECTIVE: To assess whether polymorphisms in the CRP gene are associated with plasma CRP, carotid intima-media thickness (CIMT), and CVD events.

DESIGN, SETTING, AND PARTICIPANTS: In the prospective, population-based Cardiovascular Health Study, 4 tag single-nucleotide polymorphisms (SNPs) (1919A/T, 2667G/C, 3872G/A, 5237A/G) were genotyped in 3941 white (European American) participants and 5 tag SNPs (addition of 790A/T) were genotyped in 700 black (African American) participants, aged 65 years or older, all of whom were without myocardial infarction (MI) or stroke before study entry. Median follow-up was 13 years (1989-2003).

MAIN OUTCOME MEASURES: Baseline CIMT; occurrence of MI, stroke, and CVD mortality during follow-up.

RESULTS: In white participants, 461 incident MIs, 491 incident strokes, and 490 CVD-related deaths occurred; in black participants, 67 incident MIs, 78 incident strokes, and 75 CVD-related deaths occurred. The 1919T and 790T alleles were associated with higher CRP levels in white and black participants, respectively. The 3872A allele was associated with lower CRP levels in both populations, and the 2667C allele was associated with lower CRP levels in white participants only. There was no association between CIMT and any CRP gene polymorphism in either population. In white participants, the 1919T allele was associated with increased risk of stroke for TT vs AA (hazard ratio [HR], 1.40; 95\% confidence interval [CI], 1.06-1.87) and for CVD mortality (HR, 1.40; 95\% CI, 1.10-1.90). In black participants, homozygosity for the 790T allele was associated with a 4-fold increased risk of MI compared with homozygosity for the 790A allele (95\% CI, 1.58-10.53). The minor alleles of the 2 SNPs associated with lower plasma CRP concentration in white participants (2667C and 3872A) were associated with decreased risk of CVD mortality.

CONCLUSIONS: Genetic variation in the CRP gene is associated with plasma CRP levels and CVD risk in older adults.

}, keywords = {African Continental Ancestry Group, Aged, C-Reactive Protein, Cardiovascular Diseases, Carotid Arteries, European Continental Ancestry Group, Female, Genotype, Humans, Male, Myocardial Infarction, Polymorphism, Single Nucleotide, Proportional Hazards Models, Risk, Stroke, Tunica Intima}, issn = {1538-3598}, doi = {10.1001/jama.296.22.2703}, author = {Lange, Leslie A and Carlson, Christopher S and Hindorff, Lucia A and Lange, Ethan M and Walston, Jeremy and Durda, J Peter and Cushman, Mary and Bis, Joshua C and Zeng, Donglin and Lin, Danyu and Kuller, Lewis H and Nickerson, Deborah A and Psaty, Bruce M and Tracy, Russell P and Reiner, Alexander P} } @article {1153, title = {Association of novel genetic Loci with circulating fibrinogen levels: a genome-wide association study in 6 population-based cohorts.}, journal = {Circ Cardiovasc Genet}, volume = {2}, year = {2009}, month = {2009 Apr}, pages = {125-33}, abstract = {

BACKGROUND: Fibrinogen is both central to blood coagulation and an acute-phase reactant. We aimed to identify common variants influencing circulation fibrinogen levels.

METHODS AND RESULTS: We conducted a genome-wide association analysis on 6 population-based studies, the Rotterdam Study, the Framingham Heart Study, the Cardiovascular Health Study, the Atherosclerosis Risk in Communities Study, the Monitoring of Trends and Determinants in Cardiovascular Disease/KORA Augsburg Study, and the British 1958 Birth Cohort Study, including 22 096 participants of European ancestry. Four loci were marked by 1 or more single-nucleotide polymorphisms that demonstrated genome-wide significance (P<5.0 x 10(-8)). These included a single-nucleotide polymorphism located in the fibrinogen beta chain (FGB) gene and 3 single-nucleotide polymorphisms representing newly identified loci. The high-signal single-nucleotide polymorphisms were rs1800789 in exon 7 of FGB (P=1.8 x 10(-30)), rs2522056 downstream from the interferon regulatory factor 1 (IRF1) gene (P=1.3 x 10(-15)), rs511154 within intron 1 of the propionyl coenzyme A carboxylase (PCCB) gene (P=5.9 x 10(-10)), and rs1539019 on the NLR family pyrin domain containing 3 isoforms (NLRP3) gene (P=1.04 x 10(-8)).

CONCLUSIONS: Our findings highlight biological pathways that may be important in regulation of inflammation underlying cardiovascular disease.

}, keywords = {Adult, Aged, Aged, 80 and over, Cardiovascular Diseases, Cohort Studies, European Continental Ancestry Group, Female, Fibrinogen, Genetic Loci, Genome-Wide Association Study, Humans, Male, Middle Aged, Pedigree, Polymorphism, Single Nucleotide, Young Adult}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.108.825224}, author = {Dehghan, Abbas and Yang, Qiong and Peters, Annette and Basu, Saonli and Bis, Joshua C and Rudnicka, Alicja R and Kavousi, Maryam and Chen, Ming-Huei and Baumert, Jens and Lowe, Gordon D O and McKnight, Barbara and Tang, Weihong and de Maat, Moniek and Larson, Martin G and Eyhermendy, Susana and McArdle, Wendy L and Lumley, Thomas and Pankow, James S and Hofman, Albert and Massaro, Joseph M and Rivadeneira, Fernando and Kolz, Melanie and Taylor, Kent D and van Duijn, Cornelia M and Kathiresan, Sekar and Illig, Thomas and Aulchenko, Yurii S and Volcik, Kelly A and Johnson, Andrew D and Uitterlinden, Andr{\'e} G and Tofler, Geoffrey H and Gieger, Christian and Psaty, Bruce M and Couper, David J and Boerwinkle, Eric and Koenig, Wolfgang and O{\textquoteright}Donnell, Christopher J and Witteman, Jacqueline C and Strachan, David P and Smith, Nicholas L and Folsom, Aaron R} } @article {1087, title = {Common variants at ten loci influence QT interval duration in the QTGEN Study.}, journal = {Nat Genet}, volume = {41}, year = {2009}, month = {2009 Apr}, pages = {399-406}, abstract = {

QT interval duration, reflecting myocardial repolarization on the electrocardiogram, is a heritable risk factor for sudden cardiac death and drug-induced arrhythmias. We conducted a meta-analysis of three genome-wide association studies in 13,685 individuals of European ancestry from the Framingham Heart Study, the Rotterdam Study and the Cardiovascular Health Study, as part of the QTGEN consortium. We observed associations at P < 5 x 10(-8) with variants in NOS1AP, KCNQ1, KCNE1, KCNH2 and SCN5A, known to be involved in myocardial repolarization and mendelian long-QT syndromes. Associations were found at five newly identified loci, including 16q21 near NDRG4 and GINS3, 6q22 near PLN, 1p36 near RNF207, 16p13 near LITAF and 17q12 near LIG3 and RFFL. Collectively, the 14 independent variants at these 10 loci explain 5.4-6.5\% of the variation in QT interval. These results, together with an accompanying paper, offer insights into myocardial repolarization and suggest candidate genes that could predispose to sudden cardiac death and drug-induced arrhythmias.

}, keywords = {Adaptor Proteins, Signal Transducing, Adult, Aged, Arrhythmias, Cardiac, Chromosome Mapping, Death, Sudden, Cardiac, Electroencephalography, ERG1 Potassium Channel, Ether-A-Go-Go Potassium Channels, European Continental Ancestry Group, Genetic Predisposition to Disease, Genetic Variation, Genome, Human, Humans, KCNQ1 Potassium Channel, Meta-Analysis as Topic, Muscle Proteins, NAV1.5 Voltage-Gated Sodium Channel, Polymorphism, Single Nucleotide, Potassium Channels, Voltage-Gated, Risk Factors, Sodium Channels}, issn = {1546-1718}, doi = {10.1038/ng.364}, author = {Newton-Cheh, Christopher and Eijgelsheim, Mark and Rice, Kenneth M and de Bakker, Paul I W and Yin, Xiaoyan and Estrada, Karol and Bis, Joshua C and Marciante, Kristin and Rivadeneira, Fernando and Noseworthy, Peter A and Sotoodehnia, Nona and Smith, Nicholas L and Rotter, Jerome I and Kors, Jan A and Witteman, Jacqueline C M and Hofman, Albert and Heckbert, Susan R and O{\textquoteright}Donnell, Christopher J and Uitterlinden, Andr{\'e} G and Psaty, Bruce M and Lumley, Thomas and Larson, Martin G and Stricker, Bruno H Ch} } @article {1108, title = {Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data.}, journal = {JAMA}, volume = {302}, year = {2009}, month = {2009 Jul 08}, pages = {168-78}, abstract = {

CONTEXT: Echocardiographic measures of left ventricular (LV) structure and function are heritable phenotypes of cardiovascular disease.

OBJECTIVE: To identify common genetic variants associated with cardiac structure and function by conducting a meta-analysis of genome-wide association data in 5 population-based cohort studies (stage 1) with replication (stage 2) in 2 other community-based samples.

DESIGN, SETTING, AND PARTICIPANTS: Within each of 5 community-based cohorts comprising the EchoGen consortium (stage 1; n = 12 612 individuals of European ancestry; 55\% women, aged 26-95 years; examinations between 1978-2008), we estimated the association between approximately 2.5 million single-nucleotide polymorphisms (SNPs; imputed to the HapMap CEU panel) and echocardiographic traits. In stage 2, SNPs significantly associated with traits in stage 1 were tested for association in 2 other cohorts (n = 4094 people of European ancestry). Using a prespecified P value threshold of 5 x 10(-7) to indicate genome-wide significance, we performed an inverse variance-weighted fixed-effects meta-analysis of genome-wide association data from each cohort.

MAIN OUTCOME MEASURES: Echocardiographic traits: LV mass, internal dimensions, wall thickness, systolic dysfunction, aortic root, and left atrial size.

RESULTS: In stage 1, 16 genetic loci were associated with 5 echocardiographic traits: 1 each with LV internal dimensions and systolic dysfunction, 3 each with LV mass and wall thickness, and 8 with aortic root size. In stage 2, 5 loci replicated (6q22 locus associated with LV diastolic dimensions, explaining <1\% of trait variance; 5q23, 12p12, 12q14, and 17p13 associated with aortic root size, explaining 1\%-3\% of trait variance).

CONCLUSIONS: We identified 5 genetic loci harboring common variants that were associated with variation in LV diastolic dimensions and aortic root size, but such findings explained a very small proportion of variance. Further studies are required to replicate these findings, identify the causal variants at or near these loci, characterize their functional significance, and determine whether they are related to overt cardiovascular disease.

}, keywords = {Adult, Aged, Aged, 80 and over, Aorta, Cardiovascular Diseases, Echocardiography, European Continental Ancestry Group, Female, Genome-Wide Association Study, Genotype, Heart Atria, Heart Ventricles, Humans, Male, Middle Aged, Organ Size, Phenotype, Polymorphism, Single Nucleotide, Risk Factors, Ventricular Dysfunction, Left, Ventricular Function, Left}, issn = {1538-3598}, doi = {10.1001/jama.2009.978-a}, author = {Vasan, Ramachandran S and Glazer, Nicole L and Felix, Janine F and Lieb, Wolfgang and Wild, Philipp S and Felix, Stephan B and Watzinger, Norbert and Larson, Martin G and Smith, Nicholas L and Dehghan, Abbas and Grosshennig, Anika and Schillert, Arne and Teumer, Alexander and Schmidt, Reinhold and Kathiresan, Sekar and Lumley, Thomas and Aulchenko, Yurii S and K{\"o}nig, Inke R and Zeller, Tanja and Homuth, Georg and Struchalin, Maksim and Aragam, Jayashri and Bis, Joshua C and Rivadeneira, Fernando and Erdmann, Jeanette and Schnabel, Renate B and D{\"o}rr, Marcus and Zweiker, Robert and Lind, Lars and Rodeheffer, Richard J and Greiser, Karin Halina and Levy, Daniel and Haritunians, Talin and Deckers, Jaap W and Stritzke, Jan and Lackner, Karl J and V{\"o}lker, Uwe and Ingelsson, Erik and Kullo, Iftikhar and Haerting, Johannes and O{\textquoteright}Donnell, Christopher J and Heckbert, Susan R and Stricker, Bruno H and Ziegler, Andreas and Reffelmann, Thorsten and Redfield, Margaret M and Werdan, Karl and Mitchell, Gary F and Rice, Kenneth and Arnett, Donna K and Hofman, Albert and Gottdiener, John S and Uitterlinden, Andr{\'e} G and Meitinger, Thomas and Blettner, Maria and Friedrich, Nele and Wang, Thomas J and Psaty, Bruce M and van Duijn, Cornelia M and Wichmann, H-Erich and Munzel, Thomas F and Kroemer, Heyo K and Benjamin, Emelia J and Rotter, Jerome I and Witteman, Jacqueline C and Schunkert, Heribert and Schmidt, Helena and V{\"o}lzke, Henry and Blankenberg, Stefan} } @article {1092, title = {Genomewide association studies of stroke.}, journal = {N Engl J Med}, volume = {360}, year = {2009}, month = {2009 Apr 23}, pages = {1718-28}, abstract = {

BACKGROUND: The genes underlying the risk of stroke in the general population remain undetermined.

METHODS: We carried out an analysis of genomewide association data generated from four large cohorts composing the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, including 19,602 white persons (mean [+/-SD] age, 63+/-8 years) in whom 1544 incident strokes (1164 ischemic strokes) developed over an average follow-up of 11 years. We tested the markers most strongly associated with stroke in a replication cohort of 2430 black persons with 215 incident strokes (191 ischemic strokes), another cohort of 574 black persons with 85 incident strokes (68 ischemic strokes), and 652 Dutch persons with ischemic stroke and 3613 unaffected persons.

RESULTS: Two intergenic single-nucleotide polymorphisms on chromosome 12p13 and within 11 kb of the gene NINJ2 were associated with stroke (P<5x10(-8)). NINJ2 encodes an adhesion molecule expressed in glia and shows increased expression after nerve injury. Direct genotyping showed that rs12425791 was associated with an increased risk of total (i.e., all types) and ischemic stroke, with hazard ratios of 1.30 (95\% confidence interval [CI], 1.19 to 1.42) and 1.33 (95\% CI, 1.21 to 1.47), respectively, yielding population attributable risks of 11\% and 12\% in the discovery cohorts. Corresponding hazard ratios were 1.35 (95\% CI, 1.01 to 1.79; P=0.04) and 1.42 (95\% CI, 1.06 to 1.91; P=0.02) in the large cohort of black persons and 1.17 (95\% CI, 1.01 to 1.37; P=0.03) and 1.19 (95\% CI, 1.01 to 1.41; P=0.04) in the Dutch sample; the results of an underpowered analysis of the smaller black cohort were nonsignificant.

CONCLUSIONS: A genetic locus on chromosome 12p13 is associated with an increased risk of stroke.

}, keywords = {African Continental Ancestry Group, Aged, Chromosomes, Human, Pair 12, Cohort Studies, European Continental Ancestry Group, Female, Genetic Markers, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Proportional Hazards Models, Risk Factors, Stroke}, issn = {1533-4406}, doi = {10.1056/NEJMoa0900094}, author = {Ikram, M Arfan and Seshadri, Sudha and Bis, Joshua C and Fornage, Myriam and DeStefano, Anita L and Aulchenko, Yurii S and Debette, Stephanie and Lumley, Thomas and Folsom, Aaron R and van den Herik, Evita G and Bos, Michiel J and Beiser, Alexa and Cushman, Mary and Launer, Lenore J and Shahar, Eyal and Struchalin, Maksim and Du, Yangchun and Glazer, Nicole L and Rosamond, Wayne D and Rivadeneira, Fernando and Kelly-Hayes, Margaret and Lopez, Oscar L and Coresh, Josef and Hofman, Albert and DeCarli, Charles and Heckbert, Susan R and Koudstaal, Peter J and Yang, Qiong and Smith, Nicholas L and Kase, Carlos S and Rice, Kenneth and Haritunians, Talin and Roks, Gerwin and de Kort, Paul L M and Taylor, Kent D and de Lau, Lonneke M and Oostra, Ben A and Uitterlinden, Andr{\'e} G and Rotter, Jerome I and Boerwinkle, Eric and Psaty, Bruce M and Mosley, Thomas H and van Duijn, Cornelia M and Breteler, Monique M B and Longstreth, W T and Wolf, Philip A} } @article {1114, title = {Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry.}, journal = {Nat Genet}, volume = {41}, year = {2009}, month = {2009 Aug}, pages = {879-81}, abstract = {

We conducted meta-analyses of genome-wide association studies for atrial fibrillation (AF) in participants from five community-based cohorts. Meta-analyses of 896 prevalent (15,768 referents) and 2,517 incident (21,337 referents) AF cases identified a new locus for AF (ZFHX3, rs2106261, risk ratio RR = 1.19; P = 2.3 x 10(-7)). We replicated this association in an independent cohort from the German AF Network (odds ratio = 1.44; P = 1.6 x 10(-11); combined RR = 1.25; combined P = 1.8 x 10(-15)).

}, keywords = {Atrial Fibrillation, Chromosomes, Human, Pair 16, European Continental Ancestry Group, Genetic Predisposition to Disease, Genome-Wide Association Study, Homeodomain Proteins, Humans, Meta-Analysis as Topic, Mutation, Polymorphism, Single Nucleotide, Reproducibility of Results}, issn = {1546-1718}, doi = {10.1038/ng.416}, author = {Benjamin, Emelia J and Rice, Kenneth M and Arking, Dan E and Pfeufer, Arne and van Noord, Charlotte and Smith, Albert V and Schnabel, Renate B and Bis, Joshua C and Boerwinkle, Eric and Sinner, Moritz F and Dehghan, Abbas and Lubitz, Steven A and D{\textquoteright}Agostino, Ralph B and Lumley, Thomas and Ehret, Georg B and Heeringa, Jan and Aspelund, Thor and Newton-Cheh, Christopher and Larson, Martin G and Marciante, Kristin D and Soliman, Elsayed Z and Rivadeneira, Fernando and Wang, Thomas J and Eiriksdottir, Gudny and Levy, Daniel and Psaty, Bruce M and Li, Man and Chamberlain, Alanna M and Hofman, Albert and Vasan, Ramachandran S and Harris, Tamara B and Rotter, Jerome I and Kao, W H Linda and Agarwal, Sunil K and Stricker, Bruno H Ch and Wang, Ke and Launer, Lenore J and Smith, Nicholas L and Chakravarti, Aravinda and Uitterlinden, Andr{\'e} G and Wolf, Philip A and Sotoodehnia, Nona and K{\"o}ttgen, Anna and van Duijn, Cornelia M and Meitinger, Thomas and Mueller, Martina and Perz, Siegfried and Steinbeck, Gerhard and Wichmann, H-Erich and Lunetta, Kathryn L and Heckbert, Susan R and Gudnason, Vilmundur and Alonso, Alvaro and K{\"a}{\"a}b, Stefan and Ellinor, Patrick T and Witteman, Jacqueline C M} } @article {1197, title = {Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium.}, journal = {Circ Cardiovasc Genet}, volume = {3}, year = {2010}, month = {2010 Jun}, pages = {256-66}, abstract = {

BACKGROUND: Although genetic factors contribute to the onset of heart failure (HF), no large-scale genome-wide investigation of HF risk has been published to date. We have investigated the association of 2,478,304 single-nucleotide polymorphisms with incident HF by meta-analyzing data from 4 community-based prospective cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Rotterdam Study.

METHODS AND RESULTS: Eligible participants for these analyses were of European or African ancestry and free of clinical HF at baseline. Each study independently conducted genome-wide scans and imputed data to the approximately 2.5 million single-nucleotide polymorphisms in HapMap. Within each study, Cox proportional hazards regression models provided age- and sex-adjusted estimates of the association between each variant and time to incident HF. Fixed-effect meta-analyses combined results for each single-nucleotide polymorphism from the 4 cohorts to produce an overall association estimate and P value. A genome-wide significance P value threshold was set a priori at 5.0x10(-7). During a mean follow-up of 11.5 years, 2526 incident HF events (12\%) occurred in 20 926 European-ancestry participants. The meta-analysis identified a genome-wide significant locus at chromosomal position 15q22 (1.4x10(-8)), which was 58.8 kb from USP3. Among 2895 African-ancestry participants, 466 incident HF events (16\%) occurred during a mean follow-up of 13.7 years. One genome-wide significant locus was identified at 12q14 (6.7x10(-8)), which was 6.3 kb from LRIG3.

CONCLUSIONS: We identified 2 loci that were associated with incident HF and exceeded genome-wide significance. The findings merit replication in other community-based settings of incident HF.

}, keywords = {African Americans, Aged, Aged, 80 and over, Cohort Studies, Endopeptidases, European Continental Ancestry Group, Female, Genome-Wide Association Study, Heart Failure, Humans, Incidence, Male, Middle Aged, Polymorphism, Single Nucleotide, Risk, Ubiquitin-Specific Proteases}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.109.895763}, author = {Smith, Nicholas L and Felix, Janine F and Morrison, Alanna C and Demissie, Serkalem and Glazer, Nicole L and Loehr, Laura R and Cupples, L Adrienne and Dehghan, Abbas and Lumley, Thomas and Rosamond, Wayne D and Lieb, Wolfgang and Rivadeneira, Fernando and Bis, Joshua C and Folsom, Aaron R and Benjamin, Emelia and Aulchenko, Yurii S and Haritunians, Talin and Couper, David and Murabito, Joanne and Wang, Ying A and Stricker, Bruno H and Gottdiener, John S and Chang, Patricia P and Wang, Thomas J and Rice, Kenneth M and Hofman, Albert and Heckbert, Susan R and Fox, Ervin R and O{\textquoteright}Donnell, Christopher J and Uitterlinden, Andr{\'e} G and Rotter, Jerome I and Willerson, James T and Levy, Daniel and van Duijn, Cornelia M and Psaty, Bruce M and Witteman, Jacqueline C M and Boerwinkle, Eric and Vasan, Ramachandran S} } @article {1221, title = {Biological, clinical and population relevance of 95 loci for blood lipids.}, journal = {Nature}, volume = {466}, year = {2010}, month = {2010 Aug 05}, pages = {707-13}, abstract = {

Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.

}, keywords = {African Americans, Animals, Asian Continental Ancestry Group, Cholesterol, HDL, Cholesterol, LDL, Coronary Artery Disease, Europe, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Humans, Lipid Metabolism, Lipids, Liver, Male, Mice, N-Acetylgalactosaminyltransferases, Phenotype, Polymorphism, Single Nucleotide, Protein Phosphatase 1, Reproducibility of Results, Triglycerides}, issn = {1476-4687}, doi = {10.1038/nature09270}, author = {Teslovich, Tanya M and Musunuru, Kiran and Smith, Albert V and Edmondson, Andrew C and Stylianou, Ioannis M and Koseki, Masahiro and Pirruccello, James P and Ripatti, Samuli and Chasman, Daniel I and Willer, Cristen J and Johansen, Christopher T and Fouchier, Sigrid W and Isaacs, Aaron and Peloso, Gina M and Barbalic, Maja and Ricketts, Sally L and Bis, Joshua C and Aulchenko, Yurii S and Thorleifsson, Gudmar and Feitosa, Mary F and Chambers, John and Orho-Melander, Marju and Melander, Olle and Johnson, Toby and Li, Xiaohui and Guo, Xiuqing and Li, Mingyao and Shin Cho, Yoon and Jin Go, Min and Jin Kim, Young and Lee, Jong-Young and Park, Taesung and Kim, Kyunga and Sim, Xueling and Twee-Hee Ong, Rick and Croteau-Chonka, Damien C and Lange, Leslie A and Smith, Joshua D and Song, Kijoung and Hua Zhao, Jing and Yuan, Xin and Luan, Jian{\textquoteright}an and Lamina, Claudia and Ziegler, Andreas and Zhang, Weihua and Zee, Robert Y L and Wright, Alan F and Witteman, Jacqueline C M and Wilson, James F and Willemsen, Gonneke and Wichmann, H-Erich and Whitfield, John B and Waterworth, Dawn M and Wareham, Nicholas J and Waeber, G{\'e}rard and Vollenweider, Peter and Voight, Benjamin F and Vitart, Veronique and Uitterlinden, Andr{\'e} G and Uda, Manuela and Tuomilehto, Jaakko and Thompson, John R and Tanaka, Toshiko and Surakka, Ida and Stringham, Heather M and Spector, Tim D and Soranzo, Nicole and Smit, Johannes H and Sinisalo, Juha and Silander, Kaisa and Sijbrands, Eric J G and Scuteri, Angelo and Scott, James and Schlessinger, David and Sanna, Serena and Salomaa, Veikko and Saharinen, Juha and Sabatti, Chiara and Ruokonen, Aimo and Rudan, Igor and Rose, Lynda M and Roberts, Robert and Rieder, Mark and Psaty, Bruce M and Pramstaller, Peter P and Pichler, Irene and Perola, Markus and Penninx, Brenda W J H and Pedersen, Nancy L and Pattaro, Cristian and Parker, Alex N and Par{\'e}, Guillaume and Oostra, Ben A and O{\textquoteright}Donnell, Christopher J and Nieminen, Markku S and Nickerson, Deborah A and Montgomery, Grant W and Meitinger, Thomas and McPherson, Ruth and McCarthy, Mark I and McArdle, Wendy and Masson, David and Martin, Nicholas G and Marroni, Fabio and Mangino, Massimo and Magnusson, Patrik K E and Lucas, Gavin and Luben, Robert and Loos, Ruth J F and Lokki, Marja-Liisa and Lettre, Guillaume and Langenberg, Claudia and Launer, Lenore J and Lakatta, Edward G and Laaksonen, Reijo and Kyvik, Kirsten O and Kronenberg, Florian and K{\"o}nig, Inke R and Khaw, Kay-Tee and Kaprio, Jaakko and Kaplan, Lee M and Johansson, Asa and Jarvelin, Marjo-Riitta and Janssens, A Cecile J W and Ingelsson, Erik and Igl, Wilmar and Kees Hovingh, G and Hottenga, Jouke-Jan and Hofman, Albert and Hicks, Andrew A and Hengstenberg, Christian and Heid, Iris M and Hayward, Caroline and Havulinna, Aki S and Hastie, Nicholas D and Harris, Tamara B and Haritunians, Talin and Hall, Alistair S and Gyllensten, Ulf and Guiducci, Candace and Groop, Leif C and Gonzalez, Elena and Gieger, Christian and Freimer, Nelson B and Ferrucci, Luigi and Erdmann, Jeanette and Elliott, Paul and Ejebe, Kenechi G and D{\"o}ring, Angela and Dominiczak, Anna F and Demissie, Serkalem and Deloukas, Panagiotis and de Geus, Eco J C and de Faire, Ulf and Crawford, Gabriel and Collins, Francis S and Chen, Yii-der I and Caulfield, Mark J and Campbell, Harry and Burtt, Noel P and Bonnycastle, Lori L and Boomsma, Dorret I and Boekholdt, S Matthijs and Bergman, Richard N and Barroso, In{\^e}s and Bandinelli, Stefania and Ballantyne, Christie M and Assimes, Themistocles L and Quertermous, Thomas and Altshuler, David and Seielstad, Mark and Wong, Tien Y and Tai, E-Shyong and Feranil, Alan B and Kuzawa, Christopher W and Adair, Linda S and Taylor, Herman A and Borecki, Ingrid B and Gabriel, Stacey B and Wilson, James G and Holm, Hilma and Thorsteinsdottir, Unnur and Gudnason, Vilmundur and Krauss, Ronald M and Mohlke, Karen L and Ordovas, Jose M and Munroe, Patricia B and Kooner, Jaspal S and Tall, Alan R and Hegele, Robert A and Kastelein, John J P and Schadt, Eric E and Rotter, Jerome I and Boerwinkle, Eric and Strachan, David P and Mooser, Vincent and Stefansson, Kari and Reilly, Muredach P and Samani, Nilesh J and Schunkert, Heribert and Cupples, L Adrienne and Sandhu, Manjinder S and Ridker, Paul M and Rader, Daniel J and van Duijn, Cornelia M and Peltonen, Leena and Abecasis, Goncalo R and Boehnke, Michael and Kathiresan, Sekar} } @article {1244, title = {Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Dec}, pages = {1068-76}, abstract = {

The QRS interval, from the beginning of the Q wave to the end of the S wave on an electrocardiogram, reflects ventricular depolarization and conduction time and is a risk factor for mortality, sudden death and heart failure. We performed a genome-wide association meta-analysis in 40,407 individuals of European descent from 14 studies, with further genotyping in 7,170 additional Europeans, and we identified 22 loci associated with QRS duration (P < 5 {\texttimes} 10(-8)). These loci map in or near genes in pathways with established roles in ventricular conduction such as sodium channels, transcription factors and calcium-handling proteins, but also point to previously unidentified biologic processes, such as kinase inhibitors and genes related to tumorigenesis. We demonstrate that SCN10A, a candidate gene at the most significantly associated locus in this study, is expressed in the mouse ventricular conduction system, and treatment with a selective SCN10A blocker prolongs QRS duration. These findings extend our current knowledge of ventricular depolarization and conduction.

}, keywords = {Animals, Animals, Newborn, Chromosomes, Human, Computational Biology, Electrocardiography, Genetic Loci, Genome-Wide Association Study, Heart Conduction System, Humans, Mice, Mice, Transgenic, Models, Animal, Myocytes, Cardiac, NAV1.8 Voltage-Gated Sodium Channel, Polymorphism, Single Nucleotide, Sodium Channels}, issn = {1546-1718}, doi = {10.1038/ng.716}, author = {Sotoodehnia, Nona and Isaacs, Aaron and de Bakker, Paul I W and D{\"o}rr, Marcus and Newton-Cheh, Christopher and Nolte, Ilja M and van der Harst, Pim and M{\"u}ller, Martina and Eijgelsheim, Mark and Alonso, Alvaro and Hicks, Andrew A and Padmanabhan, Sandosh and Hayward, Caroline and Smith, Albert Vernon and Polasek, Ozren and Giovannone, Steven and Fu, Jingyuan and Magnani, Jared W and Marciante, Kristin D and Pfeufer, Arne and Gharib, Sina A and Teumer, Alexander and Li, Man and Bis, Joshua C and Rivadeneira, Fernando and Aspelund, Thor and K{\"o}ttgen, Anna and Johnson, Toby and Rice, Kenneth and Sie, Mark P S and Wang, Ying A and Klopp, Norman and Fuchsberger, Christian and Wild, Sarah H and Mateo Leach, Irene and Estrada, Karol and V{\"o}lker, Uwe and Wright, Alan F and Asselbergs, Folkert W and Qu, Jiaxiang and Chakravarti, Aravinda and Sinner, Moritz F and Kors, Jan A and Petersmann, Astrid and Harris, Tamara B and Soliman, Elsayed Z and Munroe, Patricia B and Psaty, Bruce M and Oostra, Ben A and Cupples, L Adrienne and Perz, Siegfried and de Boer, Rudolf A and Uitterlinden, Andr{\'e} G and V{\"o}lzke, Henry and Spector, Timothy D and Liu, Fang-Yu and Boerwinkle, Eric and Dominiczak, Anna F and Rotter, Jerome I and van Herpen, G{\'e} and Levy, Daniel and Wichmann, H-Erich and van Gilst, Wiek H and Witteman, Jacqueline C M and Kroemer, Heyo K and Kao, W H Linda and Heckbert, Susan R and Meitinger, Thomas and Hofman, Albert and Campbell, Harry and Folsom, Aaron R and van Veldhuisen, Dirk J and Schwienbacher, Christine and O{\textquoteright}Donnell, Christopher J and Volpato, Claudia Beu and Caulfield, Mark J and Connell, John M and Launer, Lenore and Lu, Xiaowen and Franke, Lude and Fehrmann, Rudolf S N and te Meerman, Gerard and Groen, Harry J M and Weersma, Rinse K and van den Berg, Leonard H and Wijmenga, Cisca and Ophoff, Roel A and Navis, Gerjan and Rudan, Igor and Snieder, Harold and Wilson, James F and Pramstaller, Peter P and Siscovick, David S and Wang, Thomas J and Gudnason, Vilmundur and van Duijn, Cornelia M and Felix, Stephan B and Fishman, Glenn I and Jamshidi, Yalda and Stricker, Bruno H Ch and Samani, Nilesh J and K{\"a}{\"a}b, Stefan and Arking, Dan E} } @article {1199, title = {Genome-wide analysis of genetic loci associated with Alzheimer disease.}, journal = {JAMA}, volume = {303}, year = {2010}, month = {2010 May 12}, pages = {1832-40}, abstract = {

CONTEXT: Genome-wide association studies (GWAS) have recently identified CLU, PICALM, and CR1 as novel genes for late-onset Alzheimer disease (AD).

OBJECTIVES: To identify and strengthen additional loci associated with AD and confirm these in an independent sample and to examine the contribution of recently identified genes to AD risk prediction in a 3-stage analysis of new and previously published GWAS on more than 35,000 persons (8371 AD cases).

DESIGN, SETTING, AND PARTICIPANTS: In stage 1, we identified strong genetic associations (P < 10(-3)) in a sample of 3006 AD cases and 14,642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (1367 AD cases [973 incident]) with previously reported results from the Translational Genomics Research Institute and the Mayo AD GWAS. We identified 2708 single-nucleotide polymorphisms (SNPs) with P < 10(-3). In stage 2, we pooled results for these SNPs with the European AD Initiative (2032 cases and 5328 controls) to identify 38 SNPs (10 loci) with P < 10(-5). In stage 3, we combined data for these 10 loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases and 6995 controls) to identify 4 SNPs with P < 1.7x10(-8). These 4 SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Genome-wide association analyses were completed in 2007-2008 and the meta-analyses and replication in 2009.

MAIN OUTCOME MEASURE: Presence of Alzheimer disease.

RESULTS: Two loci were identified to have genome-wide significance for the first time: rs744373 near BIN1 (odds ratio [OR],1.13; 95\% confidence interval [CI],1.06-1.21 per copy of the minor allele; P = 1.59x10(-11)) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (OR, 1.18; 95\% CI, 1.07-1.29; P = 6.45x10(-9)). Associations of these 2 loci plus the previously identified loci CLU and PICALM with AD were confirmed in the Spanish sample (P < .05). However, although CLU and PICALM were confirmed to be associated with AD in this independent sample, they did not improve the ability of a model that included age, sex, and APOE to predict incident AD (improvement in area under the receiver operating characteristic curve from 0.847 to 0.849 in the Rotterdam Study and 0.702 to 0.705 in the Cardiovascular Health Study).

CONCLUSIONS: Two genetic loci for AD were found for the first time to reach genome-wide statistical significance. These findings were replicated in an independent population. Two recently reported associations were also confirmed. These loci did not improve AD risk prediction. While not clinically useful, they may implicate biological pathways useful for future research.

}, keywords = {Age of Onset, Aged, Alzheimer Disease, Case-Control Studies, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Odds Ratio, Polymorphism, Single Nucleotide}, issn = {1538-3598}, doi = {10.1001/jama.2010.574}, author = {Seshadri, Sudha and Fitzpatrick, Annette L and Ikram, M Arfan and DeStefano, Anita L and Gudnason, Vilmundur and Boada, Merce and Bis, Joshua C and Smith, Albert V and Carassquillo, Minerva M and Lambert, Jean Charles and Harold, Denise and Schrijvers, Elisabeth M C and Ramirez-Lorca, Reposo and Debette, Stephanie and Longstreth, W T and Janssens, A Cecile J W and Pankratz, V Shane and Dartigues, Jean Fran{\c c}ois and Hollingworth, Paul and Aspelund, Thor and Hernandez, Isabel and Beiser, Alexa and Kuller, Lewis H and Koudstaal, Peter J and Dickson, Dennis W and Tzourio, Christophe and Abraham, Richard and Antunez, Carmen and Du, Yangchun and Rotter, Jerome I and Aulchenko, Yurii S and Harris, Tamara B and Petersen, Ronald C and Berr, Claudine and Owen, Michael J and Lopez-Arrieta, Jesus and Varadarajan, Badri N and Becker, James T and Rivadeneira, Fernando and Nalls, Michael A and Graff-Radford, Neill R and Campion, Dominique and Auerbach, Sanford and Rice, Kenneth and Hofman, Albert and Jonsson, Palmi V and Schmidt, Helena and Lathrop, Mark and Mosley, Thomas H and Au, Rhoda and Psaty, Bruce M and Uitterlinden, Andr{\'e} G and Farrer, Lindsay A and Lumley, Thomas and Ruiz, Agustin and Williams, Julie and Amouyel, Philippe and Younkin, Steve G and Wolf, Philip A and Launer, Lenore J and Lopez, Oscar L and van Duijn, Cornelia M and Breteler, Monique M B} } @article {1217, title = {Genome-wide association analysis identifies multiple loci related to resting heart rate.}, journal = {Hum Mol Genet}, volume = {19}, year = {2010}, month = {2010 Oct 01}, pages = {3885-94}, abstract = {

Higher resting heart rate is associated with increased cardiovascular disease and mortality risk. Though heritable factors play a substantial role in population variation, little is known about specific genetic determinants. This knowledge can impact clinical care by identifying novel factors that influence pathologic heart rate states, modulate heart rate through cardiac structure and function or by improving our understanding of the physiology of heart rate regulation. To identify common genetic variants associated with heart rate, we performed a meta-analysis of 15 genome-wide association studies (GWAS), including 38,991 subjects of European ancestry, estimating the association between age-, sex- and body mass-adjusted RR interval (inverse heart rate) and approximately 2.5 million markers. Results with P < 5 {\texttimes} 10(-8) were considered genome-wide significant. We constructed regression models with multiple markers to assess whether results at less stringent thresholds were likely to be truly associated with RR interval. We identified six novel associations with resting heart rate at six loci: 6q22 near GJA1; 14q12 near MYH7; 12p12 near SOX5, c12orf67, BCAT1, LRMP and CASC1; 6q22 near SLC35F1, PLN and c6orf204; 7q22 near SLC12A9 and UfSp1; and 11q12 near FADS1. Associations at 6q22 400 kb away from GJA1, at 14q12 MYH6 and at 1q32 near CD34 identified in previously published GWAS were confirmed. In aggregate, these variants explain approximately 0.7\% of RR interval variance. A multivariant regression model including 20 variants with P < 10(-5) increased the explained variance to 1.6\%, suggesting that some loci falling short of genome-wide significance are likely truly associated. Future research is warranted to elucidate underlying mechanisms that may impact clinical care.

}, keywords = {Adult, Aged, Base Pairing, Cohort Studies, Female, Genetic Loci, Genome, Human, Genome-Wide Association Study, Heart Rate, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Rest}, issn = {1460-2083}, doi = {10.1093/hmg/ddq303}, author = {Eijgelsheim, Mark and Newton-Cheh, Christopher and Sotoodehnia, Nona and de Bakker, Paul I W and M{\"u}ller, Martina and Morrison, Alanna C and Smith, Albert V and Isaacs, Aaron and Sanna, Serena and D{\"o}rr, Marcus and Navarro, Pau and Fuchsberger, Christian and Nolte, Ilja M and de Geus, Eco J C and Estrada, Karol and Hwang, Shih-Jen and Bis, Joshua C and R{\"u}ckert, Ina-Maria and Alonso, Alvaro and Launer, Lenore J and Hottenga, Jouke Jan and Rivadeneira, Fernando and Noseworthy, Peter A and Rice, Kenneth M and Perz, Siegfried and Arking, Dan E and Spector, Tim D and Kors, Jan A and Aulchenko, Yurii S and Tarasov, Kirill V and Homuth, Georg and Wild, Sarah H and Marroni, Fabio and Gieger, Christian and Licht, Carmilla M and Prineas, Ronald J and Hofman, Albert and Rotter, Jerome I and Hicks, Andrew A and Ernst, Florian and Najjar, Samer S and Wright, Alan F and Peters, Annette and Fox, Ervin R and Oostra, Ben A and Kroemer, Heyo K and Couper, David and V{\"o}lzke, Henry and Campbell, Harry and Meitinger, Thomas and Uda, Manuela and Witteman, Jacqueline C M and Psaty, Bruce M and Wichmann, H-Erich and Harris, Tamara B and K{\"a}{\"a}b, Stefan and Siscovick, David S and Jamshidi, Yalda and Uitterlinden, Andr{\'e} G and Folsom, Aaron R and Larson, Martin G and Wilson, James F and Penninx, Brenda W and Snieder, Harold and Pramstaller, Peter P and van Duijn, Cornelia M and Lakatta, Edward G and Felix, Stephan B and Gudnason, Vilmundur and Pfeufer, Arne and Heckbert, Susan R and Stricker, Bruno H Ch and Boerwinkle, Eric and O{\textquoteright}Donnell, Christopher J} } @article {1192, title = {Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology.}, journal = {Proc Natl Acad Sci U S A}, volume = {107}, year = {2010}, month = {2010 May 18}, pages = {9293-8}, abstract = {

Telomeres are engaged in a host of cellular functions, and their length is regulated by multiple genes. Telomere shortening, in the course of somatic cell replication, ultimately leads to replicative senescence. In humans, rare mutations in genes that regulate telomere length have been identified in monogenic diseases such as dyskeratosis congenita and idiopathic pulmonary fibrosis, which are associated with shortened leukocyte telomere length (LTL) and increased risk for aplastic anemia. Shortened LTL is observed in a host of aging-related complex genetic diseases and is associated with diminished survival in the elderly. We report results of a genome-wide association study of LTL in a consortium of four observational studies (n = 3,417 participants with LTL and genome-wide genotyping). SNPs in the regions of the oligonucleotide/oligosaccharide-binding folds containing one gene (OBFC1; rs4387287; P = 3.9 x 10(-9)) and chemokine (C-X-C motif) receptor 4 gene (CXCR4; rs4452212; P = 2.9 x 10(-8)) were associated with LTL at a genome-wide significance level (P < 5 x 10(-8)). We attempted replication of the top SNPs at these loci through de novo genotyping of 1,893 additional individuals and in silico lookup in another observational study (n = 2,876), and we confirmed the association findings for OBFC1 but not CXCR4. In addition, we confirmed the telomerase RNA component (TERC) as a gene associated with LTL (P = 1.1 x 10(-5)). The identification of OBFC1 through genome-wide association as a locus for interindividual variation in LTL in the general population advances the understanding of telomere biology in humans and may provide insights into aging-related disorders linked to altered LTL dynamics.

}, keywords = {Cohort Studies, Genome-Wide Association Study, Genotype, Humans, Leukocytes, Polymorphism, Single Nucleotide, Receptors, CXCR4, Telomere, Telomere-Binding Proteins}, issn = {1091-6490}, doi = {10.1073/pnas.0911494107}, author = {Levy, Daniel and Neuhausen, Susan L and Hunt, Steven C and Kimura, Masayuki and Hwang, Shih-Jen and Chen, Wei and Bis, Joshua C and Fitzpatrick, Annette L and Smith, Erin and Johnson, Andrew D and Gardner, Jeffrey P and Srinivasan, Sathanur R and Schork, Nicholas and Rotter, Jerome I and Herbig, Utz and Psaty, Bruce M and Sastrasinh, Malinee and Murray, Sarah S and Vasan, Ramachandran S and Province, Michael A and Glazer, Nicole L and Lu, Xiaobin and Cao, Xiaojian and Kronmal, Richard and Mangino, Massimo and Soranzo, Nicole and Spector, Tim D and Berenson, Gerald S and Aviv, Abraham} } @article {1156, title = {Genome-wide association studies of MRI-defined brain infarcts: meta-analysis from the CHARGE Consortium.}, journal = {Stroke}, volume = {41}, year = {2010}, month = {2010 Feb}, pages = {210-7}, abstract = {

BACKGROUND AND PURPOSE: Previous studies examining genetic associations with MRI-defined brain infarct have yielded inconsistent findings. We investigated genetic variation underlying covert MRI infarct in persons without histories of transient ischemic attack or stroke. We performed meta-analysis of genome-wide association studies of white participants in 6 studies comprising the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium.

METHODS: Using 2.2 million genotyped and imputed single nucleotide polymorphisms, each study performed cross-sectional genome-wide association analysis of MRI infarct using age- and sex-adjusted logistic regression models. Study-specific findings were combined in an inverse-variance-weighted meta-analysis, including 9401 participants with mean age 69.7 (19.4\% of whom had >or=1 MRI infarct).

RESULTS: The most significant association was found with rs2208454 (minor allele frequency, 20\%), located in intron 3 of MACRO domain containing 2 gene and in the downstream region of fibronectin leucine-rich transmembrane protein 3 gene. Each copy of the minor allele was associated with lower risk of MRI infarcts (odds ratio, 0.76; 95\% confidence interval, 0.68-0.84; P=4.64x10(-7)). Highly suggestive associations (P<1.0x10(-5)) were also found for 22 other single nucleotide polymorphisms in linkage disequilibrium (r(2)>0.64) with rs2208454. The association with rs2208454 did not replicate in independent samples of 1822 white and 644 black participants, although 4 single nucleotide polymorphisms within 200 kb from rs2208454 were associated with MRI infarcts in the black population sample.

CONCLUSIONS: This first community-based, genome-wide association study on covert MRI infarcts uncovered novel associations. Although replication of the association with top single nucleotide polymorphisms failed, possibly because of insufficient power, results in the black population sample are encouraging, and further efforts at replication are needed.

}, keywords = {African Americans, Aged, Brain, Brain Infarction, Cohort Studies, DNA Mutational Analysis, Female, Gene Frequency, Genetic Markers, Genetic Predisposition to Disease, Genetic Testing, Genetic Variation, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Magnetic Resonance Imaging, Male, Middle Aged, Polymorphism, Single Nucleotide, Prospective Studies}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.109.569194}, author = {Debette, Stephanie and Bis, Joshua C and Fornage, Myriam and Schmidt, Helena and Ikram, M Arfan and Sigurdsson, Sigurdur and Heiss, Gerardo and Struchalin, Maksim and Smith, Albert V and van der Lugt, Aad and DeCarli, Charles and Lumley, Thomas and Knopman, David S and Enzinger, Christian and Eiriksdottir, Gudny and Koudstaal, Peter J and DeStefano, Anita L and Psaty, Bruce M and Dufouil, Carole and Catellier, Diane J and Fazekas, Franz and Aspelund, Thor and Aulchenko, Yurii S and Beiser, Alexa and Rotter, Jerome I and Tzourio, Christophe and Shibata, Dean K and Tscherner, Maria and Harris, Tamara B and Rivadeneira, Fernando and Atwood, Larry D and Rice, Kenneth and Gottesman, Rebecca F and van Buchem, Mark A and Uitterlinden, Andr{\'e} G and Kelly-Hayes, Margaret and Cushman, Mary and Zhu, Yicheng and Boerwinkle, Eric and Gudnason, Vilmundur and Hofman, Albert and Romero, Jose R and Lopez, Oscar and van Duijn, Cornelia M and Au, Rhoda and Heckbert, Susan R and Wolf, Philip A and Mosley, Thomas H and Seshadri, Sudha and Breteler, Monique M B and Schmidt, Reinhold and Launer, Lenore J and Longstreth, W T} } @article {1159, title = {Genome-wide association study of PR interval.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Feb}, pages = {153-9}, abstract = {

The electrocardiographic PR interval (or PQ interval) reflects atrial and atrioventricular nodal conduction, disturbances of which increase risk of atrial fibrillation. We report a meta-analysis of genome-wide association studies for PR interval from seven population-based European studies in the CHARGE Consortium: AGES, ARIC, CHS, FHS, KORA, Rotterdam Study, and SardiNIA (N = 28,517). We identified nine loci associated with PR interval at P < 5 x 10(-8). At the 3p22.2 locus, we observed two independent associations in voltage-gated sodium channel genes, SCN10A and SCN5A. Six of the loci were near cardiac developmental genes, including CAV1-CAV2, NKX2-5 (CSX1), SOX5, WNT11, MEIS1, and TBX5-TBX3, providing pathophysiologically interesting candidate genes. Five of the loci, SCN5A, SCN10A, NKX2-5, CAV1-CAV2, and SOX5, were also associated with atrial fibrillation (N = 5,741 cases, P < 0.0056). This suggests a role for common variation in ion channel and developmental genes in atrial and atrioventricular conduction as well as in susceptibility to atrial fibrillation.

}, keywords = {Aged, Atrial Fibrillation, Cohort Studies, Electrocardiography, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Heart Conduction System, Humans, Male, Meta-Analysis as Topic}, issn = {1546-1718}, doi = {10.1038/ng.517}, author = {Pfeufer, Arne and van Noord, Charlotte and Marciante, Kristin D and Arking, Dan E and Larson, Martin G and Smith, Albert Vernon and Tarasov, Kirill V and M{\"u}ller, Martina and Sotoodehnia, Nona and Sinner, Moritz F and Verwoert, Germaine C and Li, Man and Kao, W H Linda and K{\"o}ttgen, Anna and Coresh, Josef and Bis, Joshua C and Psaty, Bruce M and Rice, Kenneth and Rotter, Jerome I and Rivadeneira, Fernando and Hofman, Albert and Kors, Jan A and Stricker, Bruno H C and Uitterlinden, Andr{\'e} G and van Duijn, Cornelia M and Beckmann, Britt M and Sauter, Wiebke and Gieger, Christian and Lubitz, Steven A and Newton-Cheh, Christopher and Wang, Thomas J and Magnani, Jared W and Schnabel, Renate B and Chung, Mina K and Barnard, John and Smith, Jonathan D and Van Wagoner, David R and Vasan, Ramachandran S and Aspelund, Thor and Eiriksdottir, Gudny and Harris, Tamara B and Launer, Lenore J and Najjar, Samer S and Lakatta, Edward and Schlessinger, David and Uda, Manuela and Abecasis, Goncalo R and M{\"u}ller-Myhsok, Bertram and Ehret, Georg B and Boerwinkle, Eric and Chakravarti, Aravinda and Soliman, Elsayed Z and Lunetta, Kathryn L and Perz, Siegfried and Wichmann, H-Erich and Meitinger, Thomas and Levy, Daniel and Gudnason, Vilmundur and Ellinor, Patrick T and Sanna, Serena and K{\"a}{\"a}b, Stefan and Witteman, Jacqueline C M and Alonso, Alvaro and Benjamin, Emelia J and Heckbert, Susan R} } @article {1249, title = {Genome-wide meta-analysis increases to 71 the number of confirmed Crohn{\textquoteright}s disease susceptibility loci.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Dec}, pages = {1118-25}, abstract = {

We undertook a meta-analysis of six Crohn{\textquoteright}s disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 {\texttimes} 10$^{-}$$^{8}$). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohn{\textquoteright}s disease.

}, keywords = {Computational Biology, Crohn Disease, Genetic Linkage, Genetic Loci, Genetic Predisposition to Disease, Genetic Variation, Genome, Human, Genome-Wide Association Study, Humans, Reproducibility of Results}, issn = {1546-1718}, doi = {10.1038/ng.717}, author = {Franke, Andre and McGovern, Dermot P B and Barrett, Jeffrey C and Wang, Kai and Radford-Smith, Graham L and Ahmad, Tariq and Lees, Charlie W and Balschun, Tobias and Lee, James and Roberts, Rebecca and Anderson, Carl A and Bis, Joshua C and Bumpstead, Suzanne and Ellinghaus, David and Festen, Eleonora M and Georges, Michel and Green, Todd and Haritunians, Talin and Jostins, Luke and Latiano, Anna and Mathew, Christopher G and Montgomery, Grant W and Prescott, Natalie J and Raychaudhuri, Soumya and Rotter, Jerome I and Schumm, Philip and Sharma, Yashoda and Simms, Lisa A and Taylor, Kent D and Whiteman, David and Wijmenga, Cisca and Baldassano, Robert N and Barclay, Murray and Bayless, Theodore M and Brand, Stephan and B{\"u}ning, Carsten and Cohen, Albert and Colombel, Jean-Frederick and Cottone, Mario and Stronati, Laura and Denson, Ted and De Vos, Martine and D{\textquoteright}Inca, Renata and Dubinsky, Marla and Edwards, Cathryn and Florin, Tim and Franchimont, Denis and Gearry, Richard and Glas, J{\"u}rgen and Van Gossum, Andre and Guthery, Stephen L and Halfvarson, Jonas and Verspaget, Hein W and Hugot, Jean-Pierre and Karban, Amir and Laukens, Debby and Lawrance, Ian and Lemann, Marc and Levine, Arie and Libioulle, Cecile and Louis, Edouard and Mowat, Craig and Newman, William and Pan{\'e}s, Juli{\'a}n and Phillips, Anne and Proctor, Deborah D and Regueiro, Miguel and Russell, Richard and Rutgeerts, Paul and Sanderson, Jeremy and Sans, Miquel and Seibold, Frank and Steinhart, A Hillary and Stokkers, Pieter C F and T{\"o}rkvist, Leif and Kullak-Ublick, Gerd and Wilson, David and Walters, Thomas and Targan, Stephan R and Brant, Steven R and Rioux, John D and D{\textquoteright}Amato, Mauro and Weersma, Rinse K and Kugathasan, Subra and Griffiths, Anne M and Mansfield, John C and Vermeire, Severine and Duerr, Richard H and Silverberg, Mark S and Satsangi, Jack and Schreiber, Stefan and Cho, Judy H and Annese, Vito and Hakonarson, Hakon and Daly, Mark J and Parkes, Miles} } @article {1187, title = {Genomic variation associated with mortality among adults of European and African ancestry with heart failure: the cohorts for heart and aging research in genomic epidemiology consortium.}, journal = {Circ Cardiovasc Genet}, volume = {3}, year = {2010}, month = {2010 Jun}, pages = {248-55}, abstract = {

BACKGROUND: Prognosis and survival are significant concerns for individuals with heart failure (HF). To better understand the pathophysiology of HF prognosis, the association between 2,366,858 single-nucleotide polymorphisms (SNPs) and all-cause mortality was evaluated among individuals with incident HF from 4 community-based prospective cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Rotterdam Study.

METHODS AND RESULTS: Participants were 2526 individuals of European ancestry and 466 individuals of African ancestry who experienced an incident HF event during follow-up in the respective cohorts. Within each study, the association between genetic variants and time to mortality among individuals with HF was assessed by Cox proportional hazards models that included adjustment for sex and age at the time of the HF event. Prospective fixed-effect meta-analyses were conducted for the 4 study populations of European ancestry (N=1645 deaths) and for the 2 populations of African ancestry (N=281 deaths). Genome-wide significance was set at P=5.0x10(-7). Meta-analytic findings among individuals of European ancestry revealed 1 genome-wide significant locus on chromosome 3p22 in an intron of CKLF-like MARVEL transmembrane domain containing 7 (CMTM7, P=3.2x10(-7)). Eight additional loci in individuals of European ancestry and 4 loci in individuals of African ancestry were identified by high-signal SNPs (P<1.0x10(-5)) but did not meet genome-wide significance.

CONCLUSIONS: This study identified a novel locus associated with all-cause mortality among individuals of European ancestry with HF. This finding warrants additional investigation, including replication, in other studies of HF.

}, keywords = {African Americans, Aged, Aged, 80 and over, Chemokines, Cohort Studies, European Continental Ancestry Group, Female, Genome-Wide Association Study, Genotype, Heart Failure, Humans, Introns, Male, MARVEL Domain-Containing Proteins, Membrane Proteins, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.109.895995}, author = {Morrison, Alanna C and Felix, Janine F and Cupples, L Adrienne and Glazer, Nicole L and Loehr, Laura R and Dehghan, Abbas and Demissie, Serkalem and Bis, Joshua C and Rosamond, Wayne D and Aulchenko, Yurii S and Wang, Ying A and Haritunians, Talin and Folsom, Aaron R and Rivadeneira, Fernando and Benjamin, Emelia J and Lumley, Thomas and Couper, David and Stricker, Bruno H and O{\textquoteright}Donnell, Christopher J and Rice, Kenneth M and Chang, Patricia P and Hofman, Albert and Levy, Daniel and Rotter, Jerome I and Fox, Ervin R and Uitterlinden, Andr{\'e} G and Wang, Thomas J and Psaty, Bruce M and Willerson, James T and van Duijn, Cornelia M and Boerwinkle, Eric and Witteman, Jacqueline C M and Vasan, Ramachandran S and Smith, Nicholas L} } @article {1226, title = {Independent susceptibility markers for atrial fibrillation on chromosome 4q25.}, journal = {Circulation}, volume = {122}, year = {2010}, month = {2010 Sep 07}, pages = {976-84}, abstract = {

BACKGROUND: Genetic variants on chromosome 4q25 are associated with atrial fibrillation (AF). We sought to determine whether there is more than 1 susceptibility signal at this locus.

METHODS AND RESULTS: Thirty-four haplotype-tagging single-nucleotide polymorphisms (SNPs) at the 4q25 locus were genotyped in 790 case and 1177 control subjects from Massachusetts General Hospital and tested for association with AF. We replicated SNPs associated with AF after adjustment for the most significantly associated SNP in 5066 case and 30 661 referent subjects from the German Competence Network for Atrial Fibrillation, Atherosclerosis Risk In Communities Study, Cleveland Clinic Lone AF Study, Cardiovascular Health Study, and Rotterdam Study. All subjects were of European ancestry. A multimarker risk score composed of SNPs that tagged distinct AF susceptibility signals was constructed and tested for association with AF, and all results were subjected to meta-analysis. The previously reported SNP, rs2200733, was most significantly associated with AF (minor allele odds ratio 1.80, 95\% confidence interval 1.50 to 2.15, P=1.2 x 10(-20)) in the discovery sample. Adjustment for rs2200733 genotype revealed 2 additional susceptibility signals marked by rs17570669 and rs3853445. A graded risk of AF was observed with an increasing number of AF risk alleles at SNPs that tagged these 3 susceptibility signals.

CONCLUSIONS: We identified 2 novel AF susceptibility signals on chromosome 4q25. Consideration of multiple susceptibility signals at chromosome 4q25 identifies individuals with an increased risk of AF and may localize regulatory elements at the locus with biological relevance in the pathogenesis of AF.

}, keywords = {Aged, Aged, 80 and over, Atrial Fibrillation, Chromosome Mapping, Chromosomes, Human, Pair 4, European Continental Ancestry Group, Female, Genetic Markers, Genetic Predisposition to Disease, Haplotypes, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.109.886440}, author = {Lubitz, Steven A and Sinner, Moritz F and Lunetta, Kathryn L and Makino, Seiko and Pfeufer, Arne and Rahman, Rosanna and Veltman, Caroline E and Barnard, John and Bis, Joshua C and Danik, Stephan P and Sonni, Akshata and Shea, Marisa A and Del Monte, Federica and Perz, Siegfried and M{\"u}ller, Martina and Peters, Annette and Greenberg, Steven M and Furie, Karen L and van Noord, Charlotte and Boerwinkle, Eric and Stricker, Bruno H C and Witteman, Jacqueline and Smith, Jonathan D and Chung, Mina K and Heckbert, Susan R and Benjamin, Emelia J and Rosand, Jonathan and Arking, Dan E and Alonso, Alvaro and K{\"a}{\"a}b, Stefan and Ellinor, Patrick T} } @article {1169, title = {Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels.}, journal = {Hum Mol Genet}, volume = {19}, year = {2010}, month = {2010 May 01}, pages = {1863-72}, abstract = {

P-selectin and intercellular adhesion molecule-1 (ICAM-1) participate in inflammatory processes by promoting adhesion of leukocytes to vascular wall endothelium. Their soluble levels have been associated with adverse cardiovascular events. To identify loci affecting soluble levels of P-selectin (sP-selectin) and ICAM-1 (sICAM-1), we performed a genome-wide association study in a sample of 4115 (sP-selectin) and 9813 (sICAM-1) individuals of European ancestry as a part of The Cohorts for Heart and Aging Research in Genome Epidemiology consortium. The most significant SNP association for sP-selectin was within the SELP gene (rs6136, P = 4.05 x 10(-61)) and for sICAM-1 levels within the ICAM-1 gene (rs3093030, P = 3.53 x 10(-23)). Both sP-selectin and sICAM-1 were associated with ABO gene variants (rs579459, P = 1.86 x 10(-41) and rs649129, P = 1.22 x 10(-15), respectively) and in both cases the observed associations could be accounted for by the A1 allele of the ABO blood group. The absence of an association between ABO blood group and platelet-bound P-selectin levels in an independent subsample (N = 1088) from the ARIC study, suggests that the ABO blood group may influence cleavage of the P-selectin protein from the cell surface or clearance from the circulation, rather than its production and cellular presentation. These results provide new insights into adhesion molecule biology.

}, keywords = {ABO Blood-Group System, Blood Platelets, Enzyme-Linked Immunosorbent Assay, European Continental Ancestry Group, Fluorescence, Genome-Wide Association Study, Humans, Intercellular Adhesion Molecule-1, P-Selectin}, issn = {1460-2083}, doi = {10.1093/hmg/ddq061}, author = {Barbalic, Maja and Dupuis, Jos{\'e}e and Dehghan, Abbas and Bis, Joshua C and Hoogeveen, Ron C and Schnabel, Renate B and Nambi, Vijay and Bretler, Monique and Smith, Nicholas L and Peters, Annette and Lu, Chen and Tracy, Russell P and Aleksic, Nena and Heeriga, Jan and Keaney, John F and Rice, Kenneth and Lip, Gregory Y H and Vasan, Ramachandran S and Glazer, Nicole L and Larson, Martin G and Uitterlinden, Andr{\'e} G and Yamamoto, Jennifer and Durda, Peter and Haritunians, Talin and Psaty, Bruce M and Boerwinkle, Eric and Hofman, Albert and Koenig, Wolfgang and Jenny, Nancy S and Witteman, Jacqueline C and Ballantyne, Christie and Benjamin, Emelia J} } @article {1176, title = {Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium.}, journal = {Circulation}, volume = {121}, year = {2010}, month = {2010 Mar 30}, pages = {1382-92}, abstract = {

BACKGROUND: Plasma levels of coagulation factors VII (FVII), VIII (FVIII), and von Willebrand factor (vWF) influence risk of hemorrhage and thrombosis. We conducted genome-wide association studies to identify new loci associated with plasma levels.

METHODS AND RESULTS: The setting of the study included 5 community-based studies for discovery comprising 23 608 European-ancestry participants: Atherosclerosis Risk In Communities Study, Cardiovascular Health Study, British 1958 Birth Cohort, Framingham Heart Study, and Rotterdam Study. All subjects had genome-wide single-nucleotide polymorphism (SNP) scans and at least 1 phenotype measured: FVII activity/antigen, FVIII activity, and vWF antigen. Each study used its genotype data to impute to HapMap SNPs and independently conducted association analyses of hemostasis measures using an additive genetic model. Study findings were combined by meta-analysis. Replication was conducted in 7604 participants not in the discovery cohort. For FVII, 305 SNPs exceeded the genome-wide significance threshold of 5.0x10(-8) and comprised 5 loci on 5 chromosomes: 2p23 (smallest P value 6.2x10(-24)), 4q25 (3.6x10(-12)), 11q12 (2.0x10(-10)), 13q34 (9.0x10(-259)), and 20q11.2 (5.7x10(-37)). Loci were within or near genes, including 4 new candidate genes and F7 (13q34). For vWF, 400 SNPs exceeded the threshold and marked 8 loci on 6 chromosomes: 6q24 (1.2x10(-22)), 8p21 (1.3x10(-16)), 9q34 (<5.0x10(-324)), 12p13 (1.7x10(-32)), 12q23 (7.3x10(-10)), 12q24.3 (3.8x10(-11)), 14q32 (2.3x10(-10)), and 19p13.2 (1.3x10(-9)). All loci were within genes, including 6 new candidate genes, as well as ABO (9q34) and VWF (12p13). For FVIII, 5 loci were identified and overlapped vWF findings. Nine of the 10 new findings were replicated.

CONCLUSIONS: New genetic associations were discovered outside previously known biological pathways and may point to novel prevention and treatment targets of hemostasis disorders.

}, keywords = {Adult, Factor VII, Factor VIII, Female, Genome-Wide Association Study, Hemostasis, Humans, Male, Middle Aged, Phenotype, Polymorphism, Single Nucleotide, Thrombosis, von Willebrand Factor}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.109.869156}, author = {Smith, Nicholas L and Chen, Ming-Huei and Dehghan, Abbas and Strachan, David P and Basu, Saonli and Soranzo, Nicole and Hayward, Caroline and Rudan, Igor and Sabater-Lleal, Maria and Bis, Joshua C and de Maat, Moniek P M and Rumley, Ann and Kong, Xiaoxiao and Yang, Qiong and Williams, Frances M K and Vitart, Veronique and Campbell, Harry and M{\"a}larstig, Anders and Wiggins, Kerri L and van Duijn, Cornelia M and McArdle, Wendy L and Pankow, James S and Johnson, Andrew D and Silveira, Angela and McKnight, Barbara and Uitterlinden, Andr{\'e} G and Aleksic, Nena and Meigs, James B and Peters, Annette and Koenig, Wolfgang and Cushman, Mary and Kathiresan, Sekar and Rotter, Jerome I and Bovill, Edwin G and Hofman, Albert and Boerwinkle, Eric and Tofler, Geoffrey H and Peden, John F and Psaty, Bruce M and Leebeek, Frank and Folsom, Aaron R and Larson, Martin G and Spector, Timothy D and Wright, Alan F and Wilson, James F and Hamsten, Anders and Lumley, Thomas and Witteman, Jacqueline C M and Tang, Weihong and O{\textquoteright}Donnell, Christopher J} } @article {1279, title = {Association of HSP70 and its co-chaperones with Alzheimer{\textquoteright}s disease.}, journal = {J Alzheimers Dis}, volume = {25}, year = {2011}, month = {2011}, pages = {93-102}, abstract = {

The heat shock protein (HSP) 70 family has been implicated in the pathology of Alzheimer{\textquoteright}s disease (AD). In this study, we examined common genetic variations in the 80 genes encoding HSP70 and its co-chaperones. We conducted a study in a series of 462 patients and 5238 unaffected participants derived from the Rotterdam Study, a population-based study including 7983 persons aged 55 years and older. We genotyped a total of 12,053 Single Nucleotide Polymorphisms (SNPs) using the HumanHap550K Genotyping BeadChip from Illumina. Replication was performed in two independent cohort studies, the Framingham Heart study (FHS; n = 806) and Cardiovascular Health Study (CHS; n = 2150). When adjusting for multiple testing, we found a small but consistent, though not significant effect of rs12118313 located 32 kb from PFDN2, with an OR of 1.19 (p-value from meta-analysis = 0.003). However this SNP was in the intron of another gene, suggesting it is unlikely this SNP reflects the effect of PFDN2. In a formal pathway analysis we found nominally significant evidence for an association of BAG, DNAJA and prefoldin with AD. These findings corroborate with those of a study of 2032 AD patients and 5328 controls, in which several members of the prefoldin family showed evidence for association to AD. Our study did not reveal evidence for a genetic variant if the HSP70 family with a major effect on AD. However, our findings of the single SNP analysis and pathway analysis suggest that multiple genetic variants in prefoldin are associated with AD.

}, keywords = {Aged, Aged, 80 and over, Alzheimer Disease, Cohort Studies, Genetic Association Studies, Genetic Variation, HSP70 Heat-Shock Proteins, Humans, Middle Aged, Molecular Chaperones, Polymorphism, Single Nucleotide}, issn = {1875-8908}, doi = {10.3233/JAD-2011-101560}, author = {Broer, Linda and Ikram, Mohammad Arfan and Schuur, Maaike and DeStefano, Anita L and Bis, Joshua C and Liu, Fan and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Beiser, Alexa S and Longstreth, William T and Hofman, Albert and Aulchenko, Yurii and Seshadri, Sudha and Fitzpatrick, Annette L and Oostra, Ben A and Breteler, Monique M B and van Duijn, Cornelia M} } @article {1275, title = {Cerivastatin, genetic variants, and the risk of rhabdomyolysis.}, journal = {Pharmacogenet Genomics}, volume = {21}, year = {2011}, month = {2011 May}, pages = {280-8}, abstract = {

OBJECTIVE: The withdrawal of cerivastatin involved an uncommon but serious adverse reaction, rhabdomyolysis. The bimodal response, rhabdomyolysis in a small proportion of users, points to genetic factors as a potential cause. We conducted a case-control study to evaluate genetic markers for cerivastatin-associated rhabdomyolysis.

METHODS: This study had two components: a candidate gene study to evaluate variants in CYP2C8, UGT1A1, UGT1A3, and SLCO1B1; and a genome-wide association study to identify risk factors in other regions of the genome. A total of 185 rhabdomyolysis cases were frequency matched to statin-using controls from the Cardiovascular Health Study (n=374) and the Heart and Vascular Health Study (n=358). Validation relied on functional studies.

RESULTS: Permutation test results suggested an association between cerivastatin-associated rhabdomyolysis and variants in SLCO1B1 (P=0.002), but not variants in CYP2C8 (P=0.073) or UGTs (P=0.523). An additional copy of the minor allele of SLCO1B1 rs4149056 (p.Val174Ala) was associated with the risk of rhabdomyolysis (odds ratio: 1.89; 95\% confidence interval: 1.40-2.56). In transfected cells, this variant reduced cerivastatin transport by 40\% compared with the reference transporter (P<0.001). The genome-wide association study identified an intronic variant (rs2819742) in the ryanodine receptor 2 gene (RYR2) as significant (P=1.74E-07). An additional copy of the minor allele of the RYR2 variant was associated with a reduced risk of rhabdomyolysis (odds ratio: 0.48; 95\% confidence interval: 0.36-0.63).

CONCLUSION: We identified modest genetic risk factors for an extreme response to cerivastatin. Disabling genetic variants in the candidate genes were not responsible for the bimodal response to cerivastatin.

}, keywords = {Adult, Aged, Aged, 80 and over, Aryl Hydrocarbon Hydroxylases, Case-Control Studies, Cytochrome P-450 CYP2C8, Female, Genetic Variation, Genome-Wide Association Study, Glucuronosyltransferase, Humans, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Male, Middle Aged, Organic Anion Transporters, Polymorphism, Single Nucleotide, Pyridines, Rhabdomyolysis, Risk, Ryanodine Receptor Calcium Release Channel, Solute Carrier Organic Anion Transporter Family Member 1b1}, issn = {1744-6880}, doi = {10.1097/FPC.0b013e328343dd7d}, author = {Marciante, Kristin D and Durda, Jon P and Heckbert, Susan R and Lumley, Thomas and Rice, Ken and McKnight, Barbara and Totah, Rheem A and Tamraz, Bani and Kroetz, Deanna L and Fukushima, Hisayo and Kaspera, R{\"u}diger and Bis, Joshua C and Glazer, Nicole L and Li, Guo and Austin, Thomas R and Taylor, Kent D and Rotter, Jerome I and Jaquish, Cashell E and Kwok, Pui-Yan and Tracy, Russell P and Psaty, Bruce M} } @article {1311, title = {Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium.}, journal = {PLoS Genet}, volume = {7}, year = {2011}, month = {2011 Jul}, pages = {e1002193}, abstract = {

Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3 x 10$^{-}$$^{6}$$^{4}$) and lower levels of eicosapentaenoic acid (EPA, p = 5 x 10$^{-}$$^{5}$$^{8}$) and docosapentaenoic acid (DPA, p = 4 x 10$^{-}${\textonesuperior}$^{5}$$^{4}$). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2 x 10$^{-}${\textonesuperior}{\texttwosuperior}) and DPA (p = 1 x 10$^{-}$$^{4}${\textthreesuperior}) and lower docosahexaenoic acid (DHA, p = 1 x 10$^{-}${\textonesuperior}$^{5}$). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1 x 10$^{-}$$^{8}$). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries.

}, keywords = {Alleles, Continental Population Groups, Fatty Acids, Omega-3, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002193}, author = {Lemaitre, Rozenn N and Tanaka, Toshiko and Tang, Weihong and Manichaikul, Ani and Foy, Millennia and Kabagambe, Edmond K and Nettleton, Jennifer A and King, Irena B and Weng, Lu-Chen and Bhattacharya, Sayanti and Bandinelli, Stefania and Bis, Joshua C and Rich, Stephen S and Jacobs, David R and Cherubini, Antonio and McKnight, Barbara and Liang, Shuang and Gu, Xiangjun and Rice, Kenneth and Laurie, Cathy C and Lumley, Thomas and Browning, Brian L and Psaty, Bruce M and Chen, Yii-der I and Friedlander, Yechiel and Djouss{\'e}, Luc and Wu, Jason H Y and Siscovick, David S and Uitterlinden, Andr{\'e} G and Arnett, Donna K and Ferrucci, Luigi and Fornage, Myriam and Tsai, Michael Y and Mozaffarian, Dariush and Steffen, Lyn M} } @article {1284, title = {Genetic predictors of fibrin D-dimer levels in healthy adults.}, journal = {Circulation}, volume = {123}, year = {2011}, month = {2011 May 03}, pages = {1864-72}, abstract = {

BACKGROUND: Fibrin fragment D-dimer, one of several peptides produced when crosslinked fibrin is degraded by plasmin, is the most widely used clinical marker of activated blood coagulation. To identity genetic loci influencing D-dimer levels, we performed the first large-scale, genome-wide association search.

METHODS AND RESULTS: A genome-wide investigation of the genomic correlates of plasma D-dimer levels was conducted among 21 052 European-ancestry adults. Plasma levels of D-dimer were measured independently in each of 13 cohorts. Each study analyzed the association between ≈2.6 million genotyped and imputed variants across the 22 autosomal chromosomes and natural-log{\textendash}transformed D-dimer levels using linear regression in additive genetic models adjusted for age and sex. Among all variants, 74 exceeded the genome-wide significance threshold and marked 3 regions. At 1p22, rs12029080 (P=6.4{\texttimes}10(-52)) was 46.0 kb upstream from F3, coagulation factor III (tissue factor). At 1q24, rs6687813 (P=2.4{\texttimes}10(-14)) was 79.7 kb downstream of F5, coagulation factor V. At 4q32, rs13109457 (P=2.9{\texttimes}10(-18)) was located between 2 fibrinogen genes: 10.4 kb downstream from FGG and 3.0 kb upstream from FGA. Variants were associated with a 0.099-, 0.096-, and 0.061-unit difference, respectively, in natural-log{\textendash}transformed D-dimer and together accounted for 1.8\% of the total variance. When adjusted for nonsynonymous substitutions in F5 and FGA loci known to be associated with D-dimer levels, there was no evidence of an additional association at either locus.

CONCLUSIONS: Three genes were associated with fibrin D-dimer levels. Of these 3, the F3 association was the strongest, and has not been previously reported.

}, keywords = {Adult, Aged, Blood Coagulation, European Continental Ancestry Group, Factor V, Female, Fibrin Fibrinogen Degradation Products, Fibrinogen, Genetic Testing, Genome-Wide Association Study, Humans, Male, Middle Aged, Reference Values, Thromboplastin}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.110.009480}, author = {Smith, Nicholas L and Huffman, Jennifer E and Strachan, David P and Huang, Jie and Dehghan, Abbas and Trompet, Stella and Lopez, Lorna M and Shin, So-Youn and Baumert, Jens and Vitart, Veronique and Bis, Joshua C and Wild, Sarah H and Rumley, Ann and Yang, Qiong and Uitterlinden, Andr{\'e} G and Stott, David J and Davies, Gail and Carter, Angela M and Thorand, Barbara and Polasek, Ozren and McKnight, Barbara and Campbell, Harry and Rudnicka, Alicja R and Chen, Ming-Huei and Buckley, Brendan M and Harris, Sarah E and Peters, Annette and Pulanic, Drazen and Lumley, Thomas and de Craen, Anton J M and Liewald, David C and Gieger, Christian and Campbell, Susan and Ford, Ian and Gow, Alan J and Luciano, Michelle and Porteous, David J and Guo, Xiuqing and Sattar, Naveed and Tenesa, Albert and Cushman, Mary and Slagboom, P Eline and Visscher, Peter M and Spector, Tim D and Illig, Thomas and Rudan, Igor and Bovill, Edwin G and Wright, Alan F and McArdle, Wendy L and Tofler, Geoffrey and Hofman, Albert and Westendorp, Rudi G J and Starr, John M and Grant, Peter J and Karakas, Mahir and Hastie, Nicholas D and Psaty, Bruce M and Wilson, James F and Lowe, Gordon D O and O{\textquoteright}Donnell, Christopher J and Witteman, Jacqueline C M and Jukema, J Wouter and Deary, Ian J and Soranzo, Nicole and Koenig, Wolfgang and Hayward, Caroline} } @article {1325, title = {Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.}, journal = {Nature}, volume = {478}, year = {2011}, month = {2011 Sep 11}, pages = {103-9}, abstract = {

Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>=140 mm Hg systolic blood pressure or >=90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.

}, keywords = {Africa, Asia, Blood Pressure, Cardiovascular Diseases, Coronary Artery Disease, Europe, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hypertension, Kidney Diseases, Polymorphism, Single Nucleotide, Stroke}, issn = {1476-4687}, doi = {10.1038/nature10405}, author = {Ehret, Georg B and Munroe, Patricia B and Rice, Kenneth M and Bochud, Murielle and Johnson, Andrew D and Chasman, Daniel I and Smith, Albert V and Tobin, Martin D and Verwoert, Germaine C and Hwang, Shih-Jen and Pihur, Vasyl and Vollenweider, Peter and O{\textquoteright}Reilly, Paul F and Amin, Najaf and Bragg-Gresham, Jennifer L and Teumer, Alexander and Glazer, Nicole L and Launer, Lenore and Zhao, Jing Hua and Aulchenko, Yurii and Heath, Simon and S{\~o}ber, Siim and Parsa, Afshin and Luan, Jian{\textquoteright}an and Arora, Pankaj and Dehghan, Abbas and Zhang, Feng and Lucas, Gavin and Hicks, Andrew A and Jackson, Anne U and Peden, John F and Tanaka, Toshiko and Wild, Sarah H and Rudan, Igor and Igl, Wilmar and Milaneschi, Yuri and Parker, Alex N and Fava, Cristiano and Chambers, John C and Fox, Ervin R and Kumari, Meena and Go, Min Jin and van der Harst, Pim and Kao, Wen Hong Linda and Sj{\"o}gren, Marketa and Vinay, D G and Alexander, Myriam and Tabara, Yasuharu and Shaw-Hawkins, Sue and Whincup, Peter H and Liu, Yongmei and Shi, Gang and Kuusisto, Johanna and Tayo, Bamidele and Seielstad, Mark and Sim, Xueling and Nguyen, Khanh-Dung Hoang and Lehtim{\"a}ki, Terho and Matullo, Giuseppe and Wu, Ying and Gaunt, Tom R and Onland-Moret, N Charlotte and Cooper, Matthew N and Platou, Carl G P and Org, Elin and Hardy, Rebecca and Dahgam, Santosh and Palmen, Jutta and Vitart, Veronique and Braund, Peter S and Kuznetsova, Tatiana and Uiterwaal, Cuno S P M and Adeyemo, Adebowale and Palmas, Walter and Campbell, Harry and Ludwig, Barbara and Tomaszewski, Maciej and Tzoulaki, Ioanna and Palmer, Nicholette D and Aspelund, Thor and Garcia, Melissa and Chang, Yen-Pei C and O{\textquoteright}Connell, Jeffrey R and Steinle, Nanette I and Grobbee, Diederick E and Arking, Dan E and Kardia, Sharon L and Morrison, Alanna C and Hernandez, Dena and Najjar, Samer and McArdle, Wendy L and Hadley, David and Brown, Morris J and Connell, John M and Hingorani, Aroon D and Day, Ian N M and Lawlor, Debbie A and Beilby, John P and Lawrence, Robert W and Clarke, Robert and Hopewell, Jemma C and Ongen, Halit and Dreisbach, Albert W and Li, Yali and Young, J Hunter and Bis, Joshua C and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Adair, Linda S and Lee, Nanette R and Chen, Ming-Huei and Olden, Matthias and Pattaro, Cristian and Bolton, Judith A Hoffman and K{\"o}ttgen, Anna and Bergmann, Sven and Mooser, Vincent and Chaturvedi, Nish and Frayling, Timothy M and Islam, Muhammad and Jafar, Tazeen H and Erdmann, Jeanette and Kulkarni, Smita R and Bornstein, Stefan R and Gr{\"a}ssler, J{\"u}rgen and Groop, Leif and Voight, Benjamin F and Kettunen, Johannes and Howard, Philip and Taylor, Andrew and Guarrera, Simonetta and Ricceri, Fulvio and Emilsson, Valur and Plump, Andrew and Barroso, In{\^e}s and Khaw, Kay-Tee and Weder, Alan B and Hunt, Steven C and Sun, Yan V and Bergman, Richard N and Collins, Francis S and Bonnycastle, Lori L and Scott, Laura J and Stringham, Heather M and Peltonen, Leena and Perola, Markus and Vartiainen, Erkki and Brand, Stefan-Martin and Staessen, Jan A and Wang, Thomas J and Burton, Paul R and Soler Artigas, Maria and Dong, Yanbin and Snieder, Harold and Wang, Xiaoling and Zhu, Haidong and Lohman, Kurt K and Rudock, Megan E and Heckbert, Susan R and Smith, Nicholas L and Wiggins, Kerri L and Doumatey, Ayo and Shriner, Daniel and Veldre, Gudrun and Viigimaa, Margus and Kinra, Sanjay and Prabhakaran, Dorairaj and Tripathy, Vikal and Langefeld, Carl D and Rosengren, Annika and Thelle, Dag S and Corsi, Anna Maria and Singleton, Andrew and Forrester, Terrence and Hilton, Gina and McKenzie, Colin A and Salako, Tunde and Iwai, Naoharu and Kita, Yoshikuni and Ogihara, Toshio and Ohkubo, Takayoshi and Okamura, Tomonori and Ueshima, Hirotsugu and Umemura, Satoshi and Eyheramendy, Susana and Meitinger, Thomas and Wichmann, H-Erich and Cho, Yoon Shin and Kim, Hyung-Lae and Lee, Jong-Young and Scott, James and Sehmi, Joban S and Zhang, Weihua and Hedblad, Bo and Nilsson, Peter and Smith, George Davey and Wong, Andrew and Narisu, Narisu and Stan{\v c}{\'a}kov{\'a}, Alena and Raffel, Leslie J and Yao, Jie and Kathiresan, Sekar and O{\textquoteright}Donnell, Christopher J and Schwartz, Stephen M and Ikram, M Arfan and Longstreth, W T and Mosley, Thomas H and Seshadri, Sudha and Shrine, Nick R G and Wain, Louise V and Morken, Mario A and Swift, Amy J and Laitinen, Jaana and Prokopenko, Inga and Zitting, Paavo and Cooper, Jackie A and Humphries, Steve E and Danesh, John and Rasheed, Asif and Goel, Anuj and Hamsten, Anders and Watkins, Hugh and Bakker, Stephan J L and van Gilst, Wiek H and Janipalli, Charles S and Mani, K Radha and Yajnik, Chittaranjan S and Hofman, Albert and Mattace-Raso, Francesco U S and Oostra, Ben A and Demirkan, Ayse and Isaacs, Aaron and Rivadeneira, Fernando and Lakatta, Edward G and Orr{\`u}, Marco and Scuteri, Angelo and Ala-Korpela, Mika and Kangas, Antti J and Lyytik{\"a}inen, Leo-Pekka and Soininen, Pasi and Tukiainen, Taru and W{\"u}rtz, Peter and Ong, Rick Twee-Hee and D{\"o}rr, Marcus and Kroemer, Heyo K and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Galan, Pilar and Hercberg, Serge and Lathrop, Mark and Zelenika, Diana and Deloukas, Panos and Mangino, Massimo and Spector, Tim D and Zhai, Guangju and Meschia, James F and Nalls, Michael A and Sharma, Pankaj and Terzic, Janos and Kumar, M V Kranthi and Denniff, Matthew and Zukowska-Szczechowska, Ewa and Wagenknecht, Lynne E and Fowkes, F Gerald R and Charchar, Fadi J and Schwarz, Peter E H and Hayward, Caroline and Guo, Xiuqing and Rotimi, Charles and Bots, Michiel L and Brand, Eva and Samani, Nilesh J and Polasek, Ozren and Talmud, Philippa J and Nyberg, Fredrik and Kuh, Diana and Laan, Maris and Hveem, Kristian and Palmer, Lyle J and van der Schouw, Yvonne T and Casas, Juan P and Mohlke, Karen L and Vineis, Paolo and Raitakari, Olli and Ganesh, Santhi K and Wong, Tien Y and Tai, E Shyong and Cooper, Richard S and Laakso, Markku and Rao, Dabeeru C and Harris, Tamara B and Morris, Richard W and Dominiczak, Anna F and Kivimaki, Mika and Marmot, Michael G and Miki, Tetsuro and Saleheen, Danish and Chandak, Giriraj R and Coresh, Josef and Navis, Gerjan and Salomaa, Veikko and Han, Bok-Ghee and Zhu, Xiaofeng and Kooner, Jaspal S and Melander, Olle and Ridker, Paul M and Bandinelli, Stefania and Gyllensten, Ulf B and Wright, Alan F and Wilson, James F and Ferrucci, Luigi and Farrall, Martin and Tuomilehto, Jaakko and Pramstaller, Peter P and Elosua, Roberto and Soranzo, Nicole and Sijbrands, Eric J G and Altshuler, David and Loos, Ruth J F and Shuldiner, Alan R and Gieger, Christian and Meneton, Pierre and Uitterlinden, Andr{\'e} G and Wareham, Nicholas J and Gudnason, Vilmundur and Rotter, Jerome I and Rettig, Rainer and Uda, Manuela and Strachan, David P and Witteman, Jacqueline C M and Hartikainen, Anna-Liisa and Beckmann, Jacques S and Boerwinkle, Eric and Vasan, Ramachandran S and Boehnke, Michael and Larson, Martin G and Jarvelin, Marjo-Riitta and Psaty, Bruce M and Abecasis, Goncalo R and Chakravarti, Aravinda and Elliott, Paul and van Duijn, Cornelia M and Newton-Cheh, Christopher and Levy, Daniel and Caulfield, Mark J and Johnson, Toby} } @article {1287, title = {Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci.}, journal = {PLoS Genet}, volume = {7}, year = {2011}, month = {2011 Apr}, pages = {e1001374}, abstract = {

Soluble ICAM-1 (sICAM-1) is an endothelium-derived inflammatory marker that has been associated with diverse conditions such as myocardial infarction, diabetes, stroke, and malaria. Despite evidence for a heritable component to sICAM-1 levels, few genetic loci have been identified so far. To comprehensively address this issue, we performed a genome-wide association analysis of sICAM-1 concentration in 22,435 apparently healthy women from the Women{\textquoteright}s Genome Health Study. While our results confirm the previously reported associations at the ABO and ICAM1 loci, four novel associations were identified in the vicinity of NFKBIK (rs3136642, P = 5.4 {\texttimes} 10(-9)), PNPLA3 (rs738409, P  =  5.8 {\texttimes} 10(-9)), RELA (rs1049728, P =  2.7 {\texttimes} 10(-16)), and SH2B3 (rs3184504, P =  2.9 {\texttimes} 10(-17)). Two loci, NFKBIB and RELA, are involved in NFKB signaling pathway; PNPLA3 is known for its association with fatty liver disease; and SH3B2 has been associated with a multitude of traits and disease including myocardial infarction. These associations provide insights into the genetic regulation of sICAM-1 levels and implicate these loci in the regulation of endothelial function.

}, keywords = {ABO Blood-Group System, Cohort Studies, Female, Gene Frequency, Genetic Loci, Genome, Human, Genome-Wide Association Study, Genotype, Humans, I-kappa B Kinase, Intercellular Adhesion Molecule-1, Lipase, Membrane Proteins, Models, Genetic, Multifactorial Inheritance, Polymorphism, Single Nucleotide, Proteins, Transcription Factor RelA}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1001374}, author = {Par{\'e}, Guillaume and Ridker, Paul M and Rose, Lynda and Barbalic, Maja and Dupuis, Jos{\'e}e and Dehghan, Abbas and Bis, Joshua C and Benjamin, Emelia J and Shiffman, Dov and Parker, Alexander N and Chasman, Daniel I} } @article {1298, title = {Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium.}, journal = {Ann Neurol}, volume = {69}, year = {2011}, month = {2011 Jun}, pages = {928-39}, abstract = {

OBJECTIVE: White matter hyperintensities (WMHs) detectable by magnetic resonance imaging are part of the spectrum of vascular injury associated with aging of the brain and are thought to reflect ischemic damage to the small deep cerebral vessels. WMHs are associated with an increased risk of cognitive and motor dysfunction, dementia, depression, and stroke. Despite a significant heritability, few genetic loci influencing WMH burden have been identified.

METHODS: We performed a meta-analysis of genome-wide association studies (GWASs) for WMH burden in 9,361 stroke-free individuals of European descent from 7 community-based cohorts. Significant findings were tested for replication in 3,024 individuals from 2 additional cohorts.

RESULTS: We identified 6 novel risk-associated single nucleotide polymorphisms (SNPs) in 1 locus on chromosome 17q25 encompassing 6 known genes including WBP2, TRIM65, TRIM47, MRPL38, FBF1, and ACOX1. The most significant association was for rs3744028 (p(discovery) = 4.0 {\texttimes} 10(-9) ; p(replication) = 1.3 {\texttimes} 10(-7) ; p(combined) = 4.0 {\texttimes} 10(-15) ). Other SNPs in this region also reaching genome-wide significance were rs9894383 (p = 5.3 {\texttimes} 10(-9) ), rs11869977 (p = 5.7 {\texttimes} 10(-9) ), rs936393 (p = 6.8 {\texttimes} 10(-9) ), rs3744017 (p = 7.3 {\texttimes} 10(-9) ), and rs1055129 (p = 4.1 {\texttimes} 10(-8) ). Variant alleles at these loci conferred a small increase in WMH burden (4-8\% of the overall mean WMH burden in the sample).

INTERPRETATION: This large GWAS of WMH burden in community-based cohorts of individuals of European descent identifies a novel locus on chromosome 17. Further characterization of this locus may provide novel insights into the pathogenesis of cerebral WMH.

}, keywords = {Aged, Aged, 80 and over, Cerebral Cortex, Chromosomes, Human, Pair 17, Cognition Disorders, Cohort Studies, European Continental Ancestry Group, Female, Gene Frequency, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Leukoencephalopathies, Magnetic Resonance Imaging, Male, Middle Aged, Movement Disorders, Nerve Fibers, Myelinated, Polymorphism, Single Nucleotide, Residence Characteristics, RNA, Messenger}, issn = {1531-8249}, doi = {10.1002/ana.22403}, author = {Fornage, Myriam and Debette, Stephanie and Bis, Joshua C and Schmidt, Helena and Ikram, M Arfan and Dufouil, Carole and Sigurdsson, Sigurdur and Lumley, Thomas and DeStefano, Anita L and Fazekas, Franz and Vrooman, Henri A and Shibata, Dean K and Maillard, Pauline and Zijdenbos, Alex and Smith, Albert V and Gudnason, Haukur and de Boer, Renske and Cushman, Mary and Mazoyer, Bernard and Heiss, Gerardo and Vernooij, Meike W and Enzinger, Christian and Glazer, Nicole L and Beiser, Alexa and Knopman, David S and Cavalieri, Margherita and Niessen, Wiro J and Harris, Tamara B and Petrovic, Katja and Lopez, Oscar L and Au, Rhoda and Lambert, Jean-Charles and Hofman, Albert and Gottesman, Rebecca F and Garcia, Melissa and Heckbert, Susan R and Atwood, Larry D and Catellier, Diane J and Uitterlinden, Andr{\'e} G and Yang, Qiong and Smith, Nicholas L and Aspelund, Thor and Romero, Jose R and Rice, Kenneth and Taylor, Kent D and Nalls, Michael A and Rotter, Jerome I and Sharrett, Richey and van Duijn, Cornelia M and Amouyel, Philippe and Wolf, Philip A and Gudnason, Vilmundur and van der Lugt, Aad and Boerwinkle, Eric and Psaty, Bruce M and Seshadri, Sudha and Tzourio, Christophe and Breteler, Monique M B and Mosley, Thomas H and Schmidt, Reinhold and Longstreth, W T and DeCarli, Charles and Launer, Lenore J} } @article {1324, title = {Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.}, journal = {Nat Genet}, volume = {43}, year = {2011}, month = {2011 Sep 11}, pages = {1005-11}, abstract = {

Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 {\texttimes} 10(-8) to P = 2.3 {\texttimes} 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.

}, keywords = {Arteries, Blood Pressure, Case-Control Studies, Follow-Up Studies, Genetic Loci, Genome-Wide Association Study, Humans, Hypertension, Linkage Disequilibrium, Polymorphism, Single Nucleotide}, issn = {1546-1718}, doi = {10.1038/ng.922}, author = {Wain, Louise V and Verwoert, Germaine C and O{\textquoteright}Reilly, Paul F and Shi, Gang and Johnson, Toby and Johnson, Andrew D and Bochud, Murielle and Rice, Kenneth M and Henneman, Peter and Smith, Albert V and Ehret, Georg B and Amin, Najaf and Larson, Martin G and Mooser, Vincent and Hadley, David and D{\"o}rr, Marcus and Bis, Joshua C and Aspelund, Thor and Esko, T{\~o}nu and Janssens, A Cecile J W and Zhao, Jing Hua and Heath, Simon and Laan, Maris and Fu, Jingyuan and Pistis, Giorgio and Luan, Jian{\textquoteright}an and Arora, Pankaj and Lucas, Gavin and Pirastu, Nicola and Pichler, Irene and Jackson, Anne U and Webster, Rebecca J and Zhang, Feng and Peden, John F and Schmidt, Helena and Tanaka, Toshiko and Campbell, Harry and Igl, Wilmar and Milaneschi, Yuri and Hottenga, Jouke-Jan and Vitart, Veronique and Chasman, Daniel I and Trompet, Stella and Bragg-Gresham, Jennifer L and Alizadeh, Behrooz Z and Chambers, John C and Guo, Xiuqing and Lehtim{\"a}ki, Terho and Kuhnel, Brigitte and Lopez, Lorna M and Polasek, Ozren and Boban, Mladen and Nelson, Christopher P and Morrison, Alanna C and Pihur, Vasyl and Ganesh, Santhi K and Hofman, Albert and Kundu, Suman and Mattace-Raso, Francesco U S and Rivadeneira, Fernando and Sijbrands, Eric J G and Uitterlinden, Andr{\'e} G and Hwang, Shih-Jen and Vasan, Ramachandran S and Wang, Thomas J and Bergmann, Sven and Vollenweider, Peter and Waeber, G{\'e}rard and Laitinen, Jaana and Pouta, Anneli and Zitting, Paavo and McArdle, Wendy L and Kroemer, Heyo K and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Glazer, Nicole L and Taylor, Kent D and Harris, Tamara B and Alavere, Helene and Haller, Toomas and Keis, Aime and Tammesoo, Mari-Liis and Aulchenko, Yurii and Barroso, In{\^e}s and Khaw, Kay-Tee and Galan, Pilar and Hercberg, Serge and Lathrop, Mark and Eyheramendy, Susana and Org, Elin and S{\~o}ber, Siim and Lu, Xiaowen and Nolte, Ilja M and Penninx, Brenda W and Corre, Tanguy and Masciullo, Corrado and Sala, Cinzia and Groop, Leif and Voight, Benjamin F and Melander, Olle and O{\textquoteright}Donnell, Christopher J and Salomaa, Veikko and d{\textquoteright}Adamo, Adamo Pio and Fabretto, Antonella and Faletra, Flavio and Ulivi, Sheila and Del Greco, Fabiola M and Facheris, Maurizio and Collins, Francis S and Bergman, Richard N and Beilby, John P and Hung, Joseph and Musk, A William and Mangino, Massimo and Shin, So-Youn and Soranzo, Nicole and Watkins, Hugh and Goel, Anuj and Hamsten, Anders and Gider, Pierre and Loitfelder, Marisa and Zeginigg, Marion and Hernandez, Dena and Najjar, Samer S and Navarro, Pau and Wild, Sarah H and Corsi, Anna Maria and Singleton, Andrew and de Geus, Eco J C and Willemsen, Gonneke and Parker, Alex N and Rose, Lynda M and Buckley, Brendan and Stott, David and Orr{\`u}, Marco and Uda, Manuela and van der Klauw, Melanie M and Zhang, Weihua and Li, Xinzhong and Scott, James and Chen, Yii-Der Ida and Burke, Gregory L and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and D{\"o}ring, Angela and Meitinger, Thomas and Davies, Gail and Starr, John M and Emilsson, Valur and Plump, Andrew and Lindeman, Jan H and Hoen, Peter A C {\textquoteright}t and K{\"o}nig, Inke R and Felix, Janine F and Clarke, Robert and Hopewell, Jemma C and Ongen, Halit and Breteler, Monique and Debette, Stephanie and DeStefano, Anita L and Fornage, Myriam and Mitchell, Gary F and Smith, Nicholas L and Holm, Hilma and Stefansson, Kari and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Samani, Nilesh J and Preuss, Michael and Rudan, Igor and Hayward, Caroline and Deary, Ian J and Wichmann, H-Erich and Raitakari, Olli T and Palmas, Walter and Kooner, Jaspal S and Stolk, Ronald P and Jukema, J Wouter and Wright, Alan F and Boomsma, Dorret I and Bandinelli, Stefania and Gyllensten, Ulf B and Wilson, James F and Ferrucci, Luigi and Schmidt, Reinhold and Farrall, Martin and Spector, Tim D and Palmer, Lyle J and Tuomilehto, Jaakko and Pfeufer, Arne and Gasparini, Paolo and Siscovick, David and Altshuler, David and Loos, Ruth J F and Toniolo, Daniela and Snieder, Harold and Gieger, Christian and Meneton, Pierre and Wareham, Nicholas J and Oostra, Ben A and Metspalu, Andres and Launer, Lenore and Rettig, Rainer and Strachan, David P and Beckmann, Jacques S and Witteman, Jacqueline C M and Erdmann, Jeanette and van Dijk, Ko Willems and Boerwinkle, Eric and Boehnke, Michael and Ridker, Paul M and Jarvelin, Marjo-Riitta and Chakravarti, Aravinda and Abecasis, Goncalo R and Gudnason, Vilmundur and Newton-Cheh, Christopher and Levy, Daniel and Munroe, Patricia B and Psaty, Bruce M and Caulfield, Mark J and Rao, Dabeeru C and Tobin, Martin D and Elliott, Paul and van Duijn, Cornelia M} } @article {1323, title = {Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque.}, journal = {Nat Genet}, volume = {43}, year = {2011}, month = {2011 Sep 11}, pages = {940-7}, abstract = {

Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 {\texttimes} 10(-8)). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events.

}, keywords = {Adult, Aged, Aging, Atherosclerosis, Carotid Intima-Media Thickness, Cohort Studies, Coronary Artery Disease, European Continental Ancestry Group, Genetic Loci, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Genotype, Heart, Humans, Middle Aged, Phenotype, Plaque, Atherosclerotic, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1546-1718}, doi = {10.1038/ng.920}, author = {Bis, Joshua C and Kavousi, Maryam and Franceschini, Nora and Isaacs, Aaron and Abecasis, Goncalo R and Schminke, Ulf and Post, Wendy S and Smith, Albert V and Cupples, L Adrienne and Markus, Hugh S and Schmidt, Reinhold and Huffman, Jennifer E and Lehtim{\"a}ki, Terho and Baumert, Jens and M{\"u}nzel, Thomas and Heckbert, Susan R and Dehghan, Abbas and North, Kari and Oostra, Ben and Bevan, Steve and Stoegerer, Eva-Maria and Hayward, Caroline and Raitakari, Olli and Meisinger, Christa and Schillert, Arne and Sanna, Serena and V{\"o}lzke, Henry and Cheng, Yu-Ching and Thorsson, Bolli and Fox, Caroline S and Rice, Kenneth and Rivadeneira, Fernando and Nambi, Vijay and Halperin, Eran and Petrovic, Katja E and Peltonen, Leena and Wichmann, H Erich and Schnabel, Renate B and D{\"o}rr, Marcus and Parsa, Afshin and Aspelund, Thor and Demissie, Serkalem and Kathiresan, Sekar and Reilly, Muredach P and Taylor, Kent and Uitterlinden, Andre and Couper, David J and Sitzer, Matthias and K{\"a}h{\"o}nen, Mika and Illig, Thomas and Wild, Philipp S and Orr{\`u}, Marco and L{\"u}demann, Jan and Shuldiner, Alan R and Eiriksdottir, Gudny and White, Charles C and Rotter, Jerome I and Hofman, Albert and Seissler, Jochen and Zeller, Tanja and Usala, Gianluca and Ernst, Florian and Launer, Lenore J and D{\textquoteright}Agostino, Ralph B and O{\textquoteright}Leary, Daniel H and Ballantyne, Christie and Thiery, Joachim and Ziegler, Andreas and Lakatta, Edward G and Chilukoti, Ravi Kumar and Harris, Tamara B and Wolf, Philip A and Psaty, Bruce M and Polak, Joseph F and Li, Xia and Rathmann, Wolfgang and Uda, Manuela and Boerwinkle, Eric and Klopp, Norman and Schmidt, Helena and Wilson, James F and Viikari, Jorma and Koenig, Wolfgang and Blankenberg, Stefan and Newman, Anne B and Witteman, Jacqueline and Heiss, Gerardo and Duijn, Cornelia van and Scuteri, Angelo and Homuth, Georg and Mitchell, Braxton D and Gudnason, Vilmundur and O{\textquoteright}Donnell, Christopher J} } @article {1267, title = {Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels.}, journal = {Circulation}, volume = {123}, year = {2011}, month = {2011 Feb 22}, pages = {731-8}, abstract = {

BACKGROUND: C-reactive protein (CRP) is a heritable marker of chronic inflammation that is strongly associated with cardiovascular disease. We sought to identify genetic variants that are associated with CRP levels.

METHODS AND RESULTS: We performed a genome-wide association analysis of CRP in 66 185 participants from 15 population-based studies. We sought replication for the genome-wide significant and suggestive loci in a replication panel comprising 16 540 individuals from 10 independent studies. We found 18 genome-wide significant loci, and we provided evidence of replication for 8 of them. Our results confirm 7 previously known loci and introduce 11 novel loci that are implicated in pathways related to the metabolic syndrome (APOC1, HNF1A, LEPR, GCKR, HNF4A, and PTPN2) or the immune system (CRP, IL6R, NLRP3, IL1F10, and IRF1) or that reside in regions previously not known to play a role in chronic inflammation (PPP1R3B, SALL1, PABPC4, ASCL1, RORA, and BCL7B). We found a significant interaction of body mass index with LEPR (P<2.9{\texttimes}10(-6)). A weighted genetic risk score that was developed to summarize the effect of risk alleles was strongly associated with CRP levels and explained ≈5\% of the trait variance; however, there was no evidence for these genetic variants explaining the association of CRP with coronary heart disease.

CONCLUSIONS: We identified 18 loci that were associated with CRP levels. Our study highlights immune response and metabolic regulatory pathways involved in the regulation of chronic inflammation.

}, keywords = {Biomarkers, C-Reactive Protein, Cardiovascular Diseases, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Risk Factors, Vasculitis}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.110.948570}, author = {Dehghan, Abbas and Dupuis, Jos{\'e}e and Barbalic, Maja and Bis, Joshua C and Eiriksdottir, Gudny and Lu, Chen and Pellikka, Niina and Wallaschofski, Henri and Kettunen, Johannes and Henneman, Peter and Baumert, Jens and Strachan, David P and Fuchsberger, Christian and Vitart, Veronique and Wilson, James F and Par{\'e}, Guillaume and Naitza, Silvia and Rudock, Megan E and Surakka, Ida and de Geus, Eco J C and Alizadeh, Behrooz Z and Guralnik, Jack and Shuldiner, Alan and Tanaka, Toshiko and Zee, Robert Y L and Schnabel, Renate B and Nambi, Vijay and Kavousi, Maryam and Ripatti, Samuli and Nauck, Matthias and Smith, Nicholas L and Smith, Albert V and Sundvall, Jouko and Scheet, Paul and Liu, Yongmei and Ruokonen, Aimo and Rose, Lynda M and Larson, Martin G and Hoogeveen, Ron C and Freimer, Nelson B and Teumer, Alexander and Tracy, Russell P and Launer, Lenore J and Buring, Julie E and Yamamoto, Jennifer F and Folsom, Aaron R and Sijbrands, Eric J G and Pankow, James and Elliott, Paul and Keaney, John F and Sun, Wei and Sarin, Antti-Pekka and Fontes, Jo{\~a}o D and Badola, Sunita and Astor, Brad C and Hofman, Albert and Pouta, Anneli and Werdan, Karl and Greiser, Karin H and Kuss, Oliver and Meyer zu Schwabedissen, Henriette E and Thiery, Joachim and Jamshidi, Yalda and Nolte, Ilja M and Soranzo, Nicole and Spector, Timothy D and V{\"o}lzke, Henry and Parker, Alexander N and Aspelund, Thor and Bates, David and Young, Lauren and Tsui, Kim and Siscovick, David S and Guo, Xiuqing and Rotter, Jerome I and Uda, Manuela and Schlessinger, David and Rudan, Igor and Hicks, Andrew A and Penninx, Brenda W and Thorand, Barbara and Gieger, Christian and Coresh, Joe and Willemsen, Gonneke and Harris, Tamara B and Uitterlinden, Andr{\'e} G and Jarvelin, Marjo-Riitta and Rice, Kenneth and Radke, D{\"o}rte and Salomaa, Veikko and Willems van Dijk, Ko and Boerwinkle, Eric and Vasan, Ramachandran S and Ferrucci, Luigi and Gibson, Quince D and Bandinelli, Stefania and Snieder, Harold and Boomsma, Dorret I and Xiao, Xiangjun and Campbell, Harry and Hayward, Caroline and Pramstaller, Peter P and van Duijn, Cornelia M and Peltonen, Leena and Psaty, Bruce M and Gudnason, Vilmundur and Ridker, Paul M and Homuth, Georg and Koenig, Wolfgang and Ballantyne, Christie M and Witteman, Jacqueline C M and Benjamin, Emelia J and Perola, Markus and Chasman, Daniel I} } @article {1355, title = {New gene functions in megakaryopoiesis and platelet formation.}, journal = {Nature}, volume = {480}, year = {2011}, month = {2011 Nov 30}, pages = {201-8}, abstract = {

Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.

}, keywords = {Animals, Blood Platelets, Cell Size, Drosophila melanogaster, Drosophila Proteins, Europe, Gene Expression Profiling, Gene Silencing, Genome, Human, Genome-Wide Association Study, Hematopoiesis, Humans, Megakaryocytes, Platelet Count, Protein Interaction Maps, Transcription, Genetic, Zebrafish, Zebrafish Proteins}, issn = {1476-4687}, doi = {10.1038/nature10659}, author = {Gieger, Christian and Radhakrishnan, Aparna and Cvejic, Ana and Tang, Weihong and Porcu, Eleonora and Pistis, Giorgio and Serbanovic-Canic, Jovana and Elling, Ulrich and Goodall, Alison H and Labrune, Yann and Lopez, Lorna M and M{\"a}gi, Reedik and Meacham, Stuart and Okada, Yukinori and Pirastu, Nicola and Sorice, Rossella and Teumer, Alexander and Voss, Katrin and Zhang, Weihua and Ramirez-Solis, Ramiro and Bis, Joshua C and Ellinghaus, David and G{\"o}gele, Martin and Hottenga, Jouke-Jan and Langenberg, Claudia and Kovacs, Peter and O{\textquoteright}Reilly, Paul F and Shin, So-Youn and Esko, T{\~o}nu and Hartiala, Jaana and Kanoni, Stavroula and Murgia, Federico and Parsa, Afshin and Stephens, Jonathan and van der Harst, Pim and Ellen van der Schoot, C and Allayee, Hooman and Attwood, Antony and Balkau, Beverley and Bastardot, Fran{\c c}ois and Basu, Saonli and Baumeister, Sebastian E and Biino, Ginevra and Bomba, Lorenzo and Bonnefond, Am{\'e}lie and Cambien, Francois and Chambers, John C and Cucca, Francesco and D{\textquoteright}Adamo, Pio and Davies, Gail and de Boer, Rudolf A and de Geus, Eco J C and D{\"o}ring, Angela and Elliott, Paul and Erdmann, Jeanette and Evans, David M and Falchi, Mario and Feng, Wei and Folsom, Aaron R and Frazer, Ian H and Gibson, Quince D and Glazer, Nicole L and Hammond, Chris and Hartikainen, Anna-Liisa and Heckbert, Susan R and Hengstenberg, Christian and Hersch, Micha and Illig, Thomas and Loos, Ruth J F and Jolley, Jennifer and Khaw, Kay Tee and Kuhnel, Brigitte and Kyrtsonis, Marie-Christine and Lagou, Vasiliki and Lloyd-Jones, Heather and Lumley, Thomas and Mangino, Massimo and Maschio, Andrea and Mateo Leach, Irene and McKnight, Barbara and Memari, Yasin and Mitchell, Braxton D and Montgomery, Grant W and Nakamura, Yusuke and Nauck, Matthias and Navis, Gerjan and N{\"o}thlings, Ute and Nolte, Ilja M and Porteous, David J and Pouta, Anneli and Pramstaller, Peter P and Pullat, Janne and Ring, Susan M and Rotter, Jerome I and Ruggiero, Daniela and Ruokonen, Aimo and Sala, Cinzia and Samani, Nilesh J and Sambrook, Jennifer and Schlessinger, David and Schreiber, Stefan and Schunkert, Heribert and Scott, James and Smith, Nicholas L and Snieder, Harold and Starr, John M and Stumvoll, Michael and Takahashi, Atsushi and Tang, W H Wilson and Taylor, Kent and Tenesa, Albert and Lay Thein, Swee and T{\"o}njes, Anke and Uda, Manuela and Ulivi, Sheila and van Veldhuisen, Dirk J and Visscher, Peter M and V{\"o}lker, Uwe and Wichmann, H-Erich and Wiggins, Kerri L and Willemsen, Gonneke and Yang, Tsun-Po and Hua Zhao, Jing and Zitting, Paavo and Bradley, John R and Dedoussis, George V and Gasparini, Paolo and Hazen, Stanley L and Metspalu, Andres and Pirastu, Mario and Shuldiner, Alan R and Joost van Pelt, L and Zwaginga, Jaap-Jan and Boomsma, Dorret I and Deary, Ian J and Franke, Andre and Froguel, Philippe and Ganesh, Santhi K and Jarvelin, Marjo-Riitta and Martin, Nicholas G and Meisinger, Christa and Psaty, Bruce M and Spector, Timothy D and Wareham, Nicholas J and Akkerman, Jan-Willem N and Ciullo, Marina and Deloukas, Panos and Greinacher, Andreas and Jupe, Steve and Kamatani, Naoyuki and Khadake, Jyoti and Kooner, Jaspal S and Penninger, Josef and Prokopenko, Inga and Stemple, Derek and Toniolo, Daniela and Wernisch, Lorenz and Sanna, Serena and Hicks, Andrew A and Rendon, Augusto and Ferreira, Manuel A and Ouwehand, Willem H and Soranzo, Nicole} } @article {1359, title = {Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies.}, journal = {Circ Cardiovasc Genet}, volume = {5}, year = {2012}, month = {2012 Feb 01}, pages = {100-12}, abstract = {

BACKGROUND: Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based cohorts.

METHODS AND RESULTS: Continuous ABI and PAD (ABI <=0.9) phenotypes adjusted for age and sex were examined. Each study conducted genotyping and imputed data to the ≈2.5 million single nucleotide polymorphisms (SNPs) in HapMap. Linear and logistic regression models were used to test each SNP for association with ABI and PAD using additive genetic models. Study-specific data were combined using fixed effects inverse variance weighted meta-analyses. There were a total of 41 692 participants of European ancestry (≈60\% women, mean ABI 1.02 to 1.19), including 3409 participants with PAD and with genome-wide association study data available. In the discovery meta-analysis, rs10757269 on chromosome 9 near CDKN2B had the strongest association with ABI (β=-0.006, P=2.46{\texttimes}10(-8)). We sought replication of the 6 strongest SNP associations in 5 population-based studies and 3 clinical samples (n=16 717). The association for rs10757269 strengthened in the combined discovery and replication analysis (P=2.65{\texttimes}10(-9)). No other SNP associations for ABI or PAD achieved genome-wide significance. However, 2 previously reported candidate genes for PAD and 1 SNP associated with coronary artery disease were associated with ABI: DAB21P (rs13290547, P=3.6{\texttimes}10(-5)), CYBA (rs3794624, P=6.3{\texttimes}10(-5)), and rs1122608 (LDLR, P=0.0026).

CONCLUSIONS: Genome-wide association studies in more than 40 000 individuals identified 1 genome wide significant association on chromosome 9p21 with ABI. Two candidate genes for PAD and 1 SNP for coronary artery disease are associated with ABI.

}, keywords = {Adult, Age Factors, Aged, Aged, 80 and over, Alleles, Ankle Brachial Index, Chromosomes, Human, Pair 9, Cohort Studies, Cyclin-Dependent Kinase Inhibitor p15, Female, Genome-Wide Association Study, Genotype, HapMap Project, Humans, Logistic Models, Male, Middle Aged, Peripheral Vascular Diseases, Phenotype, Polymorphism, Single Nucleotide, Risk Factors, Sex Factors}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.111.961292}, author = {Murabito, Joanne M and White, Charles C and Kavousi, Maryam and Sun, Yan V and Feitosa, Mary F and Nambi, Vijay and Lamina, Claudia and Schillert, Arne and Coassin, Stefan and Bis, Joshua C and Broer, Linda and Crawford, Dana C and Franceschini, Nora and Frikke-Schmidt, Ruth and Haun, Margot and Holewijn, Suzanne and Huffman, Jennifer E and Hwang, Shih-Jen and Kiechl, Stefan and Kollerits, Barbara and Montasser, May E and Nolte, Ilja M and Rudock, Megan E and Senft, Andrea and Teumer, Alexander and van der Harst, Pim and Vitart, Veronique and Waite, Lindsay L and Wood, Andrew R and Wassel, Christina L and Absher, Devin M and Allison, Matthew A and Amin, Najaf and Arnold, Alice and Asselbergs, Folkert W and Aulchenko, Yurii and Bandinelli, Stefania and Barbalic, Maja and Boban, Mladen and Brown-Gentry, Kristin and Couper, David J and Criqui, Michael H and Dehghan, Abbas and den Heijer, Martin and Dieplinger, Benjamin and Ding, Jingzhong and D{\"o}rr, Marcus and Espinola-Klein, Christine and Felix, Stephan B and Ferrucci, Luigi and Folsom, Aaron R and Fraedrich, Gustav and Gibson, Quince and Goodloe, Robert and Gunjaca, Grgo and Haltmayer, Meinhard and Heiss, Gerardo and Hofman, Albert and Kieback, Arne and Kiemeney, Lambertus A and Kolcic, Ivana and Kullo, Iftikhar J and Kritchevsky, Stephen B and Lackner, Karl J and Li, Xiaohui and Lieb, Wolfgang and Lohman, Kurt and Meisinger, Christa and Melzer, David and Mohler, Emile R and Mudnic, Ivana and Mueller, Thomas and Navis, Gerjan and Oberhollenzer, Friedrich and Olin, Jeffrey W and O{\textquoteright}Connell, Jeff and O{\textquoteright}Donnell, Christopher J and Palmas, Walter and Penninx, Brenda W and Petersmann, Astrid and Polasek, Ozren and Psaty, Bruce M and Rantner, Barbara and Rice, Ken and Rivadeneira, Fernando and Rotter, Jerome I and Seldenrijk, Adrie and Stadler, Marietta and Summerer, Monika and Tanaka, Toshiko and Tybjaerg-Hansen, Anne and Uitterlinden, Andr{\'e} G and van Gilst, Wiek H and Vermeulen, Sita H and Wild, Sarah H and Wild, Philipp S and Willeit, Johann and Zeller, Tanja and Zemunik, Tatijana and Zgaga, Lina and Assimes, Themistocles L and Blankenberg, Stefan and Boerwinkle, Eric and Campbell, Harry and Cooke, John P and de Graaf, Jacqueline and Herrington, David and Kardia, Sharon L R and Mitchell, Braxton D and Murray, Anna and M{\"u}nzel, Thomas and Newman, Anne B and Oostra, Ben A and Rudan, Igor and Shuldiner, Alan R and Snieder, Harold and van Duijn, Cornelia M and V{\"o}lker, Uwe and Wright, Alan F and Wichmann, H-Erich and Wilson, James F and Witteman, Jacqueline C M and Liu, Yongmei and Hayward, Caroline and Borecki, Ingrid B and Ziegler, Andreas and North, Kari E and Cupples, L Adrienne and Kronenberg, Florian} } @article {6135, title = {Common folate gene variant, MTHFR C677T, is associated with brain structure in two independent cohorts of people with mild cognitive impairment.}, journal = {Neuroimage Clin}, volume = {1}, year = {2012}, month = {2012}, pages = {179-87}, abstract = {

A commonly carried C677T polymorphism in a folate-related gene, MTHFR, is associated with higher plasma homocysteine, a well-known mediator of neuronal damage and brain atrophy. As homocysteine promotes brain atrophy, we set out to discover whether people carrying the C677T MTHFR polymorphism which increases homocysteine, might also show systematic differences in brain structure. Using tensor-based morphometry, we tested this association in 359 elderly Caucasian subjects with mild cognitive impairment (MCI) (mean age: 75~{\textpm}~7.1~years) scanned with brain MRI and genotyped as part of Alzheimer{\textquoteright}s Disease Neuroimaging Initiative. We carried out a replication study in an independent, non-overlapping sample of 51 elderly Caucasian subjects with MCI (mean age: 76~{\textpm}~5.5~years), scanned with brain MRI and genotyped for MTHFR, as part of the Cardiovascular Health Study. At each voxel in the brain, we tested to see where regional volume differences were associated with carrying one or more MTHFR {\textquoteright}T{\textquoteright} alleles. In ADNI subjects, carriers of the MTHFR risk allele had detectable brain volume deficits, in the white matter, of up to 2-8\% per risk T allele locally at baseline and showed accelerated brain atrophy of 0.5-1.5\% per T allele at 1~year follow-up, after adjusting for age and sex. We replicated these brain volume deficits of up to 5-12\% per MTHFR T allele in the independent cohort of CHS subjects. As expected, the associations weakened after controlling for homocysteine levels, which the risk gene affects. The MTHFR risk variant may thus promote brain atrophy by elevating homocysteine levels. This study aims to investigate the spatially detailed effects of this MTHFR polymorphism on brain structure in 3D, pointing to a causal pathway that may promote homocysteine-mediated brain atrophy in elderly people with MCI.

}, issn = {2213-1582}, doi = {10.1016/j.nicl.2012.09.012}, author = {Rajagopalan, Priya and Jahanshad, Neda and Stein, Jason L and Hua, Xue and Madsen, Sarah K and Kohannim, Omid and Hibar, Derrek P and Toga, Arthur W and Jack, Clifford R and Saykin, Andrew J and Green, Robert C and Weiner, Michael W and Bis, Joshua C and Kuller, Lewis H and Riverol, Mario and Becker, James T and Lopez, Oscar L and Thompson, Paul M} } @article {1405, title = {Effect of Alzheimer{\textquoteright}s disease risk genes on trajectories of cognitive function in the Cardiovascular Health Study.}, journal = {Am J Psychiatry}, volume = {169}, year = {2012}, month = {2012 Sep}, pages = {954-62}, abstract = {

OBJECTIVE: The trajectory of cognitive decline in patients with late-onset Alzheimer{\textquoteright}s disease varies widely. Genetic variations in CLU, PICALM, and CR1 are associated with Alzheimer{\textquoteright}s disease, but it is unknown whether they exert their effects by altering cognitive trajectory in elderly individuals at risk for the disease.

METHOD: The authors developed a Bayesian model to fit cognitive trajectories in a cohort of elderly subjects and test for genetic effects. They first validated the model{\textquoteright}s ability to detect the previously established effects of APOE ε4 alleles on age at cognitive decline and of psychosis on the rate of cognitive decline in 802 subjects from the Cardiovascular Health Cognition Study who did not have dementia at study entry and developed incident dementia during follow-up. The authors then evaluated the effects of CLU, PICALM, and CR1 on age and rate of decline in 1,831 subjects who did not have dementia at study entry and then did or did not develop incident dementia by study{\textquoteright}s end.

RESULTS: The model generated robust fits to the observed cognitive trajectory data, and validation analysis supported the model{\textquoteright}s utility. CLU and CR1 were associated with more rapid cognitive decline. PICALM was associated with an earlier age at midpoint of cognitive decline. Associations remained after accounting for the effects of APOE and demographic factors.

CONCLUSIONS: Evaluation of cognitive trajectories provides a powerful approach to dissecting genetic effects on the processes leading to cognitive deterioration and Alzheimer{\textquoteright}s disease.

}, keywords = {Age of Onset, Aged, Alleles, Alzheimer Disease, Apolipoprotein E4, Bayes Theorem, Clusterin, Cohort Studies, Dementia, Disease Progression, Female, Genetic Predisposition to Disease, Humans, Male, Models, Psychological, Monomeric Clathrin Assembly Proteins, Polymorphism, Single Nucleotide, Receptors, Complement 3b, Risk Factors}, issn = {1535-7228}, doi = {10.1176/appi.ajp.2012.11121815}, author = {Sweet, Robert A and Seltman, Howard and Emanuel, James E and Lopez, Oscar L and Becker, James T and Bis, Joshua C and Weamer, Elise A and Demichele-Sweet, Mary Ann A and Kuller, Lewis H} } @article {1341, title = {Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease: meta-analysis of genome-wide association studies from five community-based studies.}, journal = {Eur Heart J}, volume = {33}, year = {2012}, month = {2012 Jan}, pages = {238-51}, abstract = {

AIMS: Lipoprotein-associated phospholipase A2 (Lp-PLA2) generates proinflammatory and proatherogenic compounds in the arterial vascular wall and is a potential therapeutic target in coronary heart disease (CHD). We searched for genetic loci related to Lp-PLA2 mass or activity by a genome-wide association study as part of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.

METHODS AND RESULTS: In meta-analyses of findings from five population-based studies, comprising 13 664 subjects, variants at two loci (PLA2G7, CETP) were associated with Lp-PLA2 mass. The strongest signal was at rs1805017 in PLA2G7 [P = 2.4 {\texttimes} 10(-23), log Lp-PLA2 difference per allele (beta): 0.043]. Variants at six loci were associated with Lp-PLA2 activity (PLA2G7, APOC1, CELSR2, LDL, ZNF259, SCARB1), among which the strongest signals were at rs4420638, near the APOE-APOC1-APOC4-APOC2 cluster [P = 4.9 {\texttimes} 10(-30); log Lp-PLA2 difference per allele (beta): -0.054]. There were no significant gene-environment interactions between these eight polymorphisms associated with Lp-PLA2 mass or activity and age, sex, body mass index, or smoking status. Four of the polymorphisms (in APOC1, CELSR2, SCARB1, ZNF259), but not PLA2G7, were significantly associated with CHD in a second study.

CONCLUSION: Levels of Lp-PLA2 mass and activity were associated with PLA2G7, the gene coding for this protein. Lipoprotein-associated phospholipase A2 activity was also strongly associated with genetic variants related to low-density lipoprotein cholesterol levels.

}, keywords = {1-Alkyl-2-acetylglycerophosphocholine Esterase, Aged, Coronary Artery Disease, Coronary Disease, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Middle Aged, Phospholipases A2, Polymorphism, Single Nucleotide}, issn = {1522-9645}, doi = {10.1093/eurheartj/ehr372}, author = {Grallert, Harald and Dupuis, Jos{\'e}e and Bis, Joshua C and Dehghan, Abbas and Barbalic, Maja and Baumert, Jens and Lu, Chen and Smith, Nicholas L and Uitterlinden, Andr{\'e} G and Roberts, Robert and Khuseyinova, Natalie and Schnabel, Renate B and Rice, Kenneth M and Rivadeneira, Fernando and Hoogeveen, Ron C and Fontes, Jo{\~a}o Daniel and Meisinger, Christa and Keaney, John F and Lemaitre, Rozenn and Aulchenko, Yurii S and Vasan, Ramachandran S and Ellis, Stephen and Hazen, Stanley L and van Duijn, Cornelia M and Nelson, Jeanenne J and M{\"a}rz, Winfried and Schunkert, Heribert and McPherson, Ruth M and Stirnadel-Farrant, Heide A and Psaty, Bruce M and Gieger, Christian and Siscovick, David and Hofman, Albert and Illig, Thomas and Cushman, Mary and Yamamoto, Jennifer F and Rotter, Jerome I and Larson, Martin G and Stewart, Alexandre F R and Boerwinkle, Eric and Witteman, Jacqueline C M and Tracy, Russell P and Koenig, Wolfgang and Benjamin, Emelia J and Ballantyne, Christie M} } @article {5863, title = {Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies.}, journal = {Lancet Neurol}, volume = {11}, year = {2012}, month = {2012 Nov}, pages = {951-62}, abstract = {

BACKGROUND: Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes.

METHODS: We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls.

FINDINGS: We verified previous associations for cardioembolic stroke near PITX2 (p=2{\textperiodcentered}8{\texttimes}10(-16)) and ZFHX3 (p=2{\textperiodcentered}28{\texttimes}10(-8)), and for large-vessel stroke at a 9p21 locus (p=3{\textperiodcentered}32{\texttimes}10(-5)) and HDAC9 (p=2{\textperiodcentered}03{\texttimes}10(-12)). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5{\texttimes}10(-6). However, we were unable to replicate any of these novel associations in the replication cohort.

INTERPRETATION: Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes.

FUNDING: Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS).

}, keywords = {Brain Ischemia, Databases, Genetic, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Risk Factors, Stroke}, issn = {1474-4465}, doi = {10.1016/S1474-4422(12)70234-X}, author = {Traylor, Matthew and Farrall, Martin and Holliday, Elizabeth G and Sudlow, Cathie and Hopewell, Jemma C and Cheng, Yu-Ching and Fornage, Myriam and Ikram, M Arfan and Malik, Rainer and Bevan, Steve and Thorsteinsdottir, Unnur and Nalls, Mike A and Longstreth, Wt and Wiggins, Kerri L and Yadav, Sunaina and Parati, Eugenio A and DeStefano, Anita L and Worrall, Bradford B and Kittner, Steven J and Khan, Muhammad Saleem and Reiner, Alex P and Helgadottir, Anna and Achterberg, Sefanja and Fernandez-Cadenas, Israel and Abboud, Sherine and Schmidt, Reinhold and Walters, Matthew and Chen, Wei-Min and Ringelstein, E Bernd and O{\textquoteright}Donnell, Martin and Ho, Weang Kee and Pera, Joanna and Lemmens, Robin and Norrving, Bo and Higgins, Peter and Benn, Marianne and Sale, Michele and Kuhlenb{\"a}umer, Gregor and Doney, Alexander S F and Vicente, Astrid M and Delavaran, Hossein and Algra, Ale and Davies, Gail and Oliveira, Sofia A and Palmer, Colin N A and Deary, Ian and Schmidt, Helena and Pandolfo, Massimo and Montaner, Joan and Carty, Cara and de Bakker, Paul I W and Kostulas, Konstantinos and Ferro, Jose M and van Zuydam, Natalie R and Valdimarsson, Einar and Nordestgaard, B{\o}rge G and Lindgren, Arne and Thijs, Vincent and Slowik, Agnieszka and Saleheen, Danish and Par{\'e}, Guillaume and Berger, Klaus and Thorleifsson, Gudmar and Hofman, Albert and Mosley, Thomas H and Mitchell, Braxton D and Furie, Karen and Clarke, Robert and Levi, Christopher and Seshadri, Sudha and Gschwendtner, Andreas and Boncoraglio, Giorgio B and Sharma, Pankaj and Bis, Joshua C and Gretarsdottir, Solveig and Psaty, Bruce M and Rothwell, Peter M and Rosand, Jonathan and Meschia, James F and Stefansson, Kari and Dichgans, Martin and Markus, Hugh S} } @article {6089, title = {Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation.}, journal = {Blood}, volume = {120}, year = {2012}, month = {2012 Dec 06}, pages = {4873-81}, abstract = {

We conducted a genome-wide association study to identify novel associations between genetic variants and circulating plasminogen activator inhibitor-1 (PAI-1) concentration, and examined functional implications of variants and genes that were discovered. A discovery meta-analysis was performed in 19 599 subjects, followed by replication analysis of genome-wide significant (P < 5 {\texttimes} 10(-8)) single nucleotide polymorphisms (SNPs) in 10 796 independent samples. We further examined associations with type 2 diabetes and coronary artery disease, assessed the functional significance of the SNPs for gene expression in human tissues, and conducted RNA-silencing experiments for one novel association. We confirmed the association of the 4G/5G proxy SNP rs2227631 in the promoter region of SERPINE1 (7q22.1) and discovered genome-wide significant associations at 3 additional loci: chromosome 7q22.1 close to SERPINE1 (rs6976053, discovery P = 3.4 {\texttimes} 10(-10)); chromosome 11p15.2 within ARNTL (rs6486122, discovery P = 3.0 {\texttimes} 10(-8)); and chromosome 3p25.2 within PPARG (rs11128603, discovery P = 2.9 {\texttimes} 10(-8)). Replication was achieved for the 7q22.1 and 11p15.2 loci. There was nominal association with type 2 diabetes and coronary artery disease at ARNTL (P < .05). Functional studies identified MUC3 as a candidate gene for the second association signal on 7q22.1. In summary, SNPs in SERPINE1 and ARNTL and an SNP associated with the expression of MUC3 were robustly associated with circulating levels of PAI-1.

}, keywords = {Adaptor Proteins, Signal Transducing, ARNTL Transcription Factors, ATPases Associated with Diverse Cellular Activities, Cell Line, Cell Line, Tumor, Cohort Studies, Coronary Artery Disease, Diabetes Mellitus, Type 2, Gene Expression Profiling, Gene Expression Regulation, Gene Frequency, Genome-Wide Association Study, Genotype, Humans, LIM Domain Proteins, Meta-Analysis as Topic, Monocytes, Mucin-3, Plasminogen Activator Inhibitor 1, Polymorphism, Single Nucleotide, PPAR gamma, Proteasome Endopeptidase Complex, RNA Interference, Transcription Factors}, issn = {1528-0020}, doi = {10.1182/blood-2012-06-436188}, author = {Huang, Jie and Sabater-Lleal, Maria and Asselbergs, Folkert W and Tregouet, David and Shin, So-Youn and Ding, Jingzhong and Baumert, Jens and Oudot-Mellakh, Tiphaine and Folkersen, Lasse and Johnson, Andrew D and Smith, Nicholas L and Williams, Scott M and Ikram, Mohammad A and Kleber, Marcus E and Becker, Diane M and Truong, Vinh and Mychaleckyj, Josyf C and Tang, Weihong and Yang, Qiong and Sennblad, Bengt and Moore, Jason H and Williams, Frances M K and Dehghan, Abbas and Silbernagel, G{\"u}nther and Schrijvers, Elisabeth M C and Smith, Shelly and Karakas, Mahir and Tofler, Geoffrey H and Silveira, Angela and Navis, Gerjan J and Lohman, Kurt and Chen, Ming-Huei and Peters, Annette and Goel, Anuj and Hopewell, Jemma C and Chambers, John C and Saleheen, Danish and Lundmark, Per and Psaty, Bruce M and Strawbridge, Rona J and Boehm, Bernhard O and Carter, Angela M and Meisinger, Christa and Peden, John F and Bis, Joshua C and McKnight, Barbara and Ohrvik, John and Taylor, Kent and Franzosi, Maria Grazia and Seedorf, Udo and Collins, Rory and Franco-Cereceda, Anders and Syv{\"a}nen, Ann-Christine and Goodall, Alison H and Yanek, Lisa R and Cushman, Mary and M{\"u}ller-Nurasyid, Martina and Folsom, Aaron R and Basu, Saonli and Matijevic, Nena and van Gilst, Wiek H and Kooner, Jaspal S and Hofman, Albert and Danesh, John and Clarke, Robert and Meigs, James B and Kathiresan, Sekar and Reilly, Muredach P and Klopp, Norman and Harris, Tamara B and Winkelmann, Bernhard R and Grant, Peter J and Hillege, Hans L and Watkins, Hugh and Spector, Timothy D and Becker, Lewis C and Tracy, Russell P and M{\"a}rz, Winfried and Uitterlinden, Andr{\'e} G and Eriksson, Per and Cambien, Francois and Morange, Pierre-Emmanuel and Koenig, Wolfgang and Soranzo, Nicole and van der Harst, Pim and Liu, Yongmei and O{\textquoteright}Donnell, Christopher J and Hamsten, Anders} } @article {6090, title = {Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans.}, journal = {Hum Mol Genet}, volume = {21}, year = {2012}, month = {2012 Dec 15}, pages = {5385-94}, abstract = {

Leukocyte telomere length (LTL) is associated with a number of common age-related diseases and is a heritable trait. Previous genome-wide association studies (GWASs) identified two loci on chromosomes 3q26.2 (TERC) and 10q24.33 (OBFC1) that are associated with the inter-individual LTL variation. We performed a meta-analysis of 9190 individuals from six independent GWAS and validated our findings in 2226 individuals from four additional studies. We confirmed previously reported associations with OBFC1 (rs9419958 P = 9.1 {\texttimes} 10(-11)) and with the telomerase RNA component TERC (rs1317082, P = 1.1 {\texttimes} 10(-8)). We also identified two novel genomic regions associated with LTL variation that map near a conserved telomere maintenance complex component 1 (CTC1; rs3027234, P = 3.6 {\texttimes} 10(-8)) on chromosome17p13.1 and zinc finger protein 676 (ZNF676; rs412658, P = 3.3 {\texttimes} 10(-8)) on 19p12. The minor allele of rs3027234 was associated with both shorter LTL and lower expression of CTC1. Our findings are consistent with the recent observations that point mutations in CTC1 cause short telomeres in both Arabidopsis and humans affected by a rare Mendelian syndrome. Overall, our results provide novel insights into the genetic architecture of inter-individual LTL variation in the general population.

}, keywords = {Genome-Wide Association Study, Humans, Kruppel-Like Transcription Factors, Telomere, Telomere Homeostasis, Telomere-Binding Proteins}, issn = {1460-2083}, doi = {10.1093/hmg/dds382}, author = {Mangino, Massimo and Hwang, Shih-Jen and Spector, Timothy D and Hunt, Steven C and Kimura, Masayuki and Fitzpatrick, Annette L and Christiansen, Lene and Petersen, Inge and Elbers, Clara C and Harris, Tamara and Chen, Wei and Srinivasan, Sathanur R and Kark, Jeremy D and Benetos, Athanase and El Shamieh, Said and Visvikis-Siest, Sophie and Christensen, Kaare and Berenson, Gerald S and Valdes, Ana M and Vi{\~n}uela, Ana and Garcia, Melissa and Arnett, Donna K and Broeckel, Ulrich and Province, Michael A and Pankow, James S and Kammerer, Candace and Liu, Yongmei and Nalls, Michael and Tishkoff, Sarah and Thomas, Fridtjof and Ziv, Elad and Psaty, Bruce M and Bis, Joshua C and Rotter, Jerome I and Taylor, Kent D and Smith, Erin and Schork, Nicholas J and Levy, Daniel and Aviv, Abraham} } @article {6179, title = {Impact of ancestry and common genetic variants on QT interval in African Americans.}, journal = {Circ Cardiovasc Genet}, volume = {5}, year = {2012}, month = {2012 Dec}, pages = {647-55}, abstract = {

BACKGROUND: Ethnic differences in cardiac arrhythmia incidence have been reported, with a particularly high incidence of sudden cardiac death and low incidence of atrial fibrillation in individuals of African ancestry. We tested the hypotheses that African ancestry and common genetic variants are associated with prolonged duration of cardiac repolarization, a central pathophysiological determinant of arrhythmia, as measured by the electrocardiographic QT interval.

METHODS AND RESULTS: First, individual estimates of African and European ancestry were inferred from genome-wide single-nucleotide polymorphism (SNP) data in 7 population-based cohorts of African Americans (n=12,097) and regressed on measured QT interval from ECGs. Second, imputation was performed for 2.8 million SNPs, and a genome-wide association study of QT interval was performed in 10 cohorts (n=13,105). There was no evidence of association between genetic ancestry and QT interval (P=0.94). Genome-wide significant associations (P<2.5 {\texttimes} 10(-8)) were identified with SNPs at 2 loci, upstream of the genes NOS1AP (rs12143842, P=2 {\texttimes} 10(-15)) and ATP1B1 (rs1320976, P=2 {\texttimes} 10(-10)). The most significant SNP in NOS1AP was the same as the strongest SNP previously associated with QT interval in individuals of European ancestry. Low probability values (P<10(-5)) were observed for SNPs at several other loci previously identified in genome-wide association studies in individuals of European ancestry, including KCNQ1, KCNH2, LITAF, and PLN.

CONCLUSIONS: We observed no difference in duration of cardiac repolarization with global genetic indices of African American ancestry. In addition, our genome-wide association study extends the association of polymorphisms at several loci associated with repolarization in individuals of European ancestry to include individuals of African ancestry.

}, keywords = {Adult, African Americans, Aged, Electrocardiography, European Continental Ancestry Group, Female, Genealogy and Heraldry, Genetic Variation, Genome, Human, Genome-Wide Association Study, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.112.962787}, author = {Smith, J Gustav and Avery, Christy L and Evans, Daniel S and Nalls, Michael A and Meng, Yan A and Smith, Erin N and Palmer, Cameron and Tanaka, Toshiko and Mehra, Reena and Butler, Anne M and Young, Taylor and Buxbaum, Sarah G and Kerr, Kathleen F and Berenson, Gerald S and Schnabel, Renate B and Li, Guo and Ellinor, Patrick T and Magnani, Jared W and Chen, Wei and Bis, Joshua C and Curb, J David and Hsueh, Wen-Chi and Rotter, Jerome I and Liu, Yongmei and Newman, Anne B and Limacher, Marian C and North, Kari E and Reiner, Alexander P and Quibrera, P Miguel and Schork, Nicholas J and Singleton, Andrew B and Psaty, Bruce M and Soliman, Elsayed Z and Solomon, Allen J and Srinivasan, Sathanur R and Alonso, Alvaro and Wallace, Robert and Redline, Susan and Zhang, Zhu-Ming and Post, Wendy S and Zonderman, Alan B and Taylor, Herman A and Murray, Sarah S and Ferrucci, Luigi and Arking, Dan E and Evans, Michele K and Fox, Ervin R and Sotoodehnia, Nona and Heckbert, Susan R and Whitsel, Eric A and Newton-Cheh, Christopher} } @article {1383, title = {Meta-analysis identifies six new susceptibility loci for atrial fibrillation.}, journal = {Nat Genet}, volume = {44}, year = {2012}, month = {2012 Apr 29}, pages = {670-5}, abstract = {

Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death. We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 10,030 subjects without atrial fibrillation (P < 5 {\texttimes} 10(-8)). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules.

}, keywords = {Adolescent, Adult, Aged, Aged, 80 and over, Asian Continental Ancestry Group, Atrial Fibrillation, Child, Child, Preschool, European Continental Ancestry Group, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Infant, Infant, Newborn, Male, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors, Young Adult}, issn = {1546-1718}, doi = {10.1038/ng.2261}, author = {Ellinor, Patrick T and Lunetta, Kathryn L and Albert, Christine M and Glazer, Nicole L and Ritchie, Marylyn D and Smith, Albert V and Arking, Dan E and M{\"u}ller-Nurasyid, Martina and Krijthe, Bouwe P and Lubitz, Steven A and Bis, Joshua C and Chung, Mina K and D{\"o}rr, Marcus and Ozaki, Kouichi and Roberts, Jason D and Smith, J Gustav and Pfeufer, Arne and Sinner, Moritz F and Lohman, Kurt and Ding, Jingzhong and Smith, Nicholas L and Smith, Jonathan D and Rienstra, Michiel and Rice, Kenneth M and Van Wagoner, David R and Magnani, Jared W and Wakili, Reza and Clauss, Sebastian and Rotter, Jerome I and Steinbeck, Gerhard and Launer, Lenore J and Davies, Robert W and Borkovich, Matthew and Harris, Tamara B and Lin, Honghuang and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Milan, David J and Hofman, Albert and Boerwinkle, Eric and Chen, Lin Y and Soliman, Elsayed Z and Voight, Benjamin F and Li, Guo and Chakravarti, Aravinda and Kubo, Michiaki and Tedrow, Usha B and Rose, Lynda M and Ridker, Paul M and Conen, David and Tsunoda, Tatsuhiko and Furukawa, Tetsushi and Sotoodehnia, Nona and Xu, Siyan and Kamatani, Naoyuki and Levy, Daniel and Nakamura, Yusuke and Parvez, Babar and Mahida, Saagar and Furie, Karen L and Rosand, Jonathan and Muhammad, Raafia and Psaty, Bruce M and Meitinger, Thomas and Perz, Siegfried and Wichmann, H-Erich and Witteman, Jacqueline C M and Kao, W H Linda and Kathiresan, Sekar and Roden, Dan M and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and McKnight, Barbara and Sj{\"o}gren, Marketa and Newman, Anne B and Liu, Yongmei and Gollob, Michael H and Melander, Olle and Tanaka, Toshihiro and Stricker, Bruno H Ch and Felix, Stephan B and Alonso, Alvaro and Darbar, Dawood and Barnard, John and Chasman, Daniel I and Heckbert, Susan R and Benjamin, Emelia J and Gudnason, Vilmundur and K{\"a}{\"a}b, Stefan} } @article {1378, title = {Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1002607}, abstract = {

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5{\texttimes}10(-8)-1.2{\texttimes}10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3{\texttimes}10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3{\texttimes}10(-3), n = 22,044), increased triglycerides (p = 2.6{\texttimes}10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8{\texttimes}10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4{\texttimes}10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5{\texttimes}10(-13), n = 96,748) and decreased BMI (p = 1.4{\texttimes}10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

}, keywords = {Adiponectin, African Americans, Asian Continental Ancestry Group, Cholesterol, HDL, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Female, Gene Expression, Genetic Predisposition to Disease, Genome-Wide Association Study, Glucose Tolerance Test, Humans, Insulin Resistance, Male, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide, Waist-Hip Ratio}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002607}, author = {Dastani, Zari and Hivert, Marie-France and Timpson, Nicholas and Perry, John R B and Yuan, Xin and Scott, Robert A and Henneman, Peter and Heid, Iris M and Kizer, Jorge R and Lyytik{\"a}inen, Leo-Pekka and Fuchsberger, Christian and Tanaka, Toshiko and Morris, Andrew P and Small, Kerrin and Isaacs, Aaron and Beekman, Marian and Coassin, Stefan and Lohman, Kurt and Qi, Lu and Kanoni, Stavroula and Pankow, James S and Uh, Hae-Won and Wu, Ying and Bidulescu, Aurelian and Rasmussen-Torvik, Laura J and Greenwood, Celia M T and Ladouceur, Martin and Grimsby, Jonna and Manning, Alisa K and Liu, Ching-Ti and Kooner, Jaspal and Mooser, Vincent E and Vollenweider, Peter and Kapur, Karen A and Chambers, John and Wareham, Nicholas J and Langenberg, Claudia and Frants, Rune and Willems-Vandijk, Ko and Oostra, Ben A and Willems, Sara M and Lamina, Claudia and Winkler, Thomas W and Psaty, Bruce M and Tracy, Russell P and Brody, Jennifer and Chen, Ida and Viikari, Jorma and K{\"a}h{\"o}nen, Mika and Pramstaller, Peter P and Evans, David M and St Pourcain, Beate and Sattar, Naveed and Wood, Andrew R and Bandinelli, Stefania and Carlson, Olga D and Egan, Josephine M and B{\"o}hringer, Stefan and van Heemst, Diana and Kedenko, Lyudmyla and Kristiansson, Kati and Nuotio, Marja-Liisa and Loo, Britt-Marie and Harris, Tamara and Garcia, Melissa and Kanaya, Alka and Haun, Margot and Klopp, Norman and Wichmann, H-Erich and Deloukas, Panos and Katsareli, Efi and Couper, David J and Duncan, Bruce B and Kloppenburg, Margreet and Adair, Linda S and Borja, Judith B and Wilson, James G and Musani, Solomon and Guo, Xiuqing and Johnson, Toby and Semple, Robert and Teslovich, Tanya M and Allison, Matthew A and Redline, Susan and Buxbaum, Sarah G and Mohlke, Karen L and Meulenbelt, Ingrid and Ballantyne, Christie M and Dedoussis, George V and Hu, Frank B and Liu, Yongmei and Paulweber, Bernhard and Spector, Timothy D and Slagboom, P Eline and Ferrucci, Luigi and Jula, Antti and Perola, Markus and Raitakari, Olli and Florez, Jose C and Salomaa, Veikko and Eriksson, Johan G and Frayling, Timothy M and Hicks, Andrew A and Lehtim{\"a}ki, Terho and Smith, George Davey and Siscovick, David S and Kronenberg, Florian and van Duijn, Cornelia and Loos, Ruth J F and Waterworth, Dawn M and Meigs, James B and Dupuis, Jos{\'e}e and Richards, J Brent and Voight, Benjamin F and Scott, Laura J and Steinthorsdottir, Valgerdur and Dina, Christian and Welch, Ryan P and Zeggini, Eleftheria and Huth, Cornelia and Aulchenko, Yurii S and Thorleifsson, Gudmar and McCulloch, Laura J and Ferreira, Teresa and Grallert, Harald and Amin, Najaf and Wu, Guanming and Willer, Cristen J and Raychaudhuri, Soumya and McCarroll, Steve A and Hofmann, Oliver M and Segr{\`e}, Ayellet V and van Hoek, Mandy and Navarro, Pau and Ardlie, Kristin and Balkau, Beverley and Benediktsson, Rafn and Bennett, Amanda J and Blagieva, Roza and Boerwinkle, Eric and Bonnycastle, Lori L and Bostr{\"o}m, Kristina Bengtsson and Bravenboer, Bert and Bumpstead, Suzannah and Burtt, Noel P and Charpentier, Guillaume and Chines, Peter S and Cornelis, Marilyn and Crawford, Gabe and Doney, Alex S F and Elliott, Katherine S and Elliott, Amanda L and Erdos, Michael R and Fox, Caroline S and Franklin, Christopher S and Ganser, Martha and Gieger, Christian and Grarup, Niels and Green, Todd and Griffin, Simon and Groves, Christopher J and Guiducci, Candace and Hadjadj, Samy and Hassanali, Neelam and Herder, Christian and Isomaa, Bo and Jackson, Anne U and Johnson, Paul R V and J{\o}rgensen, Torben and Kao, Wen H L and Kong, Augustine and Kraft, Peter and Kuusisto, Johanna and Lauritzen, Torsten and Li, Man and Lieverse, Aloysius and Lindgren, Cecilia M and Lyssenko, Valeriya and Marre, Michel and Meitinger, Thomas and Midthjell, Kristian and Morken, Mario A and Narisu, Narisu and Nilsson, Peter and Owen, Katharine R and Payne, Felicity and Petersen, Ann-Kristin and Platou, Carl and Proen{\c c}a, Christine and Prokopenko, Inga and Rathmann, Wolfgang and Rayner, N William and Robertson, Neil R and Rocheleau, Ghislain and Roden, Michael and Sampson, Michael J and Saxena, Richa and Shields, Beverley M and Shrader, Peter and Sigurdsson, Gunnar and Spars{\o}, Thomas and Strassburger, Klaus and Stringham, Heather M and Sun, Qi and Swift, Amy J and Thorand, Barbara and Tichet, Jean and Tuomi, Tiinamaija and van Dam, Rob M and van Haeften, Timon W and van Herpt, Thijs and van Vliet-Ostaptchouk, Jana V and Walters, G Bragi and Weedon, Michael N and Wijmenga, Cisca and Witteman, Jacqueline and Bergman, Richard N and Cauchi, Stephane and Collins, Francis S and Gloyn, Anna L and Gyllensten, Ulf and Hansen, Torben and Hide, Winston A and Hitman, Graham A and Hofman, Albert and Hunter, David J and Hveem, Kristian and Laakso, Markku and Morris, Andrew D and Palmer, Colin N A and Rudan, Igor and Sijbrands, Eric and Stein, Lincoln D and Tuomilehto, Jaakko and Uitterlinden, Andre and Walker, Mark and Watanabe, Richard M and Abecasis, Goncalo R and Boehm, Bernhard O and Campbell, Harry and Daly, Mark J and Hattersley, Andrew T and Pedersen, Oluf and Barroso, In{\^e}s and Groop, Leif and Sladek, Rob and Thorsteinsdottir, Unnur and Wilson, James F and Illig, Thomas and Froguel, Philippe and van Duijn, Cornelia M and Stefansson, Kari and Altshuler, David and Boehnke, Michael and McCarthy, Mark I and Soranzo, Nicole and Wheeler, Eleanor and Glazer, Nicole L and Bouatia-Naji, Nabila and M{\"a}gi, Reedik and Randall, Joshua and Elliott, Paul and Rybin, Denis and Dehghan, Abbas and Hottenga, Jouke Jan and Song, Kijoung and Goel, Anuj and Lajunen, Taina and Doney, Alex and Cavalcanti-Proen{\c c}a, Christine and Kumari, Meena and Timpson, Nicholas J and Zabena, Carina and Ingelsson, Erik and An, Ping and O{\textquoteright}Connell, Jeffrey and Luan, Jian{\textquoteright}an and Elliott, Amanda and McCarroll, Steven A and Roccasecca, Rosa Maria and Pattou, Fran{\c c}ois and Sethupathy, Praveen and Ariyurek, Yavuz and Barter, Philip and Beilby, John P and Ben-Shlomo, Yoav and Bergmann, Sven and Bochud, Murielle and Bonnefond, Am{\'e}lie and Borch-Johnsen, Knut and B{\"o}ttcher, Yvonne and Brunner, Eric and Bumpstead, Suzannah J and Chen, Yii-Der Ida and Chines, Peter and Clarke, Robert and Coin, Lachlan J M and Cooper, Matthew N and Crisponi, Laura and Day, Ian N M and de Geus, Eco J C and Delplanque, Jerome and Fedson, Annette C and Fischer-Rosinsky, Antje and Forouhi, Nita G and Franzosi, Maria Grazia and Galan, Pilar and Goodarzi, Mark O and Graessler, J{\"u}rgen and Grundy, Scott and Gwilliam, Rhian and Hallmans, G{\"o}ran and Hammond, Naomi and Han, Xijing and Hartikainen, Anna-Liisa and Hayward, Caroline and Heath, Simon C and Hercberg, Serge and Hillman, David R and Hingorani, Aroon D and Hui, Jennie and Hung, Joe and Kaakinen, Marika and Kaprio, Jaakko and Kesaniemi, Y Antero and Kivimaki, Mika and Knight, Beatrice and Koskinen, Seppo and Kovacs, Peter and Kyvik, Kirsten Ohm and Lathrop, G Mark and Lawlor, Debbie A and Le Bacquer, Olivier and Lecoeur, C{\'e}cile and Li, Yun and Mahley, Robert and Mangino, Massimo and Mart{\'\i}nez-Larrad, Mar{\'\i}a Teresa and McAteer, Jarred B and McPherson, Ruth and Meisinger, Christa and Melzer, David and Meyre, David and Mitchell, Braxton D and Mukherjee, Sutapa and Naitza, Silvia and Neville, Matthew J and Orr{\`u}, Marco and Pakyz, Ruth and Paolisso, Giuseppe and Pattaro, Cristian and Pearson, Daniel and Peden, John F and Pedersen, Nancy L and Pfeiffer, Andreas F H and Pichler, Irene and Polasek, Ozren and Posthuma, Danielle and Potter, Simon C and Pouta, Anneli and Province, Michael A and Rayner, Nigel W and Rice, Kenneth and Ripatti, Samuli and Rivadeneira, Fernando and Rolandsson, Olov and Sandbaek, Annelli and Sandhu, Manjinder and Sanna, Serena and Sayer, Avan Aihie and Scheet, Paul and Seedorf, Udo and Sharp, Stephen J and Shields, Beverley and Sigur{\dh}sson, Gunnar and Sijbrands, Eric J G and Silveira, Angela and Simpson, Laila and Singleton, Andrew and Smith, Nicholas L and Sovio, Ulla and Swift, Amy and Syddall, Holly and Syv{\"a}nen, Ann-Christine and T{\"o}njes, Anke and Uitterlinden, Andr{\'e} G and van Dijk, Ko Willems and Varma, Dhiraj and Visvikis-Siest, Sophie and Vitart, Veronique and Vogelzangs, Nicole and Waeber, G{\'e}rard and Wagner, Peter J and Walley, Andrew and Ward, Kim L and Watkins, Hugh and Wild, Sarah H and Willemsen, Gonneke and Witteman, Jaqueline C M and Yarnell, John W G and Zelenika, Diana and Zethelius, Bj{\"o}rn and Zhai, Guangju and Zhao, Jing Hua and Zillikens, M Carola and Borecki, Ingrid B and Meneton, Pierre and Magnusson, Patrik K E and Nathan, David M and Williams, Gordon H and Silander, Kaisa and Bornstein, Stefan R and Schwarz, Peter and Spranger, Joachim and Karpe, Fredrik and Shuldiner, Alan R and Cooper, Cyrus and Serrano-R{\'\i}os, Manuel and Lind, Lars and Palmer, Lyle J and Hu, Frank B and Franks, Paul W and Ebrahim, Shah and Marmot, Michael and Kao, W H Linda and Pramstaller, Peter Paul and Wright, Alan F and Stumvoll, Michael and Hamsten, Anders and Buchanan, Thomas A and Valle, Timo T and Rotter, Jerome I and Penninx, Brenda W J H and Boomsma, Dorret I and Cao, Antonio and Scuteri, Angelo and Schlessinger, David and Uda, Manuela and Ruokonen, Aimo and Jarvelin, Marjo-Riitta and Peltonen, Leena and Mooser, Vincent and Sladek, Robert and Musunuru, Kiran and Smith, Albert V and Edmondson, Andrew C and Stylianou, Ioannis M and Koseki, Masahiro and Pirruccello, James P and Chasman, Daniel I and Johansen, Christopher T and Fouchier, Sigrid W and Peloso, Gina M and Barbalic, Maja and Ricketts, Sally L and Bis, Joshua C and Feitosa, Mary F and Orho-Melander, Marju and Melander, Olle and Li, Xiaohui and Li, Mingyao and Cho, Yoon Shin and Go, Min Jin and Kim, Young Jin and Lee, Jong-Young and Park, Taesung and Kim, Kyunga and Sim, Xueling and Ong, Rick Twee-Hee and Croteau-Chonka, Damien C and Lange, Leslie A and Smith, Joshua D and Ziegler, Andreas and Zhang, Weihua and Zee, Robert Y L and Whitfield, John B and Thompson, John R and Surakka, Ida and Spector, Tim D and Smit, Johannes H and Sinisalo, Juha and Scott, James and Saharinen, Juha and Sabatti, Chiara and Rose, Lynda M and Roberts, Robert and Rieder, Mark and Parker, Alex N and Par{\'e}, Guillaume and O{\textquoteright}Donnell, Christopher J and Nieminen, Markku S and Nickerson, Deborah A and Montgomery, Grant W and McArdle, Wendy and Masson, David and Martin, Nicholas G and Marroni, Fabio and Lucas, Gavin and Luben, Robert and Lokki, Marja-Liisa and Lettre, Guillaume and Launer, Lenore J and Lakatta, Edward G and Laaksonen, Reijo and Kyvik, Kirsten O and K{\"o}nig, Inke R and Khaw, Kay-Tee and Kaplan, Lee M and Johansson, Asa and Janssens, A Cecile J W and Igl, Wilmar and Hovingh, G Kees and Hengstenberg, Christian and Havulinna, Aki S and Hastie, Nicholas D and Harris, Tamara B and Haritunians, Talin and Hall, Alistair S and Groop, Leif C and Gonzalez, Elena and Freimer, Nelson B and Erdmann, Jeanette and Ejebe, Kenechi G and D{\"o}ring, Angela and Dominiczak, Anna F and Demissie, Serkalem and Deloukas, Panagiotis and de Faire, Ulf and Crawford, Gabriel and Chen, Yii-der I and Caulfield, Mark J and Boekholdt, S Matthijs and Assimes, Themistocles L and Quertermous, Thomas and Seielstad, Mark and Wong, Tien Y and Tai, E-Shyong and Feranil, Alan B and Kuzawa, Christopher W and Taylor, Herman A and Gabriel, Stacey B and Holm, Hilma and Gudnason, Vilmundur and Krauss, Ronald M and Ordovas, Jose M and Munroe, Patricia B and Kooner, Jaspal S and Tall, Alan R and Hegele, Robert A and Kastelein, John J P and Schadt, Eric E and Strachan, David P and Reilly, Muredach P and Samani, Nilesh J and Schunkert, Heribert and Cupples, L Adrienne and Sandhu, Manjinder S and Ridker, Paul M and Rader, Daniel J and Kathiresan, Sekar} } @article {6067, title = {Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium.}, journal = {PLoS One}, volume = {8}, year = {2013}, month = {2013}, pages = {e68095}, abstract = {

Genotyping arrays are a cost effective approach when typing previously-identified genetic polymorphisms in large numbers of samples. One limitation of genotyping arrays with rare variants (e.g., minor allele frequency [MAF] <0.01) is the difficulty that automated clustering algorithms have to accurately detect and assign genotype calls. Combining intensity data from large numbers of samples may increase the ability to accurately call the genotypes of rare variants. Approximately 62,000 ethnically diverse samples from eleven Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium cohorts were genotyped with the Illumina HumanExome BeadChip across seven genotyping centers. The raw data files for the samples were assembled into a single project for joint calling. To assess the quality of the joint calling, concordance of genotypes in a subset of individuals having both exome chip and exome sequence data was analyzed. After exclusion of low performing SNPs on the exome chip and non-overlap of SNPs derived from sequence data, genotypes of 185,119 variants (11,356 were monomorphic) were compared in 530 individuals that had whole exome sequence data. A total of 98,113,070 pairs of genotypes were tested and 99.77\% were concordant, 0.14\% had missing data, and 0.09\% were discordant. We report that joint calling allows the ability to accurately genotype rare variation using array technology when large sample sizes are available and best practices are followed. The cluster file from this experiment is available at www.chargeconsortium.com/main/exomechip.

}, keywords = {Aging, Alleles, Cluster Analysis, Cohort Studies, Continental Population Groups, Exome, Female, Gene Frequency, Genomics, Genotype, Heart, Humans, Male, Oligonucleotide Array Sequence Analysis, Polymorphism, Single Nucleotide, Sample Size, Self Report, Sequence Analysis, DNA}, issn = {1932-6203}, doi = {10.1371/journal.pone.0068095}, author = {Grove, Megan L and Yu, Bing and Cochran, Barbara J and Haritunians, Talin and Bis, Joshua C and Taylor, Kent D and Hansen, Mark and Borecki, Ingrid B and Cupples, L Adrienne and Fornage, Myriam and Gudnason, Vilmundur and Harris, Tamara B and Kathiresan, Sekar and Kraaij, Robert and Launer, Lenore J and Levy, Daniel and Liu, Yongmei and Mosley, Thomas and Peloso, Gina M and Psaty, Bruce M and Rich, Stephen S and Rivadeneira, Fernando and Siscovick, David S and Smith, Albert V and Uitterlinden, Andre and van Duijn, Cornelia M and Wilson, James G and O{\textquoteright}Donnell, Christopher J and Rotter, Jerome I and Boerwinkle, Eric} } @article {6284, title = {Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease.}, journal = {Am J Clin Nutr}, volume = {98}, year = {2013}, month = {2013 Sep}, pages = {668-76}, abstract = {

BACKGROUND: The strong observational association between total homocysteine (tHcy) concentrations and risk of coronary artery disease (CAD) and the null associations in the homocysteine-lowering trials have prompted the need to identify genetic variants associated with homocysteine concentrations and risk of CAD.

OBJECTIVE: We tested whether common genetic polymorphisms associated with variation in tHcy are also associated with CAD.

DESIGN: We conducted a meta-analysis of genome-wide association studies (GWAS) on tHcy concentrations in 44,147 individuals of European descent. Polymorphisms associated with tHcy (P < 10($^{-}$$^{8}$) were tested for association with CAD in 31,400 cases and 92,927 controls.

RESULTS: Common variants at 13 loci, explaining 5.9\% of the variation in tHcy, were associated with tHcy concentrations, including 6 novel loci in or near MMACHC (2.1 {\texttimes} 10$^{-}$$^{9}$), SLC17A3 (1.0 {\texttimes} 10$^{-}$$^{8}$), GTPB10 (1.7 {\texttimes} 10$^{-}$$^{8}$), CUBN (7.5 {\texttimes} 10$^{-}${\textonesuperior}$^{0}$), HNF1A (1.2 {\texttimes} 10$^{-}${\textonesuperior}{\texttwosuperior})), and FUT2 (6.6 {\texttimes} 10$^{-}$$^{9}$), and variants previously reported at or near the MTHFR, MTR, CPS1, MUT, NOX4, DPEP1, and CBS genes. Individuals within the highest 10\% of the genotype risk score (GRS) had 3-μmol/L higher mean tHcy concentrations than did those within the lowest 10\% of the GRS (P = 1 {\texttimes} 10$^{-}${\textthreesuperior}$^{6}$). The GRS was not associated with risk of CAD (OR: 1.01; 95\% CI: 0.98, 1.04; P = 0.49).

CONCLUSIONS: We identified several novel loci that influence plasma tHcy concentrations. Overall, common genetic variants that influence plasma tHcy concentrations are not associated with risk of CAD in white populations, which further refutes the causal relevance of moderately elevated tHcy concentrations and tHcy-related pathways for CAD.

}, keywords = {Coronary Artery Disease, Genes, Genetic Loci, Genetic Predisposition to Disease, Genotype, Homocysteine, Humans, Polymorphism, Genetic, Risk Factors}, issn = {1938-3207}, doi = {10.3945/ajcn.112.044545}, author = {van Meurs, Joyce B J and Par{\'e}, Guillaume and Schwartz, Stephen M and Hazra, Aditi and Tanaka, Toshiko and Vermeulen, Sita H and Cotlarciuc, Ioana and Yuan, Xin and M{\"a}larstig, Anders and Bandinelli, Stefania and Bis, Joshua C and Blom, Henk and Brown, Morris J and Chen, Constance and Chen, Yii-Der and Clarke, Robert J and Dehghan, Abbas and Erdmann, Jeanette and Ferrucci, Luigi and Hamsten, Anders and Hofman, Albert and Hunter, David J and Goel, Anuj and Johnson, Andrew D and Kathiresan, Sekar and Kampman, Ellen and Kiel, Douglas P and Kiemeney, Lambertus A L M and Chambers, John C and Kraft, Peter and Lindemans, Jan and McKnight, Barbara and Nelson, Christopher P and O{\textquoteright}Donnell, Christopher J and Psaty, Bruce M and Ridker, Paul M and Rivadeneira, Fernando and Rose, Lynda M and Seedorf, Udo and Siscovick, David S and Schunkert, Heribert and Selhub, Jacob and Ueland, Per M and Vollenweider, Peter and Waeber, G{\'e}rard and Waterworth, Dawn M and Watkins, Hugh and Witteman, Jacqueline C M and den Heijer, Martin and Jacques, Paul and Uitterlinden, Andr{\'e} G and Kooner, Jaspal S and Rader, Dan J and Reilly, Muredach P and Mooser, Vincent and Chasman, Daniel I and Samani, Nilesh J and Ahmadi, Kourosh R} } @article {6282, title = {Genome-wide and gene-centric analyses of circulating myeloperoxidase levels in the charge and care consortia.}, journal = {Hum Mol Genet}, volume = {22}, year = {2013}, month = {2013 Aug 15}, pages = {3381-93}, abstract = {

Increased systemic levels of myeloperoxidase (MPO) are associated with the risk of coronary artery disease (CAD). To identify the genetic factors that are associated with circulating MPO levels, we carried out a genome-wide association study (GWAS) and a gene-centric analysis in subjects of European ancestry and African Americans (AAs). A locus on chromosome 1q31.1 containing the complement factor H (CFH) gene was strongly associated with serum MPO levels in 9305 subjects of European ancestry (lead SNP rs800292; P = 4.89 {\texttimes} 10(-41)) and in 1690 AA subjects (rs505102; P = 1.05 {\texttimes} 10(-8)). Gene-centric analyses in 8335 subjects of European ancestry additionally identified two rare MPO coding sequence variants that were associated with serum MPO levels (rs28730837, P = 5.21 {\texttimes} 10(-12); rs35897051, P = 3.32 {\texttimes} 10(-8)). A GWAS for plasma MPO levels in 9260 European ancestry subjects identified a chromosome 17q22 region near MPO that was significantly associated (lead SNP rs6503905; P = 2.94 {\texttimes} 10(-12)), but the CFH locus did not exhibit evidence of association with plasma MPO levels. Functional analyses revealed that rs800292 was associated with levels of complement proteins in serum. Variants at chromosome 17q22 also had pleiotropic cis effects on gene expression. In a case-control analysis of \~{}80 000 subjects from CARDIoGRAM, none of the identified single-nucleotide polymorphisms (SNPs) were associated with CAD. These results suggest that distinct genetic factors regulate serum and plasma MPO levels, which may have relevance for various acute and chronic inflammatory disorders. The clinical implications for CAD and a better understanding of the functional basis for the association of CFH and MPO variants with circulating MPO levels require further study.

}, keywords = {Adult, African Americans, Aged, Case-Control Studies, Complement Factor H, Coronary Artery Disease, European Continental Ancestry Group, Female, Gene Expression Regulation, Enzymologic, Genetic Association Studies, Genetic Variation, Genome-Wide Association Study, Genotype, Humans, Male, Middle Aged, Peroxidase, Polymorphism, Single Nucleotide, Young Adult}, issn = {1460-2083}, doi = {10.1093/hmg/ddt189}, author = {Reiner, Alexander P and Hartiala, Jaana and Zeller, Tanja and Bis, Joshua C and Dupuis, Jos{\'e}e and Fornage, Myriam and Baumert, Jens and Kleber, Marcus E and Wild, Philipp S and Baldus, Stephan and Bielinski, Suzette J and Fontes, Jo{\~a}o D and Illig, Thomas and Keating, Brendan J and Lange, Leslie A and Ojeda, Francisco and M{\"u}ller-Nurasyid, Martina and Munzel, Thomas F and Psaty, Bruce M and Rice, Kenneth and Rotter, Jerome I and Schnabel, Renate B and Tang, W H Wilson and Thorand, Barbara and Erdmann, Jeanette and Jacobs, David R and Wilson, James G and Koenig, Wolfgang and Tracy, Russell P and Blankenberg, Stefan and M{\"a}rz, Winfried and Gross, Myron D and Benjamin, Emelia J and Hazen, Stanley L and Allayee, Hooman} } @article {6029, title = {A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium.}, journal = {Genet Epidemiol}, volume = {37}, year = {2013}, month = {2013 Jul}, pages = {512-521}, abstract = {

Venous thromboembolism (VTE) is a common, heritable disease resulting in high rates of hospitalization and mortality. Yet few associations between VTE and genetic variants, all in the coagulation pathway, have been established. To identify additional genetic determinants of VTE, we conducted a two-stage genome-wide association study (GWAS) among individuals of European ancestry in the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) VTE consortium. The discovery GWAS comprised 1,618 incident VTE cases out of 44,499 participants from six community-based studies. Genotypes for genome-wide single-nucleotide polymorphisms (SNPs) were imputed to approximately 2.5 million SNPs in HapMap and association with VTE assessed using study-design appropriate regression methods. Meta-analysis of these results identified two known loci, in F5 and ABO. Top 1,047 tag SNPs (P <= 0.0016) from the discovery GWAS were tested for association in an additional 3,231 cases and 3,536 controls from three case-control studies. In the combined data from these two stages, additional genome-wide significant associations were observed on 4q35 at F11 (top SNP rs4253399, intronic to F11) and on 4q28 at FGG (rs6536024, 9.7 kb from FGG; P < 5.0 {\texttimes} 10(-13) for both). The associations at the FGG locus were not completely explained by previously reported variants. Loci at or near SUSD1 and OTUD7A showed borderline yet novel associations (P < 5.0 {\texttimes} 10(-6) ) and constitute new candidate genes. In conclusion, this large GWAS replicated key genetic associations in F5 and ABO, and confirmed the importance of F11 and FGG loci for VTE. Future studies are warranted to better characterize the associations with F11 and FGG and to replicate the new candidate associations.

}, keywords = {Aged, Aging, Case-Control Studies, Cohort Studies, Female, Genome-Wide Association Study, Humans, Male, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide, Regression Analysis, Risk Factors, Venous Thromboembolism}, issn = {1098-2272}, doi = {10.1002/gepi.21731}, author = {Tang, Weihong and Teichert, Martina and Chasman, Daniel I and Heit, John A and Morange, Pierre-Emmanuel and Li, Guo and Pankratz, Nathan and Leebeek, Frank W and Par{\'e}, Guillaume and de Andrade, Mariza and Tzourio, Christophe and Psaty, Bruce M and Basu, Saonli and Ruiter, Rikje and Rose, Lynda and Armasu, Sebastian M and Lumley, Thomas and Heckbert, Susan R and Uitterlinden, Andr{\'e} G and Lathrop, Mark and Rice, Kenneth M and Cushman, Mary and Hofman, Albert and Lambert, Jean-Charles and Glazer, Nicole L and Pankow, James S and Witteman, Jacqueline C and Amouyel, Philippe and Bis, Joshua C and Bovill, Edwin G and Kong, Xiaoxiao and Tracy, Russell P and Boerwinkle, Eric and Rotter, Jerome I and Tr{\'e}gou{\"e}t, David-Alexandre and Loth, Daan W and Stricker, Bruno H Ch and Ridker, Paul M and Folsom, Aaron R and Smith, Nicholas L} } @article {8015, title = {Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders.}, journal = {Nat Genet}, volume = {45}, year = {2013}, month = {2013 Jun}, pages = {621-31}, abstract = {

Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate-increasing and heart rate-decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into the mechanisms regulating heart rate and identify new therapeutic targets.

}, keywords = {Animals, Arrhythmias, Cardiac, Gene Frequency, Genetic Loci, Genome-Wide Association Study, Heart Conduction System, Heart Rate, Humans, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide, Quantitative Trait Loci}, issn = {1546-1718}, doi = {10.1038/ng.2610}, author = {den Hoed, Marcel and Eijgelsheim, Mark and Esko, T{\~o}nu and Brundel, Bianca J J M and Peal, David S and Evans, David M and Nolte, Ilja M and Segr{\`e}, Ayellet V and Holm, Hilma and Handsaker, Robert E and Westra, Harm-Jan and Johnson, Toby and Isaacs, Aaron and Yang, Jian and Lundby, Alicia and Zhao, Jing Hua and Kim, Young Jin and Go, Min Jin and Almgren, Peter and Bochud, Murielle and Boucher, Gabrielle and Cornelis, Marilyn C and Gudbjartsson, Daniel and Hadley, David and van der Harst, Pim and Hayward, Caroline and den Heijer, Martin and Igl, Wilmar and Jackson, Anne U and Kutalik, Zolt{\'a}n and Luan, Jian{\textquoteright}an and Kemp, John P and Kristiansson, Kati and Ladenvall, Claes and Lorentzon, Mattias and Montasser, May E and Njajou, Omer T and O{\textquoteright}Reilly, Paul F and Padmanabhan, Sandosh and St Pourcain, Beate and Rankinen, Tuomo and Salo, Perttu and Tanaka, Toshiko and Timpson, Nicholas J and Vitart, Veronique and Waite, Lindsay and Wheeler, William and Zhang, Weihua and Draisma, Harmen H M and Feitosa, Mary F and Kerr, Kathleen F and Lind, Penelope A and Mihailov, Evelin and Onland-Moret, N Charlotte and Song, Ci and Weedon, Michael N and Xie, Weijia and Yengo, Loic and Absher, Devin and Albert, Christine M and Alonso, Alvaro and Arking, Dan E and de Bakker, Paul I W and Balkau, Beverley and Barlassina, Cristina and Benaglio, Paola and Bis, Joshua C and Bouatia-Naji, Nabila and Brage, S{\o}ren and Chanock, Stephen J and Chines, Peter S and Chung, Mina and Darbar, Dawood and Dina, Christian and D{\"o}rr, Marcus and Elliott, Paul and Felix, Stephan B and Fischer, Krista and Fuchsberger, Christian and de Geus, Eco J C and Goyette, Philippe and Gudnason, Vilmundur and Harris, Tamara B and Hartikainen, Anna-Liisa and Havulinna, Aki S and Heckbert, Susan R and Hicks, Andrew A and Hofman, Albert and Holewijn, Suzanne and Hoogstra-Berends, Femke and Hottenga, Jouke-Jan and Jensen, Majken K and Johansson, Asa and Junttila, Juhani and K{\"a}{\"a}b, Stefan and Kanon, Bart and Ketkar, Shamika and Khaw, Kay-Tee and Knowles, Joshua W and Kooner, Angrad S and Kors, Jan A and Kumari, Meena and Milani, Lili and Laiho, P{\"a}ivi and Lakatta, Edward G and Langenberg, Claudia and Leusink, Maarten and Liu, Yongmei and Luben, Robert N and Lunetta, Kathryn L and Lynch, Stacey N and Markus, Marcello R P and Marques-Vidal, Pedro and Mateo Leach, Irene and McArdle, Wendy L and McCarroll, Steven A and Medland, Sarah E and Miller, Kathryn A and Montgomery, Grant W and Morrison, Alanna C and M{\"u}ller-Nurasyid, Martina and Navarro, Pau and Nelis, Mari and O{\textquoteright}Connell, Jeffrey R and O{\textquoteright}Donnell, Christopher J and Ong, Ken K and Newman, Anne B and Peters, Annette and Polasek, Ozren and Pouta, Anneli and Pramstaller, Peter P and Psaty, Bruce M and Rao, Dabeeru C and Ring, Susan M and Rossin, Elizabeth J and Rudan, Diana and Sanna, Serena and Scott, Robert A and Sehmi, Jaban S and Sharp, Stephen and Shin, Jordan T and Singleton, Andrew B and Smith, Albert V and Soranzo, Nicole and Spector, Tim D and Stewart, Chip and Stringham, Heather M and Tarasov, Kirill V and Uitterlinden, Andr{\'e} G and Vandenput, Liesbeth and Hwang, Shih-Jen and Whitfield, John B and Wijmenga, Cisca and Wild, Sarah H and Willemsen, Gonneke and Wilson, James F and Witteman, Jacqueline C M and Wong, Andrew and Wong, Quenna and Jamshidi, Yalda and Zitting, Paavo and Boer, Jolanda M A and Boomsma, Dorret I and Borecki, Ingrid B and van Duijn, Cornelia M and Ekelund, Ulf and Forouhi, Nita G and Froguel, Philippe and Hingorani, Aroon and Ingelsson, Erik and Kivimaki, Mika and Kronmal, Richard A and Kuh, Diana and Lind, Lars and Martin, Nicholas G and Oostra, Ben A and Pedersen, Nancy L and Quertermous, Thomas and Rotter, Jerome I and van der Schouw, Yvonne T and Verschuren, W M Monique and Walker, Mark and Albanes, Demetrius and Arnar, David O and Assimes, Themistocles L and Bandinelli, Stefania and Boehnke, Michael and de Boer, Rudolf A and Bouchard, Claude and Caulfield, W L Mark and Chambers, John C and Curhan, Gary and Cusi, Daniele and Eriksson, Johan and Ferrucci, Luigi and van Gilst, Wiek H and Glorioso, Nicola and de Graaf, Jacqueline and Groop, Leif and Gyllensten, Ulf and Hsueh, Wen-Chi and Hu, Frank B and Huikuri, Heikki V and Hunter, David J and Iribarren, Carlos and Isomaa, Bo and Jarvelin, Marjo-Riitta and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kiemeney, Lambertus A and van der Klauw, Melanie M and Kooner, Jaspal S and Kraft, Peter and Iacoviello, Licia and Lehtim{\"a}ki, Terho and Lokki, Marja-Liisa L and Mitchell, Braxton D and Navis, Gerjan and Nieminen, Markku S and Ohlsson, Claes and Poulter, Neil R and Qi, Lu and Raitakari, Olli T and Rimm, Eric B and Rioux, John D and Rizzi, Federica and Rudan, Igor and Salomaa, Veikko and Sever, Peter S and Shields, Denis C and Shuldiner, Alan R and Sinisalo, Juha and Stanton, Alice V and Stolk, Ronald P and Strachan, David P and Tardif, Jean-Claude and Thorsteinsdottir, Unnur and Tuomilehto, Jaako and van Veldhuisen, Dirk J and Virtamo, Jarmo and Viikari, Jorma and Vollenweider, Peter and Waeber, G{\'e}rard and Widen, Elisabeth and Cho, Yoon Shin and Olsen, Jesper V and Visscher, Peter M and Willer, Cristen and Franke, Lude and Erdmann, Jeanette and Thompson, John R and Pfeufer, Arne and Sotoodehnia, Nona and Newton-Cheh, Christopher and Ellinor, Patrick T and Stricker, Bruno H Ch and Metspalu, Andres and Perola, Markus and Beckmann, Jacques S and Smith, George Davey and Stefansson, Kari and Wareham, Nicholas J and Munroe, Patricia B and Sibon, Ody C M and Milan, David J and Snieder, Harold and Samani, Nilesh J and Loos, Ruth J F} } @article {6108, title = {Ischemic stroke is associated with the ABO locus: the EuroCLOT study.}, journal = {Ann Neurol}, volume = {73}, year = {2013}, month = {2013 Jan}, pages = {16-31}, abstract = {

OBJECTIVE: End-stage coagulation and the structure/function of fibrin are implicated in the pathogenesis of ischemic stroke. We explored whether genetic variants associated with end-stage coagulation in healthy volunteers account for the genetic predisposition to ischemic stroke and examined their influence on stroke subtype.

METHODS: Common genetic variants identified through genome-wide association studies of coagulation factors and fibrin structure/function in healthy twins (n = 2,100, Stage 1) were examined in ischemic stroke (n = 4,200 cases) using 2 independent samples of European ancestry (Stage 2). A third clinical collection having stroke subtyping (total 8,900 cases, 55,000 controls) was used for replication (Stage 3).

RESULTS: Stage 1 identified 524 single nucleotide polymorphisms (SNPs) from 23 linkage disequilibrium blocks having significant association (p < 5 {\texttimes} 10(-8)) with 1 or more coagulation/fibrin phenotypes. The most striking associations included SNP rs5985 with factor XIII activity (p = 2.6 {\texttimes} 10(-186)), rs10665 with FVII (p = 2.4 {\texttimes} 10(-47)), and rs505922 in the ABO gene with both von Willebrand factor (p = 4.7 {\texttimes} 10(-57)) and factor VIII (p = 1.2 {\texttimes} 10(-36)). In Stage 2, the 23 independent SNPs were examined in stroke cases/noncases using MOnica Risk, Genetics, Archiving and Monograph (MORGAM) and Wellcome Trust Case Control Consortium 2 collections. SNP rs505922 was nominally associated with ischemic stroke (odds ratio = 0.94, 95\% confidence interval = 0.88-0.99, p = 0.023). Independent replication in Meta-Stroke confirmed the rs505922 association with stroke, beta (standard error, SE) = 0.066 (0.02), p = 0.001, a finding specific to large-vessel and cardioembolic stroke (p = 0.001 and p = < 0.001, respectively) but not seen with small-vessel stroke (p = 0.811).

INTERPRETATION: ABO gene variants are associated with large-vessel and cardioembolic stroke but not small-vessel disease. This work sheds light on the different pathogenic mechanisms underpinning stroke subtype.

}, keywords = {ABO Blood-Group System, Adolescent, Adult, Aged, Aged, 80 and over, Blood Coagulation, Brain Ischemia, Cohort Studies, Europe, Female, Genetic Loci, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Stroke, Young Adult}, issn = {1531-8249}, doi = {10.1002/ana.23838}, author = {Williams, Frances M K and Carter, Angela M and Hysi, Pirro G and Surdulescu, Gabriela and Hodgkiss, Dylan and Soranzo, Nicole and Traylor, Matthew and Bevan, Steve and Dichgans, Martin and Rothwell, Peter M W and Sudlow, Cathie and Farrall, Martin and Silander, Kaisa and Kaunisto, Mari and Wagner, Peter and Saarela, Olli and Kuulasmaa, Kari and Virtamo, Jarmo and Salomaa, Veikko and Amouyel, Philippe and Arveiler, Dominique and Ferrieres, Jean and Wiklund, Per-Gunnar and Ikram, M Arfan and Hofman, Albert and Boncoraglio, Giorgio B and Parati, Eugenio A and Helgadottir, Anna and Gretarsdottir, Solveig and Thorsteinsdottir, Unnur and Thorleifsson, Gudmar and Stefansson, Kari and Seshadri, Sudha and DeStefano, Anita and Gschwendtner, Andreas and Psaty, Bruce and Longstreth, Will and Mitchell, Braxton D and Cheng, Yu-Ching and Clarke, Robert and Ferrario, Marco and Bis, Joshua C and Levi, Christopher and Attia, John and Holliday, Elizabeth G and Scott, Rodney J and Fornage, Myriam and Sharma, Pankaj and Furie, Karen L and Rosand, Jonathan and Nalls, Mike and Meschia, James and Mosely, Thomas H and Evans, Alun and Palotie, Aarno and Markus, Hugh S and Grant, Peter J and Spector, Tim D} } @article {6155, title = {Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease.}, journal = {Circulation}, volume = {128}, year = {2013}, month = {2013 Sep 17}, pages = {1310-24}, abstract = {

BACKGROUND: Estimates of the heritability of plasma fibrinogen concentration, an established predictor of cardiovascular disease, range from 34\% to 50\%. Genetic variants so far identified by genome-wide association studies explain only a small proportion (<2\%) of its variation.

METHODS AND RESULTS: We conducted a meta-analysis of 28 genome-wide association studies including >90 000 subjects of European ancestry, the first genome-wide association meta-analysis of fibrinogen levels in 7 studies in blacks totaling 8289 samples, and a genome-wide association study in Hispanics totaling 1366 samples. Evaluation for association of single-nucleotide polymorphisms with clinical outcomes included a total of 40 695 cases and 85 582 controls for coronary artery disease, 4752 cases and 24 030 controls for stroke, and 3208 cases and 46 167 controls for venous thromboembolism. Overall, we identified 24 genome-wide significant (P<5{\texttimes}10(-8)) independent signals in 23 loci, including 15 novel associations, together accounting for 3.7\% of plasma fibrinogen variation. Gene-set enrichment analysis highlighted key roles in fibrinogen regulation for the 3 structural fibrinogen genes and pathways related to inflammation, adipocytokines, and thyrotrophin-releasing hormone signaling. Whereas lead single-nucleotide polymorphisms in a few loci were significantly associated with coronary artery disease, the combined effect of all 24 fibrinogen-associated lead single-nucleotide polymorphisms was not significant for coronary artery disease, stroke, or venous thromboembolism.

CONCLUSIONS: We identify 23 robustly associated fibrinogen loci, 15 of which are new. Clinical outcome analysis of these loci does not support a causal relationship between circulating levels of fibrinogen and coronary artery disease, stroke, or venous thromboembolism.

}, keywords = {Adolescent, Adult, African Continental Ancestry Group, Aged, Aged, 80 and over, Cardiovascular Diseases, Coronary Artery Disease, European Continental Ancestry Group, Female, Fibrinogen, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Hispanic Americans, Humans, Male, Middle Aged, Myocardial Infarction, Polymorphism, Single Nucleotide, Risk Factors, Stroke, Venous Thromboembolism, Young Adult}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.113.002251}, author = {Sabater-Lleal, Maria and Huang, Jie and Chasman, Daniel and Naitza, Silvia and Dehghan, Abbas and Johnson, Andrew D and Teumer, Alexander and Reiner, Alex P and Folkersen, Lasse and Basu, Saonli and Rudnicka, Alicja R and Trompet, Stella and M{\"a}larstig, Anders and Baumert, Jens and Bis, Joshua C and Guo, Xiuqing and Hottenga, Jouke J and Shin, So-Youn and Lopez, Lorna M and Lahti, Jari and Tanaka, Toshiko and Yanek, Lisa R and Oudot-Mellakh, Tiphaine and Wilson, James F and Navarro, Pau and Huffman, Jennifer E and Zemunik, Tatijana and Redline, Susan and Mehra, Reena and Pulanic, Drazen and Rudan, Igor and Wright, Alan F and Kolcic, Ivana and Polasek, Ozren and Wild, Sarah H and Campbell, Harry and Curb, J David and Wallace, Robert and Liu, Simin and Eaton, Charles B and Becker, Diane M and Becker, Lewis C and Bandinelli, Stefania and R{\"a}ikk{\"o}nen, Katri and Widen, Elisabeth and Palotie, Aarno and Fornage, Myriam and Green, David and Gross, Myron and Davies, Gail and Harris, Sarah E and Liewald, David C and Starr, John M and Williams, Frances M K and Grant, Peter J and Spector, Timothy D and Strawbridge, Rona J and Silveira, Angela and Sennblad, Bengt and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Franco, Oscar H and Hofman, Albert and van Dongen, Jenny and Willemsen, Gonneke and Boomsma, Dorret I and Yao, Jie and Swords Jenny, Nancy and Haritunians, Talin and McKnight, Barbara and Lumley, Thomas and Taylor, Kent D and Rotter, Jerome I and Psaty, Bruce M and Peters, Annette and Gieger, Christian and Illig, Thomas and Grotevendt, Anne and Homuth, Georg and V{\"o}lzke, Henry and Kocher, Thomas and Goel, Anuj and Franzosi, Maria Grazia and Seedorf, Udo and Clarke, Robert and Steri, Maristella and Tarasov, Kirill V and Sanna, Serena and Schlessinger, David and Stott, David J and Sattar, Naveed and Buckley, Brendan M and Rumley, Ann and Lowe, Gordon D and McArdle, Wendy L and Chen, Ming-Huei and Tofler, Geoffrey H and Song, Jaejoon and Boerwinkle, Eric and Folsom, Aaron R and Rose, Lynda M and Franco-Cereceda, Anders and Teichert, Martina and Ikram, M Arfan and Mosley, Thomas H and Bevan, Steve and Dichgans, Martin and Rothwell, Peter M and Sudlow, Cathie L M and Hopewell, Jemma C and Chambers, John C and Saleheen, Danish and Kooner, Jaspal S and Danesh, John and Nelson, Christopher P and Erdmann, Jeanette and Reilly, Muredach P and Kathiresan, Sekar and Schunkert, Heribert and Morange, Pierre-Emmanuel and Ferrucci, Luigi and Eriksson, Johan G and Jacobs, David and Deary, Ian J and Soranzo, Nicole and Witteman, Jacqueline C M and de Geus, Eco J C and Tracy, Russell P and Hayward, Caroline and Koenig, Wolfgang and Cucca, Francesco and Jukema, J Wouter and Eriksson, Per and Seshadri, Sudha and Markus, Hugh S and Watkins, Hugh and Samani, Nilesh J and Wallaschofski, Henri and Smith, Nicholas L and Tregouet, David and Ridker, Paul M and Tang, Weihong and Strachan, David P and Hamsten, Anders and O{\textquoteright}Donnell, Christopher J} } @article {6590, title = {Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks.}, journal = {Am J Hum Genet}, volume = {94}, year = {2014}, month = {2014 Feb 06}, pages = {223-32}, abstract = {

Low-frequency coding DNA sequence variants in the proprotein convertase subtilisin/kexin type 9 gene (PCSK9) lower plasma low-density lipoprotein cholesterol (LDL-C), protect against risk of coronary heart disease (CHD), and have prompted the development of a new class of therapeutics. It is uncertain whether the PCSK9 example represents a paradigm or an isolated exception. We used the "Exome Array" to genotype >200,000 low-frequency and rare coding sequence variants across the genome in 56,538 individuals (42,208 European ancestry [EA] and 14,330 African ancestry [AA]) and tested these variants for association with LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides. Although we did not identify new genes associated with LDL-C, we did identify four low-frequency (frequencies between 0.1\% and 2\%) variants (ANGPTL8 rs145464906 [c.361C>T; p.Gln121*], PAFAH1B2 rs186808413 [c.482C>T; p.Ser161Leu], COL18A1 rs114139997 [c.331G>A; p.Gly111Arg], and PCSK7 rs142953140 [c.1511G>A; p.Arg504His]) with large effects on HDL-C and/or triglycerides. None of these four variants was associated with risk for CHD, suggesting that examples of low-frequency coding variants with robust effects on both lipids and CHD will be limited.

}, keywords = {1-Alkyl-2-acetylglycerophosphocholine Esterase, Adult, African Continental Ancestry Group, Aged, Alleles, Animals, Cholesterol, HDL, Cholesterol, LDL, Cohort Studies, Coronary Disease, European Continental Ancestry Group, Female, Gene Frequency, Genetic Association Studies, Genetic Code, Genetic Variation, Humans, Linear Models, Male, Mice, Mice, Inbred C57BL, Microtubule-Associated Proteins, Middle Aged, Phenotype, Sequence Analysis, DNA, Subtilisins, Triglycerides}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2014.01.009}, author = {Peloso, Gina M and Auer, Paul L and Bis, Joshua C and Voorman, Arend and Morrison, Alanna C and Stitziel, Nathan O and Brody, Jennifer A and Khetarpal, Sumeet A and Crosby, Jacy R and Fornage, Myriam and Isaacs, Aaron and Jakobsdottir, Johanna and Feitosa, Mary F and Davies, Gail and Huffman, Jennifer E and Manichaikul, Ani and Davis, Brian and Lohman, Kurt and Joon, Aron Y and Smith, Albert V and Grove, Megan L and Zanoni, Paolo and Redon, Valeska and Demissie, Serkalem and Lawson, Kim and Peters, Ulrike and Carlson, Christopher and Jackson, Rebecca D and Ryckman, Kelli K and Mackey, Rachel H and Robinson, Jennifer G and Siscovick, David S and Schreiner, Pamela J and Mychaleckyj, Josyf C and Pankow, James S and Hofman, Albert and Uitterlinden, Andr{\'e} G and Harris, Tamara B and Taylor, Kent D and Stafford, Jeanette M and Reynolds, Lindsay M and Marioni, Riccardo E and Dehghan, Abbas and Franco, Oscar H and Patel, Aniruddh P and Lu, Yingchang and Hindy, George and Gottesman, Omri and Bottinger, Erwin P and Melander, Olle and Orho-Melander, Marju and Loos, Ruth J F and Duga, Stefano and Merlini, Piera Angelica and Farrall, Martin and Goel, Anuj and Asselta, Rosanna and Girelli, Domenico and Martinelli, Nicola and Shah, Svati H and Kraus, William E and Li, Mingyao and Rader, Daniel J and Reilly, Muredach P and McPherson, Ruth and Watkins, Hugh and Ardissino, Diego and Zhang, Qunyuan and Wang, Judy and Tsai, Michael Y and Taylor, Herman A and Correa, Adolfo and Griswold, Michael E and Lange, Leslie A and Starr, John M and Rudan, Igor and Eiriksdottir, Gudny and Launer, Lenore J and Ordovas, Jose M and Levy, Daniel and Chen, Y-D Ida and Reiner, Alexander P and Hayward, Caroline and Polasek, Ozren and Deary, Ian J and Borecki, Ingrid B and Liu, Yongmei and Gudnason, Vilmundur and Wilson, James G and van Duijn, Cornelia M and Kooperberg, Charles and Rich, Stephen S and Psaty, Bruce M and Rotter, Jerome I and O{\textquoteright}Donnell, Christopher J and Rice, Kenneth and Boerwinkle, Eric and Kathiresan, Sekar and Cupples, L Adrienne} } @article {6548, title = {Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium.}, journal = {PLoS One}, volume = {9}, year = {2014}, month = {2014}, pages = {e99798}, abstract = {

BACKGROUND: Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk.

METHODS AND RESULTS: We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] >= 1\%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF<= 1\% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026).

CONCLUSION: Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings.

}, keywords = {Cell Adhesion Molecules, Neuronal, European Continental Ancestry Group, Female, Genetic Association Studies, Genetic Heterogeneity, Humans, Introns, Ischemia, Male, Myocardial Infarction, Polymorphism, Single Nucleotide, Prospective Studies, Sequence Analysis, DNA}, issn = {1932-6203}, doi = {10.1371/journal.pone.0099798}, author = {Bis, Joshua C and DeStefano, Anita and Liu, Xiaoming and Brody, Jennifer A and Choi, Seung Hoan and Verhaaren, Benjamin F J and Debette, Stephanie and Ikram, M Arfan and Shahar, Eyal and Butler, Kenneth R and Gottesman, Rebecca F and Muzny, Donna and Kovar, Christie L and Psaty, Bruce M and Hofman, Albert and Lumley, Thomas and Gupta, Mayetri and Wolf, Philip A and van Duijn, Cornelia and Gibbs, Richard A and Mosley, Thomas H and Longstreth, W T and Boerwinkle, Eric and Seshadri, Sudha and Fornage, Myriam} } @article {6607, title = {The challenges of genome-wide interaction studies: lessons to learn from the analysis of HDL blood levels.}, journal = {PLoS One}, volume = {9}, year = {2014}, month = {2014}, pages = {e109290}, abstract = {

Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP{\texttimes}SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value<1 {\textperiodcentered} 10-8 that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (Ntotal = 30,011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP{\texttimes}SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS.

}, keywords = {Cholesterol, HDL, Female, Genome-Wide Association Study, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide}, issn = {1932-6203}, doi = {10.1371/journal.pone.0109290}, author = {van Leeuwen, Elisabeth M and Smouter, Fran{\c c}oise A S and Kam-Thong, Tony and Karbalai, Nazanin and Smith, Albert V and Harris, Tamara B and Launer, Lenore J and Sitlani, Colleen M and Li, Guo and Brody, Jennifer A and Bis, Joshua C and White, Charles C and Jaiswal, Alok and Oostra, Ben A and Hofman, Albert and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Boerwinkle, Eric and Ballantyne, Christie M and Gudnason, Vilmundur and Psaty, Bruce M and Cupples, L Adrienne and Jarvelin, Marjo-Riitta and Ripatti, Samuli and Isaacs, Aaron and M{\"u}ller-Myhsok, Bertram and Karssen, Lennart C and van Duijn, Cornelia M} } @article {6563, title = {Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations.}, journal = {Am J Hum Genet}, volume = {95}, year = {2014}, month = {2014 Jul 03}, pages = {49-65}, abstract = {

Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 {\texttimes} 10(-8)); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20\% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time.

}, keywords = {Blood Pressure, Genome-Wide Association Study, Humans, Longitudinal Studies, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2014.06.002}, author = {Ganesh, Santhi K and Chasman, Daniel I and Larson, Martin G and Guo, Xiuqing and Verwoert, Germain and Bis, Joshua C and Gu, Xiangjun and Smith, Albert V and Yang, Min-Lee and Zhang, Yan and Ehret, Georg and Rose, Lynda M and Hwang, Shih-Jen and Papanicolau, George J and Sijbrands, Eric J and Rice, Kenneth and Eiriksdottir, Gudny and Pihur, Vasyl and Ridker, Paul M and Vasan, Ramachandran S and Newton-Cheh, Christopher and Raffel, Leslie J and Amin, Najaf and Rotter, Jerome I and Liu, Kiang and Launer, Lenore J and Xu, Ming and Caulfield, Mark and Morrison, Alanna C and Johnson, Andrew D and Vaidya, Dhananjay and Dehghan, Abbas and Li, Guo and Bouchard, Claude and Harris, Tamara B and Zhang, He and Boerwinkle, Eric and Siscovick, David S and Gao, Wei and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Hofman, Albert and Willer, Cristen J and Franco, Oscar H and Huo, Yong and Witteman, Jacqueline C M and Munroe, Patricia B and Gudnason, Vilmundur and Palmas, Walter and van Duijn, Cornelia and Fornage, Myriam and Levy, Daniel and Psaty, Bruce M and Chakravarti, Aravinda} } @article {6599, title = {Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia.}, journal = {Am J Hum Genet}, volume = {95}, year = {2014}, month = {2014 Jul 03}, pages = {24-38}, abstract = {

Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p <= 5 {\texttimes} 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 {\texttimes} 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.

}, keywords = {Adolescent, Adult, Age Factors, Aged, Blood Pressure, Cohort Studies, Humans, Middle Aged, Young Adult}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2014.05.010}, author = {Simino, Jeannette and Shi, Gang and Bis, Joshua C and Chasman, Daniel I and Ehret, Georg B and Gu, Xiangjun and Guo, Xiuqing and Hwang, Shih-Jen and Sijbrands, Eric and Smith, Albert V and Verwoert, Germaine C and Bragg-Gresham, Jennifer L and Cadby, Gemma and Chen, Peng and Cheng, Ching-Yu and Corre, Tanguy and de Boer, Rudolf A and Goel, Anuj and Johnson, Toby and Khor, Chiea-Chuen and Llu{\'\i}s-Ganella, Carla and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Sim, Xueling and S{\~o}ber, Siim and van der Most, Peter J and Verweij, Niek and Zhao, Jing Hua and Amin, Najaf and Boerwinkle, Eric and Bouchard, Claude and Dehghan, Abbas and Eiriksdottir, Gudny and Elosua, Roberto and Franco, Oscar H and Gieger, Christian and Harris, Tamara B and Hercberg, Serge and Hofman, Albert and James, Alan L and Johnson, Andrew D and K{\"a}h{\"o}nen, Mika and Khaw, Kay-Tee and Kutalik, Zolt{\'a}n and Larson, Martin G and Launer, Lenore J and Li, Guo and Liu, Jianjun and Liu, Kiang and Morrison, Alanna C and Navis, Gerjan and Ong, Rick Twee-Hee and Papanicolau, George J and Penninx, Brenda W and Psaty, Bruce M and Raffel, Leslie J and Raitakari, Olli T and Rice, Kenneth and Rivadeneira, Fernando and Rose, Lynda M and Sanna, Serena and Scott, Robert A and Siscovick, David S and Stolk, Ronald P and Uitterlinden, Andr{\'e} G and Vaidya, Dhananjay and van der Klauw, Melanie M and Vasan, Ramachandran S and Vithana, Eranga Nishanthie and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Watkins, Hugh and Young, Terri L and Aung, Tin and Bochud, Murielle and Farrall, Martin and Hartman, Catharina A and Laan, Maris and Lakatta, Edward G and Lehtim{\"a}ki, Terho and Loos, Ruth J F and Lucas, Gavin and Meneton, Pierre and Palmer, Lyle J and Rettig, Rainer and Snieder, Harold and Tai, E Shyong and Teo, Yik-Ying and van der Harst, Pim and Wareham, Nicholas J and Wijmenga, Cisca and Wong, Tien Yin and Fornage, Myriam and Gudnason, Vilmundur and Levy, Daniel and Palmas, Walter and Ridker, Paul M and Rotter, Jerome I and van Duijn, Cornelia M and Witteman, Jacqueline C M and Chakravarti, Aravinda and Rao, Dabeeru C} } @article {6544, title = {Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.}, journal = {Nat Genet}, volume = {46}, year = {2014}, month = {2014 Aug}, pages = {826-36}, abstract = {

The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain \~{}8-10\% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.

}, keywords = {Adult, Aged, Arrhythmias, Cardiac, Calcium Signaling, Death, Sudden, Cardiac, Electrocardiography, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Heart Ventricles, Humans, Long QT Syndrome, Male, Middle Aged, Myocardium, Polymorphism, Single Nucleotide}, issn = {1546-1718}, doi = {10.1038/ng.3014}, author = {Arking, Dan E and Pulit, Sara L and Crotti, Lia and van der Harst, Pim and Munroe, Patricia B and Koopmann, Tamara T and Sotoodehnia, Nona and Rossin, Elizabeth J and Morley, Michael and Wang, Xinchen and Johnson, Andrew D and Lundby, Alicia and Gudbjartsson, Daniel F and Noseworthy, Peter A and Eijgelsheim, Mark and Bradford, Yuki and Tarasov, Kirill V and D{\"o}rr, Marcus and M{\"u}ller-Nurasyid, Martina and Lahtinen, Annukka M and Nolte, Ilja M and Smith, Albert Vernon and Bis, Joshua C and Isaacs, Aaron and Newhouse, Stephen J and Evans, Daniel S and Post, Wendy S and Waggott, Daryl and Lyytik{\"a}inen, Leo-Pekka and Hicks, Andrew A and Eisele, Lewin and Ellinghaus, David and Hayward, Caroline and Navarro, Pau and Ulivi, Sheila and Tanaka, Toshiko and Tester, David J and Chatel, St{\'e}phanie and Gustafsson, Stefan and Kumari, Meena and Morris, Richard W and Naluai, {\r A}sa T and Padmanabhan, Sandosh and Kluttig, Alexander and Strohmer, Bernhard and Panayiotou, Andrie G and Torres, Maria and Knoflach, Michael and Hubacek, Jaroslav A and Slowikowski, Kamil and Raychaudhuri, Soumya and Kumar, Runjun D and Harris, Tamara B and Launer, Lenore J and Shuldiner, Alan R and Alonso, Alvaro and Bader, Joel S and Ehret, Georg and Huang, Hailiang and Kao, W H Linda and Strait, James B and Macfarlane, Peter W and Brown, Morris and Caulfield, Mark J and Samani, Nilesh J and Kronenberg, Florian and Willeit, Johann and Smith, J Gustav and Greiser, Karin H and Meyer Zu Schwabedissen, Henriette and Werdan, Karl and Carella, Massimo and Zelante, Leopoldo and Heckbert, Susan R and Psaty, Bruce M and Rotter, Jerome I and Kolcic, Ivana and Polasek, Ozren and Wright, Alan F and Griffin, Maura and Daly, Mark J and Arnar, David O and Holm, Hilma and Thorsteinsdottir, Unnur and Denny, Joshua C and Roden, Dan M and Zuvich, Rebecca L and Emilsson, Valur and Plump, Andrew S and Larson, Martin G and O{\textquoteright}Donnell, Christopher J and Yin, Xiaoyan and Bobbo, Marco and D{\textquoteright}Adamo, Adamo P and Iorio, Annamaria and Sinagra, Gianfranco and Carracedo, Angel and Cummings, Steven R and Nalls, Michael A and Jula, Antti and Kontula, Kimmo K and Marjamaa, Annukka and Oikarinen, Lasse and Perola, Markus and Porthan, Kimmo and Erbel, Raimund and Hoffmann, Per and J{\"o}ckel, Karl-Heinz and K{\"a}lsch, Hagen and N{\"o}then, Markus M and den Hoed, Marcel and Loos, Ruth J F and Thelle, Dag S and Gieger, Christian and Meitinger, Thomas and Perz, Siegfried and Peters, Annette and Prucha, Hanna and Sinner, Moritz F and Waldenberger, Melanie and de Boer, Rudolf A and Franke, Lude and van der Vleuten, Pieter A and Beckmann, Britt Maria and Martens, Eimo and Bardai, Abdennasser and Hofman, Nynke and Wilde, Arthur A M and Behr, Elijah R and Dalageorgou, Chrysoula and Giudicessi, John R and Medeiros-Domingo, Argelia and Barc, Julien and Kyndt, Florence and Probst, Vincent and Ghidoni, Alice and Insolia, Roberto and Hamilton, Robert M and Scherer, Stephen W and Brandimarto, Jeffrey and Margulies, Kenneth and Moravec, Christine E and del Greco M, Fabiola and Fuchsberger, Christian and O{\textquoteright}Connell, Jeffrey R and Lee, Wai K and Watt, Graham C M and Campbell, Harry and Wild, Sarah H and El Mokhtari, Nour E and Frey, Norbert and Asselbergs, Folkert W and Mateo Leach, Irene and Navis, Gerjan and van den Berg, Maarten P and van Veldhuisen, Dirk J and Kellis, Manolis and Krijthe, Bouwe P and Franco, Oscar H and Hofman, Albert and Kors, Jan A and Uitterlinden, Andr{\'e} G and Witteman, Jacqueline C M and Kedenko, Lyudmyla and Lamina, Claudia and Oostra, Ben A and Abecasis, Goncalo R and Lakatta, Edward G and Mulas, Antonella and Orr{\`u}, Marco and Schlessinger, David and Uda, Manuela and Markus, Marcello R P and V{\"o}lker, Uwe and Snieder, Harold and Spector, Timothy D and Arnl{\"o}v, Johan and Lind, Lars and Sundstr{\"o}m, Johan and Syv{\"a}nen, Ann-Christine and Kivimaki, Mika and K{\"a}h{\"o}nen, Mika and Mononen, Nina and Raitakari, Olli T and Viikari, Jorma S and Adamkova, Vera and Kiechl, Stefan and Brion, Maria and Nicolaides, Andrew N and Paulweber, Bernhard and Haerting, Johannes and Dominiczak, Anna F and Nyberg, Fredrik and Whincup, Peter H and Hingorani, Aroon D and Schott, Jean-Jacques and Bezzina, Connie R and Ingelsson, Erik and Ferrucci, Luigi and Gasparini, Paolo and Wilson, James F and Rudan, Igor and Franke, Andre and M{\"u}hleisen, Thomas W and Pramstaller, Peter P and Lehtim{\"a}ki, Terho J and Paterson, Andrew D and Parsa, Afshin and Liu, Yongmei and van Duijn, Cornelia M and Siscovick, David S and Gudnason, Vilmundur and Jamshidi, Yalda and Salomaa, Veikko and Felix, Stephan B and Sanna, Serena and Ritchie, Marylyn D and Stricker, Bruno H and Stefansson, Kari and Boyer, Laurie A and Cappola, Thomas P and Olsen, Jesper V and Lage, Kasper and Schwartz, Peter J and K{\"a}{\"a}b, Stefan and Chakravarti, Aravinda and Ackerman, Michael J and Pfeufer, Arne and de Bakker, Paul I W and Newton-Cheh, Christopher} } @article {6617, title = {Gene-wide analysis detects two new susceptibility genes for Alzheimer{\textquoteright}s disease.}, journal = {PLoS One}, volume = {9}, year = {2014}, month = {2014}, pages = {e94661}, abstract = {

BACKGROUND: Alzheimer{\textquoteright}s disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer{\textquoteright}s Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer{\textquoteright}s cases and 48,466 controls.

PRINCIPAL FINDINGS: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4{\texttimes}10-6) and 14 (IGHV1-67 p = 7.9{\texttimes}10-8) which indexed novel susceptibility loci.

SIGNIFICANCE: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer{\textquoteright}s disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer{\textquoteright}s disease.

}, keywords = {Alzheimer Disease, Carrier Proteins, Case-Control Studies, Genome-Wide Association Study, Heat-Shock Proteins, Humans, Polymorphism, Single Nucleotide, Receptors, Antigen, B-Cell}, issn = {1932-6203}, doi = {10.1371/journal.pone.0094661}, author = {Escott-Price, Valentina and Bellenguez, C{\'e}line and Wang, Li-San and Choi, Seung-Hoan and Harold, Denise and Jones, Lesley and Holmans, Peter and Gerrish, Amy and Vedernikov, Alexey and Richards, Alexander and DeStefano, Anita L and Lambert, Jean-Charles and Ibrahim-Verbaas, Carla A and Naj, Adam C and Sims, Rebecca and Jun, Gyungah and Bis, Joshua C and Beecham, Gary W and Grenier-Boley, Benjamin and Russo, Giancarlo and Thornton-Wells, Tricia A and Denning, Nicola and Smith, Albert V and Chouraki, Vincent and Thomas, Charlene and Ikram, M Arfan and Zelenika, Diana and Vardarajan, Badri N and Kamatani, Yoichiro and Lin, Chiao-Feng and Schmidt, Helena and Kunkle, Brian and Dunstan, Melanie L and Vronskaya, Maria and Johnson, Andrew D and Ruiz, Agustin and Bihoreau, Marie-Th{\'e}r{\`e}se and Reitz, Christiane and Pasquier, Florence and Hollingworth, Paul and Hanon, Olivier and Fitzpatrick, Annette L and Buxbaum, Joseph D and Campion, Dominique and Crane, Paul K and Baldwin, Clinton and Becker, Tim and Gudnason, Vilmundur and Cruchaga, Carlos and Craig, David and Amin, Najaf and Berr, Claudine and Lopez, Oscar L and De Jager, Philip L and Deramecourt, Vincent and Johnston, Janet A and Evans, Denis and Lovestone, Simon and Letenneur, Luc and Hernandez, Isabel and Rubinsztein, David C and Eiriksdottir, Gudny and Sleegers, Kristel and Goate, Alison M and Fi{\'e}vet, Nathalie and Huentelman, Matthew J and Gill, Michael and Brown, Kristelle and Kamboh, M Ilyas and Keller, Lina and Barberger-Gateau, Pascale and McGuinness, Bernadette and Larson, Eric B and Myers, Amanda J and Dufouil, Carole and Todd, Stephen and Wallon, David and Love, Seth and Rogaeva, Ekaterina and Gallacher, John and George-Hyslop, Peter St and Clarimon, Jordi and Lleo, Alberto and Bayer, Anthony and Tsuang, Debby W and Yu, Lei and Tsolaki, Magda and Boss{\`u}, Paola and Spalletta, Gianfranco and Proitsi, Petra and Collinge, John and Sorbi, Sandro and Garcia, Florentino Sanchez and Fox, Nick C and Hardy, John and Naranjo, Maria Candida Deniz and Bosco, Paolo and Clarke, Robert and Brayne, Carol and Galimberti, Daniela and Scarpini, Elio and Bonuccelli, Ubaldo and Mancuso, Michelangelo and Siciliano, Gabriele and Moebus, Susanne and Mecocci, Patrizia and Zompo, Maria Del and Maier, Wolfgang and Hampel, Harald and Pilotto, Alberto and Frank-Garc{\'\i}a, Ana and Panza, Francesco and Solfrizzi, Vincenzo and Caffarra, Paolo and Nacmias, Benedetta and Perry, William and Mayhaus, Manuel and Lannfelt, Lars and Hakonarson, Hakon and Pichler, Sabrina and Carrasquillo, Minerva M and Ingelsson, Martin and Beekly, Duane and Alvarez, Victoria and Zou, Fanggeng and Valladares, Otto and Younkin, Steven G and Coto, Eliecer and Hamilton-Nelson, Kara L and Gu, Wei and Razquin, Cristina and Pastor, Pau and Mateo, Ignacio and Owen, Michael J and Faber, Kelley M and Jonsson, Palmi V and Combarros, Onofre and O{\textquoteright}Donovan, Michael C and Cantwell, Laura B and Soininen, Hilkka and Blacker, Deborah and Mead, Simon and Mosley, Thomas H and Bennett, David A and Harris, Tamara B and Fratiglioni, Laura and Holmes, Clive and de Bruijn, Renee F A G and Passmore, Peter and Montine, Thomas J and Bettens, Karolien and Rotter, Jerome I and Brice, Alexis and Morgan, Kevin and Foroud, Tatiana M and Kukull, Walter A and Hannequin, Didier and Powell, John F and Nalls, Michael A and Ritchie, Karen and Lunetta, Kathryn L and Kauwe, John S K and Boerwinkle, Eric and Riemenschneider, Matthias and Boada, Merce and Hiltunen, Mikko and Martin, Eden R and Schmidt, Reinhold and Rujescu, Dan and Dartigues, Jean-Fran{\c c}ois and Mayeux, Richard and Tzourio, Christophe and Hofman, Albert and N{\"o}then, Markus M and Graff, Caroline and Psaty, Bruce M and Haines, Jonathan L and Lathrop, Mark and Pericak-Vance, Margaret A and Launer, Lenore J and Van Broeckhoven, Christine and Farrer, Lindsay A and van Duijn, Cornelia M and Ramirez, Alfredo and Seshadri, Sudha and Schellenberg, Gerard D and Amouyel, Philippe and Williams, Julie} } @article {6367, title = {Genome-wide association study for circulating tissue plasminogen activator levels and functional follow-up implicates endothelial STXBP5 and STX2.}, journal = {Arterioscler Thromb Vasc Biol}, volume = {34}, year = {2014}, month = {2014 May}, pages = {1093-101}, abstract = {

OBJECTIVE: Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of plasminogen to plasmin, the major enzyme responsible for endogenous fibrinolysis. In some populations, elevated plasma levels of tPA have been associated with myocardial infarction and other cardiovascular diseases. We conducted a meta-analysis of genome-wide association studies to identify novel correlates of circulating levels of tPA.

APPROACH AND RESULTS: Fourteen cohort studies with tPA measures (N=26 929) contributed to the meta-analysis. Three loci were significantly associated with circulating tPA levels (P<5.0{\texttimes}10(-8)). The first locus is on 6q24.3, with the lead single nucleotide polymorphism (SNP; rs9399599; P=2.9{\texttimes}10(-14)) within STXBP5. The second locus is on 8p11.21. The lead SNP (rs3136739; P=1.3{\texttimes}10(-9)) is intronic to POLB and <200 kb away from the tPA encoding the gene PLAT. We identified a nonsynonymous SNP (rs2020921) in modest linkage disequilibrium with rs3136739 (r(2)=0.50) within exon 5 of PLAT (P=2.0{\texttimes}10(-8)). The third locus is on 12q24.33, with the lead SNP (rs7301826; P=1.0{\texttimes}10(-9)) within intron 7 of STX2. We further found evidence for the association of lead SNPs in STXBP5 and STX2 with expression levels of the respective transcripts. In in vitro cell studies, silencing STXBP5 decreased the release of tPA from vascular endothelial cells, whereas silencing STX2 increased the tPA release. Through an in silico lookup, we found no associations of the 3 lead SNPs with coronary artery disease or stroke.

CONCLUSIONS: We identified 3 loci associated with circulating tPA levels, the PLAT region, STXBP5, and STX2. Our functional studies implicate a novel role for STXBP5 and STX2 in regulating tPA release.

}, keywords = {Aged, Cells, Cultured, Coronary Artery Disease, Endothelial Cells, Europe, Female, Gene Expression Regulation, Gene Silencing, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Middle Aged, Nerve Tissue Proteins, Phenotype, Polymorphism, Single Nucleotide, R-SNARE Proteins, Risk Factors, Stroke, Syntaxin 1, Tissue Plasminogen Activator, Transfection, United States, Up-Regulation}, issn = {1524-4636}, doi = {10.1161/ATVBAHA.113.302088}, author = {Huang, Jie and Huffman, Jennifer E and Yamakuchi, Munekazu and Yamkauchi, Munekazu and Trompet, Stella and Asselbergs, Folkert W and Sabater-Lleal, Maria and Tr{\'e}gou{\"e}t, David-Alexandre and Chen, Wei-Min and Smith, Nicholas L and Kleber, Marcus E and Shin, So-Youn and Becker, Diane M and Tang, Weihong and Dehghan, Abbas and Johnson, Andrew D and Truong, Vinh and Folkersen, Lasse and Yang, Qiong and Oudot-Mellkah, Tiphaine and Buckley, Brendan M and Moore, Jason H and Williams, Frances M K and Campbell, Harry and Silbernagel, G{\"u}nther and Vitart, Veronique and Rudan, Igor and Tofler, Geoffrey H and Navis, Gerjan J and DeStefano, Anita and Wright, Alan F and Chen, Ming-Huei and de Craen, Anton J M and Worrall, Bradford B and Rudnicka, Alicja R and Rumley, Ann and Bookman, Ebony B and Psaty, Bruce M and Chen, Fang and Keene, Keith L and Franco, Oscar H and B{\"o}hm, Bernhard O and Uitterlinden, Andr{\'e} G and Carter, Angela M and Jukema, J Wouter and Sattar, Naveed and Bis, Joshua C and Ikram, Mohammad A and Sale, Mich{\`e}le M and McKnight, Barbara and Fornage, Myriam and Ford, Ian and Taylor, Kent and Slagboom, P Eline and McArdle, Wendy L and Hsu, Fang-Chi and Franco-Cereceda, Anders and Goodall, Alison H and Yanek, Lisa R and Furie, Karen L and Cushman, Mary and Hofman, Albert and Witteman, Jacqueline C M and Folsom, Aaron R and Basu, Saonli and Matijevic, Nena and van Gilst, Wiek H and Wilson, James F and Westendorp, Rudi G J and Kathiresan, Sekar and Reilly, Muredach P and Tracy, Russell P and Polasek, Ozren and Winkelmann, Bernhard R and Grant, Peter J and Hillege, Hans L and Cambien, Francois and Stott, David J and Lowe, Gordon D and Spector, Timothy D and Meigs, James B and M{\"a}rz, Winfried and Eriksson, Per and Becker, Lewis C and Morange, Pierre-Emmanuel and Soranzo, Nicole and Williams, Scott M and Hayward, Caroline and van der Harst, Pim and Hamsten, Anders and Lowenstein, Charles J and Strachan, David P and O{\textquoteright}Donnell, Christopher J} } @article {6600, title = {Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation.}, journal = {Circulation}, volume = {130}, year = {2014}, month = {2014 Oct 7}, pages = {1225-35}, abstract = {

BACKGROUND: Atrial fibrillation (AF) affects >30 million individuals worldwide and is associated with an increased risk of stroke, heart failure, and death. AF is highly heritable, yet the genetic basis for the arrhythmia remains incompletely understood.

METHODS AND RESULTS: To identify new AF-related genes, we used a multifaceted approach, combining large-scale genotyping in 2 ethnically distinct populations, cis-eQTL (expression quantitative trait loci) mapping, and functional validation. Four novel loci were identified in individuals of European descent near the genes NEURL (rs12415501; relative risk [RR]=1.18; 95\% confidence interval [CI], 1.13-1.23; P=6.5{\texttimes}10(-16)), GJA1 (rs13216675; RR=1.10; 95\% CI, 1.06-1.14; P=2.2{\texttimes}10(-8)), TBX5 (rs10507248; RR=1.12; 95\% CI, 1.08-1.16; P=5.7{\texttimes}10(-11)), and CAND2 (rs4642101; RR=1.10; 95\% CI, 1.06-1.14; P=9.8{\texttimes}10(-9)). In Japanese, novel loci were identified near NEURL (rs6584555; RR=1.32; 95\% CI, 1.26-1.39; P=2.0{\texttimes}10(-25)) and CUX2 (rs6490029; RR=1.12; 95\% CI, 1.08-1.16; P=3.9{\texttimes}10(-9)). The top single-nucleotide polymorphisms or their proxies were identified as cis-eQTLs for the genes CAND2 (P=2.6{\texttimes}10(-19)), GJA1 (P=2.66{\texttimes}10(-6)), and TBX5 (P=1.36{\texttimes}10(-5)). Knockdown of the zebrafish orthologs of NEURL and CAND2 resulted in prolongation of the atrial action potential duration (17\% and 45\%, respectively).

CONCLUSIONS: We have identified 5 novel loci for AF. Our results expand the diversity of genetic pathways implicated in AF and provide novel molecular targets for future biological and pharmacological investigation.

}, keywords = {Aged, Animals, Atrial Fibrillation, Chromosome Mapping, Connexin 43, Europe, Female, Gene Knockdown Techniques, Genetic Loci, Genetic Predisposition to Disease, Genotype, Homeodomain Proteins, Humans, Japan, Male, Middle Aged, Muscle Proteins, Nuclear Proteins, Quantitative Trait Loci, Repressor Proteins, T-Box Domain Proteins, Transcription Factors, Ubiquitin-Protein Ligases, Zebrafish, Zebrafish Proteins}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.114.009892}, author = {Sinner, Moritz F and Tucker, Nathan R and Lunetta, Kathryn L and Ozaki, Kouichi and Smith, J Gustav and Trompet, Stella and Bis, Joshua C and Lin, Honghuang and Chung, Mina K and Nielsen, Jonas B and Lubitz, Steven A and Krijthe, Bouwe P and Magnani, Jared W and Ye, Jiangchuan and Gollob, Michael H and Tsunoda, Tatsuhiko and M{\"u}ller-Nurasyid, Martina and Lichtner, Peter and Peters, Annette and Dolmatova, Elena and Kubo, Michiaki and Smith, Jonathan D and Psaty, Bruce M and Smith, Nicholas L and Jukema, J Wouter and Chasman, Daniel I and Albert, Christine M and Ebana, Yusuke and Furukawa, Tetsushi and Macfarlane, Peter W and Harris, Tamara B and Darbar, Dawood and D{\"o}rr, Marcus and Holst, Anders G and Svendsen, Jesper H and Hofman, Albert and Uitterlinden, Andr{\'e} G and Gudnason, Vilmundur and Isobe, Mitsuaki and Malik, Rainer and Dichgans, Martin and Rosand, Jonathan and Van Wagoner, David R and Benjamin, Emelia J and Milan, David J and Melander, Olle and Heckbert, Susan R and Ford, Ian and Liu, Yongmei and Barnard, John and Olesen, Morten S and Stricker, Bruno H C and Tanaka, Toshihiro and K{\"a}{\"a}b, Stefan and Ellinor, Patrick T} } @article {6558, title = {Large multiethnic Candidate Gene Study for C-reactive protein levels: identification of a novel association at CD36 in African Americans.}, journal = {Hum Genet}, volume = {133}, year = {2014}, month = {2014 Aug}, pages = {985-95}, abstract = {

C-reactive protein (CRP) is a heritable biomarker of systemic inflammation and a predictor of cardiovascular disease (CVD). Large-scale genetic association studies for CRP have largely focused on individuals of European descent. We sought to uncover novel genetic variants for CRP in a multiethnic sample using the ITMAT Broad-CARe (IBC) array, a custom 50,000 SNP gene-centric array having dense coverage of over 2,000 candidate CVD genes. We performed analyses on 7,570 African Americans (AA) from the Candidate gene Association Resource (CARe) study and race-combined meta-analyses that included 29,939 additional individuals of European descent from CARe, the Women{\textquoteright}s Health Initiative (WHI) and KORA studies. We observed array-wide significance (p < 2.2 {\texttimes} 10(-6)) for four loci in AA, three of which have been reported previously in individuals of European descent (IL6R, p = 2.0 {\texttimes} 10(-6); CRP, p = 4.2 {\texttimes} 10(-71); APOE, p = 1.6 {\texttimes} 10(-6)). The fourth significant locus, CD36 (p = 1.6 {\texttimes} 10(-6)), was observed at a functional variant (rs3211938) that is extremely rare in individuals of European descent. We replicated the CD36 finding (p = 1.8 {\texttimes} 10(-5)) in an independent sample of 8,041 AA women from WHI; a meta-analysis combining the CARe and WHI AA results at rs3211938 reached genome-wide significance (p = 1.5 {\texttimes} 10(-10)). In the race-combined meta-analyses, 13 loci reached significance, including ten (CRP, TOMM40/APOE/APOC1, HNF1A, LEPR, GCKR, IL6R, IL1RN, NLRP3, HNF4A and BAZ1B/BCL7B) previously associated with CRP, and one (ARNTL) previously reported to be nominally associated with CRP. Two novel loci were also detected (RPS6KB1, p = 2.0 {\texttimes} 10(-6); CD36, p = 1.4 {\texttimes} 10(-6)). These results highlight both shared and unique genetic risk factors for CRP in AA compared to populations of European descent.

}, keywords = {Adult, African Americans, Aged, Biomarkers, C-Reactive Protein, Cardiovascular Diseases, CD36 Antigens, Female, Genetic Loci, Genetic Predisposition to Disease, Genetics, Population, Genome-Wide Association Study, Humans, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1432-1203}, doi = {10.1007/s00439-014-1439-z}, author = {Ellis, Jaclyn and Lange, Ethan M and Li, Jin and Dupuis, Jos{\'e}e and Baumert, Jens and Walston, Jeremy D and Keating, Brendan J and Durda, Peter and Fox, Ervin R and Palmer, Cameron D and Meng, Yan A and Young, Taylor and Farlow, Deborah N and Schnabel, Renate B and Marzi, Carola S and Larkin, Emma and Martin, Lisa W and Bis, Joshua C and Auer, Paul and Ramachandran, Vasan S and Gabriel, Stacey B and Willis, Monte S and Pankow, James S and Papanicolaou, George J and Rotter, Jerome I and Ballantyne, Christie M and Gross, Myron D and Lettre, Guillaume and Wilson, James G and Peters, Ulrike and Koenig, Wolfgang and Tracy, Russell P and Redline, Susan and Reiner, Alex P and Benjamin, Emelia J and Lange, Leslie A} } @article {6789, title = {Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson{\textquoteright}s disease.}, journal = {Nat Genet}, volume = {46}, year = {2014}, month = {2014 Sep}, pages = {989-93}, abstract = {

We conducted a meta-analysis of Parkinson{\textquoteright}s disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinson{\textquoteright}s disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio (OR) = 3.31, 95\% confidence interval (CI) = 2.55-4.30; P = 2 {\texttimes} 10(-16)). We also show six risk loci associated with proximal gene expression or DNA methylation.

}, keywords = {Case-Control Studies, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Parkinson Disease, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1546-1718}, doi = {10.1038/ng.3043}, author = {Nalls, Mike A and Pankratz, Nathan and Lill, Christina M and Do, Chuong B and Hernandez, Dena G and Saad, Mohamad and DeStefano, Anita L and Kara, Eleanna and Bras, Jose and Sharma, Manu and Schulte, Claudia and Keller, Margaux F and Arepalli, Sampath and Letson, Christopher and Edsall, Connor and Stefansson, Hreinn and Liu, Xinmin and Pliner, Hannah and Lee, Joseph H and Cheng, Rong and Ikram, M Arfan and Ioannidis, John P A and Hadjigeorgiou, Georgios M and Bis, Joshua C and Martinez, Maria and Perlmutter, Joel S and Goate, Alison and Marder, Karen and Fiske, Brian and Sutherland, Margaret and Xiromerisiou, Georgia and Myers, Richard H and Clark, Lorraine N and Stefansson, Kari and Hardy, John A and Heutink, Peter and Chen, Honglei and Wood, Nicholas W and Houlden, Henry and Payami, Haydeh and Brice, Alexis and Scott, William K and Gasser, Thomas and Bertram, Lars and Eriksson, Nicholas and Foroud, Tatiana and Singleton, Andrew B} } @article {6574, title = {Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12.}, journal = {Neurology}, volume = {83}, year = {2014}, month = {2014 Aug 19}, pages = {678-85}, abstract = {

OBJECTIVES: To perform a genome-wide association study (GWAS) using the Immunochip array in 3,420 cases of ischemic stroke and 6,821 controls, followed by a meta-analysis with data from more than 14,000 additional ischemic stroke cases.

METHODS: Using the Immunochip, we genotyped 3,420 ischemic stroke cases and 6,821 controls. After imputation we meta-analyzed the results with imputed GWAS data from 3,548 cases and 5,972 controls recruited from the ischemic stroke WTCCC2 study, and with summary statistics from a further 8,480 cases and 56,032 controls in the METASTROKE consortium. A final in silico "look-up" of 2 single nucleotide polymorphisms in 2,522 cases and 1,899 controls was performed. Associations were also examined in 1,088 cases with intracerebral hemorrhage and 1,102 controls.

RESULTS: In an overall analysis of 17,970 cases of ischemic stroke and 70,764 controls, we identified a novel association on chromosome 12q24 (rs10744777, odds ratio [OR] 1.10 [1.07-1.13], p = 7.12 {\texttimes} 10(-11)) with ischemic stroke. The association was with all ischemic stroke rather than an individual stroke subtype, with similar effect sizes seen in different stroke subtypes. There was no association with intracerebral hemorrhage (OR 1.03 [0.90-1.17], p = 0.695).

CONCLUSION: Our results show, for the first time, a genetic risk locus associated with ischemic stroke as a whole, rather than in a subtype-specific manner. This finding was not associated with intracerebral hemorrhage.

}, keywords = {Brain Ischemia, Cerebral Hemorrhage, Chromosomes, Human, Pair 12, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Polymorphism, Single Nucleotide, Risk, Stroke}, issn = {1526-632X}, doi = {10.1212/WNL.0000000000000707}, author = {Kilarski, Laura L and Achterberg, Sefanja and Devan, William J and Traylor, Matthew and Malik, Rainer and Lindgren, Arne and Pare, Guillame and Sharma, Pankaj and Slowik, Agniesczka and Thijs, Vincent and Walters, Matthew and Worrall, Bradford B and Sale, Mich{\`e}le M and Algra, Ale and Kappelle, L Jaap and Wijmenga, Cisca and Norrving, Bo and Sandling, Johanna K and R{\"o}nnblom, Lars and Goris, An and Franke, Andre and Sudlow, Cathie and Rothwell, Peter M and Levi, Christopher and Holliday, Elizabeth G and Fornage, Myriam and Psaty, Bruce and Gretarsdottir, Solveig and Thorsteinsdottir, Unnar and Seshadri, Sudha and Mitchell, Braxton D and Kittner, Steven and Clarke, Robert and Hopewell, Jemma C and Bis, Joshua C and Boncoraglio, Giorgio B and Meschia, James and Ikram, M Arfan and Hansen, Bjorn M and Montaner, Joan and Thorleifsson, Gudmar and Stefanson, Kari and Rosand, Jonathan and de Bakker, Paul I W and Farrall, Martin and Dichgans, Martin and Markus, Hugh S and Bevan, Steve} } @article {6297, title = {Multilocus genetic risk score associates with ischemic stroke in case-control and prospective cohort studies.}, journal = {Stroke}, volume = {45}, year = {2014}, month = {2014 Feb}, pages = {394-402}, abstract = {

BACKGROUND AND PURPOSE: Genome-wide association studies have revealed multiple common variants associated with known risk factors for ischemic stroke (IS). However, their aggregate effect on risk is uncertain. We aimed to generate a multilocus genetic risk score (GRS) for IS based on genome-wide association studies data from clinical-based samples and to establish its external validity in prospective population-based cohorts.

METHODS: Three thousand five hundred forty-eight clinic-based IS cases and 6399 controls from the Wellcome Trust Case Control Consortium 2 were used for derivation of the GRS. Subjects from the METASTROKE consortium served as a replication sample. The validation sample consisted of 22 751 participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. We selected variants that had reached genome-wide significance in previous association studies on established risk factors for IS.

RESULTS: A combined GRS for atrial fibrillation, coronary artery disease, hypertension, and systolic blood pressure significantly associated with IS both in the case-control samples and in the prospective population-based studies. Subjects in the top quintile of the combined GRS had >2-fold increased risk of IS compared with subjects in the lowest quintile. Addition of the combined GRS to a simple model based on sex significantly improved the prediction of IS in the combined clinic-based samples but not in the population-based studies, and there was no significant improvement in net reclassification.

CONCLUSIONS: A multilocus GRS based on common variants for established cardiovascular risk factors was significantly associated with IS both in clinic-based samples and in the general population. However, the improvement in clinical risk prediction was found to be small.

}, keywords = {Adult, Aged, Aged, 80 and over, Atrial Fibrillation, Blood Pressure, Brain Ischemia, Case-Control Studies, Cohort Studies, Coronary Artery Disease, Female, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Humans, Hypertension, Male, Middle Aged, Multilocus Sequence Typing, Polymorphism, Single Nucleotide, Population, Prospective Studies, Reproducibility of Results, Risk Assessment, Risk Factors, Sex Factors, Stroke}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.113.002938}, author = {Malik, Rainer and Bevan, Steve and Nalls, Michael A and Holliday, Elizabeth G and Devan, William J and Cheng, Yu-Ching and Ibrahim-Verbaas, Carla A and Verhaaren, Benjamin F J and Bis, Joshua C and Joon, Aron Y and de Stefano, Anita L and Fornage, Myriam and Psaty, Bruce M and Ikram, M Arfan and Launer, Lenore J and van Duijn, Cornelia M and Sharma, Pankaj and Mitchell, Braxton D and Rosand, Jonathan and Meschia, James F and Levi, Christopher and Rothwell, Peter M and Sudlow, Cathie and Markus, Hugh S and Seshadri, Sudha and Dichgans, Martin} } @article {6667, title = {No evidence for genome-wide interactions on plasma fibrinogen by smoking, alcohol consumption and body mass index: results from meta-analyses of 80,607 subjects.}, journal = {PLoS One}, volume = {9}, year = {2014}, month = {2014}, pages = {e111156}, abstract = {

Plasma fibrinogen is an acute phase protein playing an important role in the blood coagulation cascade having strong associations with smoking, alcohol consumption and body mass index (BMI). Genome-wide association studies (GWAS) have identified a variety of gene regions associated with elevated plasma fibrinogen concentrations. However, little is yet known about how associations between environmental factors and fibrinogen might be modified by genetic variation. Therefore, we conducted large-scale meta-analyses of genome-wide interaction studies to identify possible interactions of genetic variants and smoking status, alcohol consumption or BMI on fibrinogen concentration. The present study included 80,607 subjects of European ancestry from 22 studies. Genome-wide interaction analyses were performed separately in each study for about 2.6 million single nucleotide polymorphisms (SNPs) across the 22 autosomal chromosomes. For each SNP and risk factor, we performed a linear regression under an additive genetic model including an interaction term between SNP and risk factor. Interaction estimates were meta-analysed using a fixed-effects model. No genome-wide significant interaction with smoking status, alcohol consumption or BMI was observed in the meta-analyses. The most suggestive interaction was found for smoking and rs10519203, located in the LOC123688 region on chromosome 15, with a p value of 6.2 {\texttimes} 10(-8). This large genome-wide interaction study including 80,607 participants found no strong evidence of interaction between genetic variants and smoking status, alcohol consumption or BMI on fibrinogen concentrations. Further studies are needed to yield deeper insight in the interplay between environmental factors and gene variants on the regulation of fibrinogen concentrations.

}, keywords = {Alcohol Drinking, Body Mass Index, Fibrinogen, Gene-Environment Interaction, Genomics, Humans, Smoking}, issn = {1932-6203}, doi = {10.1371/journal.pone.0111156}, author = {Baumert, Jens and Huang, Jie and McKnight, Barbara and Sabater-Lleal, Maria and Steri, Maristella and Chu, Audrey Y and Trompet, Stella and Lopez, Lorna M and Fornage, Myriam and Teumer, Alexander and Tang, Weihong and Rudnicka, Alicja R and M{\"a}larstig, Anders and Hottenga, Jouke-Jan and Kavousi, Maryam and Lahti, Jari and Tanaka, Toshiko and Hayward, Caroline and Huffman, Jennifer E and Morange, Pierre-Emmanuel and Rose, Lynda M and Basu, Saonli and Rumley, Ann and Stott, David J and Buckley, Brendan M and de Craen, Anton J M and Sanna, Serena and Masala, Marco and Biffar, Reiner and Homuth, Georg and Silveira, Angela and Sennblad, Bengt and Goel, Anuj and Watkins, Hugh and M{\"u}ller-Nurasyid, Martina and R{\"u}ckerl, Regina and Taylor, Kent and Chen, Ming-Huei and de Geus, Eco J C and Hofman, Albert and Witteman, Jacqueline C M and de Maat, Moniek P M and Palotie, Aarno and Davies, Gail and Siscovick, David S and Kolcic, Ivana and Wild, Sarah H and Song, Jaejoon and McArdle, Wendy L and Ford, Ian and Sattar, Naveed and Schlessinger, David and Grotevendt, Anne and Franzosi, Maria Grazia and Illig, Thomas and Waldenberger, Melanie and Lumley, Thomas and Tofler, Geoffrey H and Willemsen, Gonneke and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and R{\"a}ikk{\"o}nen, Katri and Chasman, Daniel I and Folsom, Aaron R and Lowe, Gordon D and Westendorp, Rudi G J and Slagboom, P Eline and Cucca, Francesco and Wallaschofski, Henri and Strawbridge, Rona J and Seedorf, Udo and Koenig, Wolfgang and Bis, Joshua C and Mukamal, Kenneth J and van Dongen, Jenny and Widen, Elisabeth and Franco, Oscar H and Starr, John M and Liu, Kiang and Ferrucci, Luigi and Polasek, Ozren and Wilson, James F and Oudot-Mellakh, Tiphaine and Campbell, Harry and Navarro, Pau and Bandinelli, Stefania and Eriksson, Johan and Boomsma, Dorret I and Dehghan, Abbas and Clarke, Robert and Hamsten, Anders and Boerwinkle, Eric and Jukema, J Wouter and Naitza, Silvia and Ridker, Paul M and V{\"o}lzke, Henry and Deary, Ian J and Reiner, Alexander P and Tr{\'e}gou{\"e}t, David-Alexandre and O{\textquoteright}Donnell, Christopher J and Strachan, David P and Peters, Annette and Smith, Nicholas L} } @article {6820, title = {Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese.}, journal = {J Am Coll Cardiol}, volume = {63}, year = {2014}, month = {2014 Apr 1}, pages = {1200-10}, abstract = {

OBJECTIVES: This study sought to identify nonredundant atrial fibrillation (AF) genetic susceptibility signals and examine their cumulative relations with AF risk.

BACKGROUND: AF-associated loci span broad genomic regions that may contain multiple susceptibility signals. Whether multiple signals exist at AF loci has not been systematically explored.

METHODS: We performed association testing conditioned on the most significant, independently associated genetic markers at 9 established AF loci using 2 complementary techniques in 64,683 individuals of European ancestry (3,869 incident and 3,302 prevalent AF cases). Genetic risk scores were created and tested for association with AF in Europeans and an independent sample of 11,309 individuals of Japanese ancestry (7,916 prevalent AF cases).

RESULTS: We observed at least 4 distinct AF susceptibility signals on chromosome 4q25 upstream of PITX2, but not at the remaining 8 AF loci. A multilocus score comprised 12 genetic markers demonstrated an estimated 5-fold gradient in AF risk. We observed a similar spectrum of risk associated with these markers in Japanese. Regions containing AF signals on chromosome 4q25 displayed a greater degree of evolutionary conservation than the remainder of the locus, suggesting that they may tag regulatory elements.

CONCLUSIONS: The chromosome 4q25 AF locus is architecturally complex and harbors at least 4 AF susceptibility signals in individuals of European ancestry. Similar polygenic AF susceptibility exists between Europeans and Japanese. Future work is necessary to identify causal variants, determine mechanisms by which associated loci predispose to AF, and explore whether AF susceptibility signals classify individuals at risk for AF and related morbidity.

}, keywords = {Adult, Aged, Aged, 80 and over, Asian Continental Ancestry Group, Atrial Fibrillation, Chromosome Mapping, Chromosomes, Human, Pair 4, Europe, European Continental Ancestry Group, Female, Genetic Markers, Genetic Predisposition to Disease, Homeodomain Proteins, Humans, Japan, Male, Middle Aged, Polymorphism, Single Nucleotide, Transcription Factors}, issn = {1558-3597}, doi = {10.1016/j.jacc.2013.12.015}, author = {Lubitz, Steven A and Lunetta, Kathryn L and Lin, Honghuang and Arking, Dan E and Trompet, Stella and Li, Guo and Krijthe, Bouwe P and Chasman, Daniel I and Barnard, John and Kleber, Marcus E and D{\"o}rr, Marcus and Ozaki, Kouichi and Smith, Albert V and M{\"u}ller-Nurasyid, Martina and Walter, Stefan and Agarwal, Sunil K and Bis, Joshua C and Brody, Jennifer A and Chen, Lin Y and Everett, Brendan M and Ford, Ian and Franco, Oscar H and Harris, Tamara B and Hofman, Albert and K{\"a}{\"a}b, Stefan and Mahida, Saagar and Kathiresan, Sekar and Kubo, Michiaki and Launer, Lenore J and Macfarlane, Peter W and Magnani, Jared W and McKnight, Barbara and McManus, David D and Peters, Annette and Psaty, Bruce M and Rose, Lynda M and Rotter, Jerome I and Silbernagel, Guenther and Smith, Jonathan D and Sotoodehnia, Nona and Stott, David J and Taylor, Kent D and Tomaschitz, Andreas and Tsunoda, Tatsuhiko and Uitterlinden, Andr{\'e} G and Van Wagoner, David R and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Murabito, Joanne M and Sinner, Moritz F and Gudnason, Vilmundur and Felix, Stephan B and M{\"a}rz, Winfried and Chung, Mina and Albert, Christine M and Stricker, Bruno H and Tanaka, Toshihiro and Heckbert, Susan R and Jukema, J Wouter and Alonso, Alvaro and Benjamin, Emelia J and Ellinor, Patrick T} } @article {6591, title = {Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.}, journal = {Nat Commun}, volume = {5}, year = {2014}, month = {2014 Oct 28}, pages = {5068}, abstract = {

Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.

}, keywords = {Cholesterol, LDL, Genome-Wide Association Study, Humans, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Pharmacogenetics, Polymorphism, Single Nucleotide}, issn = {2041-1723}, doi = {10.1038/ncomms6068}, author = {Postmus, Iris and Trompet, Stella and Deshmukh, Harshal A and Barnes, Michael R and Li, Xiaohui and Warren, Helen R and Chasman, Daniel I and Zhou, Kaixin and Arsenault, Benoit J and Donnelly, Louise A and Wiggins, Kerri L and Avery, Christy L and Griffin, Paula and Feng, QiPing and Taylor, Kent D and Li, Guo and Evans, Daniel S and Smith, Albert V and de Keyser, Catherine E and Johnson, Andrew D and de Craen, Anton J M and Stott, David J and Buckley, Brendan M and Ford, Ian and Westendorp, Rudi G J and Slagboom, P Eline and Sattar, Naveed and Munroe, Patricia B and Sever, Peter and Poulter, Neil and Stanton, Alice and Shields, Denis C and O{\textquoteright}Brien, Eoin and Shaw-Hawkins, Sue and Chen, Y-D Ida and Nickerson, Deborah A and Smith, Joshua D and Dub{\'e}, Marie Pierre and Boekholdt, S Matthijs and Hovingh, G Kees and Kastelein, John J P and McKeigue, Paul M and Betteridge, John and Neil, Andrew and Durrington, Paul N and Doney, Alex and Carr, Fiona and Morris, Andrew and McCarthy, Mark I and Groop, Leif and Ahlqvist, Emma and Bis, Joshua C and Rice, Kenneth and Smith, Nicholas L and Lumley, Thomas and Whitsel, Eric A and St{\"u}rmer, Til and Boerwinkle, Eric and Ngwa, Julius S and O{\textquoteright}Donnell, Christopher J and Vasan, Ramachandran S and Wei, Wei-Qi and Wilke, Russell A and Liu, Ching-Ti and Sun, Fangui and Guo, Xiuqing and Heckbert, Susan R and Post, Wendy and Sotoodehnia, Nona and Arnold, Alice M and Stafford, Jeanette M and Ding, Jingzhong and Herrington, David M and Kritchevsky, Stephen B and Eiriksdottir, Gudny and Launer, Leonore J and Harris, Tamara B and Chu, Audrey Y and Giulianini, Franco and MacFadyen, Jean G and Barratt, Bryan J and Nyberg, Fredrik and Stricker, Bruno H and Uitterlinden, Andr{\'e} G and Hofman, Albert and Rivadeneira, Fernando and Emilsson, Valur and Franco, Oscar H and Ridker, Paul M and Gudnason, Vilmundur and Liu, Yongmei and Denny, Joshua C and Ballantyne, Christie M and Rotter, Jerome I and Adrienne Cupples, L and Psaty, Bruce M and Palmer, Colin N A and Tardif, Jean-Claude and Colhoun, Helen M and Hitman, Graham and Krauss, Ronald M and Wouter Jukema, J and Caulfield, Mark J} } @article {6220, title = {Predicting stroke through genetic risk functions: the CHARGE Risk Score Project.}, journal = {Stroke}, volume = {45}, year = {2014}, month = {2014 Feb}, pages = {403-12}, abstract = {

BACKGROUND AND PURPOSE: Beyond the Framingham Stroke Risk Score, prediction of future stroke may improve with a genetic risk score (GRS) based on single-nucleotide polymorphisms associated with stroke and its risk factors.

METHODS: The study includes 4 population-based cohorts with 2047 first incident strokes from 22,720 initially stroke-free European origin participants aged >=55 years, who were followed for up to 20 years. GRSs were constructed with 324 single-nucleotide polymorphisms implicated in stroke and 9 risk factors. The association of the GRS to first incident stroke was tested using Cox regression; the GRS predictive properties were assessed with area under the curve statistics comparing the GRS with age and sex, Framingham Stroke Risk Score models, and reclassification statistics. These analyses were performed per cohort and in a meta-analysis of pooled data. Replication was sought in a case-control study of ischemic stroke.

RESULTS: In the meta-analysis, adding the GRS to the Framingham Stroke Risk Score, age and sex model resulted in a significant improvement in discrimination (all stroke: Δjoint area under the curve=0.016, P=2.3{\texttimes}10(-6); ischemic stroke: Δjoint area under the curve=0.021, P=3.7{\texttimes}10(-7)), although the overall area under the curve remained low. In all the studies, there was a highly significantly improved net reclassification index (P<10(-4)).

CONCLUSIONS: The single-nucleotide polymorphisms associated with stroke and its risk factors result only in a small improvement in prediction of future stroke compared with the classical epidemiological risk factors for stroke.

}, keywords = {Age Factors, Aged, Aged, 80 and over, Area Under Curve, Case-Control Studies, Cohort Studies, European Continental Ancestry Group, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Regression Analysis, Risk Factors, ROC Curve, Sex Factors, Stroke}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.113.003044}, author = {Ibrahim-Verbaas, Carla A and Fornage, Myriam and Bis, Joshua C and Choi, Seung Hoan and Psaty, Bruce M and Meigs, James B and Rao, Madhu and Nalls, Mike and Fontes, Jo{\~a}o D and O{\textquoteright}Donnell, Christopher J and Kathiresan, Sekar and Ehret, Georg B and Fox, Caroline S and Malik, Rainer and Dichgans, Martin and Schmidt, Helena and Lahti, Jari and Heckbert, Susan R and Lumley, Thomas and Rice, Kenneth and Rotter, Jerome I and Taylor, Kent D and Folsom, Aaron R and Boerwinkle, Eric and Rosamond, Wayne D and Shahar, Eyal and Gottesman, Rebecca F and Koudstaal, Peter J and Amin, Najaf and Wieberdink, Renske G and Dehghan, Abbas and Hofman, Albert and Uitterlinden, Andr{\'e} G and DeStefano, Anita L and Debette, Stephanie and Xue, Luting and Beiser, Alexa and Wolf, Philip A and DeCarli, Charles and Ikram, M Arfan and Seshadri, Sudha and Mosley, Thomas H and Longstreth, W T and van Duijn, Cornelia M and Launer, Lenore J} } @article {6618, title = {Sequence analysis of six blood pressure candidate regions in 4,178 individuals: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study.}, journal = {PLoS One}, volume = {9}, year = {2014}, month = {2014}, pages = {e109155}, abstract = {

BACKGROUND: Genome-wide association studies (GWAS) identified multiple loci for blood pressure (BP) and hypertension. Six genes--ATP2B1, CACNB2, CYP17A1, JAG1, PLEKHA7, and SH2B3--were evaluated for sequence variation with large effects on systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), and mean arterial pressure (MAP).

METHODS AND RESULTS: Targeted genomic sequence was determined in 4,178 European ancestry participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Common variants (>=50 minor allele copies) were evaluated individually and rare variants (minor allele frequency, MAF<=1\%) were aggregated by locus. 464 common variants were identified across the 6 genes. An upstream CYP17A1 variant, rs11191416 (MAF = 0.09), was the most significant association for SBP (P = 0.0005); however the association was attenuated (P = 0.0469) after conditioning on the GWAS index single nucleotide polymorphism (SNP). A PLEKHA7 intronic variant was the strongest DBP association (rs12806040, MAF = 0.007, P = 0.0006) and was not in LD (r{\texttwosuperior} = 0.01) with the GWAS SNP. A CACNB2 intronic SNP, rs1571787, was the most significant association with PP (MAF = 0.27, P = 0.0003), but was not independent from the GWAS SNP (r{\texttwosuperior} = 0.34). Three variants (rs6163 and rs743572 in the CYP17A1 region and rs112467382 in PLEKHA7) were associated with BP traits (P<0.001). Rare variation, aggregately assessed in the 6 regions, was not significantly associated with BP measures.

CONCLUSION: Six targeted gene regions, previously identified by GWAS, did not harbor novel variation with large effects on BP in this sample.

}, keywords = {Aging, Blood Pressure, Cohort Studies, Heart, Humans, Sequence Analysis}, issn = {1932-6203}, doi = {10.1371/journal.pone.0109155}, author = {Morrison, Alanna C and Bis, Joshua C and Hwang, Shih-Jen and Ehret, Georg B and Lumley, Thomas and Rice, Kenneth and Muzny, Donna and Gibbs, Richard A and Boerwinkle, Eric and Psaty, Bruce M and Chakravarti, Aravinda and Levy, Daniel} } @article {6547, title = {Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {359-64}, abstract = {

BACKGROUND: Atherosclerosis, the precursor to coronary heart disease and stroke, is characterized by an accumulation of fatty cells in the arterial intimal-medial layers. Common carotid intima media thickness (cIMT) and plaque are subclinical atherosclerosis measures that predict cardiovascular disease events. Previously, genome-wide association studies demonstrated evidence for association with cIMT (SLC17A4) and plaque (PIK3CG).

METHODS AND RESULTS: We sequenced 120 kb around SLC17A4 (6p22.2) and 251 kb around PIK3CG (7q22.3) among 3669 European ancestry participants from the Atherosclerosis Risk in Communities (ARIC) study, Cardiovascular Health Study (CHS), and Framingham Heart Study (FHS) in Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Primary analyses focused on 438 common variants (minor allele frequency >=1\%), which were independently meta-analyzed. A 3{\textquoteright} untranslated region CCDC71L variant (rs2286149), upstream from PIK3CG, was the most significant finding in cIMT (P=0.00033) and plaque (P=0.0004) analyses. A SLC17A4 intronic variant was also associated with cIMT (P=0.008). Both were in low linkage disequilibrium with the genome-wide association study single nucleotide polymorphisms. Gene-based tests including T1 count and sequence kernel association test for rare variants (minor allele frequency <1\%) did not yield statistically significant associations. However, we observed nominal associations for rare variants in CCDC71L and SLC17A3 with cIMT and of the entire 7q22 region with plaque (P=0.05).

CONCLUSIONS: Common and rare variants in PIK3CG and SLC17A4 regions demonstrated modest association with subclinical atherosclerosis traits. Although not conclusive, these findings may help to understand the genetic architecture of regions previously implicated by genome-wide association studies and identify variants within these regions for further investigation in larger samples.

}, keywords = {Aged, Aged, 80 and over, Aging, Atherosclerosis, Class Ib Phosphatidylinositol 3-Kinase, Cohort Studies, European Continental Ancestry Group, Female, Genetic Variation, Genome-Wide Association Study, Genomics, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Sequence Analysis, DNA, Sodium-Phosphate Cotransporter Proteins, Type I}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000116}, author = {Bis, Joshua C and White, Charles C and Franceschini, Nora and Brody, Jennifer and Zhang, Xiaoling and Muzny, Donna and Santibanez, Jireh and Gibbs, Richard and Liu, Xiaoming and Lin, Honghuang and Boerwinkle, Eric and Psaty, Bruce M and North, Kari E and Cupples, L Adrienne and O{\textquoteright}Donnell, Christopher J} } @article {6583, title = {Sequencing of SCN5A identifies rare and common variants associated with cardiac conduction: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {365-73}, abstract = {

BACKGROUND: The cardiac sodium channel SCN5A regulates atrioventricular and ventricular conduction. Genetic variants in this gene are associated with PR and QRS intervals. We sought to characterize further the contribution of rare and common coding variation in SCN5A to cardiac conduction.

METHODS AND RESULTS: In Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study, we performed targeted exonic sequencing of SCN5A (n=3699, European ancestry individuals) and identified 4 common (minor allele frequency >1\%) and 157 rare variants. Common and rare SCN5A coding variants were examined for association with PR and QRS intervals through meta-analysis of European ancestry participants from CHARGE, National Heart, Lung, and Blood Institute{\textquoteright}s Exome Sequencing Project (n=607), and the UK10K (n=1275) and by examining Exome Sequencing Project African ancestry participants (n=972). Rare coding SCN5A variants in aggregate were associated with PR interval in European and African ancestry participants (P=1.3{\texttimes}10(-3)). Three common variants were associated with PR and QRS interval duration among European ancestry participants and one among African ancestry participants. These included 2 well-known missense variants: rs1805124 (H558R) was associated with PR and QRS shortening in European ancestry participants (P=6.25{\texttimes}10(-4) and P=5.2{\texttimes}10(-3), respectively) and rs7626962 (S1102Y) was associated with PR shortening in those of African ancestry (P=2.82{\texttimes}10(-3)). Among European ancestry participants, 2 novel synonymous variants, rs1805126 and rs6599230, were associated with cardiac conduction. Our top signal, rs1805126 was associated with PR and QRS lengthening (P=3.35{\texttimes}10(-7) and P=2.69{\texttimes}10(-4), respectively) and rs6599230 was associated with PR shortening (P=2.67{\texttimes}10(-5)).

CONCLUSIONS: By sequencing SCN5A, we identified novel common and rare coding variants associated with cardiac conduction.

}, keywords = {Adult, Aged, Aged, 80 and over, Aging, Cohort Studies, Female, Genetic Variation, Genome-Wide Association Study, Genomics, Heart Conduction System, Heart Diseases, Humans, Male, Middle Aged, NAV1.5 Voltage-Gated Sodium Channel, Polymorphism, Single Nucleotide, Sequence Analysis, DNA}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000098}, author = {Magnani, Jared W and Brody, Jennifer A and Prins, Bram P and Arking, Dan E and Lin, Honghuang and Yin, Xiaoyan and Liu, Ching-Ti and Morrison, Alanna C and Zhang, Feng and Spector, Tim D and Alonso, Alvaro and Bis, Joshua C and Heckbert, Susan R and Lumley, Thomas and Sitlani, Colleen M and Cupples, L Adrienne and Lubitz, Steven A and Soliman, Elsayed Z and Pulit, Sara L and Newton-Cheh, Christopher and O{\textquoteright}Donnell, Christopher J and Ellinor, Patrick T and Benjamin, Emelia J and Muzny, Donna M and Gibbs, Richard A and Santibanez, Jireh and Taylor, Herman A and Rotter, Jerome I and Lange, Leslie A and Psaty, Bruce M and Jackson, Rebecca and Rich, Stephen S and Boerwinkle, Eric and Jamshidi, Yalda and Sotoodehnia, Nona} } @article {6370, title = {Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants.}, journal = {Stroke}, volume = {45}, year = {2014}, month = {2014 Jan}, pages = {24-36}, abstract = {

BACKGROUND AND PURPOSE: Ischemic stroke (IS) and coronary artery disease (CAD) share several risk factors and each has a substantial heritability. We conducted a genome-wide analysis to evaluate the extent of shared genetic determination of the two diseases.

METHODS: Genome-wide association data were obtained from the METASTROKE, Coronary Artery Disease Genome-wide Replication and Meta-analysis (CARDIoGRAM), and Coronary Artery Disease (C4D) Genetics consortia. We first analyzed common variants reaching a nominal threshold of significance (P<0.01) for CAD for their association with IS and vice versa. We then examined specific overlap across phenotypes for variants that reached a high threshold of significance. Finally, we conducted a joint meta-analysis on the combined phenotype of IS or CAD. Corresponding analyses were performed restricted to the 2167 individuals with the ischemic large artery stroke (LAS) subtype.

RESULTS: Common variants associated with CAD at P<0.01 were associated with a significant excess risk for IS and for LAS and vice versa. Among the 42 known genome-wide significant loci for CAD, 3 and 5 loci were significantly associated with IS and LAS, respectively. In the joint meta-analyses, 15 loci passed genome-wide significance (P<5{\texttimes}10(-8)) for the combined phenotype of IS or CAD and 17 loci passed genome-wide significance for LAS or CAD. Because these loci had prior evidence for genome-wide significance for CAD, we specifically analyzed the respective signals for IS and LAS and found evidence for association at chr12q24/SH2B3 (PIS=1.62{\texttimes}10(-7)) and ABO (PIS=2.6{\texttimes}10(-4)), as well as at HDAC9 (PLAS=2.32{\texttimes}10(-12)), 9p21 (PLAS=3.70{\texttimes}10(-6)), RAI1-PEMT-RASD1 (PLAS=2.69{\texttimes}10(-5)), EDNRA (PLAS=7.29{\texttimes}10(-4)), and CYP17A1-CNNM2-NT5C2 (PLAS=4.9{\texttimes}10(-4)).

CONCLUSIONS: Our results demonstrate substantial overlap in the genetic risk of IS and particularly the LAS subtype with CAD.

}, keywords = {Brain Ischemia, Coronary Artery Disease, Data Interpretation, Statistical, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Phenotype, Polymorphism, Single Nucleotide, Reproducibility of Results, Risk Factors, Stroke}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.113.002707}, author = {Dichgans, Martin and Malik, Rainer and K{\"o}nig, Inke R and Rosand, Jonathan and Clarke, Robert and Gretarsdottir, Solveig and Thorleifsson, Gudmar and Mitchell, Braxton D and Assimes, Themistocles L and Levi, Christopher and O{\textquoteright}Donnell, Christopher J and Fornage, Myriam and Thorsteinsdottir, Unnur and Psaty, Bruce M and Hengstenberg, Christian and Seshadri, Sudha and Erdmann, Jeanette and Bis, Joshua C and Peters, Annette and Boncoraglio, Giorgio B and M{\"a}rz, Winfried and Meschia, James F and Kathiresan, Sekar and Ikram, M Arfan and McPherson, Ruth and Stefansson, Kari and Sudlow, Cathie and Reilly, Muredach P and Thompson, John R and Sharma, Pankaj and Hopewell, Jemma C and Chambers, John C and Watkins, Hugh and Rothwell, Peter M and Roberts, Robert and Markus, Hugh S and Samani, Nilesh J and Farrall, Martin and Schunkert, Heribert} } @article {6578, title = {Strategies to design and analyze targeted sequencing data: cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {335-43}, abstract = {

BACKGROUND: Genome-wide association studies have identified thousands of genetic variants that influence a variety of diseases and health-related quantitative traits. However, the causal variants underlying the majority of genetic associations remain unknown. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study aims to follow up genome-wide association study signals and identify novel associations of the allelic spectrum of identified variants with cardiovascular-related traits.

METHODS AND RESULTS: The study included 4231 participants from 3 CHARGE cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, and the Framingham Heart Study. We used a case-cohort design in which we selected both a random sample of participants and participants with extreme phenotypes for each of 14 traits. We sequenced and analyzed 77 genomic loci, which had previously been associated with >=1 of 14 phenotypes. A total of 52 736 variants were characterized by sequencing and passed our stringent quality control criteria. For common variants (minor allele frequency >=1\%), we performed unweighted regression analyses to obtain P values for associations and weighted regression analyses to obtain effect estimates that accounted for the sampling design. For rare variants, we applied 2 approaches: collapsed aggregate statistics and joint analysis of variants using the sequence kernel association test.

CONCLUSIONS: We sequenced 77 genomic loci in participants from 3 cohorts. We established a set of filters to identify high-quality variants and implemented statistical and bioinformatics strategies to analyze the sequence data and identify potentially functional variants within genome-wide association study loci.

}, keywords = {Adult, Aged, Aged, 80 and over, Aging, Cohort Studies, Female, Genetic Variation, Genome-Wide Association Study, Genomics, Heart Diseases, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Research Design, Sequence Analysis, DNA}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000350}, author = {Lin, Honghuang and Wang, Min and Brody, Jennifer A and Bis, Joshua C and Dupuis, Jos{\'e}e and Lumley, Thomas and McKnight, Barbara and Rice, Kenneth M and Sitlani, Colleen M and Reid, Jeffrey G and Bressler, Jan and Liu, Xiaoming and Davis, Brian C and Johnson, Andrew D and O{\textquoteright}Donnell, Christopher J and Kovar, Christie L and Dinh, Huyen and Wu, Yuanqing and Newsham, Irene and Chen, Han and Broka, Andi and DeStefano, Anita L and Gupta, Mayetri and Lunetta, Kathryn L and Liu, Ching-Ti and White, Charles C and Xing, Chuanhua and Zhou, Yanhua and Benjamin, Emelia J and Schnabel, Renate B and Heckbert, Susan R and Psaty, Bruce M and Muzny, Donna M and Cupples, L Adrienne and Morrison, Alanna C and Boerwinkle, Eric} } @article {6149, title = {Targeted sequencing in candidate genes for atrial fibrillation: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Targeted Sequencing Study.}, journal = {Heart Rhythm}, volume = {11}, year = {2014}, month = {2014 Mar}, pages = {452-7}, abstract = {

BACKGROUND: Genome-wide association studies (GWAS) have identified common genetic variants that predispose to atrial fibrillation (AF). It is unclear whether rare and low-frequency variants in genes implicated by such GWAS confer additional risk of AF.

OBJECTIVE: To study the association of genetic variants with AF at GWAS top loci.

METHODS: In the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Targeted Sequencing Study, we selected and sequenced 77 target gene regions from GWAS loci of complex diseases or traits, including 4 genes hypothesized to be related to AF (PRRX1, CAV1, CAV2, and ZFHX3). Sequencing was performed in participants with (n = 948) and without (n = 3330) AF from the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Massachusetts General Hospital.

RESULTS: One common variant (rs11265611; P = 1.70 {\texttimes} 10(-6)) intronic to IL6R (interleukin-6 receptor gene) was significantly associated with AF after Bonferroni correction (odds ratio 0.70; 95\% confidence interval 0.58-0.85). The variant was not genotyped or imputed by prior GWAS, but it is in linkage disequilibrium (r(2) = .69) with the single-nucleotide polymorphism, with the strongest association with AF so far at this locus (rs4845625). In the rare variant joint analysis, damaging variants within the PRRX1 region showed significant association with AF after Bonferroni correction (P = .01).

CONCLUSIONS: We identified 1 common single-nucleotide polymorphism and 1 gene region that were significantly associated with AF. Future sequencing efforts with larger sample sizes and more comprehensive genome coverage are anticipated to identify additional AF-related variants.

}, keywords = {Aged, Atrial Fibrillation, Female, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Homeodomain Proteins, Humans, Linkage Disequilibrium, Male, Middle Aged, Polymorphism, Single Nucleotide, Receptors, Interleukin-6}, issn = {1556-3871}, doi = {10.1016/j.hrthm.2013.11.012}, author = {Lin, Honghuang and Sinner, Moritz F and Brody, Jennifer A and Arking, Dan E and Lunetta, Kathryn L and Rienstra, Michiel and Lubitz, Steven A and Magnani, Jared W and Sotoodehnia, Nona and McKnight, Barbara and McManus, David D and Boerwinkle, Eric and Psaty, Bruce M and Rotter, Jerome I and Bis, Joshua C and Gibbs, Richard A and Muzny, Donna and Kovar, Christie L and Morrison, Alanna C and Gupta, Mayetri and Folsom, Aaron R and K{\"a}{\"a}b, Stefan and Heckbert, Susan R and Alonso, Alvaro and Ellinor, Patrick T and Benjamin, Emelia J} } @article {6577, title = {Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol.}, journal = {Am J Hum Genet}, volume = {94}, year = {2014}, month = {2014 Feb 06}, pages = {233-45}, abstract = {

Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments.

}, keywords = {Adult, Aged, Apolipoproteins E, Cholesterol, LDL, Cohort Studies, Dyslipidemias, Exome, Female, Follow-Up Studies, Gene Frequency, Genetic Code, Genome-Wide Association Study, Genotype, Humans, Lipase, Male, Middle Aged, Phenotype, Polymorphism, Single Nucleotide, Proprotein Convertase 9, Proprotein Convertases, Receptors, LDL, Sequence Analysis, DNA, Serine Endopeptidases}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2014.01.010}, author = {Lange, Leslie A and Hu, Youna and Zhang, He and Xue, Chenyi and Schmidt, Ellen M and Tang, Zheng-Zheng and Bizon, Chris and Lange, Ethan M and Smith, Joshua D and Turner, Emily H and Jun, Goo and Kang, Hyun Min and Peloso, Gina and Auer, Paul and Li, Kuo-Ping and Flannick, Jason and Zhang, Ji and Fuchsberger, Christian and Gaulton, Kyle and Lindgren, Cecilia and Locke, Adam and Manning, Alisa and Sim, Xueling and Rivas, Manuel A and Holmen, Oddgeir L and Gottesman, Omri and Lu, Yingchang and Ruderfer, Douglas and Stahl, Eli A and Duan, Qing and Li, Yun and Durda, Peter and Jiao, Shuo and Isaacs, Aaron and Hofman, Albert and Bis, Joshua C and Correa, Adolfo and Griswold, Michael E and Jakobsdottir, Johanna and Smith, Albert V and Schreiner, Pamela J and Feitosa, Mary F and Zhang, Qunyuan and Huffman, Jennifer E and Crosby, Jacy and Wassel, Christina L and Do, Ron and Franceschini, Nora and Martin, Lisa W and Robinson, Jennifer G and Assimes, Themistocles L and Crosslin, David R and Rosenthal, Elisabeth A and Tsai, Michael and Rieder, Mark J and Farlow, Deborah N and Folsom, Aaron R and Lumley, Thomas and Fox, Ervin R and Carlson, Christopher S and Peters, Ulrike and Jackson, Rebecca D and van Duijn, Cornelia M and Uitterlinden, Andr{\'e} G and Levy, Daniel and Rotter, Jerome I and Taylor, Herman A and Gudnason, Vilmundur and Siscovick, David S and Fornage, Myriam and Borecki, Ingrid B and Hayward, Caroline and Rudan, Igor and Chen, Y Eugene and Bottinger, Erwin P and Loos, Ruth J F and S{\ae}trom, P{\r a}l and Hveem, Kristian and Boehnke, Michael and Groop, Leif and McCarthy, Mark and Meitinger, Thomas and Ballantyne, Christie M and Gabriel, Stacey B and O{\textquoteright}Donnell, Christopher J and Post, Wendy S and North, Kari E and Reiner, Alexander P and Boerwinkle, Eric and Psaty, Bruce M and Altshuler, David and Kathiresan, Sekar and Lin, Dan-Yu and Jarvik, Gail P and Cupples, L Adrienne and Kooperberg, Charles and Wilson, James G and Nickerson, Deborah A and Abecasis, Goncalo R and Rich, Stephen S and Tracy, Russell P and Willer, Cristen J} } @article {6815, title = {Association of Alzheimer{\textquoteright}s disease GWAS loci with MRI markers of brain aging.}, journal = {Neurobiol Aging}, volume = {36}, year = {2015}, month = {2015 Apr}, pages = {1765.e7-16}, abstract = {

Whether novel risk variants of Alzheimer{\textquoteright}s disease (AD) identified through genome-wide association studies also influence magnetic resonance imaging-based intermediate phenotypes of AD in the general population is unclear. We studied association of 24 AD risk loci with intracranial volume, total brain volume, hippocampal volume (HV), white matter hyperintensity burden, and brain infarcts in a meta-analysis of genetic association studies from large population-based samples (N = 8175-11,550). In single-SNP based tests, AD risk allele of APOE (rs2075650) was associated with smaller HV (p = 0.0054) and CD33 (rs3865444) with smaller intracranial volume (p = 0.0058). In gene-based tests, there was associations of HLA-DRB1 with total brain volume (p = 0.0006) and BIN1 with HV (p = 0.00089). A weighted AD genetic risk score was associated with smaller HV (beta {\textpm} SE = -0.047 {\textpm} 0.013, p = 0.00041), even after excluding the APOE locus (p = 0.029). However, only association of AD genetic risk score with HV, including APOE, was significant after multiple testing correction (including number of independent phenotypes tested). These results suggest that novel AD genetic risk variants may contribute to structural brain aging in nondemented older community persons.

}, keywords = {Aging, Alleles, Alzheimer Disease, Apolipoproteins E, Brain, Female, Genome-Wide Association Study, Hippocampus, Humans, Magnetic Resonance Imaging, Male, Organ Size, Polymorphism, Single Nucleotide, Risk, Sialic Acid Binding Ig-like Lectin 3}, issn = {1558-1497}, doi = {10.1016/j.neurobiolaging.2014.12.028}, author = {Chauhan, Ganesh and Adams, Hieab H H and Bis, Joshua C and Weinstein, Galit and Yu, Lei and T{\"o}glhofer, Anna Maria and Smith, Albert Vernon and van der Lee, Sven J and Gottesman, Rebecca F and Thomson, Russell and Wang, Jing and Yang, Qiong and Niessen, Wiro J and Lopez, Oscar L and Becker, James T and Phan, Thanh G and Beare, Richard J and Arfanakis, Konstantinos and Fleischman, Debra and Vernooij, Meike W and Mazoyer, Bernard and Schmidt, Helena and Srikanth, Velandai and Knopman, David S and Jack, Clifford R and Amouyel, Philippe and Hofman, Albert and DeCarli, Charles and Tzourio, Christophe and van Duijn, Cornelia M and Bennett, David A and Schmidt, Reinhold and Longstreth, William T and Mosley, Thomas H and Fornage, Myriam and Launer, Lenore J and Seshadri, Sudha and Ikram, M Arfan and Debette, Stephanie} } @article {6597, title = {Association of exome sequences with plasma C-reactive protein levels in >9000 participants.}, journal = {Hum Mol Genet}, volume = {24}, year = {2015}, month = {2015 Jan 15}, pages = {559-71}, abstract = {

C-reactive protein (CRP) concentration is a heritable systemic marker of inflammation that is associated with cardiovascular disease risk. Genome-wide association studies have identified CRP-associated common variants associated in \~{}25 genes. Our aims were to apply exome sequencing to (1) assess whether the candidate loci contain rare coding variants associated with CRP levels and (2) perform an exome-wide search for rare variants in novel genes associated with CRP levels. We exome-sequenced 6050 European-Americans (EAs) and 3109 African-Americans (AAs) from the NHLBI-ESP and the CHARGE consortia, and performed association tests of sequence data with measured CRP levels. In single-variant tests across candidate loci, a novel rare (minor allele frequency = 0.16\%) CRP-coding variant (rs77832441-A; p.Thr59Met) was associated with 53\% lower mean CRP levels (P = 2.9 {\texttimes} 10(-6)). We replicated the association of rs77832441 in an exome array analysis of 11 414 EAs (P = 3.0 {\texttimes} 10(-15)). Despite a strong effect on CRP levels, rs77832441 was not associated with inflammation-related phenotypes including coronary heart disease. We also found evidence for an AA-specific association of APOE-ε2 rs7214 with higher CRP levels. At the exome-wide significance level (P < 5.0 {\texttimes} 10(-8)), we confirmed associations for reported common variants of HNF1A, CRP, IL6R and TOMM40-APOE. In gene-based tests, a burden of rare/lower frequency variation in CRP in EAs (P <= 6.8 {\texttimes} 10(-4)) and in retinoic acid receptor-related orphan receptor α (RORA) in AAs (P = 1.7 {\texttimes} 10(-3)) were associated with CRP levels at the candidate gene level (P < 2.0 {\texttimes} 10(-3)). This inquiry did not elucidate novel genes, but instead demonstrated that variants distributed across the allele frequency spectrum within candidate genes contribute to CRP levels.

}, keywords = {Adult, African Americans, C-Reactive Protein, Cardiovascular Diseases, Cohort Studies, European Continental Ancestry Group, Exome, Female, Gene Frequency, Genetic Predisposition to Disease, Genome-Wide Association Study, Hepatocyte Nuclear Factor 1-alpha, Humans, Male, Plasma, Polymorphism, Single Nucleotide, Receptors, Interleukin-6, Risk Factors}, issn = {1460-2083}, doi = {10.1093/hmg/ddu450}, author = {Schick, Ursula M and Auer, Paul L and Bis, Joshua C and Lin, Honghuang and Wei, Peng and Pankratz, Nathan and Lange, Leslie A and Brody, Jennifer and Stitziel, Nathan O and Kim, Daniel S and Carlson, Christopher S and Fornage, Myriam and Haessler, Jeffery and Hsu, Li and Jackson, Rebecca D and Kooperberg, Charles and Leal, Suzanne M and Psaty, Bruce M and Boerwinkle, Eric and Tracy, Russell and Ardissino, Diego and Shah, Svati and Willer, Cristen and Loos, Ruth and Melander, Olle and McPherson, Ruth and Hovingh, Kees and Reilly, Muredach and Watkins, Hugh and Girelli, Domenico and Fontanillas, Pierre and Chasman, Daniel I and Gabriel, Stacey B and Gibbs, Richard and Nickerson, Deborah A and Kathiresan, Sekar and Peters, Ulrike and Dupuis, Jos{\'e}e and Wilson, James G and Rich, Stephen S and Morrison, Alanna C and Benjamin, Emelia J and Gross, Myron D and Reiner, Alex P} } @article {6689, title = {Association of Rare Loss-Of-Function Alleles in HAL, Serum Histidine: Levels and Incident Coronary Heart Disease.}, journal = {Circ Cardiovasc Genet}, volume = {8}, year = {2015}, month = {2015 Apr}, pages = {351-5}, abstract = {

BACKGROUND: Histidine is a semiessential amino acid with antioxidant and anti-inflammatory properties. Few data are available on the associations between genetic variants, histidine levels, and incident coronary heart disease (CHD) in a population-based sample.

METHODS AND RESULTS: By conducting whole exome sequencing on 1152 African Americans in the Atherosclerosis Risk in Communities (ARIC) study and focusing on loss-of-function (LoF) variants, we identified 3 novel rare LoF variants in HAL, a gene that encodes histidine ammonia-lyase in the first step of histidine catabolism. These LoF variants had large effects on blood histidine levels (β=0.26; P=1.2{\texttimes}10(-13)). The positive association with histidine levels was replicated by genotyping an independent sample of 718 ARIC African Americans (minor allele frequency=1\%; P=1.2{\texttimes}10(-4)). In addition, high blood histidine levels were associated with reduced risk of developing incident CHD with an average of 21.5 years of follow-up among African Americans (hazard ratio=0.18; P=1.9{\texttimes}10(-4)). This finding was validated in an independent sample of European Americans from the Framingham Heart Study (FHS) Offspring Cohort. However, LoF variants in HAL were not directly significantly associated with incident CHD after meta-analyzing results from the CHARGE Consortium.

CONCLUSIONS: Three LoF mutations in HAL were associated with increased histidine levels, which in turn were shown to be inversely related to the risk of CHD among both African Americans and European Americans. Future investigations on the association between HAL gene variation and CHD are warranted.

}, keywords = {Adult, African Americans, Alleles, Coronary Disease, European Continental Ancestry Group, Female, Histidine, Histidine Ammonia-Lyase, Humans, Male, Mutation}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.114.000697}, author = {Yu, Bing and Li, Alexander H and Muzny, Donna and Veeraraghavan, Narayanan and de Vries, Paul S and Bis, Joshua C and Musani, Solomon K and Alexander, Danny and Morrison, Alanna C and Franco, Oscar H and Uitterlinden, Andre and Hofman, Albert and Dehghan, Abbas and Wilson, James G and Psaty, Bruce M and Gibbs, Richard and Wei, Peng and Boerwinkle, Eric} } @article {6864, title = {Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease.}, journal = {Neurology}, volume = {84}, year = {2015}, month = {2015 Mar 3}, pages = {918-26}, abstract = {

OBJECTIVES: We hypothesized that common variants in the collagen genes COL4A1/COL4A2 are associated with sporadic forms of cerebral small vessel disease.

METHODS: We conducted meta-analyses of existing genotype data among individuals of European ancestry to determine associations of 1,070 common single nucleotide polymorphisms (SNPs) in the COL4A1/COL4A2 genomic region with the following: intracerebral hemorrhage and its subtypes (deep, lobar) (1,545 cases, 1,485 controls); ischemic stroke and its subtypes (cardioembolic, large vessel disease, lacunar) (12,389 cases, 62,004 controls); and white matter hyperintensities (2,733 individuals with ischemic stroke and 9,361 from population-based cohorts with brain MRI data). We calculated a statistical significance threshold that accounted for multiple testing and linkage disequilibrium between SNPs (p < 0.000084).

RESULTS: Three intronic SNPs in COL4A2 were significantly associated with deep intracerebral hemorrhage (lead SNP odds ratio [OR] 1.29, 95\% confidence interval [CI] 1.14-1.46, p = 0.00003; r(2) > 0.9 between SNPs). Although SNPs associated with deep intracerebral hemorrhage did not reach our significance threshold for association with lacunar ischemic stroke (lead SNP OR 1.10, 95\% CI 1.03-1.18, p = 0.0073), and with white matter hyperintensity volume in symptomatic ischemic stroke patients (lead SNP OR 1.07, 95\% CI 1.01-1.13, p = 0.016), the direction of association was the same. There was no convincing evidence of association with white matter hyperintensities in population-based studies or with non-small vessel disease cerebrovascular phenotypes.

CONCLUSIONS: Our results indicate an association between common variation in the COL4A2 gene and symptomatic small vessel disease, particularly deep intracerebral hemorrhage. These findings merit replication studies, including in ethnic groups of non-European ancestry.

}, keywords = {Cerebral Small Vessel Diseases, Collagen Type IV, Genetic Association Studies, Genetic Variation, Humans, Polymorphism, Single Nucleotide}, issn = {1526-632X}, doi = {10.1212/WNL.0000000000001309}, author = {Rannikmae, Kristiina and Davies, Gail and Thomson, Pippa A and Bevan, Steve and Devan, William J and Falcone, Guido J and Traylor, Matthew and Anderson, Christopher D and Battey, Thomas W K and Radmanesh, Farid and Deka, Ranjan and Woo, Jessica G and Martin, Lisa J and Jimenez-Conde, Jordi and Selim, Magdy and Brown, Devin L and Silliman, Scott L and Kidwell, Chelsea S and Montaner, Joan and Langefeld, Carl D and Slowik, Agnieszka and Hansen, Bjorn M and Lindgren, Arne G and Meschia, James F and Fornage, Myriam and Bis, Joshua C and Debette, Stephanie and Ikram, Mohammad A and Longstreth, Will T and Schmidt, Reinhold and Zhang, Cathy R and Yang, Qiong and Sharma, Pankaj and Kittner, Steven J and Mitchell, Braxton D and Holliday, Elizabeth G and Levi, Christopher R and Attia, John and Rothwell, Peter M and Poole, Deborah L and Boncoraglio, Giorgio B and Psaty, Bruce M and Malik, Rainer and Rost, Natalia and Worrall, Bradford B and Dichgans, Martin and Van Agtmael, Tom and Woo, Daniel and Markus, Hugh S and Seshadri, Sudha and Rosand, Jonathan and Sudlow, Cathie L M} } @article {6875, title = {Drug-Gene Interactions of Antihypertensive Medications and Risk of Incident Cardiovascular Disease: A Pharmacogenomics Study from the CHARGE Consortium.}, journal = {PLoS One}, volume = {10}, year = {2015}, month = {2015}, pages = {e0140496}, abstract = {

BACKGROUND: Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals.

METHODS: Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk of major cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regression models to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases).

RESULTS: Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction > 5.0{\texttimes}10-8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genome-wide association studies (Pinteraction >= 0.01). Our results suggest that there are no major pharmacogenetic influences of common SNPs on the relationship between blood pressure medications and the risk of incident CVD.

}, keywords = {African Americans, Aged, Antihypertensive Agents, Cardiovascular Diseases, European Continental Ancestry Group, Female, Genome-Wide Association Study, Humans, Hypertension, Incidence, Male, Middle Aged, Polymorphism, Single Nucleotide, Treatment Outcome}, issn = {1932-6203}, doi = {10.1371/journal.pone.0140496}, author = {Bis, Joshua C and Sitlani, Colleen and Irvin, Ryan and Avery, Christy L and Smith, Albert Vernon and Sun, Fangui and Evans, Daniel S and Musani, Solomon K and Li, Xiaohui and Trompet, Stella and Krijthe, Bouwe P and Harris, Tamara B and Quibrera, P Miguel and Brody, Jennifer A and Demissie, Serkalem and Davis, Barry R and Wiggins, Kerri L and Tranah, Gregory J and Lange, Leslie A and Sotoodehnia, Nona and Stott, David J and Franco, Oscar H and Launer, Lenore J and St{\"u}rmer, Til and Taylor, Kent D and Cupples, L Adrienne and Eckfeldt, John H and Smith, Nicholas L and Liu, Yongmei and Wilson, James G and Heckbert, Susan R and Buckley, Brendan M and Ikram, M Arfan and Boerwinkle, Eric and Chen, Yii-Der Ida and de Craen, Anton J M and Uitterlinden, Andr{\'e} G and Rotter, Jerome I and Ford, Ian and Hofman, Albert and Sattar, Naveed and Slagboom, P Eline and Westendorp, Rudi G J and Gudnason, Vilmundur and Vasan, Ramachandran S and Lumley, Thomas and Cummings, Steven R and Taylor, Herman A and Post, Wendy and Jukema, J Wouter and Stricker, Bruno H and Whitsel, Eric A and Psaty, Bruce M and Arnett, Donna} } @article {6818, title = {Genes from a translational analysis support a multifactorial nature of white matter hyperintensities.}, journal = {Stroke}, volume = {46}, year = {2015}, month = {2015 Feb}, pages = {341-7}, abstract = {

BACKGROUND AND PURPOSE: White matter hyperintensities (WMH) of presumed vascular origin increase the risk of stroke and dementia. Despite strong WMH heritability, few gene associations have been identified. Relevant experimental models may be informative.

METHODS: We tested the associations between genes that were differentially expressed in brains of young spontaneously hypertensive stroke-prone rats and human WMH (using volume and visual score) in 621 subjects from the Lothian Birth Cohort 1936 (LBC1936). We then attempted replication in 9361 subjects from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE). We also tested the subjects from LBC1936 for previous genome-wide WMH associations found in subjects from CHARGE.

RESULTS: Of 126 spontaneously hypertensive stroke-prone rat genes, 10 were nominally associated with WMH volume or score in subjects from LBC1936, of which 5 (AFP, ALB, GNAI1, RBM8a, and MRPL18) were associated with both WMH volume and score (P<0.05); 2 of the 10 (XPNPEP1, P=6.7{\texttimes}10(-5); FARP1, P=0.024) plus another spontaneously hypertensive stroke-prone rat gene (USMG5, P=0.00014), on chromosomes 10, 13, and 10 respectively, were associated with WMH in subjects from CHARGE. Gene set enrichment showed significant associations for downregulated spontaneously hypertensive stroke-prone rat genes with WMH in humans. In subjects from LBC1936, we replicated CHARGE{\textquoteright}s genome-wide WMH associations on chromosomes 17 (TRIM65 and TRIM47) and, for the first time, 1 (PMF1).

CONCLUSIONS: Despite not passing multiple testing thresholds individually, these genes collectively are relevant to known WMH associations, proposed WMH mechanisms, or dementia: associations with Alzheimer{\textquoteright}s disease, late-life depression, ATP production, osmotic regulation, neurodevelopmental abnormalities, and cognitive impairment. If replicated further, they suggest a multifactorial nature for WMH and argue for more consideration of vascular contributions to dementia.

}, keywords = {Aged, Alzheimer Disease, Animals, Brain, Causality, Dementia, Female, Genome-Wide Association Study, Humans, Leukoencephalopathies, Male, Polymorphism, Single Nucleotide, Rats, Rats, Inbred SHR, Rats, Wistar, Risk Factors, Translational Medical Research, White Matter}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.114.007649}, author = {Lopez, Lorna M and Hill, W David and Harris, Sarah E and Valdes Hernandez, Maria and Munoz Maniega, Susana and Bastin, Mark E and Bailey, Emma and Smith, Colin and McBride, Martin and McClure, John and Graham, Delyth and Dominiczak, Anna and Yang, Qiong and Fornage, Myriam and Ikram, M Arfan and Debette, Stephanie and Launer, Lenore and Bis, Joshua C and Schmidt, Reinhold and Seshadri, Sudha and Porteous, David J and Starr, John and Deary, Ian J and Wardlaw, Joanna M} } @article {6688, title = {Genetic overlap between diagnostic subtypes of ischemic stroke.}, journal = {Stroke}, volume = {46}, year = {2015}, month = {2015 Mar}, pages = {615-9}, abstract = {

BACKGROUND AND PURPOSE: Despite moderate heritability, the phenotypic heterogeneity of ischemic stroke has hampered gene discovery, motivating analyses of diagnostic subtypes with reduced sample sizes. We assessed evidence for a shared genetic basis among the 3 major subtypes: large artery atherosclerosis (LAA), cardioembolism, and small vessel disease (SVD), to inform potential cross-subtype analyses.

METHODS: Analyses used genome-wide summary data for 12 389 ischemic stroke cases (including 2167 LAA, 2405 cardioembolism, and 1854 SVD) and 62 004 controls from the Metastroke consortium. For 4561 cases and 7094 controls, individual-level genotype data were also available. Genetic correlations between subtypes were estimated using linear mixed models and polygenic profile scores. Meta-analysis of a combined LAA-SVD phenotype (4021 cases and 51 976 controls) was performed to identify shared risk alleles.

RESULTS: High genetic correlation was identified between LAA and SVD using linear mixed models (rg=0.96, SE=0.47, P=9{\texttimes}10(-4)) and profile scores (rg=0.72; 95\% confidence interval, 0.52-0.93). Between LAA and cardioembolism and SVD and cardioembolism, correlation was moderate using linear mixed models but not significantly different from zero for profile scoring. Joint meta-analysis of LAA and SVD identified strong association (P=1{\texttimes}10(-7)) for single nucleotide polymorphisms near the opioid receptor μ1 (OPRM1) gene.

CONCLUSIONS: Our results suggest that LAA and SVD, which have been hitherto treated as genetically distinct, may share a substantial genetic component. Combined analyses of LAA and SVD may increase power to identify small-effect alleles influencing shared pathophysiological processes.

}, keywords = {Alleles, Atherosclerosis, Cerebral Small Vessel Diseases, Cohort Studies, Data Interpretation, Statistical, Embolism, Genome-Wide Association Study, Genotype, Humans, Ischemia, Linear Models, Meta-Analysis as Topic, Phenotype, Polymorphism, Single Nucleotide, Stroke}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.114.007930}, author = {Holliday, Elizabeth G and Traylor, Matthew and Malik, Rainer and Bevan, Steve and Falcone, Guido and Hopewell, Jemma C and Cheng, Yu-Ching and Cotlarciuc, Ioana and Bis, Joshua C and Boerwinkle, Eric and Boncoraglio, Giorgio B and Clarke, Robert and Cole, John W and Fornage, Myriam and Furie, Karen L and Ikram, M Arfan and Jannes, Jim and Kittner, Steven J and Lincz, Lisa F and Maguire, Jane M and Meschia, James F and Mosley, Thomas H and Nalls, Mike A and Oldmeadow, Christopher and Parati, Eugenio A and Psaty, Bruce M and Rothwell, Peter M and Seshadri, Sudha and Scott, Rodney J and Sharma, Pankaj and Sudlow, Cathie and Wiggins, Kerri L and Worrall, Bradford B and Rosand, Jonathan and Mitchell, Braxton D and Dichgans, Martin and Markus, Hugh S and Levi, Christopher and Attia, John and Wray, Naomi R} } @article {6682, title = {Genome of The Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels.}, journal = {Nat Commun}, volume = {6}, year = {2015}, month = {2015}, pages = {6065}, abstract = {

Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of The Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 {\texttimes} 10(-4)), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR.

}, keywords = {ATP-Binding Cassette Transporters, Cholesterol, Gene Frequency, Genetic Association Studies, Humans, Mutation, Missense, Netherlands}, issn = {2041-1723}, doi = {10.1038/ncomms7065}, author = {van Leeuwen, Elisabeth M and Karssen, Lennart C and Deelen, Joris and Isaacs, Aaron and Medina-G{\'o}mez, Carolina and Mbarek, Hamdi and Kanterakis, Alexandros and Trompet, Stella and Postmus, Iris and Verweij, Niek and van Enckevort, David J and Huffman, Jennifer E and White, Charles C and Feitosa, Mary F and Bartz, Traci M and Manichaikul, Ani and Joshi, Peter K and Peloso, Gina M and Deelen, Patrick and van Dijk, Freerk and Willemsen, Gonneke and de Geus, Eco J and Milaneschi, Yuri and Penninx, Brenda W J H and Francioli, Laurent C and Menelaou, Androniki and Pulit, Sara L and Rivadeneira, Fernando and Hofman, Albert and Oostra, Ben A and Franco, Oscar H and Mateo Leach, Irene and Beekman, Marian and de Craen, Anton J M and Uh, Hae-Won and Trochet, Holly and Hocking, Lynne J and Porteous, David J and Sattar, Naveed and Packard, Chris J and Buckley, Brendan M and Brody, Jennifer A and Bis, Joshua C and Rotter, Jerome I and Mychaleckyj, Josyf C and Campbell, Harry and Duan, Qing and Lange, Leslie A and Wilson, James F and Hayward, Caroline and Polasek, Ozren and Vitart, Veronique and Rudan, Igor and Wright, Alan F and Rich, Stephen S and Psaty, Bruce M and Borecki, Ingrid B and Kearney, Patricia M and Stott, David J and Adrienne Cupples, L and Jukema, J Wouter and van der Harst, Pim and Sijbrands, Eric J and Hottenga, Jouke-Jan and Uitterlinden, Andr{\'e} G and Swertz, Morris A and van Ommen, Gert-Jan B and de Bakker, Paul I W and Eline Slagboom, P and Boomsma, Dorret I and Wijmenga, Cisca and van Duijn, Cornelia M} } @article {6684, title = {Genome-wide studies of verbal declarative memory in nondemented older people: the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium.}, journal = {Biol Psychiatry}, volume = {77}, year = {2015}, month = {2015 Apr 15}, pages = {749-63}, abstract = {

BACKGROUND: Memory performance in older persons can reflect genetic influences on cognitive function and dementing processes. We aimed to identify genetic contributions to verbal declarative memory in a community setting.

METHODS: We conducted genome-wide association studies for paragraph or word list delayed recall in 19 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, comprising 29,076 dementia- and stroke-free individuals of European descent, aged >=45 years. Replication of suggestive associations (p < 5 {\texttimes} 10(-6)) was sought in 10,617 participants of European descent, 3811 African-Americans, and 1561 young adults.

RESULTS: rs4420638, near APOE, was associated with poorer delayed recall performance in discovery (p = 5.57 {\texttimes} 10(-10)) and replication cohorts (p = 5.65 {\texttimes} 10(-8)). This association was stronger for paragraph than word list delayed recall and in the oldest persons. Two associations with specific tests, in subsets of the total sample, reached genome-wide significance in combined analyses of discovery and replication (rs11074779 [HS3ST4], p = 3.11 {\texttimes} 10(-8), and rs6813517 [SPOCK3], p = 2.58 {\texttimes} 10(-8)) near genes involved in immune response. A genetic score combining 58 independent suggestive memory risk variants was associated with increasing Alzheimer disease pathology in 725 autopsy samples. Association of memory risk loci with gene expression in 138 human hippocampus samples showed cis-associations with WDR48 and CLDN5, both related to ubiquitin metabolism.

CONCLUSIONS: This largest study to date exploring the genetics of memory function in ~40,000 older individuals revealed genome-wide associations and suggested an involvement of immune and ubiquitin pathways.

}, keywords = {Aged, Aged, 80 and over, Aging, Apolipoproteins E, Claudin-5, Cohort Studies, Female, Genome-Wide Association Study, Genotype, Humans, Male, Memory Disorders, Middle Aged, Polymorphism, Single Nucleotide, Proteins, Proteoglycans, Regression Analysis, Sulfotransferases, Verbal Learning}, issn = {1873-2402}, doi = {10.1016/j.biopsych.2014.08.027}, author = {Debette, Stephanie and Ibrahim Verbaas, Carla A and Bressler, Jan and Schuur, Maaike and Smith, Albert and Bis, Joshua C and Davies, Gail and Wolf, Christiane and Gudnason, Vilmundur and Chibnik, Lori B and Yang, Qiong and DeStefano, Anita L and de Quervain, Dominique J F and Srikanth, Velandai and Lahti, Jari and Grabe, Hans J and Smith, Jennifer A and Priebe, Lutz and Yu, Lei and Karbalai, Nazanin and Hayward, Caroline and Wilson, James F and Campbell, Harry and Petrovic, Katja and Fornage, Myriam and Chauhan, Ganesh and Yeo, Robin and Boxall, Ruth and Becker, James and Stegle, Oliver and Mather, Karen A and Chouraki, Vincent and Sun, Qi and Rose, Lynda M and Resnick, Susan and Oldmeadow, Christopher and Kirin, Mirna and Wright, Alan F and Jonsdottir, Maria K and Au, Rhoda and Becker, Albert and Amin, Najaf and Nalls, Mike A and Turner, Stephen T and Kardia, Sharon L R and Oostra, Ben and Windham, Gwen and Coker, Laura H and Zhao, Wei and Knopman, David S and Heiss, Gerardo and Griswold, Michael E and Gottesman, Rebecca F and Vitart, Veronique and Hastie, Nicholas D and Zgaga, Lina and Rudan, Igor and Polasek, Ozren and Holliday, Elizabeth G and Schofield, Peter and Choi, Seung Hoan and Tanaka, Toshiko and An, Yang and Perry, Rodney T and Kennedy, Richard E and Sale, Mich{\`e}le M and Wang, Jing and Wadley, Virginia G and Liewald, David C and Ridker, Paul M and Gow, Alan J and Pattie, Alison and Starr, John M and Porteous, David and Liu, Xuan and Thomson, Russell and Armstrong, Nicola J and Eiriksdottir, Gudny and Assareh, Arezoo A and Kochan, Nicole A and Widen, Elisabeth and Palotie, Aarno and Hsieh, Yi-Chen and Eriksson, Johan G and Vogler, Christian and van Swieten, John C and Shulman, Joshua M and Beiser, Alexa and Rotter, Jerome and Schmidt, Carsten O and Hoffmann, Wolfgang and N{\"o}then, Markus M and Ferrucci, Luigi and Attia, John and Uitterlinden, Andr{\'e} G and Amouyel, Philippe and Dartigues, Jean-Fran{\c c}ois and Amieva, H{\'e}l{\`e}ne and R{\"a}ikk{\"o}nen, Katri and Garcia, Melissa and Wolf, Philip A and Hofman, Albert and Longstreth, W T and Psaty, Bruce M and Boerwinkle, Eric and DeJager, Philip L and Sachdev, Perminder S and Schmidt, Reinhold and Breteler, Monique M B and Teumer, Alexander and Lopez, Oscar L and Cichon, Sven and Chasman, Daniel I and Grodstein, Francine and M{\"u}ller-Myhsok, Bertram and Tzourio, Christophe and Papassotiropoulos, Andreas and Bennett, David A and Ikram, M Arfan and Deary, Ian J and van Duijn, Cornelia M and Launer, Lenore and Fitzpatrick, Annette L and Seshadri, Sudha and Mosley, Thomas H} } @article {6686, title = {Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility.}, journal = {Nat Commun}, volume = {6}, year = {2015}, month = {2015}, pages = {5897}, abstract = {

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4\%) with lower FG (β=-0.09{\textpm}0.01 mmol l(-1), P=3.4 {\texttimes} 10(-12)), T2D risk (OR[95\%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07{\textpm}0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16{\textpm}0.05 mmol l(-1), P=4.3 {\texttimes} 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 {\texttimes} 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20\%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02{\textpm}0.004 mmol l(-1), P=1.3 {\texttimes} 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.

}, keywords = {African Continental Ancestry Group, Blood Glucose, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Exome, Fasting, Genetic Association Studies, Genetic Loci, Genetic Predisposition to Disease, Genetic Variation, Glucagon-Like Peptide-1 Receptor, Glucose-6-Phosphatase, Humans, Insulin, Mutation Rate, Oligonucleotide Array Sequence Analysis, Polymorphism, Single Nucleotide}, issn = {2041-1723}, doi = {10.1038/ncomms6897}, author = {Wessel, Jennifer and Chu, Audrey Y and Willems, Sara M and Wang, Shuai and Yaghootkar, Hanieh and Brody, Jennifer A and Dauriz, Marco and Hivert, Marie-France and Raghavan, Sridharan and Lipovich, Leonard and Hidalgo, Bertha and Fox, Keolu and Huffman, Jennifer E and An, Ping and Lu, Yingchang and Rasmussen-Torvik, Laura J and Grarup, Niels and Ehm, Margaret G and Li, Li and Baldridge, Abigail S and Stan{\v c}{\'a}kov{\'a}, Alena and Abrol, Ravinder and Besse, C{\'e}line and Boland, Anne and Bork-Jensen, Jette and Fornage, Myriam and Freitag, Daniel F and Garcia, Melissa E and Guo, Xiuqing and Hara, Kazuo and Isaacs, Aaron and Jakobsdottir, Johanna and Lange, Leslie A and Layton, Jill C and Li, Man and Hua Zhao, Jing and Meidtner, Karina and Morrison, Alanna C and Nalls, Mike A and Peters, Marjolein J and Sabater-Lleal, Maria and Schurmann, Claudia and Silveira, Angela and Smith, Albert V and Southam, Lorraine and Stoiber, Marcus H and Strawbridge, Rona J and Taylor, Kent D and Varga, Tibor V and Allin, Kristine H and Amin, Najaf and Aponte, Jennifer L and Aung, Tin and Barbieri, Caterina and Bihlmeyer, Nathan A and Boehnke, Michael and Bombieri, Cristina and Bowden, Donald W and Burns, Sean M and Chen, Yuning and Chen, Yii-DerI and Cheng, Ching-Yu and Correa, Adolfo and Czajkowski, Jacek and Dehghan, Abbas and Ehret, Georg B and Eiriksdottir, Gudny and Escher, Stefan A and Farmaki, Aliki-Eleni and Fr{\r a}nberg, Mattias and Gambaro, Giovanni and Giulianini, Franco and Goddard, William A and Goel, Anuj and Gottesman, Omri and Grove, Megan L and Gustafsson, Stefan and Hai, Yang and Hallmans, G{\"o}ran and Heo, Jiyoung and Hoffmann, Per and Ikram, Mohammad K and Jensen, Richard A and J{\o}rgensen, Marit E and J{\o}rgensen, Torben and Karaleftheri, Maria and Khor, Chiea C and Kirkpatrick, Andrea and Kraja, Aldi T and Kuusisto, Johanna and Lange, Ethan M and Lee, I T and Lee, Wen-Jane and Leong, Aaron and Liao, Jiemin and Liu, Chunyu and Liu, Yongmei and Lindgren, Cecilia M and Linneberg, Allan and Malerba, Giovanni and Mamakou, Vasiliki and Marouli, Eirini and Maruthur, Nisa M and Matchan, Angela and McKean-Cowdin, Roberta and McLeod, Olga and Metcalf, Ginger A and Mohlke, Karen L and Muzny, Donna M and Ntalla, Ioanna and Palmer, Nicholette D and Pasko, Dorota and Peter, Andreas and Rayner, Nigel W and Renstrom, Frida and Rice, Ken and Sala, Cinzia F and Sennblad, Bengt and Serafetinidis, Ioannis and Smith, Jennifer A and Soranzo, Nicole and Speliotes, Elizabeth K and Stahl, Eli A and Stirrups, Kathleen and Tentolouris, Nikos and Thanopoulou, Anastasia and Torres, Mina and Traglia, Michela and Tsafantakis, Emmanouil and Javad, Sundas and Yanek, Lisa R and Zengini, Eleni and Becker, Diane M and Bis, Joshua C and Brown, James B and Cupples, L Adrienne and Hansen, Torben and Ingelsson, Erik and Karter, Andrew J and Lorenzo, Carlos and Mathias, Rasika A and Norris, Jill M and Peloso, Gina M and Sheu, Wayne H-H and Toniolo, Daniela and Vaidya, Dhananjay and Varma, Rohit and Wagenknecht, Lynne E and Boeing, Heiner and Bottinger, Erwin P and Dedoussis, George and Deloukas, Panos and Ferrannini, Ele and Franco, Oscar H and Franks, Paul W and Gibbs, Richard A and Gudnason, Vilmundur and Hamsten, Anders and Harris, Tamara B and Hattersley, Andrew T and Hayward, Caroline and Hofman, Albert and Jansson, Jan-H{\r a}kan and Langenberg, Claudia and Launer, Lenore J and Levy, Daniel and Oostra, Ben A and O{\textquoteright}Donnell, Christopher J and O{\textquoteright}Rahilly, Stephen and Padmanabhan, Sandosh and Pankow, James S and Polasek, Ozren and Province, Michael A and Rich, Stephen S and Ridker, Paul M and Rudan, Igor and Schulze, Matthias B and Smith, Blair H and Uitterlinden, Andr{\'e} G and Walker, Mark and Watkins, Hugh and Wong, Tien Y and Zeggini, Eleftheria and Laakso, Markku and Borecki, Ingrid B and Chasman, Daniel I and Pedersen, Oluf and Psaty, Bruce M and Tai, E Shyong and van Duijn, Cornelia M and Wareham, Nicholas J and Waterworth, Dawn M and Boerwinkle, Eric and Kao, W H Linda and Florez, Jose C and Loos, Ruth J F and Wilson, James G and Frayling, Timothy M and Siscovick, David S and Dupuis, Jos{\'e}e and Rotter, Jerome I and Meigs, James B and Scott, Robert A and Goodarzi, Mark O} } @article {6812, title = {Meta-Analysis of Genome-Wide Association Studies Identifies Genetic Risk Factors for Stroke in African Americans.}, journal = {Stroke}, volume = {46}, year = {2015}, month = {2015 Aug}, pages = {2063-8}, abstract = {

BACKGROUND AND PURPOSE: The majority of genome-wide association studies (GWAS) of stroke have focused on European-ancestry populations; however, none has been conducted in African Americans, despite the disproportionately high burden of stroke in this population. The Consortium of Minority Population Genome-Wide Association Studies of Stroke (COMPASS) was established to identify stroke susceptibility loci in minority populations.

METHODS: Using METAL, we conducted meta-analyses of GWAS in 14 746 African Americans (1365 ischemic and 1592 total stroke cases) from COMPASS, and tested genetic variants with P<10(-6) for validation in METASTROKE, a consortium of ischemic stroke genetic studies in European-ancestry populations. We also evaluated stroke loci previously identified in European-ancestry populations.

RESULTS: The 15q21.3 locus linked with lipid levels and hypertension was associated with total stroke (rs4471613; P=3.9{\texttimes}10(-8)) in African Americans. Nominal associations (P<10(-6)) for total or ischemic stroke were observed for 18 variants in or near genes implicated in cell cycle/mRNA presplicing (PTPRG, CDC5L), platelet function (HPS4), blood-brain barrier permeability (CLDN17), immune response (ELTD1, WDFY4, and IL1F10-IL1RN), and histone modification (HDAC9). Two of these loci achieved nominal significance in METASTROKE: 5q35.2 (P=0.03), and 1p31.1 (P=0.018). Four of 7 previously reported ischemic stroke loci (PITX2, HDAC9, CDKN2A/CDKN2B, and ZFHX3) were nominally associated (P<0.05) with stroke in COMPASS.

CONCLUSIONS: We identified a novel genetic variant associated with total stroke in African Americans and found that ischemic stroke loci identified in European-ancestry populations may also be relevant for African Americans. Our findings support investigation of diverse populations to identify and characterize genetic risk factors, and the importance of shared genetic risk across populations.

}, keywords = {African Americans, Case-Control Studies, Cohort Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide, Risk Factors, Stroke}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.115.009044}, author = {Carty, Cara L and Keene, Keith L and Cheng, Yu-Ching and Meschia, James F and Chen, Wei-Min and Nalls, Mike and Bis, Joshua C and Kittner, Steven J and Rich, Stephen S and Tajuddin, Salman and Zonderman, Alan B and Evans, Michele K and Langefeld, Carl D and Gottesman, Rebecca and Mosley, Thomas H and Shahar, Eyal and Woo, Daniel and Yaffe, Kristine and Liu, Yongmei and Sale, Mich{\`e}le M and Dichgans, Martin and Malik, Rainer and Longstreth, W T and Mitchell, Braxton D and Psaty, Bruce M and Kooperberg, Charles and Reiner, Alexander and Worrall, Bradford B and Fornage, Myriam} } @article {6683, title = {Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI.}, journal = {Circ Cardiovasc Genet}, volume = {8}, year = {2015}, month = {2015 Apr}, pages = {398-409}, abstract = {

BACKGROUND: The burden of cerebral white matter hyperintensities (WMH) is associated with an increased risk of stroke, dementia, and death. WMH are highly heritable, but their genetic underpinnings are incompletely characterized. To identify novel genetic variants influencing WMH burden, we conducted a meta-analysis of multiethnic genome-wide association studies.

METHODS AND RESULTS: We included 21 079 middle-aged to elderly individuals from 29 population-based cohorts, who were free of dementia and stroke and were of European (n=17 936), African (n=1943), Hispanic (n=795), and Asian (n=405) descent. WMH burden was quantified on MRI either by a validated automated segmentation method or a validated visual grading scale. Genotype data in each study were imputed to the 1000 Genomes reference. Within each ethnic group, we investigated the relationship between each single-nucleotide polymorphism and WMH burden using a linear regression model adjusted for age, sex, intracranial volume, and principal components of ancestry. A meta-analysis was conducted for each ethnicity separately and for the combined sample. In the European descent samples, we confirmed a previously known locus on chr17q25 (P=2.7{\texttimes}10(-19)) and identified novel loci on chr10q24 (P=1.6{\texttimes}10(-9)) and chr2p21 (P=4.4{\texttimes}10(-8)). In the multiethnic meta-analysis, we identified 2 additional loci, on chr1q22 (P=2.0{\texttimes}10(-8)) and chr2p16 (P=1.5{\texttimes}10(-8)). The novel loci contained genes that have been implicated in Alzheimer disease (chr2p21 and chr10q24), intracerebral hemorrhage (chr1q22), neuroinflammatory diseases (chr2p21), and glioma (chr10q24 and chr2p16).

CONCLUSIONS: We identified 4 novel genetic loci that implicate inflammatory and glial proliferative pathways in the development of WMH in addition to previously proposed ischemic mechanisms.

}, keywords = {Aged, Aged, 80 and over, Chromosomes, Human, Continental Population Groups, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Meta-Analysis as Topic, Middle Aged, Models, Genetic, Stroke, White Matter}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.114.000858}, author = {Verhaaren, Benjamin F J and Debette, Stephanie and Bis, Joshua C and Smith, Jennifer A and Ikram, M Kamran and Adams, Hieab H and Beecham, Ashley H and Rajan, Kumar B and Lopez, Lorna M and Barral, Sandra and van Buchem, Mark A and van der Grond, Jeroen and Smith, Albert V and Hegenscheid, Katrin and Aggarwal, Neelum T and de Andrade, Mariza and Atkinson, Elizabeth J and Beekman, Marian and Beiser, Alexa S and Blanton, Susan H and Boerwinkle, Eric and Brickman, Adam M and Bryan, R Nick and Chauhan, Ganesh and Chen, Christopher P L H and Chouraki, Vincent and de Craen, Anton J M and Crivello, Fabrice and Deary, Ian J and Deelen, Joris and De Jager, Philip L and Dufouil, Carole and Elkind, Mitchell S V and Evans, Denis A and Freudenberger, Paul and Gottesman, Rebecca F and Gu{\dh}nason, Vilmundur and Habes, Mohamad and Heckbert, Susan R and Heiss, Gerardo and Hilal, Saima and Hofer, Edith and Hofman, Albert and Ibrahim-Verbaas, Carla A and Knopman, David S and Lewis, Cora E and Liao, Jiemin and Liewald, David C M and Luciano, Michelle and van der Lugt, Aad and Martinez, Oliver O and Mayeux, Richard and Mazoyer, Bernard and Nalls, Mike and Nauck, Matthias and Niessen, Wiro J and Oostra, Ben A and Psaty, Bruce M and Rice, Kenneth M and Rotter, Jerome I and von Sarnowski, Bettina and Schmidt, Helena and Schreiner, Pamela J and Schuur, Maaike and Sidney, Stephen S and Sigurdsson, Sigurdur and Slagboom, P Eline and Stott, David J M and van Swieten, John C and Teumer, Alexander and T{\"o}glhofer, Anna Maria and Traylor, Matthew and Trompet, Stella and Turner, Stephen T and Tzourio, Christophe and Uh, Hae-Won and Uitterlinden, Andr{\'e} G and Vernooij, Meike W and Wang, Jing J and Wong, Tien Y and Wardlaw, Joanna M and Windham, B Gwen and Wittfeld, Katharina and Wolf, Christiane and Wright, Clinton B and Yang, Qiong and Zhao, Wei and Zijdenbos, Alex and Jukema, J Wouter and Sacco, Ralph L and Kardia, Sharon L R and Amouyel, Philippe and Mosley, Thomas H and Longstreth, W T and DeCarli, Charles C and van Duijn, Cornelia M and Schmidt, Reinhold and Launer, Lenore J and Grabe, Hans J and Seshadri, Sudha S and Ikram, M Arfan and Fornage, Myriam} } @article {6813, title = {Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of common variants.}, journal = {Neurology}, volume = {84}, year = {2015}, month = {2015 May 26}, pages = {2132-45}, abstract = {

OBJECTIVE: To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation.

METHODS: We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping.

RESULTS: We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 {\texttimes} 10(-28) for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 {\texttimes} 10(-20) for the CE score in MO).

CONCLUSIONS: Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype.

}, keywords = {Brain Ischemia, Genome-Wide Association Study, Humans, Migraine with Aura, Migraine without Aura, Stroke}, issn = {1526-632X}, doi = {10.1212/WNL.0000000000001606}, author = {Malik, Rainer and Freilinger, Tobias and Winsvold, Bendik S and Anttila, Verneri and Vander Heiden, Jason and Traylor, Matthew and de Vries, Boukje and Holliday, Elizabeth G and Terwindt, Gisela M and Sturm, Jonathan and Bis, Joshua C and Hopewell, Jemma C and Ferrari, Michel D and Rannikmae, Kristiina and Wessman, Maija and Kallela, Mikko and Kubisch, Christian and Fornage, Myriam and Meschia, James F and Lehtim{\"a}ki, Terho and Sudlow, Cathie and Clarke, Robert and Chasman, Daniel I and Mitchell, Braxton D and Maguire, Jane and Kaprio, Jaakko and Farrall, Martin and Raitakari, Olli T and Kurth, Tobias and Ikram, M Arfan and Reiner, Alex P and Longstreth, W T and Rothwell, Peter M and Strachan, David P and Sharma, Pankaj and Seshadri, Sudha and Quaye, Lydia and Cherkas, Lynn and Sch{\"u}rks, Markus and Rosand, Jonathan and Ligthart, Lannie and Boncoraglio, Giorgio B and Davey Smith, George and van Duijn, Cornelia M and Stefansson, Kari and Worrall, Bradford B and Nyholt, Dale R and Markus, Hugh S and van den Maagdenberg, Arn M J M and Cotsapas, Chris and Zwart, John A and Palotie, Aarno and Dichgans, Martin} } @article {6861, title = {White Matter Lesion Progression: Genome-Wide Search for Genetic Influences.}, journal = {Stroke}, volume = {46}, year = {2015}, month = {2015 Nov}, pages = {3048-57}, abstract = {

BACKGROUND AND PURPOSE: White matter lesion (WML) progression on magnetic resonance imaging is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants associated with WML progression in elderly participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium.

METHODS: Heritability of WML progression was calculated in the Framingham Heart Study. The genome-wide association study included 7773 elderly participants from 10 cohorts. To assess the relative contribution of genetic factors to progression of WML, we compared in 7 cohorts risk models including demographics, vascular risk factors plus single-nucleotide polymorphisms that have been shown to be associated cross-sectionally with WML in the current and previous association studies.

RESULTS: A total of 1085 subjects showed WML progression. The heritability estimate for WML progression was low at 6.5\%, and no single-nucleotide polymorphisms achieved genome-wide significance (P<5{\texttimes}10(-8)). Four loci were suggestive (P<1{\texttimes}10(-5)) of an association with WML progression: 10q24.32 (rs10883817, P=1.46{\texttimes}10(-6)); 12q13.13 (rs4761974, P=8.71{\texttimes}10(-7)); 20p12.1 (rs6135309, P=3.69{\texttimes}10(-6)); and 4p15.31 (rs7664442, P=2.26{\texttimes}10(-6)). Variants that have been previously related to WML explained only 0.8\% to 11.7\% more of the variance in WML progression than age, vascular risk factors, and baseline WML burden.

CONCLUSIONS: Common genetic factors contribute little to the progression of age-related WML in middle-aged and older adults. Future research on determinants of WML progression should focus more on environmental, lifestyle, or host-related biological factors.

}, keywords = {Adult, Aged, Cohort Studies, Disease Progression, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Leukoencephalopathies, Male, Middle Aged, Prospective Studies, White Matter}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.115.009252}, author = {Hofer, Edith and Cavalieri, Margherita and Bis, Joshua C and DeCarli, Charles and Fornage, Myriam and Sigurdsson, Sigurdur and Srikanth, Velandai and Trompet, Stella and Verhaaren, Benjamin F J and Wolf, Christiane and Yang, Qiong and Adams, Hieab H H and Amouyel, Philippe and Beiser, Alexa and Buckley, Brendan M and Callisaya, Michele and Chauhan, Ganesh and de Craen, Anton J M and Dufouil, Carole and van Duijn, Cornelia M and Ford, Ian and Freudenberger, Paul and Gottesman, Rebecca F and Gudnason, Vilmundur and Heiss, Gerardo and Hofman, Albert and Lumley, Thomas and Martinez, Oliver and Mazoyer, Bernard and Moran, Chris and Niessen, Wiro J and Phan, Thanh and Psaty, Bruce M and Satizabal, Claudia L and Sattar, Naveed and Schilling, Sabrina and Shibata, Dean K and Slagboom, P Eline and Smith, Albert and Stott, David J and Taylor, Kent D and Thomson, Russell and T{\"o}glhofer, Anna M and Tzourio, Christophe and van Buchem, Mark and Wang, Jing and Westendorp, Rudi G J and Windham, B Gwen and Vernooij, Meike W and Zijdenbos, Alex and Beare, Richard and Debette, Stephanie and Ikram, M Arfan and Jukema, J Wouter and Launer, Lenore J and Longstreth, W T and Mosley, Thomas H and Seshadri, Sudha and Schmidt, Helena and Schmidt, Reinhold} } @article {7262, title = {52 Genetic Loci Influencing Myocardial~Mass.}, journal = {J Am Coll Cardiol}, volume = {68}, year = {2016}, month = {2016 Sep 27}, pages = {1435-48}, abstract = {

BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death.

OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass.

METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment.

RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p~< 1~{\texttimes} 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67~candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in~vitro and in~vivo.

CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets.

}, issn = {1558-3597}, doi = {10.1016/j.jacc.2016.07.729}, author = {van der Harst, Pim and van Setten, Jessica and Verweij, Niek and Vogler, Georg and Franke, Lude and Maurano, Matthew T and Wang, Xinchen and Mateo Leach, Irene and Eijgelsheim, Mark and Sotoodehnia, Nona and Hayward, Caroline and Sorice, Rossella and Meirelles, Osorio and Lyytik{\"a}inen, Leo-Pekka and Polasek, Ozren and Tanaka, Toshiko and Arking, Dan E and Ulivi, Sheila and Trompet, Stella and M{\"u}ller-Nurasyid, Martina and Smith, Albert V and D{\"o}rr, Marcus and Kerr, Kathleen F and Magnani, Jared W and del Greco M, Fabiola and Zhang, Weihua and Nolte, Ilja M and Silva, Claudia T and Padmanabhan, Sandosh and Tragante, Vinicius and Esko, T{\~o}nu and Abecasis, Goncalo R and Adriaens, Michiel E and Andersen, Karl and Barnett, Phil and Bis, Joshua C and Bodmer, Rolf and Buckley, Brendan M and Campbell, Harry and Cannon, Megan V and Chakravarti, Aravinda and Chen, Lin Y and Delitala, Alessandro and Devereux, Richard B and Doevendans, Pieter A and Dominiczak, Anna F and Ferrucci, Luigi and Ford, Ian and Gieger, Christian and Harris, Tamara B and Haugen, Eric and Heinig, Matthias and Hernandez, Dena G and Hillege, Hans L and Hirschhorn, Joel N and Hofman, Albert and Hubner, Norbert and Hwang, Shih-Jen and Iorio, Annamaria and K{\"a}h{\"o}nen, Mika and Kellis, Manolis and Kolcic, Ivana and Kooner, Ishminder K and Kooner, Jaspal S and Kors, Jan A and Lakatta, Edward G and Lage, Kasper and Launer, Lenore J and Levy, Daniel and Lundby, Alicia and Macfarlane, Peter W and May, Dalit and Meitinger, Thomas and Metspalu, Andres and Nappo, Stefania and Naitza, Silvia and Neph, Shane and Nord, Alex S and Nutile, Teresa and Okin, Peter M and Olsen, Jesper V and Oostra, Ben A and Penninger, Josef M and Pennacchio, Len A and Pers, Tune H and Perz, Siegfried and Peters, Annette and Pinto, Yigal M and Pfeufer, Arne and Pilia, Maria Grazia and Pramstaller, Peter P and Prins, Bram P and Raitakari, Olli T and Raychaudhuri, Soumya and Rice, Ken M and Rossin, Elizabeth J and Rotter, Jerome I and Schafer, Sebastian and Schlessinger, David and Schmidt, Carsten O and Sehmi, Jobanpreet and Sillj{\'e}, Herman H W and Sinagra, Gianfranco and Sinner, Moritz F and Slowikowski, Kamil and Soliman, Elsayed Z and Spector, Timothy D and Spiering, Wilko and Stamatoyannopoulos, John A and Stolk, Ronald P and Strauch, Konstantin and Tan, Sian-Tsung and Tarasov, Kirill V and Trinh, Bosco and Uitterlinden, Andr{\'e} G and van den Boogaard, Malou and van Duijn, Cornelia M and van Gilst, Wiek H and Viikari, Jorma S and Visscher, Peter M and Vitart, Veronique and V{\"o}lker, Uwe and Waldenberger, Melanie and Weichenberger, Christian X and Westra, Harm-Jan and Wijmenga, Cisca and Wolffenbuttel, Bruce H and Yang, Jian and Bezzina, Connie R and Munroe, Patricia B and Snieder, Harold and Wright, Alan F and Rudan, Igor and Boyer, Laurie A and Asselbergs, Folkert W and van Veldhuisen, Dirk J and Stricker, Bruno H and Psaty, Bruce M and Ciullo, Marina and Sanna, Serena and Lehtim{\"a}ki, Terho and Wilson, James F and Bandinelli, Stefania and Alonso, Alvaro and Gasparini, Paolo and Jukema, J Wouter and K{\"a}{\"a}b, Stefan and Gudnason, Vilmundur and Felix, Stephan B and Heckbert, Susan R and de Boer, Rudolf A and Newton-Cheh, Christopher and Hicks, Andrew A and Chambers, John C and Jamshidi, Yalda and Visel, Axel and Christoffels, Vincent M and Isaacs, Aaron and Samani, Nilesh J and de Bakker, Paul I W} } @article {7010, title = {Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia.}, journal = {J Am Coll Cardiol}, volume = {67}, year = {2016}, month = {2016 Jun 7}, pages = {2578-89}, abstract = {

BACKGROUND: Approximately 7\% of American adults have severe hypercholesterolemia (untreated low-density lipoprotein [LDL] cholesterol~>=190 mg/dl), which may be due to familial hypercholesterolemia (FH). Lifelong LDL cholesterol elevations in FH mutation carriers may confer coronary artery disease (CAD) risk beyond that captured by~a~single LDL cholesterol measurement.

OBJECTIVES: This study assessed the prevalence of an FH mutation among those with severe hypercholesterolemia and determined whether CAD risk varies according to mutation status beyond the observed LDL cholesterol level.

METHODS: Three genes causative for FH (LDLR, APOB, and PCSK9) were sequenced in 26,025 participants from 7 case-control studies (5,540 CAD case subjects, 8,577 CAD-free control subjects) and 5 prospective cohort studies (11,908 participants). FH mutations included loss-of-function variants in LDLR, missense mutations in LDLR predicted to be damaging, and variants linked to FH in ClinVar, a clinical genetics database.

RESULTS: Among 20,485 CAD-free control and prospective cohort participants, 1,386 (6.7\%) had LDL cholesterol >=190~mg/dl; of these, only 24 (1.7\%) carried an FH mutation. Within any stratum of observed LDL cholesterol, risk of CAD was higher among FH mutation carriers than noncarriers. Compared with a reference group with LDL cholesterol <130 mg/dl and no mutation, participants with LDL cholesterol~>=190 mg/dl and no FH mutation had a 6-fold higher risk for CAD (odds ratio: 6.0; 95\% confidence interval: 5.2 to 6.9), whereas those with both LDL cholesterol~>=190 mg/dl and~an FH mutation demonstrated a 22-fold increased risk (odds ratio: 22.3; 95\% confidence interval: 10.7 to 53.2). In an analysis of participants with serial lipid measurements over many years, FH mutation carriers had higher cumulative exposure to LDL cholesterol than noncarriers.

CONCLUSIONS: Among participants with LDL cholesterol~>=190 mg/dl, gene sequencing identified an FH mutation in~<2\%. However, for any observed LDL cholesterol, FH mutation carriers had substantially increased risk for CAD.

}, issn = {1558-3597}, doi = {10.1016/j.jacc.2016.03.520}, author = {Khera, Amit V and Won, Hong-Hee and Peloso, Gina M and Lawson, Kim S and Bartz, Traci M and Deng, Xuan and van Leeuwen, Elisabeth M and Natarajan, Pradeep and Emdin, Connor A and Bick, Alexander G and Morrison, Alanna C and Brody, Jennifer A and Gupta, Namrata and Nomura, Akihiro and Kessler, Thorsten and Duga, Stefano and Bis, Joshua C and van Duijn, Cornelia M and Cupples, L Adrienne and Psaty, Bruce and Rader, Daniel J and Danesh, John and Schunkert, Heribert and McPherson, Ruth and Farrall, Martin and Watkins, Hugh and Lander, Eric and Wilson, James G and Correa, Adolfo and Boerwinkle, Eric and Merlini, Piera Angelica and Ardissino, Diego and Saleheen, Danish and Gabriel, Stacey and Kathiresan, Sekar} } @article {7144, title = {Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure.}, journal = {PLoS Genet}, volume = {12}, year = {2016}, month = {2016 May}, pages = {e1006034}, abstract = {

Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinants of mortality in patients with new-onset heart failure, we performed a meta-analysis of genome-wide association studies and follow-up genotyping in independent populations. We identified and replicated an association for a genetic variant on chromosome 5q22 with 36\% increased risk of death in subjects with heart failure (rs9885413, P = 2.7x10-9). We provide evidence from reporter gene assays, computational predictions and epigenomic marks that this polymorphism increases activity of an enhancer region active in multiple human tissues. The polymorphism was further reproducibly associated with a DNA methylation signature in whole blood (P = 4.5x10-40) that also associated with allergic sensitization and expression in blood of the cytokine TSLP (P = 1.1x10-4). Knockdown of the transcription factor predicted to bind the enhancer region (NHLH1) in a human cell line (HEK293) expressing NHLH1 resulted in lower TSLP expression. In addition, we observed evidence of recent positive selection acting on the risk allele in populations of African descent. Our findings provide novel genetic leads to factors that influence mortality in patients with heart failure.

}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1006034}, author = {Smith, J Gustav and Felix, Janine F and Morrison, Alanna C and Kalogeropoulos, Andreas and Trompet, Stella and Wilk, Jemma B and Gidl{\"o}f, Olof and Wang, Xinchen and Morley, Michael and Mendelson, Michael and Joehanes, Roby and Ligthart, Symen and Shan, Xiaoyin and Bis, Joshua C and Wang, Ying A and Sj{\"o}gren, Marketa and Ngwa, Julius and Brandimarto, Jeffrey and Stott, David J and Aguilar, David and Rice, Kenneth M and Sesso, Howard D and Demissie, Serkalem and Buckley, Brendan M and Taylor, Kent D and Ford, Ian and Yao, Chen and Liu, Chunyu and Sotoodehnia, Nona and van der Harst, Pim and Stricker, Bruno H Ch and Kritchevsky, Stephen B and Liu, Yongmei and Gaziano, J Michael and Hofman, Albert and Moravec, Christine S and Uitterlinden, Andr{\'e} G and Kellis, Manolis and van Meurs, Joyce B and Margulies, Kenneth B and Dehghan, Abbas and Levy, Daniel and Olde, Bj{\"o}rn and Psaty, Bruce M and Cupples, L Adrienne and Jukema, J Wouter and Djouss{\'e}, Luc and Franco, Oscar H and Boerwinkle, Eric and Boyer, Laurie A and Newton-Cheh, Christopher and Butler, Javed and Vasan, Ramachandran S and Cappola, Thomas P and Smith, Nicholas L} } @article {7349, title = {DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases.}, journal = {Genome Biol}, volume = {17}, year = {2016}, month = {2016 Dec 12}, pages = {255}, abstract = {

BACKGROUND: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation.

RESULTS: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 {\texttimes} 10(-7)) in the discovery panel of European ancestry and replicated (P < 2.29 {\texttimes} 10(-4)) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16\%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 {\texttimes} 10(-5)), ten (17\%) CpG sites were associated with a nearby genetic variant (P < 2.50 {\texttimes} 10(-3)), and 51 (88\%) were also associated with at least one related cardiometabolic entity (P < 9.58 {\texttimes} 10(-5)). An additive weighted score of replicated CpG sites accounted for up to 6\% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants.

CONCLUSION: We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.

}, issn = {1474-760X}, doi = {10.1186/s13059-016-1119-5}, author = {Ligthart, Symen and Marzi, Carola and Aslibekyan, Stella and Mendelson, Michael M and Conneely, Karen N and Tanaka, Toshiko and Colicino, Elena and Waite, Lindsay L and Joehanes, Roby and Guan, Weihua and Brody, Jennifer A and Elks, Cathy and Marioni, Riccardo and Jhun, Min A and Agha, Golareh and Bressler, Jan and Ward-Caviness, Cavin K and Chen, Brian H and Huan, Tianxiao and Bakulski, Kelly and Salfati, Elias L and Fiorito, Giovanni and Wahl, Simone and Schramm, Katharina and Sha, Jin and Hernandez, Dena G and Just, Allan C and Smith, Jennifer A and Sotoodehnia, Nona and Pilling, Luke C and Pankow, James S and Tsao, Phil S and Liu, Chunyu and Zhao, Wei and Guarrera, Simonetta and Michopoulos, Vasiliki J and Smith, Alicia K and Peters, Marjolein J and Melzer, David and Vokonas, Pantel and Fornage, Myriam and Prokisch, Holger and Bis, Joshua C and Chu, Audrey Y and Herder, Christian and Grallert, Harald and Yao, Chen and Shah, Sonia and McRae, Allan F and Lin, Honghuang and Horvath, Steve and Fallin, Daniele and Hofman, Albert and Wareham, Nicholas J and Wiggins, Kerri L and Feinberg, Andrew P and Starr, John M and Visscher, Peter M and Murabito, Joanne M and Kardia, Sharon L R and Absher, Devin M and Binder, Elisabeth B and Singleton, Andrew B and Bandinelli, Stefania and Peters, Annette and Waldenberger, Melanie and Matullo, Giuseppe and Schwartz, Joel D and Demerath, Ellen W and Uitterlinden, Andr{\'e} G and van Meurs, Joyce B J and Franco, Oscar H and Chen, Yii-Der Ida and Levy, Daniel and Turner, Stephen T and Deary, Ian J and Ressler, Kerry J and Dupuis, Jos{\'e}e and Ferrucci, Luigi and Ong, Ken K and Assimes, Themistocles L and Boerwinkle, Eric and Koenig, Wolfgang and Arnett, Donna K and Baccarelli, Andrea A and Benjamin, Emelia J and Dehghan, Abbas} } @article {7185, title = {Evaluation of a Genetic Risk Score to Improve Risk Prediction for Alzheimer{\textquoteright}s Disease.}, journal = {J Alzheimers Dis}, volume = {53}, year = {2016}, month = {2016 Jun 18}, pages = {921-32}, abstract = {

Effective prevention of Alzheimer{\textquoteright}s disease (AD) requires the development of risk prediction tools permitting preclinical intervention. We constructed a genetic risk score (GRS) comprising common genetic variants associated with AD, evaluated its association with incident AD and assessed its capacity to improve risk prediction over traditional models based on age, sex, education, and APOEɛ4. In eight prospective cohorts included in the International Genomics of Alzheimer{\textquoteright}s Project (IGAP), we derived weighted sum of risk alleles from the 19 top SNPs reported by the IGAP GWAS in participants aged 65 and older without prevalent dementia. Hazard ratios (HR) of incident AD were estimated in Cox models. Improvement in risk prediction was measured by the difference in C-index (Δ-C), the integrated discrimination improvement (IDI) and continuous net reclassification improvement (NRI>0). Overall, 19,687 participants at risk were included, of whom 2,782 developed AD. The GRS was associated with a 17\% increase in AD risk (pooled HR = 1.17; 95\% CI =   [1.13-1.21] per standard deviation increase in GRS; p-value =  2.86{\texttimes}10-16). This association was stronger among persons with at least one APOEɛ4 allele (HRGRS = 1.24; 95\% CI =   [1.15-1.34]) than in others (HRGRS = 1.13; 95\% CI =   [1.08-1.18]; pinteraction = 3.45{\texttimes}10-2). Risk prediction after seven years of follow-up showed a small improvement when adding the GRS to age, sex, APOEɛ4, and education (Δ-Cindex =  0.0043 [0.0019-0.0067]). Similar patterns were observed for IDI and NRI>0. In conclusion, a risk score incorporating common genetic variation outside the APOEɛ4 locus improved AD risk prediction and may facilitate risk stratification for prevention trials.

}, issn = {1875-8908}, doi = {10.3233/JAD-150749}, author = {Chouraki, Vincent and Reitz, Christiane and Maury, Fleur and Bis, Joshua C and Bellenguez, C{\'e}line and Yu, Lei and Jakobsdottir, Johanna and Mukherjee, Shubhabrata and Adams, Hieab H and Choi, Seung Hoan and Larson, Eric B and Fitzpatrick, Annette and Uitterlinden, Andr{\'e} G and De Jager, Philip L and Hofman, Albert and Gudnason, Vilmundur and Vardarajan, Badri and Ibrahim-Verbaas, Carla and van der Lee, Sven J and Lopez, Oscar and Dartigues, Jean-Fran{\c c}ois and Berr, Claudine and Amouyel, Philippe and Bennett, David A and van Duijn, Cornelia and DeStefano, Anita L and Launer, Lenore J and Ikram, M Arfan and Crane, Paul K and Lambert, Jean-Charles and Mayeux, Richard and Seshadri, Sudha} } @article {7259, title = {Fine-mapping, novel loci identification, and SNP association transferability in a genome-wide association study of QRS duration in African Americans.}, journal = {Hum Mol Genet}, year = {2016}, month = {2016 Aug 29}, abstract = {

The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 {\texttimes} 10(-14)) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 {\texttimes} 10(-4)). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 {\texttimes} 10(-8)) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 {\texttimes} 10(-9)). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 {\texttimes} 10(-7)), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddw284}, author = {Evans, Daniel S and Avery, Christy L and Nalls, Mike A and Li, Guo and Barnard, John and Smith, Erin N and Tanaka, Toshiko and Butler, Anne M and Buxbaum, Sarah G and Alonso, Alvaro and Arking, Dan E and Berenson, Gerald S and Bis, Joshua C and Buyske, Steven and Carty, Cara L and Chen, Wei and Chung, Mina K and Cummings, Steven R and Deo, Rajat and Eaton, Charles B and Fox, Ervin R and Heckbert, Susan R and Heiss, Gerardo and Hindorff, Lucia A and Hsueh, Wen-Chi and Isaacs, Aaron and Jamshidi, Yalda and Kerr, Kathleen F and Liu, Felix and Liu, Yongmei and Lohman, Kurt K and Magnani, Jared W and Maher, Joseph F and Mehra, Reena and Meng, Yan A and Musani, Solomon K and Newton-Cheh, Christopher and North, Kari E and Psaty, Bruce M and Redline, Susan and Rotter, Jerome I and Schnabel, Renate B and Schork, Nicholas J and Shohet, Ralph V and Singleton, Andrew B and Smith, Jonathan D and Soliman, Elsayed Z and Srinivasan, Sathanur R and Taylor, Herman A and Van Wagoner, David R and Wilson, James G and Young, Taylor and Zhang, Zhu-Ming and Zonderman, Alan B and Evans, Michele K and Ferrucci, Luigi and Murray, Sarah S and Tranah, Gregory J and Whitsel, Eric A and Reiner, Alex P and Sotoodehnia, Nona} } @article {7254, title = {Genetic Variants Associated with Circulating Parathyroid Hormone.}, journal = {J Am Soc Nephrol}, year = {2016}, month = {2016 Dec 07}, abstract = {

Parathyroid hormone (PTH) is a primary calcium regulatory hormone. Elevated serum PTH concentrations in primary and secondary hyperparathyroidism have been associated with bone disease, hypertension, and in some studies, cardiovascular mortality. Genetic causes of variation in circulating PTH concentrations are incompletely understood. We performed a genome-wide association study of serum PTH concentrations among 29,155 participants of European ancestry from 13 cohort studies (n=22,653 and n=6502 in discovery and replication analyses, respectively). We evaluated the association of single nucleotide polymorphisms (SNPs) with natural log-transformed PTH concentration adjusted for age, sex, season, study site, and principal components of ancestry. We discovered associations of SNPs from five independent regions with serum PTH concentration, including the strongest association with rs6127099 upstream of CYP24A1 (P=4.2 {\texttimes} 10(-53)), a gene that encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-dihydroxyvitamin D. Each additional copy of the minor allele at this SNP associated with 7\% higher serum PTH concentration. The other SNPs associated with serum PTH concentration included rs4074995 within RGS14 (P=6.6 {\texttimes} 10(-17)), rs219779 adjacent to CLDN14 (P=3.5 {\texttimes} 10(-16)), rs4443100 near RTDR1 (P=8.7 {\texttimes} 10(-9)), and rs73186030 near CASR (P=4.8 {\texttimes} 10(-8)). Of these five SNPs, rs6127099, rs4074995, and rs219779 replicated. Thus, common genetic variants located near genes involved in vitamin D metabolism and calcium and renal phosphate transport associated with differences in circulating PTH concentrations. Future studies could identify the causal variants at these loci, and the clinical and functional relevance of these variants should be pursued.

}, issn = {1533-3450}, doi = {10.1681/ASN.2016010069}, author = {Robinson-Cohen, Cassianne and Lutsey, Pamela L and Kleber, Marcus E and Nielson, Carrie M and Mitchell, Braxton D and Bis, Joshua C and Eny, Karen M and Portas, Laura and Eriksson, Joel and Lorentzon, Mattias and Koller, Daniel L and Milaneschi, Yuri and Teumer, Alexander and Pilz, Stefan and Nethander, Maria and Selvin, Elizabeth and Tang, Weihong and Weng, Lu-Chen and Wong, Hoi Suen and Lai, Dongbing and Peacock, Munro and Hannemann, Anke and V{\"o}lker, Uwe and Homuth, Georg and Nauk, Matthias and Murgia, Federico and Pattee, Jack W and Orwoll, Eric and Zmuda, Joseph M and Riancho, Jose Antonio and Wolf, Myles and Williams, Frances and Penninx, Brenda and Econs, Michael J and Ryan, Kathleen A and Ohlsson, Claes and Paterson, Andrew D and Psaty, Bruce M and Siscovick, David S and Rotter, Jerome I and Pirastu, Mario and Streeten, Elizabeth and M{\"a}rz, Winfried and Fox, Caroline and Coresh, Josef and Wallaschofski, Henri and Pankow, James S and de Boer, Ian H and Kestenbaum, Bryan} } @article {6991, title = {Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near HABP2.}, journal = {Stroke}, volume = {47}, year = {2016}, month = {2016 Feb}, pages = {307-16}, abstract = {

BACKGROUND AND PURPOSE: Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years.

METHODS: The discovery stage of our genome-wide association studies included 4505 cases and 21 968 controls of European, South-Asian, and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5{\texttimes}10(-6) and performed in silico association analyses in an independent sample of <=1003 cases and 7745 controls.

RESULTS: One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5{\texttimes}10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2.

CONCLUSIONS: HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke.

}, keywords = {Adult, African Continental Ancestry Group, Age of Onset, Aged, Asian Continental Ancestry Group, Brain Ischemia, Chromosomes, Human, Pair 10, Computer Simulation, DNA, Intergenic, European Continental Ancestry Group, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Middle Aged, Odds Ratio, Polymorphism, Single Nucleotide, Serine Endopeptidases, Stroke}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.115.011328}, author = {Cheng, Yu-Ching and Stanne, Tara M and Giese, Anne-Katrin and Ho, Weang Kee and Traylor, Matthew and Amouyel, Philippe and Holliday, Elizabeth G and Malik, Rainer and Xu, Huichun and Kittner, Steven J and Cole, John W and O{\textquoteright}Connell, Jeffrey R and Danesh, John and Rasheed, Asif and Zhao, Wei and Engelter, Stefan and Grond-Ginsbach, Caspar and Kamatani, Yoichiro and Lathrop, Mark and Leys, Didier and Thijs, Vincent and Metso, Tiina M and Tatlisumak, Turgut and Pezzini, Alessandro and Parati, Eugenio A and Norrving, Bo and Bevan, Steve and Rothwell, Peter M and Sudlow, Cathie and Slowik, Agnieszka and Lindgren, Arne and Walters, Matthew R and Jannes, Jim and Shen, Jess and Crosslin, David and Doheny, Kimberly and Laurie, Cathy C and Kanse, Sandip M and Bis, Joshua C and Fornage, Myriam and Mosley, Thomas H and Hopewell, Jemma C and Strauch, Konstantin and M{\"u}ller-Nurasyid, Martina and Gieger, Christian and Waldenberger, Melanie and Peters, Annette and Meisinger, Christine and Ikram, M Arfan and Longstreth, W T and Meschia, James F and Seshadri, Sudha and Sharma, Pankaj and Worrall, Bradford and Jern, Christina and Levi, Christopher and Dichgans, Martin and Boncoraglio, Giorgio B and Markus, Hugh S and Debette, Stephanie and Rolfs, Arndt and Saleheen, Danish and Mitchell, Braxton D} } @article {7004, title = {Genome-Wide Association Study for Incident Myocardial Infarction and Coronary Heart Disease in Prospective Cohort Studies: The CHARGE Consortium.}, journal = {PLoS One}, volume = {11}, year = {2016}, month = {2016}, pages = {e0144997}, abstract = {

BACKGROUND: Data are limited on genome-wide association studies (GWAS) for incident coronary heart disease (CHD). Moreover, it is not known whether genetic variants identified to date also associate with risk of CHD in a prospective setting.

METHODS: We performed a two-stage GWAS analysis of incident myocardial infarction (MI) and CHD in a total of 64,297 individuals (including 3898 MI cases, 5465 CHD cases). SNPs that passed an arbitrary threshold of 5{\texttimes}10-6 in Stage I were taken to Stage II for further discovery. Furthermore, in an analysis of prognosis, we studied whether known SNPs from former GWAS were associated with total mortality in individuals who experienced MI during follow-up.

RESULTS: In Stage I 15 loci passed the threshold of 5{\texttimes}10-6; 8 loci for MI and 8 loci for CHD, for which one locus overlapped and none were reported in previous GWAS meta-analyses. We took 60 SNPs representing these 15 loci to Stage II of discovery. Four SNPs near QKI showed nominally significant association with MI (p-value<8.8{\texttimes}10-3) and three exceeded the genome-wide significance threshold when Stage I and Stage II results were combined (top SNP rs6941513: p = 6.2{\texttimes}10-9). Despite excellent power, the 9p21 locus SNP (rs1333049) was only modestly associated with MI (HR = 1.09, p-value = 0.02) and marginally with CHD (HR = 1.06, p-value = 0.08). Among an inception cohort of those who experienced MI during follow-up, the risk allele of rs1333049 was associated with a decreased risk of subsequent mortality (HR = 0.90, p-value = 3.2{\texttimes}10-3).

CONCLUSIONS: QKI represents a novel locus that may serve as a predictor of incident CHD in prospective studies. The association of the 9p21 locus both with increased risk of first myocardial infarction and longer survival after MI highlights the importance of study design in investigating genetic determinants of complex disorders.

}, keywords = {Aged, Cohort Studies, Cooperative Behavior, Coronary Artery Disease, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Middle Aged, Myocardial Infarction, Polymorphism, Single Nucleotide, Prospective Studies}, issn = {1932-6203}, doi = {10.1371/journal.pone.0144997}, author = {Dehghan, Abbas and Bis, Joshua C and White, Charles C and Smith, Albert Vernon and Morrison, Alanna C and Cupples, L Adrienne and Trompet, Stella and Chasman, Daniel I and Lumley, Thomas and V{\"o}lker, Uwe and Buckley, Brendan M and Ding, Jingzhong and Jensen, Majken K and Folsom, Aaron R and Kritchevsky, Stephen B and Girman, Cynthia J and Ford, Ian and D{\"o}rr, Marcus and Salomaa, Veikko and Uitterlinden, Andr{\'e} G and Eiriksdottir, Gudny and Vasan, Ramachandran S and Franceschini, Nora and Carty, Cara L and Virtamo, Jarmo and Demissie, Serkalem and Amouyel, Philippe and Arveiler, Dominique and Heckbert, Susan R and Ferrieres, Jean and Ducimetiere, Pierre and Smith, Nicholas L and Wang, Ying A and Siscovick, David S and Rice, Kenneth M and Wiklund, Per-Gunnar and Taylor, Kent D and Evans, Alun and Kee, Frank and Rotter, Jerome I and Karvanen, Juha and Kuulasmaa, Kari and Heiss, Gerardo and Kraft, Peter and Launer, Lenore J and Hofman, Albert and Markus, Marcello R P and Rose, Lynda M and Silander, Kaisa and Wagner, Peter and Benjamin, Emelia J and Lohman, Kurt and Stott, David J and Rivadeneira, Fernando and Harris, Tamara B and Levy, Daniel and Liu, Yongmei and Rimm, Eric B and Jukema, J Wouter and V{\"o}lzke, Henry and Ridker, Paul M and Blankenberg, Stefan and Franco, Oscar H and Gudnason, Vilmundur and Psaty, Bruce M and Boerwinkle, Eric and O{\textquoteright}Donnell, Christopher J} } @article {7264, title = {Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci.}, journal = {Nat Genet}, volume = {48}, year = {2016}, month = {2016 Oct}, pages = {1162-70}, abstract = {

Meta-analyses of association results for blood pressure using exome-centric single-variant and gene-based tests identified 31 new loci in a discovery stage among 146,562 individuals, with follow-up and meta-analysis in 180,726 additional individuals (total n = 327,288). These blood pressure-associated loci are enriched for known variants for cardiometabolic traits. Associations were also observed for the aggregation of rare and low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1. In addition, blood pressure associations at 39 previously reported loci were confirmed. The identified variants implicate biological pathways related to cardiometabolic traits, vascular function, and development. Several new variants are inferred to have roles in transcription or as hubs in protein-protein interaction networks. Genetic risk scores constructed from the identified variants were strongly associated with coronary disease and myocardial infarction. This large collection of blood pressure-associated loci suggests new therapeutic strategies for hypertension, emphasizing a link with cardiometabolic risk.

}, issn = {1546-1718}, doi = {10.1038/ng.3660}, author = {Liu, Chunyu and Kraja, Aldi T and Smith, Jennifer A and Brody, Jennifer A and Franceschini, Nora and Bis, Joshua C and Rice, Kenneth and Morrison, Alanna C and Lu, Yingchang and Weiss, Stefan and Guo, Xiuqing and Palmas, Walter and Martin, Lisa W and Chen, Yii-Der Ida and Surendran, Praveen and Drenos, Fotios and Cook, James P and Auer, Paul L and Chu, Audrey Y and Giri, Ayush and Zhao, Wei and Jakobsdottir, Johanna and Lin, Li-An and Stafford, Jeanette M and Amin, Najaf and Mei, Hao and Yao, Jie and Voorman, Arend and Larson, Martin G and Grove, Megan L and Smith, Albert V and Hwang, Shih-Jen and Chen, Han and Huan, Tianxiao and Kosova, Gulum and Stitziel, Nathan O and Kathiresan, Sekar and Samani, Nilesh and Schunkert, Heribert and Deloukas, Panos and Li, Man and Fuchsberger, Christian and Pattaro, Cristian and Gorski, Mathias and Kooperberg, Charles and Papanicolaou, George J and Rossouw, Jacques E and Faul, Jessica D and Kardia, Sharon L R and Bouchard, Claude and Raffel, Leslie J and Uitterlinden, Andr{\'e} G and Franco, Oscar H and Vasan, Ramachandran S and O{\textquoteright}Donnell, Christopher J and Taylor, Kent D and Liu, Kiang and Bottinger, Erwin P and Gottesman, Omri and Daw, E Warwick and Giulianini, Franco and Ganesh, Santhi and Salfati, Elias and Harris, Tamara B and Launer, Lenore J and D{\"o}rr, Marcus and Felix, Stephan B and Rettig, Rainer and V{\"o}lzke, Henry and Kim, Eric and Lee, Wen-Jane and Lee, I-Te and Sheu, Wayne H-H and Tsosie, Krystal S and Edwards, Digna R Velez and Liu, Yongmei and Correa, Adolfo and Weir, David R and V{\"o}lker, Uwe and Ridker, Paul M and Boerwinkle, Eric and Gudnason, Vilmundur and Reiner, Alexander P and van Duijn, Cornelia M and Borecki, Ingrid B and Edwards, Todd L and Chakravarti, Aravinda and Rotter, Jerome I and Psaty, Bruce M and Loos, Ruth J F and Fornage, Myriam and Ehret, Georg B and Newton-Cheh, Christopher and Levy, Daniel and Chasman, Daniel I} } @article {7011, title = {Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels.}, journal = {J Med Genet}, volume = {53}, year = {2016}, month = {2016 Jul}, pages = {441-9}, abstract = {

BACKGROUND: So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels.

METHODS: We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from \~{}60 000 individuals in the discovery stage and \~{}90 000 samples in the replication stage.

RESULTS: Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene.

CONCLUSIONS: This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels.

}, issn = {1468-6244}, doi = {10.1136/jmedgenet-2015-103439}, author = {van Leeuwen, Elisabeth M and Sabo, Aniko and Bis, Joshua C and Huffman, Jennifer E and Manichaikul, Ani and Smith, Albert V and Feitosa, Mary F and Demissie, Serkalem and Joshi, Peter K and Duan, Qing and Marten, Jonathan and van Klinken, Jan B and Surakka, Ida and Nolte, Ilja M and Zhang, Weihua and Mbarek, Hamdi and Li-Gao, Ruifang and Trompet, Stella and Verweij, Niek and Evangelou, Evangelos and Lyytik{\"a}inen, Leo-Pekka and Tayo, Bamidele O and Deelen, Joris and van der Most, Peter J and van der Laan, Sander W and Arking, Dan E and Morrison, Alanna and Dehghan, Abbas and Franco, Oscar H and Hofman, Albert and Rivadeneira, Fernando and Sijbrands, Eric J and Uitterlinden, Andr{\'e} G and Mychaleckyj, Josyf C and Campbell, Archie and Hocking, Lynne J and Padmanabhan, Sandosh and Brody, Jennifer A and Rice, Kenneth M and White, Charles C and Harris, Tamara and Isaacs, Aaron and Campbell, Harry and Lange, Leslie A and Rudan, Igor and Kolcic, Ivana and Navarro, Pau and Zemunik, Tatijana and Salomaa, Veikko and Kooner, Angad S and Kooner, Jaspal S and Lehne, Benjamin and Scott, William R and Tan, Sian-Tsung and de Geus, Eco J and Milaneschi, Yuri and Penninx, Brenda W J H and Willemsen, Gonneke and de Mutsert, Ren{\'e}e and Ford, Ian and Gansevoort, Ron T and Segura-Lepe, Marcelo P and Raitakari, Olli T and Viikari, Jorma S and Nikus, Kjell and Forrester, Terrence and McKenzie, Colin A and de Craen, Anton J M and de Ruijter, Hester M and Pasterkamp, Gerard and Snieder, Harold and Oldehinkel, Albertine J and Slagboom, P Eline and Cooper, Richard S and K{\"a}h{\"o}nen, Mika and Lehtim{\"a}ki, Terho and Elliott, Paul and van der Harst, Pim and Jukema, J Wouter and Mook-Kanamori, Dennis O and Boomsma, Dorret I and Chambers, John C and Swertz, Morris and Ripatti, Samuli and Willems van Dijk, Ko and Vitart, Veronique and Polasek, Ozren and Hayward, Caroline and Wilson, James G and Wilson, James F and Gudnason, Vilmundur and Rich, Stephen S and Psaty, Bruce M and Borecki, Ingrid B and Boerwinkle, Eric and Rotter, Jerome I and Cupples, L Adrienne and van Duijn, Cornelia M} } @article {7358, title = {Meta-analysis of genome-wide association studies of HDL cholesterol response to statins.}, journal = {J Med Genet}, volume = {53}, year = {2016}, month = {2016 Dec}, pages = {835-845}, abstract = {

BACKGROUND: In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation.

METHODS AND RESULTS: We performed a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced high density lipoprotein cholesterol (HDL-C) changes. The 123 most promising signals with p<1{\texttimes}10(-4) from the 16 769 statin-treated participants in the first analysis stage were followed up in an independent group of 10 951 statin-treated individuals, providing a total sample size of 27 720 individuals. The only associations of genome-wide significance (p<5{\texttimes}10(-8)) were between minor alleles at the CETP locus and greater HDL-C response to statin treatment.

CONCLUSIONS: Based on results from this study that included a relatively large sample size, we suggest that CETP may be the only detectable locus with common genetic variants that influence HDL-C response to statins substantially in individuals of European descent. Although CETP is known to be associated with HDL-C, we provide evidence that this pharmacogenetic effect is independent of its association with baseline HDL-C levels.

}, issn = {1468-6244}, doi = {10.1136/jmedgenet-2016-103966}, author = {Postmus, Iris and Warren, Helen R and Trompet, Stella and Arsenault, Benoit J and Avery, Christy L and Bis, Joshua C and Chasman, Daniel I and de Keyser, Catherine E and Deshmukh, Harshal A and Evans, Daniel S and Feng, QiPing and Li, Xiaohui and Smit, Roelof A J and Smith, Albert V and Sun, Fangui and Taylor, Kent D and Arnold, Alice M and Barnes, Michael R and Barratt, Bryan J and Betteridge, John and Boekholdt, S Matthijs and Boerwinkle, Eric and Buckley, Brendan M and Chen, Y-D Ida and de Craen, Anton J M and Cummings, Steven R and Denny, Joshua C and Dub{\'e}, Marie Pierre and Durrington, Paul N and Eiriksdottir, Gudny and Ford, Ian and Guo, Xiuqing and Harris, Tamara B and Heckbert, Susan R and Hofman, Albert and Hovingh, G Kees and Kastelein, John J P and Launer, Leonore J and Liu, Ching-Ti and Liu, Yongmei and Lumley, Thomas and McKeigue, Paul M and Munroe, Patricia B and Neil, Andrew and Nickerson, Deborah A and Nyberg, Fredrik and O{\textquoteright}Brien, Eoin and O{\textquoteright}Donnell, Christopher J and Post, Wendy and Poulter, Neil and Vasan, Ramachandran S and Rice, Kenneth and Rich, Stephen S and Rivadeneira, Fernando and Sattar, Naveed and Sever, Peter and Shaw-Hawkins, Sue and Shields, Denis C and Slagboom, P Eline and Smith, Nicholas L and Smith, Joshua D and Sotoodehnia, Nona and Stanton, Alice and Stott, David J and Stricker, Bruno H and St{\"u}rmer, Til and Uitterlinden, Andr{\'e} G and Wei, Wei-Qi and Westendorp, Rudi G J and Whitsel, Eric A and Wiggins, Kerri L and Wilke, Russell A and Ballantyne, Christie M and Colhoun, Helen M and Cupples, L Adrienne and Franco, Oscar H and Gudnason, Vilmundur and Hitman, Graham and Palmer, Colin N A and Psaty, Bruce M and Ridker, Paul M and Stafford, Jeanette M and Stein, Charles M and Tardif, Jean-Claude and Caulfield, Mark J and Jukema, J Wouter and Rotter, Jerome I and Krauss, Ronald M} } @article {7257, title = {Multiethnic Exome-Wide Association Study of Subclinical Atherosclerosis.}, journal = {Circ Cardiovasc Genet}, year = {2016}, month = {2016 Nov 21}, abstract = {

BACKGROUND: -The burden of subclinical atherosclerosis in asymptomatic individuals is heritable and associated with elevated risk of developing clinical coronary heart disease (CHD). We sought to identify genetic variants in protein-coding regions associated with subclinical atherosclerosis and the risk of subsequent CHD.

METHODS AND RESULTS: -We studied a total of 25,109 European ancestry and African-American participants with coronary artery calcification (CAC) measured by cardiac computed tomography and 52,869 with common carotid intima media thickness (CIMT) measured by ultrasonography within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Participants were genotyped for 247,870 DNA sequence variants (231,539 in exons) across the genome. A meta-analysis of exome-wide association studies was performed across cohorts for CAC and CIMT. APOB p.Arg3527Gln was associated with four-fold excess CAC (P = 3{\texttimes}10(-10)). The APOE ε2 allele (p.Arg176Cys) was associated with both 22.3\% reduced CAC (P = 1{\texttimes}10(-12)) and 1.4\% reduced CIMT (P = 4{\texttimes}10(-14)) in carriers compared with non-carriers. In secondary analyses conditioning on LDL cholesterol concentration, the ε2 protective association with CAC, although attenuated, remained strongly significant. Additionally, the presence of ε2 was associated with reduced risk for CHD (OR 0.77; P = 1{\texttimes}10(-11)).

CONCLUSIONS: -Exome-wide association meta-analysis demonstrates that protein-coding variants in APOB and APOE associate with subclinical atherosclerosis. APOE ε2 represents the first significant association for multiple subclinical atherosclerosis traits across multiple ethnicities as well as clinical CHD.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.116.001572}, author = {Natarajan, Pradeep and Bis, Joshua C and Bielak, Lawrence F and Cox, Amanda J and D{\"o}rr, Marcus and Feitosa, Mary F and Franceschini, Nora and Guo, Xiuqing and Hwang, Shih-Jen and Isaacs, Aaron and Jhun, Min A and Kavousi, Maryam and Li-Gao, Ruifang and Lyytik{\"a}inen, Leo-Pekka and Marioni, Riccardo E and Schminke, Ulf and Stitziel, Nathan O and Tada, Hayato and van Setten, Jessica and Smith, Albert V and Vojinovic, Dina and Yanek, Lisa R and Yao, Jie and Yerges-Armstrong, Laura M and Amin, Najaf and Baber, Usman and Borecki, Ingrid B and Carr, J Jeffrey and Chen, Yii-Der Ida and Cupples, L Adrienne and de Jong, Pim A and de Koning, Harry and de Vos, Bob D and Demirkan, Ayse and Fuster, Valentin and Franco, Oscar H and Goodarzi, Mark O and Harris, Tamara B and Heckbert, Susan R and Heiss, Gerardo and Hoffmann, Udo and Hofman, Albert and I{\v s}gum, Ivana and Jukema, J Wouter and K{\"a}h{\"o}nen, Mika and Kardia, Sharon L R and Kral, Brian G and Launer, Lenore J and Massaro, Joseph and Mehran, Roxana and Mitchell, Braxton D and Mosley, Thomas H and de Mutsert, Ren{\'e}e and Newman, Anne B and Nguyen, Khanh-Dung and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Oudkerk, Matthijs and Pankow, James S and Peloso, Gina M and Post, Wendy and Province, Michael A and Raffield, Laura M and Raitakari, Olli T and Reilly, Dermot F and Rivadeneira, Fernando and Rosendaal, Frits and Sartori, Samantha and Taylor, Kent D and Teumer, Alexander and Trompet, Stella and Turner, Stephen T and Uitterlinden, Andr{\'e} G and Vaidya, Dhananjay and van der Lugt, Aad and V{\"o}lker, Uwe and Wardlaw, Joanna M and Wassel, Christina L and Weiss, Stefan and Wojczynski, Mary K and Becker, Diane M and Becker, Lewis C and Boerwinkle, Eric and Bowden, Donald W and Deary, Ian J and Dehghan, Abbas and Felix, Stephan B and Gudnason, Vilmundur and Lehtim{\"a}ki, Terho and Mathias, Rasika and Mook-Kanamori, Dennis O and Psaty, Bruce M and Rader, Daniel J and Rotter, Jerome I and Wilson, James G and van Duijn, Cornelia M and V{\"o}lzke, Henry and Kathiresan, Sekar and Peyser, Patricia A and O{\textquoteright}Donnell, Christopher J} } @article {6937, title = {Rare Exome Sequence Variants in CLCN6 Reduce Blood Pressure Levels and Hypertension Risk.}, journal = {Circ Cardiovasc Genet}, volume = {9}, year = {2016}, month = {2016 Feb}, pages = {64-70}, abstract = {

BACKGROUND: Rare genetic variants influence blood pressure (BP).

METHODS AND RESULTS: Whole-exome sequencing was performed on DNA samples from 17 956 individuals of European ancestry and African ancestry (14 497, first-stage discovery and 3459, second-stage discovery) to examine the effect of rare variants on hypertension and 4 BP traits: systolic BP, diastolic BP, pulse pressure, and mean arterial pressure. Tests of ≈170 000 common variants (minor allele frequency, >=1\%; statistical significance, P<=2.9{\texttimes}10(-7)) and gene-based tests of rare variants (minor allele frequency, <1\%; ≈17 000 genes; statistical significance, P<=1.5{\texttimes}10(-6)) were evaluated for each trait and ancestry, followed by multiethnic meta-analyses. In the first-stage discovery, rare coding variants (splicing, stop-gain, stop-loss, nonsynonymous variants, or indels) in CLCN6 were associated with lower diastolic BP (cumulative minor allele frequency, 1.3\%; β=-3.20; P=4.1{\texttimes}10(-6)) and were independent of a nearby common variant (rs17367504) previously associated with BP. CLCN6 rare variants were also associated with lower systolic BP (β=-4.11; P=2.8{\texttimes}10(-4)), mean arterial pressure (β=-3.50; P=8.9{\texttimes}10(-6)), and reduced hypertension risk (odds ratio, 0.72; P=0.017). Meta-analysis of the 2-stage discovery samples showed that CLCN6 was associated with lower diastolic BP at exome-wide significance (cumulative minor allele frequency, 1.1\%; β=-3.30; P=5.0{\texttimes}10(-7)).

CONCLUSIONS: These findings implicate the effect of rare coding variants in CLCN6 in BP variation and offer new insights into BP regulation.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.115.001215}, author = {Yu, Bing and Pulit, Sara L and Hwang, Shih-Jen and Brody, Jennifer A and Amin, Najaf and Auer, Paul L and Bis, Joshua C and Boerwinkle, Eric and Burke, Gregory L and Chakravarti, Aravinda and Correa, Adolfo and Dreisbach, Albert W and Franco, Oscar H and Ehret, Georg B and Franceschini, Nora and Hofman, Albert and Lin, Dan-Yu and Metcalf, Ginger A and Musani, Solomon K and Muzny, Donna and Palmas, Walter and Raffel, Leslie and Reiner, Alex and Rice, Ken and Rotter, Jerome I and Veeraraghavan, Narayanan and Fox, Ervin and Guo, Xiuqing and North, Kari E and Gibbs, Richard A and van Duijn, Cornelia M and Psaty, Bruce M and Levy, Daniel and Newton-Cheh, Christopher and Morrison, Alanna C} } @article {7260, title = {Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer{\textquoteright}s Disease.}, journal = {PLoS Genet}, volume = {12}, year = {2016}, month = {2016 Oct}, pages = {e1006327}, abstract = {

We performed an exome-wide association analysis in 1393 late-onset Alzheimer{\textquoteright}s disease (LOAD) cases and 8141 controls from the CHARGE consortium. We found that a rare variant (P155L) in TM2D3 was enriched in Icelanders (~0.5\% versus <0.05\% in other European populations). In 433 LOAD cases and 3903 controls from the Icelandic AGES sub-study, P155L was associated with increased risk and earlier onset of LOAD [odds ratio (95\% CI) = 7.5 (3.5-15.9), p = 6.6x10-9]. Mutation in the Drosophila TM2D3 homolog, almondex, causes a phenotype similar to loss of Notch/Presenilin signaling. Human TM2D3 is capable of rescuing these phenotypes, but this activity is abolished by P155L, establishing it as a functionally damaging allele. Our results establish a rare TM2D3 variant in association with LOAD susceptibility, and together with prior work suggests possible links to the β-amyloid cascade.

}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1006327}, author = {Jakobsdottir, Johanna and van der Lee, Sven J and Bis, Joshua C and Chouraki, Vincent and Li-Kroeger, David and Yamamoto, Shinya and Grove, Megan L and Naj, Adam and Vronskaya, Maria and Salazar, Jose L and DeStefano, Anita L and Brody, Jennifer A and Smith, Albert V and Amin, Najaf and Sims, Rebecca and Ibrahim-Verbaas, Carla A and Choi, Seung-Hoan and Satizabal, Claudia L and Lopez, Oscar L and Beiser, Alexa and Ikram, M Arfan and Garcia, Melissa E and Hayward, Caroline and Varga, Tibor V and Ripatti, Samuli and Franks, Paul W and Hallmans, G{\"o}ran and Rolandsson, Olov and Jansson, Jan-H{\r a}kon and Porteous, David J and Salomaa, Veikko and Eiriksdottir, Gudny and Rice, Kenneth M and Bellen, Hugo J and Levy, Daniel and Uitterlinden, Andr{\'e} G and Emilsson, Valur and Rotter, Jerome I and Aspelund, Thor and O{\textquoteright}Donnell, Christopher J and Fitzpatrick, Annette L and Launer, Lenore J and Hofman, Albert and Wang, Li-San and Williams, Julie and Schellenberg, Gerard D and Boerwinkle, Eric and Psaty, Bruce M and Seshadri, Sudha and Shulman, Joshua M and Gudnason, Vilmundur and van Duijn, Cornelia M} } @article {7604, title = {Twenty-eight genetic loci associated with ST-T-wave amplitudes of the electrocardiogram.}, journal = {Hum Mol Genet}, volume = {25}, year = {2016}, month = {2016 05 15}, pages = {2093-2103}, abstract = {

The ST-segment and adjacent T-wave (ST-T wave) amplitudes of the electrocardiogram are quantitative characteristics of cardiac repolarization. Repolarization abnormalities have been linked to ventricular arrhythmias and sudden cardiac death. We performed the first genome-wide association meta-analysis of ST-T-wave amplitudes in up to 37 977 individuals identifying 71 robust genotype-phenotype associations clustered within 28 independent loci. Fifty-four genes were prioritized as candidates underlying the phenotypes, including genes with established roles in the cardiac repolarization phase (SCN5A/SCN10A, KCND3, KCNB1, NOS1AP and HEY2) and others with as yet undefined cardiac function. These associations may provide insights in the spatiotemporal contribution of genetic variation influencing cardiac repolarization and provide novel leads for future functional follow-up.

}, keywords = {Adaptor Proteins, Signal Transducing, Arrhythmias, Cardiac, Basic Helix-Loop-Helix Transcription Factors, Brugada Syndrome, Cardiac Conduction System Disease, Death, Sudden, Cardiac, Electrocardiography, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Heart Conduction System, Humans, Male, NAV1.5 Voltage-Gated Sodium Channel, Polymorphism, Single Nucleotide, Repressor Proteins, Shab Potassium Channels, Shal Potassium Channels}, issn = {1460-2083}, doi = {10.1093/hmg/ddw058}, author = {Verweij, Niek and Mateo Leach, Irene and Isaacs, Aaron and Arking, Dan E and Bis, Joshua C and Pers, Tune H and van den Berg, Marten E and Lyytik{\"a}inen, Leo-Pekka and Barnett, Phil and Wang, Xinchen and Soliman, Elsayed Z and van Duijn, Cornelia M and K{\"a}h{\"o}nen, Mika and van Veldhuisen, Dirk J and Kors, Jan A and Raitakari, Olli T and Silva, Claudia T and Lehtim{\"a}ki, Terho and Hillege, Hans L and Hirschhorn, Joel N and Boyer, Laurie A and van Gilst, Wiek H and Alonso, Alvaro and Sotoodehnia, Nona and Eijgelsheim, Mark and de Boer, Rudolf A and de Bakker, Paul I W and Franke, Lude and van der Harst, Pim} } @article {7250, title = {Whole Exome Sequencing in Atrial Fibrillation.}, journal = {PLoS Genet}, volume = {12}, year = {2016}, month = {2016 Sep}, pages = {e1006284}, abstract = {

Atrial fibrillation (AF) is a morbid and heritable arrhythmia. Over 35 genes have been reported to underlie AF, most of which were described in small candidate gene association studies. Replication remains lacking for most, and therefore the contribution of coding variation to AF susceptibility remains poorly understood. We examined whole exome sequencing data in a large community-based sample of 1,734 individuals with and 9,423 without AF from the Framingham Heart Study, Cardiovascular Health Study, Atherosclerosis Risk in Communities Study, and NHLBI-GO Exome Sequencing Project and meta-analyzed the results. We also examined whether genetic variation was enriched in suspected AF genes (N = 37) in AF cases versus controls. The mean age ranged from 59 to 73 years; 8,656 (78\%) were of European ancestry. None of the 99,404 common variants evaluated was significantly associated after adjusting for multiple testing. Among the most significantly associated variants was a common (allele frequency = 86\%) missense variant in SYNPO2L (rs3812629, p.Pro707Leu, [odds ratio 1.27, 95\% confidence interval 1.13-1.43, P = 6.6x10-5]) which lies at a known AF susceptibility locus and is in linkage disequilibrium with a top marker from prior analyses at the locus. We did not observe significant associations between rare variants and AF in gene-based tests. Individuals with AF did not display any statistically significant enrichment for common or rare coding variation in previously implicated AF genes. In conclusion, we did not observe associations between coding genetic variants and AF, suggesting that large-effect coding variation is not the predominant mechanism underlying AF. A coding variant in SYNPO2L requires further evaluation to determine whether it is causally related to AF. Efforts to identify biologically meaningful coding variation underlying AF may require large sample sizes or populations enriched for large genetic effects.

}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1006284}, author = {Lubitz, Steven A and Brody, Jennifer A and Bihlmeyer, Nathan A and Roselli, Carolina and Weng, Lu-Chen and Christophersen, Ingrid E and Alonso, Alvaro and Boerwinkle, Eric and Gibbs, Richard A and Bis, Joshua C and Cupples, L Adrienne and Mohler, Peter J and Nickerson, Deborah A and Muzny, Donna and Perez, Marco V and Psaty, Bruce M and Soliman, Elsayed Z and Sotoodehnia, Nona and Lunetta, Kathryn L and Benjamin, Emelia J and Heckbert, Susan R and Arking, Dan E and Ellinor, Patrick T and Lin, Honghuang} } @article {7553, title = {Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology.}, journal = {Nat Genet}, volume = {49}, year = {2017}, month = {2017 Oct 27}, pages = {1560-1563}, issn = {1546-1718}, doi = {10.1038/ng.3968}, author = {Brody, Jennifer A and Morrison, Alanna C and Bis, Joshua C and O{\textquoteright}Connell, Jeffrey R and Brown, Michael R and Huffman, Jennifer E and Ames, Darren C and Carroll, Andrew and Conomos, Matthew P and Gabriel, Stacey and Gibbs, Richard A and Gogarten, Stephanie M and Gupta, Namrata and Jaquish, Cashell E and Johnson, Andrew D and Lewis, Joshua P and Liu, Xiaoming and Manning, Alisa K and Papanicolaou, George J and Pitsillides, Achilleas N and Rice, Kenneth M and Salerno, William and Sitlani, Colleen M and Smith, Nicholas L and Heckbert, Susan R and Laurie, Cathy C and Mitchell, Braxton D and Vasan, Ramachandran S and Rich, Stephen S and Rotter, Jerome I and Wilson, James G and Boerwinkle, Eric and Psaty, Bruce M and Cupples, L Adrienne} } @article {7363, title = {Discovery of novel heart rate-associated loci using the Exome Chip.}, journal = {Hum Mol Genet}, year = {2017}, month = {2017 Apr 03}, abstract = {

Background Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. GWAS analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9\% of the variation.Aim To discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Methods Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104,452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134,251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.Results We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2, SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long range regulatory chromatin interactions in heart tissue (SCD, SLF2, MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Conclusion Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddx113}, author = {van den Berg, Marten E and Warren, Helen R and Cabrera, Claudia P and Verweij, Niek and Mifsud, Borbala and Haessler, Jeffrey and Bihlmeyer, Nathan A and Fu, Yi-Ping and Weiss, Stefan and Lin, Henry J and Grarup, Niels and Li-Gao, Ruifang and Pistis, Giorgio and Shah, Nabi and Brody, Jennifer A and M{\"u}ller-Nurasyid, Martina and Lin, Honghuang and Mei, Hao and Smith, Albert V and Lyytik{\"a}inen, Leo-Pekka and Hall, Leanne M and van Setten, Jessica and Trompet, Stella and Prins, Bram P and Isaacs, Aaron and Radmanesh, Farid and Marten, Jonathan and Entwistle, Aiman and Kors, Jan A and Silva, Claudia T and Alonso, Alvaro and Bis, Joshua C and de Boer, Rudolf and de Haan, Hugoline G and de Mutsert, Ren{\'e}e and Dedoussis, George and Dominiczak, Anna F and Doney, Alex S F and Ellinor, Patrick T and Eppinga, Ruben N and Felix, Stephan B and Guo, Xiuqing and Hagemeijer, Yanick and Hansen, Torben and Harris, Tamara B and Heckbert, Susan R and Huang, Paul L and Hwang, Shih-Jen and K{\"a}h{\"o}nen, Mika and Kanters, J{\o}rgen K and Kolcic, Ivana and Launer, Lenore J and Li, Man and Yao, Jie and Linneberg, Allan and Liu, Simin and Macfarlane, Peter W and Mangino, Massimo and Morris, Andrew D and Mulas, Antonella and Murray, Alison D and Nelson, Christopher P and Orr{\`u}, Marco and Padmanabhan, Sandosh and Peters, Annette and Porteous, David J and Poulter, Neil and Psaty, Bruce M and Qi, Lihong and Raitakari, Olli T and Rivadeneira, Fernando and Roselli, Carolina and Rudan, Igor and Sattar, Naveed and Sever, Peter and Sinner, Moritz F and Soliman, Elsayed Z and Spector, Timothy D and Stanton, Alice V and Stirrups, Kathleen E and Taylor, Kent D and Tobin, Martin D and Uitterlinden, Andre and Vaartjes, Ilonca and Hoes, Arno W and van der Meer, Peter and V{\"o}lker, Uwe and Waldenberger, Melanie and Xie, Zhijun and Zoledziewska, Magdalena and Tinker, Andrew and Polasek, Ozren and Rosand, Jonathan and Jamshidi, Yalda and van Duijn, Cornelia M and Zeggini, Eleftheria and Wouter Jukema, J and Asselbergs, Folkert W and Samani, Nilesh J and Lehtim{\"a}ki, Terho and Gudnason, Vilmundur and Wilson, James and Lubitz, Steven A and K{\"a}{\"a}b, Stefan and Sotoodehnia, Nona and Caulfield, Mark J and Palmer, Colin N A and Sanna, Serena and Mook-Kanamori, Dennis O and Deloukas, Panos and Pedersen, Oluf and Rotter, Jerome I and D{\"o}rr, Marcus and O{\textquoteright}Donnell, Chris J and Hayward, Caroline and Arking, Dan E and Kooperberg, Charles and van der Harst, Pim and Eijgelsheim, Mark and Stricker, Bruno H and Munroe, Patricia B} } @article {7583, title = {DNA Methylation Analysis Identifies Loci for Blood Pressure Regulation.}, journal = {Am J Hum Genet}, volume = {101}, year = {2017}, month = {2017 Dec 07}, pages = {888-902}, abstract = {

Genome-wide association studies have identified hundreds of genetic variants associated with blood pressure (BP), but sequence variation accounts for a small fraction of the phenotypic variance. Epigenetic changes may alter the expression of genes involved in BP regulation and explain part of the missing heritability. We therefore conducted a two-stage meta-analysis of the cross-sectional associations of systolic and diastolic BP with blood-derived genome-wide DNA methylation measured on the Infinium HumanMethylation450 BeadChip in 17,010 individuals of European, African American, and Hispanic ancestry. Of 31 discovery-stage cytosine-phosphate-guanine (CpG) dinucleotides, 13 replicated after Bonferroni correction (discovery: N = 9,828, p < 1.0~{\texttimes} 10-7; replication: N = 7,182, p~<~1.6~{\texttimes} 10-3). The replicated methylation sites are heritable (h2 > 30\%) and independent of known BP genetic variants, explaining an additional 1.4\% and 2.0\% of the interindividual variation in systolic and diastolic BP, respectively. Bidirectional Mendelian randomization among up to 4,513 individuals of European ancestry from 4 cohorts suggested that methylation at cg08035323 (TAF1B-YWHAQ) influences BP, while BP influences methylation at cg00533891 (ZMIZ1), cg00574958 (CPT1A), and cg02711608 (SLC1A5). Gene expression analyses further identified six genes (TSPAN2, SLC7A11, UNC93B1, CPT1A, PTMS, and LPCAT3) with evidence of triangular associations between methylation, gene expression, and BP. Additional integrative Mendelian randomization analyses of gene expression and DNA methylation suggested that the expression of TSPAN2 is a putative mediator of association between DNA methylation at cg23999170 and BP. These findings suggest that heritable DNA methylation plays a role in regulating BP independently of previously known genetic variants.

}, keywords = {Aged, Blood Pressure, CpG Islands, Cross-Sectional Studies, DNA Methylation, Epigenesis, Genetic, Genetic Variation, Genome-Wide Association Study, Humans, Mendelian Randomization Analysis, Middle Aged, Nerve Tissue Proteins, Quantitative Trait Loci, Tetraspanins}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2017.09.028}, author = {Richard, Melissa A and Huan, Tianxiao and Ligthart, Symen and Gondalia, Rahul and Jhun, Min A and Brody, Jennifer A and Irvin, Marguerite R and Marioni, Riccardo and Shen, Jincheng and Tsai, Pei-Chien and Montasser, May E and Jia, Yucheng and Syme, Catriona and Salfati, Elias L and Boerwinkle, Eric and Guan, Weihua and Mosley, Thomas H and Bressler, Jan and Morrison, Alanna C and Liu, Chunyu and Mendelson, Michael M and Uitterlinden, Andr{\'e} G and van Meurs, Joyce B and Franco, Oscar H and Zhang, Guosheng and Li, Yun and Stewart, James D and Bis, Joshua C and Psaty, Bruce M and Chen, Yii-Der Ida and Kardia, Sharon L R and Zhao, Wei and Turner, Stephen T and Absher, Devin and Aslibekyan, Stella and Starr, John M and McRae, Allan F and Hou, Lifang and Just, Allan C and Schwartz, Joel D and Vokonas, Pantel S and Menni, Cristina and Spector, Tim D and Shuldiner, Alan and Damcott, Coleen M and Rotter, Jerome I and Palmas, Walter and Liu, Yongmei and Paus, Tom{\'a}{\v s} and Horvath, Steve and O{\textquoteright}Connell, Jeffrey R and Guo, Xiuqing and Pausova, Zdenka and Assimes, Themistocles L and Sotoodehnia, Nona and Smith, Jennifer A and Arnett, Donna K and Deary, Ian J and Baccarelli, Andrea A and Bell, Jordana T and Whitsel, Eric and Dehghan, Abbas and Levy, Daniel and Fornage, Myriam} } @article {7573, title = {Exome-wide association study of plasma lipids in >300,000 individuals.}, journal = {Nat Genet}, volume = {49}, year = {2017}, month = {2017 Dec}, pages = {1758-1766}, abstract = {

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.

}, keywords = {Coronary Artery Disease, Diabetes Mellitus, Type 2, Exome, Genetic Association Studies, Genetic Predisposition to Disease, Genetic Variation, Genotype, Humans, Lipids, Macular Degeneration, Phenotype, Risk Factors}, issn = {1546-1718}, doi = {10.1038/ng.3977}, author = {Liu, Dajiang J and Peloso, Gina M and Yu, Haojie and Butterworth, Adam S and Wang, Xiao and Mahajan, Anubha and Saleheen, Danish and Emdin, Connor and Alam, Dewan and Alves, Alexessander Couto and Amouyel, Philippe and Di Angelantonio, Emanuele and Arveiler, Dominique and Assimes, Themistocles L and Auer, Paul L and Baber, Usman and Ballantyne, Christie M and Bang, Lia E and Benn, Marianne and Bis, Joshua C and Boehnke, Michael and Boerwinkle, Eric and Bork-Jensen, Jette and Bottinger, Erwin P and Brandslund, Ivan and Brown, Morris and Busonero, Fabio and Caulfield, Mark J and Chambers, John C and Chasman, Daniel I and Chen, Y Eugene and Chen, Yii-Der Ida and Chowdhury, Rajiv and Christensen, Cramer and Chu, Audrey Y and Connell, John M and Cucca, Francesco and Cupples, L Adrienne and Damrauer, Scott M and Davies, Gail and Deary, Ian J and Dedoussis, George and Denny, Joshua C and Dominiczak, Anna and Dub{\'e}, Marie-Pierre and Ebeling, Tapani and Eiriksdottir, Gudny and Esko, T{\~o}nu and Farmaki, Aliki-Eleni and Feitosa, Mary F and Ferrario, Marco and Ferrieres, Jean and Ford, Ian and Fornage, Myriam and Franks, Paul W and Frayling, Timothy M and Frikke-Schmidt, Ruth and Fritsche, Lars G and Frossard, Philippe and Fuster, Valentin and Ganesh, Santhi K and Gao, Wei and Garcia, Melissa E and Gieger, Christian and Giulianini, Franco and Goodarzi, Mark O and Grallert, Harald and Grarup, Niels and Groop, Leif and Grove, Megan L and Gudnason, Vilmundur and Hansen, Torben and Harris, Tamara B and Hayward, Caroline and Hirschhorn, Joel N and Holmen, Oddgeir L and Huffman, Jennifer and Huo, Yong and Hveem, Kristian and Jabeen, Sehrish and Jackson, Anne U and Jakobsdottir, Johanna and Jarvelin, Marjo-Riitta and Jensen, Gorm B and J{\o}rgensen, Marit E and Jukema, J Wouter and Justesen, Johanne M and Kamstrup, Pia R and Kanoni, Stavroula and Karpe, Fredrik and Kee, Frank and Khera, Amit V and Klarin, Derek and Koistinen, Heikki A and Kooner, Jaspal S and Kooperberg, Charles and Kuulasmaa, Kari and Kuusisto, Johanna and Laakso, Markku and Lakka, Timo and Langenberg, Claudia and Langsted, Anne and Launer, Lenore J and Lauritzen, Torsten and Liewald, David C M and Lin, Li An and Linneberg, Allan and Loos, Ruth J F and Lu, Yingchang and Lu, Xiangfeng and M{\"a}gi, Reedik and M{\"a}larstig, Anders and Manichaikul, Ani and Manning, Alisa K and M{\"a}ntyselk{\"a}, Pekka and Marouli, Eirini and Masca, Nicholas G D and Maschio, Andrea and Meigs, James B and Melander, Olle and Metspalu, Andres and Morris, Andrew P and Morrison, Alanna C and Mulas, Antonella and M{\"u}ller-Nurasyid, Martina and Munroe, Patricia B and Neville, Matt J and Nielsen, Jonas B and Nielsen, Sune F and Nordestgaard, B{\o}rge G and Ordovas, Jose M and Mehran, Roxana and O{\textquoteright}Donnell, Christoper J and Orho-Melander, Marju and Molony, Cliona M and Muntendam, Pieter and Padmanabhan, Sandosh and Palmer, Colin N A and Pasko, Dorota and Patel, Aniruddh P and Pedersen, Oluf and Perola, Markus and Peters, Annette and Pisinger, Charlotta and Pistis, Giorgio and Polasek, Ozren and Poulter, Neil and Psaty, Bruce M and Rader, Daniel J and Rasheed, Asif and Rauramaa, Rainer and Reilly, Dermot F and Reiner, Alex P and Renstrom, Frida and Rich, Stephen S and Ridker, Paul M and Rioux, John D and Robertson, Neil R and Roden, Dan M and Rotter, Jerome I and Rudan, Igor and Salomaa, Veikko and Samani, Nilesh J and Sanna, Serena and Sattar, Naveed and Schmidt, Ellen M and Scott, Robert A and Sever, Peter and Sevilla, Raquel S and Shaffer, Christian M and Sim, Xueling and Sivapalaratnam, Suthesh and Small, Kerrin S and Smith, Albert V and Smith, Blair H and Somayajula, Sangeetha and Southam, Lorraine and Spector, Timothy D and Speliotes, Elizabeth K and Starr, John M and Stirrups, Kathleen E and Stitziel, Nathan and Strauch, Konstantin and Stringham, Heather M and Surendran, Praveen and Tada, Hayato and Tall, Alan R and Tang, Hua and Tardif, Jean-Claude and Taylor, Kent D and Trompet, Stella and Tsao, Philip S and Tuomilehto, Jaakko and Tybjaerg-Hansen, Anne and van Zuydam, Natalie R and Varbo, Anette and Varga, Tibor V and Virtamo, Jarmo and Waldenberger, Melanie and Wang, Nan and Wareham, Nick J and Warren, Helen R and Weeke, Peter E and Weinstock, Joshua and Wessel, Jennifer and Wilson, James G and Wilson, Peter W F and Xu, Ming and Yaghootkar, Hanieh and Young, Robin and Zeggini, Eleftheria and Zhang, He and Zheng, Neil S and Zhang, Weihua and Zhang, Yan and Zhou, Wei and Zhou, Yanhua and Zoledziewska, Magdalena and Howson, Joanna M M and Danesh, John and McCarthy, Mark I and Cowan, Chad A and Abecasis, Goncalo and Deloukas, Panos and Musunuru, Kiran and Willer, Cristen J and Kathiresan, Sekar} } @article {7557, title = {Fifteen Genetic Loci Associated With the Electrocardiographic P Wave.}, journal = {Circ Cardiovasc Genet}, volume = {10}, year = {2017}, month = {2017 Aug}, abstract = {

BACKGROUND: The P wave on an ECG is a measure of atrial electric function, and its characteristics may serve as predictors for atrial arrhythmias. Increased mean P-wave duration and P-wave terminal force traditionally have been used as markers for left atrial enlargement, and both have been associated with increased risk of atrial fibrillation. Here, we explore the genetic basis of P-wave morphology through meta-analysis of genome-wide association study results for P-wave duration and P-wave terminal force from 12 cohort studies.

METHODS AND RESULTS: We included 44 456 individuals, of which 6778 (16\%) were of African ancestry. Genotyping, imputation, and genome-wide association study were performed at each study site. Summary-level results were meta-analyzed centrally using inverse-variance weighting. In meta-analyses of P-wave duration, we identified 6 significant (P<5{\texttimes}10-8) novel loci and replicated a prior association with SCN10A. We identified 3 loci at SCN5A, TBX5, and CAV1/CAV2 that were jointly associated with the PR interval, PR segment, and P-wave duration. We identified 6 novel loci in meta-analysis of P-wave terminal force. Four of the identified genetic loci were significantly associated with gene expression in 329 left atrial samples. Finally, we observed that some of the loci associated with the P wave were linked to overall atrial conduction, whereas others identified distinct phases of atrial conduction.

CONCLUSIONS: We have identified 6 novel genetic loci associated with P-wave duration and 6 novel loci associated with P-wave terminal force. Future studies of these loci may aid in identifying new targets for drugs that may modify atrial conduction or treat atrial arrhythmias.

}, keywords = {Arrhythmias, Cardiac, Caveolin 1, Caveolin 2, Electrocardiography, Genetic Loci, Genome-Wide Association Study, Genotype, Heart Atria, Humans, NAV1.5 Voltage-Gated Sodium Channel, NAV1.8 Voltage-Gated Sodium Channel, T-Box Domain Proteins}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.116.001667}, author = {Christophersen, Ingrid E and Magnani, Jared W and Yin, Xiaoyan and Barnard, John and Weng, Lu-Chen and Arking, Dan E and Niemeijer, Maartje N and Lubitz, Steven A and Avery, Christy L and Duan, Qing and Felix, Stephan B and Bis, Joshua C and Kerr, Kathleen F and Isaacs, Aaron and M{\"u}ller-Nurasyid, Martina and M{\"u}ller, Christian and North, Kari E and Reiner, Alex P and Tinker, Lesley F and Kors, Jan A and Teumer, Alexander and Petersmann, Astrid and Sinner, Moritz F and B{\r u}zkov{\'a}, Petra and Smith, Jonathan D and Van Wagoner, David R and V{\"o}lker, Uwe and Waldenberger, Melanie and Peters, Annette and Meitinger, Thomas and Limacher, Marian C and Wilhelmsen, Kirk C and Psaty, Bruce M and Hofman, Albert and Uitterlinden, Andre and Krijthe, Bouwe P and Zhang, Zhu-Ming and Schnabel, Renate B and K{\"a}{\"a}b, Stefan and van Duijn, Cornelia and Rotter, Jerome I and Sotoodehnia, Nona and D{\"o}rr, Marcus and Li, Yun and Chung, Mina K and Soliman, Elsayed Z and Alonso, Alvaro and Whitsel, Eric A and Stricker, Bruno H and Benjamin, Emelia J and Heckbert, Susan R and Ellinor, Patrick T} } @article {7595, title = {Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation: The AFGen Consortium.}, journal = {Sci Rep}, volume = {7}, year = {2017}, month = {2017 Sep 12}, pages = {11303}, abstract = {

It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects <= 65 years of age than among those > 65 years (interaction p-value = 4.0 {\texttimes} 10-5). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 {\texttimes} 10-8). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk.

}, issn = {2045-2322}, doi = {10.1038/s41598-017-09396-7}, author = {Weng, Lu-Chen and Lunetta, Kathryn L and M{\"u}ller-Nurasyid, Martina and Smith, Albert Vernon and Th{\'e}riault, S{\'e}bastien and Weeke, Peter E and Barnard, John and Bis, Joshua C and Lyytik{\"a}inen, Leo-Pekka and Kleber, Marcus E and Martinsson, Andreas and Lin, Henry J and Rienstra, Michiel and Trompet, Stella and Krijthe, Bouwe P and D{\"o}rr, Marcus and Klarin, Derek and Chasman, Daniel I and Sinner, Moritz F and Waldenberger, Melanie and Launer, Lenore J and Harris, Tamara B and Soliman, Elsayed Z and Alonso, Alvaro and Par{\'e}, Guillaume and Teixeira, Pedro L and Denny, Joshua C and Shoemaker, M Benjamin and Van Wagoner, David R and Smith, Jonathan D and Psaty, Bruce M and Sotoodehnia, Nona and Taylor, Kent D and K{\"a}h{\"o}nen, Mika and Nikus, Kjell and Delgado, Graciela E and Melander, Olle and Engstr{\"o}m, Gunnar and Yao, Jie and Guo, Xiuqing and Christophersen, Ingrid E and Ellinor, Patrick T and Geelhoed, Bastiaan and Verweij, Niek and Macfarlane, Peter and Ford, Ian and Heeringa, Jan and Franco, Oscar H and Uitterlinden, Andr{\'e} G and V{\"o}lker, Uwe and Teumer, Alexander and Rose, Lynda M and K{\"a}{\"a}b, Stefan and Gudnason, Vilmundur and Arking, Dan E and Conen, David and Roden, Dan M and Chung, Mina K and Heckbert, Susan R and Benjamin, Emelia J and Lehtim{\"a}ki, Terho and M{\"a}rz, Winfried and Smith, J Gustav and Rotter, Jerome I and van der Harst, Pim and Jukema, J Wouter and Stricker, Bruno H and Felix, Stephan B and Albert, Christine M and Lubitz, Steven A} } @article {7579, title = {Genetic loci associated with heart rate variability and their effects on cardiac disease risk.}, journal = {Nat Commun}, volume = {8}, year = {2017}, month = {2017 Jun 14}, pages = {15805}, abstract = {

Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6\% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74}, issn = {2041-1723}, doi = {10.1038/ncomms15805}, author = {Nolte, Ilja M and Munoz, M Loretto and Tragante, Vinicius and Amare, Azmeraw T and Jansen, Rick and Vaez, Ahmad and von der Heyde, Benedikt and Avery, Christy L and Bis, Joshua C and Dierckx, Bram and van Dongen, Jenny and Gogarten, Stephanie M and Goyette, Philippe and Hernesniemi, Jussi and Huikari, Ville and Hwang, Shih-Jen and Jaju, Deepali and Kerr, Kathleen F and Kluttig, Alexander and Krijthe, Bouwe P and Kumar, Jitender and van der Laan, Sander W and Lyytik{\"a}inen, Leo-Pekka and Maihofer, Adam X and Minassian, Arpi and van der Most, Peter J and M{\"u}ller-Nurasyid, Martina and Nivard, Michel and Salvi, Erika and Stewart, James D and Thayer, Julian F and Verweij, Niek and Wong, Andrew and Zabaneh, Delilah and Zafarmand, Mohammad H and Abdellaoui, Abdel and Albarwani, Sulayma and Albert, Christine and Alonso, Alvaro and Ashar, Foram and Auvinen, Juha and Axelsson, Tomas and Baker, Dewleen G and de Bakker, Paul I W and Barcella, Matteo and Bayoumi, Riad and Bieringa, Rob J and Boomsma, Dorret and Boucher, Gabrielle and Britton, Annie R and Christophersen, Ingrid and Dietrich, Andrea and Ehret, George B and Ellinor, Patrick T and Eskola, Markku and Felix, Janine F and Floras, John S and Franco, Oscar H and Friberg, Peter and Gademan, Maaike G J and Geyer, Mark A and Giedraitis, Vilmantas and Hartman, Catharina A and Hemerich, Daiane and Hofman, Albert and Hottenga, Jouke-Jan and Huikuri, Heikki and Hutri-K{\"a}h{\"o}nen, Nina and Jouven, Xavier and Junttila, Juhani and Juonala, Markus and Kiviniemi, Antti M and Kors, Jan A and Kumari, Meena and Kuznetsova, Tatiana and Laurie, Cathy C and Lefrandt, Joop D and Li, Yong and Li, Yun and Liao, Duanping and Limacher, Marian C and Lin, Henry J and Lindgren, Cecilia M and Lubitz, Steven A and Mahajan, Anubha and McKnight, Barbara and Zu Schwabedissen, Henriette Meyer and Milaneschi, Yuri and Mononen, Nina and Morris, Andrew P and Nalls, Mike A and Navis, Gerjan and Neijts, Melanie and Nikus, Kjell and North, Kari E and O{\textquoteright}Connor, Daniel T and Ormel, Johan and Perz, Siegfried and Peters, Annette and Psaty, Bruce M and Raitakari, Olli T and Risbrough, Victoria B and Sinner, Moritz F and Siscovick, David and Smit, Johannes H and Smith, Nicholas L and Soliman, Elsayed Z and Sotoodehnia, Nona and Staessen, Jan A and Stein, Phyllis K and Stilp, Adrienne M and Stolarz-Skrzypek, Katarzyna and Strauch, Konstantin and Sundstr{\"o}m, Johan and Swenne, Cees A and Syv{\"a}nen, Ann-Christine and Tardif, Jean-Claude and Taylor, Kent D and Teumer, Alexander and Thornton, Timothy A and Tinker, Lesley E and Uitterlinden, Andr{\'e} G and van Setten, Jessica and Voss, Andreas and Waldenberger, Melanie and Wilhelmsen, Kirk C and Willemsen, Gonneke and Wong, Quenna and Zhang, Zhu-Ming and Zonderman, Alan B and Cusi, Daniele and Evans, Michele K and Greiser, Halina K and van der Harst, Pim and Hassan, Mohammad and Ingelsson, Erik and Jarvelin, Marjo-Riitta and K{\"a}{\"a}b, Stefan and K{\"a}h{\"o}nen, Mika and Kivimaki, Mika and Kooperberg, Charles and Kuh, Diana and Lehtim{\"a}ki, Terho and Lind, Lars and Nievergelt, Caroline M and O{\textquoteright}Donnell, Chris J and Oldehinkel, Albertine J and Penninx, Brenda and Reiner, Alexander P and Riese, Harri{\"e}tte and van Roon, Arie M and Rioux, John D and Rotter, Jerome I and Sofer, Tamar and Stricker, Bruno H and Tiemeier, Henning and Vrijkotte, Tanja G M and Asselbergs, Folkert W and Brundel, Bianca J J M and Heckbert, Susan R and Whitsel, Eric A and den Hoed, Marcel and Snieder, Harold and de Geus, Eco J C} } @article {7353, title = {A genome-wide interaction analysis of tricyclic/tetracyclic antidepressants and RR and QT intervals: a pharmacogenomics study from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium.}, journal = {J Med Genet}, volume = {54}, year = {2017}, month = {2017 May}, pages = {313-323}, abstract = {

BACKGROUND: Increased heart rate and a prolonged QT interval are important risk factors for cardiovascular morbidity and mortality, and can be influenced by the use of various medications, including tricyclic/tetracyclic antidepressants (TCAs). We aim to identify genetic loci that modify the association between TCA use and RR and QT intervals.

METHODS AND RESULTS: We conducted race/ethnic-specific genome-wide interaction analyses (with HapMap phase II imputed reference panel imputation) of TCAs and resting RR and QT intervals in cohorts of European (n=45 706; n=1417 TCA users), African (n=10 235; n=296 TCA users) and Hispanic/Latino (n=13 808; n=147 TCA users) ancestry, adjusted for clinical covariates. Among the populations of European ancestry, two genome-wide significant loci were identified for RR interval: rs6737205 in BRE (β=56.3, pinteraction=3.9e(-9)) and rs9830388 in UBE2E2 (β=25.2, pinteraction=1.7e(-8)). In Hispanic/Latino cohorts, rs2291477 in TGFBR3 significantly modified the association between TCAs and QT intervals (β=9.3, pinteraction=2.55e(-8)). In the meta-analyses of the other ethnicities, these loci either were excluded from the meta-analyses (as part of quality control), or their effects did not reach the level of nominal statistical significance (pinteraction>0.05). No new variants were identified in these ethnicities. No additional loci were identified after inverse-variance-weighted meta-analysis of the three ancestries.

CONCLUSIONS: Among Europeans, TCA interactions with variants in BRE and UBE2E2 were identified in relation to RR intervals. Among Hispanic/Latinos, variants in TGFBR3 modified the relation between TCAs and QT intervals. Future studies are required to confirm our results.

}, issn = {1468-6244}, doi = {10.1136/jmedgenet-2016-104112}, author = {Noordam, Raymond and Sitlani, Colleen M and Avery, Christy L and Stewart, James D and Gogarten, Stephanie M and Wiggins, Kerri L and Trompet, Stella and Warren, Helen R and Sun, Fangui and Evans, Daniel S and Li, Xiaohui and Li, Jin and Smith, Albert V and Bis, Joshua C and Brody, Jennifer A and Busch, Evan L and Caulfield, Mark J and Chen, Yii-der I and Cummings, Steven R and Cupples, L Adrienne and Duan, Qing and Franco, Oscar H and M{\'e}ndez-Gir{\'a}ldez, R{\'a}ul and Harris, Tamara B and Heckbert, Susan R and van Heemst, Diana and Hofman, Albert and Floyd, James S and Kors, Jan A and Launer, Lenore J and Li, Yun and Li-Gao, Ruifang and Lange, Leslie A and Lin, Henry J and de Mutsert, Ren{\'e}e and Napier, Melanie D and Newton-Cheh, Christopher and Poulter, Neil and Reiner, Alexander P and Rice, Kenneth M and Roach, Jeffrey and Rodriguez, Carlos J and Rosendaal, Frits R and Sattar, Naveed and Sever, Peter and Seyerle, Amanda A and Slagboom, P Eline and Soliman, Elsayed Z and Sotoodehnia, Nona and Stott, David J and St{\"u}rmer, Til and Taylor, Kent D and Thornton, Timothy A and Uitterlinden, Andr{\'e} G and Wilhelmsen, Kirk C and Wilson, James G and Gudnason, Vilmundur and Jukema, J Wouter and Laurie, Cathy C and Liu, Yongmei and Mook-Kanamori, Dennis O and Munroe, Patricia B and Rotter, Jerome I and Vasan, Ramachandran S and Psaty, Bruce M and Stricker, Bruno H and Whitsel, Eric A} } @article {7396, title = {Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation.}, journal = {Nat Genet}, volume = {49}, year = {2017}, month = {2017 Jun}, pages = {946-952}, abstract = {

Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery.

}, issn = {1546-1718}, doi = {10.1038/ng.3843}, author = {Christophersen, Ingrid E and Rienstra, Michiel and Roselli, Carolina and Yin, Xiaoyan and Geelhoed, Bastiaan and Barnard, John and Lin, Honghuang and Arking, Dan E and Smith, Albert V and Albert, Christine M and Chaffin, Mark and Tucker, Nathan R and Li, Molong and Klarin, Derek and Bihlmeyer, Nathan A and Low, Siew-Kee and Weeke, Peter E and M{\"u}ller-Nurasyid, Martina and Smith, J Gustav and Brody, Jennifer A and Niemeijer, Maartje N and D{\"o}rr, Marcus and Trompet, Stella and Huffman, Jennifer and Gustafsson, Stefan and Schurmann, Claudia and Kleber, Marcus E and Lyytik{\"a}inen, Leo-Pekka and Sepp{\"a}l{\"a}, Ilkka and Malik, Rainer and Horimoto, Andrea R V R and Perez, Marco and Sinisalo, Juha and Aeschbacher, Stefanie and Th{\'e}riault, S{\'e}bastien and Yao, Jie and Radmanesh, Farid and Weiss, Stefan and Teumer, Alexander and Choi, Seung Hoan and Weng, Lu-Chen and Clauss, Sebastian and Deo, Rajat and Rader, Daniel J and Shah, Svati H and Sun, Albert and Hopewell, Jemma C and Debette, Stephanie and Chauhan, Ganesh and Yang, Qiong and Worrall, Bradford B and Par{\'e}, Guillaume and Kamatani, Yoichiro and Hagemeijer, Yanick P and Verweij, Niek and Siland, Joylene E and Kubo, Michiaki and Smith, Jonathan D and Van Wagoner, David R and Bis, Joshua C and Perz, Siegfried and Psaty, Bruce M and Ridker, Paul M and Magnani, Jared W and Harris, Tamara B and Launer, Lenore J and Shoemaker, M Benjamin and Padmanabhan, Sandosh and Haessler, Jeffrey and Bartz, Traci M and Waldenberger, Melanie and Lichtner, Peter and Arendt, Marina and Krieger, Jose E and K{\"a}h{\"o}nen, Mika and Risch, Lorenz and Mansur, Alfredo J and Peters, Annette and Smith, Blair H and Lind, Lars and Scott, Stuart A and Lu, Yingchang and Bottinger, Erwin B and Hernesniemi, Jussi and Lindgren, Cecilia M and Wong, Jorge A and Huang, Jie and Eskola, Markku and Morris, Andrew P and Ford, Ian and Reiner, Alex P and Delgado, Graciela and Chen, Lin Y and Chen, Yii-Der Ida and Sandhu, Roopinder K and Li, Man and Boerwinkle, Eric and Eisele, Lewin and Lannfelt, Lars and Rost, Natalia and Anderson, Christopher D and Taylor, Kent D and Campbell, Archie and Magnusson, Patrik K and Porteous, David and Hocking, Lynne J and Vlachopoulou, Efthymia and Pedersen, Nancy L and Nikus, Kjell and Orho-Melander, Marju and Hamsten, Anders and Heeringa, Jan and Denny, Joshua C and Kriebel, Jennifer and Darbar, Dawood and Newton-Cheh, Christopher and Shaffer, Christian and Macfarlane, Peter W and Heilmann-Heimbach, Stefanie and Almgren, Peter and Huang, Paul L and Sotoodehnia, Nona and Soliman, Elsayed Z and Uitterlinden, Andr{\'e} G and Hofman, Albert and Franco, Oscar H and V{\"o}lker, Uwe and J{\"o}ckel, Karl-Heinz and Sinner, Moritz F and Lin, Henry J and Guo, Xiuqing and Dichgans, Martin and Ingelsson, Erik and Kooperberg, Charles and Melander, Olle and Loos, Ruth J F and Laurikka, Jari and Conen, David and Rosand, Jonathan and van der Harst, Pim and Lokki, Marja-Liisa and Kathiresan, Sekar and Pereira, Alexandre and Jukema, J Wouter and Hayward, Caroline and Rotter, Jerome I and M{\"a}rz, Winfried and Lehtim{\"a}ki, Terho and Stricker, Bruno H and Chung, Mina K and Felix, Stephan B and Gudnason, Vilmundur and Alonso, Alvaro and Roden, Dan M and K{\"a}{\"a}b, Stefan and Chasman, Daniel I and Heckbert, Susan R and Benjamin, Emelia J and Tanaka, Toshihiro and Lunetta, Kathryn L and Lubitz, Steven A and Ellinor, Patrick T} } @article {7373, title = {Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function.}, journal = {J Clin Invest}, volume = {127}, year = {2017}, month = {2017 May 01}, pages = {1798-1812}, abstract = {

BACKGROUND: Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function.

METHODS: A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function.

RESULTS: The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue.

CONCLUSION: The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies.

FUNDING: For detailed information per study, see Acknowledgments.

}, issn = {1558-8238}, doi = {10.1172/JCI84840}, author = {Wild, Philipp S and Felix, Janine F and Schillert, Arne and Teumer, Alexander and Chen, Ming-Huei and Leening, Maarten J G and V{\"o}lker, Uwe and Gro{\ss}mann, Vera and Brody, Jennifer A and Irvin, Marguerite R and Shah, Sanjiv J and Pramana, Setia and Lieb, Wolfgang and Schmidt, Reinhold and Stanton, Alice V and Malzahn, D{\"o}rthe and Smith, Albert Vernon and Sundstr{\"o}m, Johan and Minelli, Cosetta and Ruggiero, Daniela and Lyytik{\"a}inen, Leo-Pekka and Tiller, Daniel and Smith, J Gustav and Monnereau, Claire and Di Tullio, Marco R and Musani, Solomon K and Morrison, Alanna C and Pers, Tune H and Morley, Michael and Kleber, Marcus E and Aragam, Jayashri and Benjamin, Emelia J and Bis, Joshua C and Bisping, Egbert and Broeckel, Ulrich and Cheng, Susan and Deckers, Jaap W and del Greco M, Fabiola and Edelmann, Frank and Fornage, Myriam and Franke, Lude and Friedrich, Nele and Harris, Tamara B and Hofer, Edith and Hofman, Albert and Huang, Jie and Hughes, Alun D and K{\"a}h{\"o}nen, Mika and Investigators, Knhi and Kruppa, Jochen and Lackner, Karl J and Lannfelt, Lars and Laskowski, Rafael and Launer, Lenore J and Leosdottir, Margr{\'e}t and Lin, Honghuang and Lindgren, Cecilia M and Loley, Christina and MacRae, Calum A and Mascalzoni, Deborah and Mayet, Jamil and Medenwald, Daniel and Morris, Andrew P and M{\"u}ller, Christian and M{\"u}ller-Nurasyid, Martina and Nappo, Stefania and Nilsson, Peter M and Nuding, Sebastian and Nutile, Teresa and Peters, Annette and Pfeufer, Arne and Pietzner, Diana and Pramstaller, Peter P and Raitakari, Olli T and Rice, Kenneth M and Rivadeneira, Fernando and Rotter, Jerome I and Ruohonen, Saku T and Sacco, Ralph L and Samdarshi, Tandaw E and Schmidt, Helena and Sharp, Andrew S P and Shields, Denis C and Sorice, Rossella and Sotoodehnia, Nona and Stricker, Bruno H and Surendran, Praveen and Thom, Simon and T{\"o}glhofer, Anna M and Uitterlinden, Andr{\'e} G and Wachter, Rolf and V{\"o}lzke, Henry and Ziegler, Andreas and M{\"u}nzel, Thomas and M{\"a}rz, Winfried and Cappola, Thomas P and Hirschhorn, Joel N and Mitchell, Gary F and Smith, Nicholas L and Fox, Ervin R and Dueker, Nicole D and Jaddoe, Vincent W V and Melander, Olle and Russ, Martin and Lehtim{\"a}ki, Terho and Ciullo, Marina and Hicks, Andrew A and Lind, Lars and Gudnason, Vilmundur and Pieske, Burkert and Barron, Anthony J and Zweiker, Robert and Schunkert, Heribert and Ingelsson, Erik and Liu, Kiang and Arnett, Donna K and Psaty, Bruce M and Blankenberg, Stefan and Larson, Martin G and Felix, Stephan B and Franco, Oscar H and Zeller, Tanja and Vasan, Ramachandran S and D{\"o}rr, Marcus} } @article {7492, title = {Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.}, journal = {Hypertension}, year = {2017}, month = {2017 Jul 24}, abstract = {

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.

}, issn = {1524-4563}, doi = {10.1161/HYPERTENSIONAHA.117.09438}, author = {Wain, Louise V and Vaez, Ahmad and Jansen, Rick and Joehanes, Roby and van der Most, Peter J and Erzurumluoglu, A Mesut and O{\textquoteright}Reilly, Paul F and Cabrera, Claudia P and Warren, Helen R and Rose, Lynda M and Verwoert, Germaine C and Hottenga, Jouke-Jan and Strawbridge, Rona J and Esko, T{\~o}nu and Arking, Dan E and Hwang, Shih-Jen and Guo, Xiuqing and Kutalik, Zolt{\'a}n and Trompet, Stella and Shrine, Nick and Teumer, Alexander and Ried, Janina S and Bis, Joshua C and Smith, Albert V and Amin, Najaf and Nolte, Ilja M and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Wareham, Nicholas J and Hofer, Edith and Joshi, Peter K and Kristiansson, Kati and Traglia, Michela and Havulinna, Aki S and Goel, Anuj and Nalls, Mike A and S{\~o}ber, Siim and Vuckovic, Dragana and Luan, Jian{\textquoteright}an and del Greco M, Fabiola and Ayers, Kristin L and Marrugat, Jaume and Ruggiero, Daniela and Lopez, Lorna M and Niiranen, Teemu and Enroth, Stefan and Jackson, Anne U and Nelson, Christopher P and Huffman, Jennifer E and Zhang, Weihua and Marten, Jonathan and Gandin, Ilaria and Harris, Sarah E and Zemunik, Tatijana and Lu, Yingchang and Evangelou, Evangelos and Shah, Nabi and de Borst, Martin H and Mangino, Massimo and Prins, Bram P and Campbell, Archie and Li-Gao, Ruifang and Chauhan, Ganesh and Oldmeadow, Christopher and Abecasis, Goncalo and Abedi, Maryam and Barbieri, Caterina M and Barnes, Michael R and Batini, Chiara and Beilby, John and Blake, Tineka and Boehnke, Michael and Bottinger, Erwin P and Braund, Peter S and Brown, Morris and Brumat, Marco and Campbell, Harry and Chambers, John C and Cocca, Massimiliano and Collins, Francis and Connell, John and Cordell, Heather J and Damman, Jeffrey J and Davies, Gail and de Geus, Eco J and de Mutsert, Ren{\'e}e and Deelen, Joris and Demirkale, Yusuf and Doney, Alex S F and D{\"o}rr, Marcus and Farrall, Martin and Ferreira, Teresa and Fr{\r a}nberg, Mattias and Gao, He and Giedraitis, Vilmantas and Gieger, Christian and Giulianini, Franco and Gow, Alan J and Hamsten, Anders and Harris, Tamara B and Hofman, Albert and Holliday, Elizabeth G and Hui, Jennie and Jarvelin, Marjo-Riitta and Johansson, Asa and Johnson, Andrew D and Jousilahti, Pekka and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Khaw, Kay-Tee and Kolcic, Ivana and Koskinen, Seppo and Langenberg, Claudia and Larson, Marty and Launer, Lenore J and Lehne, Benjamin and Liewald, David C M and Lin, Li and Lind, Lars and Mach, Fran{\c c}ois and Mamasoula, Chrysovalanto and Menni, Cristina and Mifsud, Borbala and Milaneschi, Yuri and Morgan, Anna and Morris, Andrew D and Morrison, Alanna C and Munson, Peter J and Nandakumar, Priyanka and Nguyen, Quang Tri and Nutile, Teresa and Oldehinkel, Albertine J and Oostra, Ben A and Org, Elin and Padmanabhan, Sandosh and Palotie, Aarno and Par{\'e}, Guillaume and Pattie, Alison and Penninx, Brenda W J H and Poulter, Neil and Pramstaller, Peter P and Raitakari, Olli T and Ren, Meixia and Rice, Kenneth and Ridker, Paul M and Riese, Harri{\"e}tte and Ripatti, Samuli and Robino, Antonietta and Rotter, Jerome I and Rudan, Igor and Saba, Yasaman and Saint Pierre, Aude and Sala, Cinzia F and Sarin, Antti-Pekka and Schmidt, Reinhold and Scott, Rodney and Seelen, Marc A and Shields, Denis C and Siscovick, David and Sorice, Rossella and Stanton, Alice and Stott, David J and Sundstr{\"o}m, Johan and Swertz, Morris and Taylor, Kent D and Thom, Simon and Tzoulaki, Ioanna and Tzourio, Christophe and Uitterlinden, Andr{\'e} G and V{\"o}lker, Uwe and Vollenweider, Peter and Wild, Sarah and Willemsen, Gonneke and Wright, Alan F and Yao, Jie and Th{\'e}riault, S{\'e}bastien and Conen, David and Attia, John and Sever, Peter and Debette, Stephanie and Mook-Kanamori, Dennis O and Zeggini, Eleftheria and Spector, Tim D and van der Harst, Pim and Palmer, Colin N A and Vergnaud, Anne-Claire and Loos, Ruth J F and Polasek, Ozren and Starr, John M and Girotto, Giorgia and Hayward, Caroline and Kooner, Jaspal S and Lindgren, Cecila M and Vitart, Veronique and Samani, Nilesh J and Tuomilehto, Jaakko and Gyllensten, Ulf and Knekt, Paul and Deary, Ian J and Ciullo, Marina and Elosua, Roberto and Keavney, Bernard D and Hicks, Andrew A and Scott, Robert A and Gasparini, Paolo and Laan, Maris and Liu, Yongmei and Watkins, Hugh and Hartman, Catharina A and Salomaa, Veikko and Toniolo, Daniela and Perola, Markus and Wilson, James F and Schmidt, Helena and Zhao, Jing Hua and Lehtim{\"a}ki, Terho and van Duijn, Cornelia M and Gudnason, Vilmundur and Psaty, Bruce M and Peters, Annette and Rettig, Rainer and James, Alan and Jukema, J Wouter and Strachan, David P and Palmas, Walter and Metspalu, Andres and Ingelsson, Erik and Boomsma, Dorret I and Franco, Oscar H and Bochud, Murielle and Newton-Cheh, Christopher and Munroe, Patricia B and Elliott, Paul and Chasman, Daniel I and Chakravarti, Aravinda and Knight, Joanne and Morris, Andrew P and Levy, Daniel and Tobin, Martin D and Snieder, Harold and Caulfield, Mark J and Ehret, Georg B} } @article {7587, title = {Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer{\textquoteright}s disease.}, journal = {Nat Genet}, volume = {49}, year = {2017}, month = {2017 Sep}, pages = {1373-1384}, abstract = {

We identified rare coding variants associated with Alzheimer{\textquoteright}s disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 {\texttimes} 10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 {\texttimes} 10-8) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer{\textquoteright}s disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 {\texttimes} 10-10, odds ratio (OR) = 0.68, minor allele frequency (MAF)cases = 0.0059, MAFcontrols = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 {\texttimes} 10-10, OR = 1.43, MAFcases = 0.011, MAFcontrols = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 {\texttimes} 10-14, OR = 1.67, MAFcases = 0.0143, MAFcontrols = 0.0089), a known susceptibility gene for Alzheimer{\textquoteright}s disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer{\textquoteright}s disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer{\textquoteright}s disease.

}, keywords = {Adaptor Proteins, Signal Transducing, Alzheimer Disease, Amino Acid Sequence, Case-Control Studies, Exome, Gene Expression Profiling, Gene Frequency, Genetic Predisposition to Disease, Genotype, Humans, Immunity, Innate, Linkage Disequilibrium, Membrane Glycoproteins, Microglia, Odds Ratio, Phospholipase C gamma, Polymorphism, Single Nucleotide, Protein Interaction Maps, Receptors, Immunologic, Sequence Homology, Amino Acid}, issn = {1546-1718}, doi = {10.1038/ng.3916}, author = {Sims, Rebecca and van der Lee, Sven J and Naj, Adam C and Bellenguez, C{\'e}line and Badarinarayan, Nandini and Jakobsdottir, Johanna and Kunkle, Brian W and Boland, Anne and Raybould, Rachel and Bis, Joshua C and Martin, Eden R and Grenier-Boley, Benjamin and Heilmann-Heimbach, Stefanie and Chouraki, Vincent and Kuzma, Amanda B and Sleegers, Kristel and Vronskaya, Maria and Ruiz, Agustin and Graham, Robert R and Olaso, Robert and Hoffmann, Per and Grove, Megan L and Vardarajan, Badri N and Hiltunen, Mikko and N{\"o}then, Markus M and White, Charles C and Hamilton-Nelson, Kara L and Epelbaum, Jacques and Maier, Wolfgang and Choi, Seung-Hoan and Beecham, Gary W and Dulary, C{\'e}cile and Herms, Stefan and Smith, Albert V and Funk, Cory C and Derbois, C{\'e}line and Forstner, Andreas J and Ahmad, Shahzad and Li, Hongdong and Bacq, Delphine and Harold, Denise and Satizabal, Claudia L and Valladares, Otto and Squassina, Alessio and Thomas, Rhodri and Brody, Jennifer A and Qu, Liming and S{\'a}nchez-Juan, Pascual and Morgan, Taniesha and Wolters, Frank J and Zhao, Yi and Garcia, Florentino Sanchez and Denning, Nicola and Fornage, Myriam and Malamon, John and Naranjo, Maria Candida Deniz and Majounie, Elisa and Mosley, Thomas H and Dombroski, Beth and Wallon, David and Lupton, Michelle K and Dupuis, Jos{\'e}e and Whitehead, Patrice and Fratiglioni, Laura and Medway, Christopher and Jian, Xueqiu and Mukherjee, Shubhabrata and Keller, Lina and Brown, Kristelle and Lin, Honghuang and Cantwell, Laura B and Panza, Francesco and McGuinness, Bernadette and Moreno-Grau, Sonia and Burgess, Jeremy D and Solfrizzi, Vincenzo and Proitsi, Petra and Adams, Hieab H and Allen, Mariet and Seripa, Davide and Pastor, Pau and Cupples, L Adrienne and Price, Nathan D and Hannequin, Didier and Frank-Garc{\'\i}a, Ana and Levy, Daniel and Chakrabarty, Paramita and Caffarra, Paolo and Giegling, Ina and Beiser, Alexa S and Giedraitis, Vilmantas and Hampel, Harald and Garcia, Melissa E and Wang, Xue and Lannfelt, Lars and Mecocci, Patrizia and Eiriksdottir, Gudny and Crane, Paul K and Pasquier, Florence and Boccardi, Virginia and Hen{\'a}ndez, Isabel and Barber, Robert C and Scherer, Martin and Tarraga, Lluis and Adams, Perrie M and Leber, Markus and Chen, Yuning and Albert, Marilyn S and Riedel-Heller, Steffi and Emilsson, Valur and Beekly, Duane and Braae, Anne and Schmidt, Reinhold and Blacker, Deborah and Masullo, Carlo and Schmidt, Helena and Doody, Rachelle S and Spalletta, Gianfranco and Jr, W T Longstreth and Fairchild, Thomas J and Boss{\`u}, Paola and Lopez, Oscar L and Frosch, Matthew P and Sacchinelli, Eleonora and Ghetti, Bernardino and Yang, Qiong and Huebinger, Ryan M and Jessen, Frank and Li, Shuo and Kamboh, M Ilyas and Morris, John and Sotolongo-Grau, Oscar and Katz, Mindy J and Corcoran, Chris and Dunstan, Melanie and Braddel, Amy and Thomas, Charlene and Meggy, Alun and Marshall, Rachel and Gerrish, Amy and Chapman, Jade and Aguilar, Miquel and Taylor, Sarah and Hill, Matt and Fair{\'e}n, M{\`o}nica D{\'\i}ez and Hodges, Angela and Vellas, Bruno and Soininen, Hilkka and Kloszewska, Iwona and Daniilidou, Makrina and Uphill, James and Patel, Yogen and Hughes, Joseph T and Lord, Jenny and Turton, James and Hartmann, Annette M and Cecchetti, Roberta and Fenoglio, Chiara and Serpente, Maria and Arcaro, Marina and Caltagirone, Carlo and Orfei, Maria Donata and Ciaramella, Antonio and Pichler, Sabrina and Mayhaus, Manuel and Gu, Wei and Lleo, Alberto and Fortea, Juan and Blesa, Rafael and Barber, Imelda S and Brookes, Keeley and Cupidi, Chiara and Maletta, Raffaele Giovanni and Carrell, David and Sorbi, Sandro and Moebus, Susanne and Urbano, Maria and Pilotto, Alberto and Kornhuber, Johannes and Bosco, Paolo and Todd, Stephen and Craig, David and Johnston, Janet and Gill, Michael and Lawlor, Brian and Lynch, Aoibhinn and Fox, Nick C and Hardy, John and Albin, Roger L and Apostolova, Liana G and Arnold, Steven E and Asthana, Sanjay and Atwood, Craig S and Baldwin, Clinton T and Barnes, Lisa L and Barral, Sandra and Beach, Thomas G and Becker, James T and Bigio, Eileen H and Bird, Thomas D and Boeve, Bradley F and Bowen, James D and Boxer, Adam and Burke, James R and Burns, Jeffrey M and Buxbaum, Joseph D and Cairns, Nigel J and Cao, Chuanhai and Carlson, Chris S and Carlsson, Cynthia M and Carney, Regina M and Carrasquillo, Minerva M and Carroll, Steven L and Diaz, Carolina Ceballos and Chui, Helena C and Clark, David G and Cribbs, David H and Crocco, Elizabeth A and DeCarli, Charles and Dick, Malcolm and Duara, Ranjan and Evans, Denis A and Faber, Kelley M and Fallon, Kenneth B and Fardo, David W and Farlow, Martin R and Ferris, Steven and Foroud, Tatiana M and Galasko, Douglas R and Gearing, Marla and Geschwind, Daniel H and Gilbert, John R and Graff-Radford, Neill R and Green, Robert C and Growdon, John H and Hamilton, Ronald L and Harrell, Lindy E and Honig, Lawrence S and Huentelman, Matthew J and Hulette, Christine M and Hyman, Bradley T and Jarvik, Gail P and Abner, Erin and Jin, Lee-Way and Jun, Gyungah and Karydas, Anna and Kaye, Jeffrey A and Kim, Ronald and Kowall, Neil W and Kramer, Joel H and LaFerla, Frank M and Lah, James J and Leverenz, James B and Levey, Allan I and Li, Ge and Lieberman, Andrew P and Lunetta, Kathryn L and Lyketsos, Constantine G and Marson, Daniel C and Martiniuk, Frank and Mash, Deborah C and Masliah, Eliezer and McCormick, Wayne C and McCurry, Susan M and McDavid, Andrew N and McKee, Ann C and Mesulam, Marsel and Miller, Bruce L and Miller, Carol A and Miller, Joshua W and Morris, John C and Murrell, Jill R and Myers, Amanda J and O{\textquoteright}Bryant, Sid and Olichney, John M and Pankratz, Vernon S and Parisi, Joseph E and Paulson, Henry L and Perry, William and Peskind, Elaine and Pierce, Aimee and Poon, Wayne W and Potter, Huntington and Quinn, Joseph F and Raj, Ashok and Raskind, Murray and Reisberg, Barry and Reitz, Christiane and Ringman, John M and Roberson, Erik D and Rogaeva, Ekaterina and Rosen, Howard J and Rosenberg, Roger N and Sager, Mark A and Saykin, Andrew J and Schneider, Julie A and Schneider, Lon S and Seeley, William W and Smith, Amanda G and Sonnen, Joshua A and Spina, Salvatore and Stern, Robert A and Swerdlow, Russell H and Tanzi, Rudolph E and Thornton-Wells, Tricia A and Trojanowski, John Q and Troncoso, Juan C and Van Deerlin, Vivianna M and Van Eldik, Linda J and Vinters, Harry V and Vonsattel, Jean Paul and Weintraub, Sandra and Welsh-Bohmer, Kathleen A and Wilhelmsen, Kirk C and Williamson, Jennifer and Wingo, Thomas S and Woltjer, Randall L and Wright, Clinton B and Yu, Chang-En and Yu, Lei and Garzia, Fabienne and Golamaully, Feroze and Septier, Gislain and Engelborghs, Sebastien and Vandenberghe, Rik and De Deyn, Peter P and Fernadez, Carmen Mu{\~n}oz and Benito, Yoland Aladro and Thonberg, H{\r a}kan and Forsell, Charlotte and Lilius, Lena and Kinhult-St{\r a}hlbom, Anne and Kilander, Lena and Brundin, RoseMarie and Concari, Letizia and Helisalmi, Seppo and Koivisto, Anne Maria and Haapasalo, Annakaisa and Dermecourt, Vincent and Fi{\'e}vet, Nathalie and Hanon, Olivier and Dufouil, Carole and Brice, Alexis and Ritchie, Karen and Dubois, Bruno and Himali, Jayanadra J and Keene, C Dirk and Tschanz, JoAnn and Fitzpatrick, Annette L and Kukull, Walter A and Norton, Maria and Aspelund, Thor and Larson, Eric B and Munger, Ron and Rotter, Jerome I and Lipton, Richard B and Bullido, Mar{\'\i}a J and Hofman, Albert and Montine, Thomas J and Coto, Eliecer and Boerwinkle, Eric and Petersen, Ronald C and Alvarez, Victoria and Rivadeneira, Fernando and Reiman, Eric M and Gallo, Maura and O{\textquoteright}Donnell, Christopher J and Reisch, Joan S and Bruni, Amalia Cecilia and Royall, Donald R and Dichgans, Martin and Sano, Mary and Galimberti, Daniela and St George-Hyslop, Peter and Scarpini, Elio and Tsuang, Debby W and Mancuso, Michelangelo and Bonuccelli, Ubaldo and Winslow, Ashley R and Daniele, Antonio and Wu, Chuang-Kuo and Peters, Oliver and Nacmias, Benedetta and Riemenschneider, Matthias and Heun, Reinhard and Brayne, Carol and Rubinsztein, David C and Bras, Jose and Guerreiro, Rita and Al-Chalabi, Ammar and Shaw, Christopher E and Collinge, John and Mann, David and Tsolaki, Magda and Clarimon, Jordi and Sussams, Rebecca and Lovestone, Simon and O{\textquoteright}Donovan, Michael C and Owen, Michael J and Behrens, Timothy W and Mead, Simon and Goate, Alison M and Uitterlinden, Andr{\'e} G and Holmes, Clive and Cruchaga, Carlos and Ingelsson, Martin and Bennett, David A and Powell, John and Golde, Todd E and Graff, Caroline and De Jager, Philip L and Morgan, Kevin and Ertekin-Taner, Nilufer and Combarros, Onofre and Psaty, Bruce M and Passmore, Peter and Younkin, Steven G and Berr, Claudine and Gudnason, Vilmundur and Rujescu, Dan and Dickson, Dennis W and Dartigues, Jean-Fran{\c c}ois and DeStefano, Anita L and Ortega-Cubero, Sara and Hakonarson, Hakon and Campion, Dominique and Boada, Merce and Kauwe, John Keoni and Farrer, Lindsay A and Van Broeckhoven, Christine and Ikram, M Arfan and Jones, Lesley and Haines, Jonathan L and Tzourio, Christophe and Launer, Lenore J and Escott-Price, Valentina and Mayeux, Richard and Deleuze, Jean-Francois and Amin, Najaf and Holmans, Peter A and Pericak-Vance, Margaret A and Amouyel, Philippe and van Duijn, Cornelia M and Ramirez, Alfredo and Wang, Li-San and Lambert, Jean-Charles and Seshadri, Sudha and Williams, Julie and Schellenberg, Gerard D} } @article {7554, title = {Trends in the incidence of dementia: design and methods in the Alzheimer Cohorts Consortium.}, journal = {Eur J Epidemiol}, volume = {32}, year = {2017}, month = {2017 Oct}, pages = {931-938}, abstract = {

Several studies have reported a decline in incidence of dementia which may have large implications for the projected burden of disease, and provide important guidance to preventive efforts. However, reports are conflicting or inconclusive with regard to the impact of gender and education with underlying causes of a presumed declining trend remaining largely unidentified. The Alzheimer Cohorts Consortium aggregates data from nine international population-based cohorts to determine changes in the incidence of dementia since 1990. We will employ Poisson regression models to calculate incidence rates in each cohort and Cox proportional hazard regression to compare 5-year cumulative hazards across study-specific epochs. Finally, we will meta-analyse changes per decade across cohorts, and repeat all analysis stratified by sex, education and APOE genotype. In all cohorts combined, there are data on almost 69,000 people at risk of dementia with the range of follow-up years between 2 and 27. The average age at baseline is similar across cohorts ranging between 72 and 77. Uniting a wide range of disease-specific and methodological expertise in research teams, the first analyses within the Alzheimer Cohorts Consortium are underway to tackle outstanding challenges in the assessment of time-trends in dementia occurrence.

}, issn = {1573-7284}, doi = {10.1007/s10654-017-0320-5}, author = {Chibnik, Lori B and Wolters, Frank J and B{\"a}ckman, Kristoffer and Beiser, Alexa and Berr, Claudine and Bis, Joshua C and Boerwinkle, Eric and Bos, Daniel and Brayne, Carol and Dartigues, Jean-Fran{\c c}ois and Darweesh, Sirwan K L and Debette, Stephanie and Davis-Plourde, Kendra L and Dufouil, Carole and Fornage, Myriam and Grasset, Leslie and Gudnason, Vilmundur and Hadjichrysanthou, Christoforos and Helmer, Catherine and Ikram, M Arfan and Ikram, M Kamran and Kern, Silke and Kuller, Lewis H and Launer, Lenore and Lopez, Oscar L and Matthews, Fiona and Meirelles, Osorio and Mosley, Thomas and Ower, Alison and Psaty, Bruce M and Satizabal, Claudia L and Seshadri, Sudha and Skoog, Ingmar and Stephan, Blossom C M and Tzourio, Christophe and Waziry, Reem and Wong, Mei Mei and Zettergren, Anna and Hofman, Albert} } @article {7801, title = {Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 May}, pages = {e002037}, abstract = {

BACKGROUND: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability.

METHODS: We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval.

RESULTS: We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction (<1.2{\texttimes}10), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at (=5.9{\texttimes}10) and (=1.1{\texttimes}10) were associated with PR interval. locus also was implicated in the common variant analysis, whereas was a novel locus.

CONCLUSIONS: We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.117.002037}, author = {Lin, Honghuang and van Setten, Jessica and Smith, Albert V and Bihlmeyer, Nathan A and Warren, Helen R and Brody, Jennifer A and Radmanesh, Farid and Hall, Leanne and Grarup, Niels and M{\"u}ller-Nurasyid, Martina and Boutin, Thibaud and Verweij, Niek and Lin, Henry J and Li-Gao, Ruifang and van den Berg, Marten E and Marten, Jonathan and Weiss, Stefan and Prins, Bram P and Haessler, Jeffrey and Lyytik{\"a}inen, Leo-Pekka and Mei, Hao and Harris, Tamara B and Launer, Lenore J and Li, Man and Alonso, Alvaro and Soliman, Elsayed Z and Connell, John M and Huang, Paul L and Weng, Lu-Chen and Jameson, Heather S and Hucker, William and Hanley, Alan and Tucker, Nathan R and Chen, Yii-Der Ida and Bis, Joshua C and Rice, Kenneth M and Sitlani, Colleen M and Kors, Jan A and Xie, Zhijun and Wen, Chengping and Magnani, Jared W and Nelson, Christopher P and Kanters, J{\o}rgen K and Sinner, Moritz F and Strauch, Konstantin and Peters, Annette and Waldenberger, Melanie and Meitinger, Thomas and Bork-Jensen, Jette and Pedersen, Oluf and Linneberg, Allan and Rudan, Igor and de Boer, Rudolf A and van der Meer, Peter and Yao, Jie and Guo, Xiuqing and Taylor, Kent D and Sotoodehnia, Nona and Rotter, Jerome I and Mook-Kanamori, Dennis O and Trompet, Stella and Rivadeneira, Fernando and Uitterlinden, Andre and Eijgelsheim, Mark and Padmanabhan, Sandosh and Smith, Blair H and V{\"o}lzke, Henry and Felix, Stephan B and Homuth, Georg and V{\"o}lker, Uwe and Mangino, Massimo and Spector, Timothy D and Bots, Michiel L and Perez, Marco and K{\"a}h{\"o}nen, Mika and Raitakari, Olli T and Gudnason, Vilmundur and Arking, Dan E and Munroe, Patricia B and Psaty, Bruce M and van Duijn, Cornelia M and Benjamin, Emelia J and Rosand, Jonathan and Samani, Nilesh J and Hansen, Torben and K{\"a}{\"a}b, Stefan and Polasek, Ozren and van der Harst, Pim and Heckbert, Susan R and Jukema, J Wouter and Stricker, Bruno H and Hayward, Caroline and D{\"o}rr, Marcus and Jamshidi, Yalda and Asselbergs, Folkert W and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Wilson, James G and Ellinor, Patrick T and Lubitz, Steven A and Isaacs, Aaron} } @article {7802, title = {Common Coding Variants in Are Associated With the Nav1.8 Late Current and Cardiac Conduction.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 May}, pages = {e001663}, abstract = {

BACKGROUND: Genetic variants at the / locus are strongly associated with electrocardiographic PR and QRS intervals. While is the canonical cardiac sodium channel gene, the role of in cardiac conduction is less well characterized.

METHODS: We sequenced the locus in 3699 European-ancestry individuals to identify variants associated with cardiac conduction, and replicated our findings in 21,000 individuals of European ancestry. We examined association with expression in human atrial tissue. We explored the biophysical effect of variation on channel function using cellular electrophysiology.

RESULTS: We identified 2 intronic single nucleotide polymorphisms in high linkage disequilibrium ( =0.86) with each other to be the strongest signals for PR (rs10428132, β=-4.74, =1.52{\texttimes}10) and QRS intervals (rs6599251, QRS β=-0.73; =1.2{\texttimes}10), respectively. Although these variants were not associated with or expression in human atrial tissue (n=490), they were in high linkage disequilibrium ( >=0.72) with a common missense variant, rs6795970 (V1073A). In total, we identified 7 missense variants, 4 of which (I962V, P1045T, V1073A, and L1092P) were associated with cardiac conduction. These 4 missense variants cluster in the cytoplasmic linker of the second and third domains of the SCN10A protein and together form 6 common haplotypes. Using cellular electrophysiology, we found that haplotypes associated with shorter PR intervals had a significantly larger percentage of late current compared with wild-type (I962V+V1073A+L1092P, 20.2{\textpm}3.3\%, =0.03, and I962V+V1073A, 22.4{\textpm}0.8\%, =0.0004 versus wild-type 11.7{\textpm}1.6\%), and the haplotype associated with the longest PR interval had a significantly smaller late current percentage (P1045T, 6.4{\textpm}1.2\%, =0.03).

CONCLUSIONS: Our findings suggest an association between genetic variation in , the late sodium current, and alterations in cardiac conduction.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.116.001663}, author = {Macri, Vincenzo and Brody, Jennifer A and Arking, Dan E and Hucker, William J and Yin, Xiaoyan and Lin, Honghuang and Mills, Robert W and Sinner, Moritz F and Lubitz, Steven A and Liu, Ching-Ti and Morrison, Alanna C and Alonso, Alvaro and Li, Ning and Fedorov, Vadim V and Janssen, Paul M and Bis, Joshua C and Heckbert, Susan R and Dolmatova, Elena V and Lumley, Thomas and Sitlani, Colleen M and Cupples, L Adrienne and Pulit, Sara L and Newton-Cheh, Christopher and Barnard, John and Smith, Jonathan D and Van Wagoner, David R and Chung, Mina K and Vlahakes, Gus J and O{\textquoteright}Donnell, Christopher J and Rotter, Jerome I and Margulies, Kenneth B and Morley, Michael P and Cappola, Thomas P and Benjamin, Emelia J and Muzny, Donna and Gibbs, Richard A and Jackson, Rebecca D and Magnani, Jared W and Herndon, Caroline N and Rich, Stephen S and Psaty, Bruce M and Milan, David J and Boerwinkle, Eric and Mohler, Peter J and Sotoodehnia, Nona and Ellinor, Patrick T} } @article {7796, title = {Exome Chip Analysis Identifies Low-Frequency and Rare Variants in for White Matter Hyperintensities on Brain Magnetic Resonance Imaging.}, journal = {Stroke}, year = {2018}, month = {2018 Jul 12}, abstract = {

BACKGROUND AND PURPOSE: White matter hyperintensities (WMH) on brain magnetic resonance imaging are typical signs of cerebral small vessel disease and may indicate various preclinical, age-related neurological disorders, such as stroke. Though WMH are highly heritable, known common variants explain a small proportion of the WMH variance. The contribution of low-frequency/rare coding variants to WMH burden has not been explored.

METHODS: In the discovery sample we recruited 20 719 stroke/dementia-free adults from 13 population-based cohort studies within the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, among which 17 790 were of European ancestry and 2929 of African ancestry. We genotyped these participants at ≈250 000 mostly exonic variants with Illumina HumanExome BeadChip arrays. We performed ethnicity-specific linear regression on rank-normalized WMH in each study separately, which were then combined in meta-analyses to test for association with single variants and genes aggregating the effects of putatively functional low-frequency/rare variants. We then sought replication of the top findings in 1192 adults (European ancestry) with whole exome/genome sequencing data from 2 independent studies.

RESULTS: At 17q25, we confirmed the association of multiple common variants in , , and (<6{\texttimes}10). We also identified a novel association with 2 low-frequency nonsynonymous variants in (lead, rs34136221; =4.5{\texttimes}10) partially independent of known common signal (=1.4{\texttimes}10). We further identified a locus at 2q33 containing common variants in , , and (lead, rs2351524; =1.9{\texttimes}10). Although our novel findings were not replicated because of limited power and possible differences in study design, meta-analysis of the discovery and replication samples yielded stronger association for the 2 low-frequency variants (=2.8{\texttimes}10).

CONCLUSIONS: Both common and low-frequency/rare functional variants influence WMH. Larger replication and experimental follow-up are essential to confirm our findings and uncover the biological causal mechanisms of age-related WMH.

}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.118.020689}, author = {Jian, Xueqiu and Satizabal, Claudia L and Smith, Albert V and Wittfeld, Katharina and Bis, Joshua C and Smith, Jennifer A and Hsu, Fang-Chi and Nho, Kwangsik and Hofer, Edith and Hagenaars, Saskia P and Nyquist, Paul A and Mishra, Aniket and Adams, Hieab H H and Li, Shuo and Teumer, Alexander and Zhao, Wei and Freedman, Barry I and Saba, Yasaman and Yanek, Lisa R and Chauhan, Ganesh and van Buchem, Mark A and Cushman, Mary and Royle, Natalie A and Bryan, R Nick and Niessen, Wiro J and Windham, Beverly G and DeStefano, Anita L and Habes, Mohamad and Heckbert, Susan R and Palmer, Nicholette D and Lewis, Cora E and Eiriksdottir, Gudny and Maillard, Pauline and Mathias, Rasika A and Homuth, Georg and Vald{\'e}s-Hern{\'a}ndez, Maria Del C and Divers, Jasmin and Beiser, Alexa S and Langner, S{\"o}nke and Rice, Kenneth M and Bastin, Mark E and Yang, Qiong and Maldjian, Joseph A and Starr, John M and Sidney, Stephen and Risacher, Shannon L and Uitterlinden, Andr{\'e} G and Gudnason, Vilmundur G and Nauck, Matthias and Rotter, Jerome I and Schreiner, Pamela J and Boerwinkle, Eric and van Duijn, Cornelia M and Mazoyer, Bernard and von Sarnowski, Bettina and Gottesman, Rebecca F and Levy, Daniel and Sigurdsson, Sigurdur and Vernooij, Meike W and Turner, Stephen T and Schmidt, Reinhold and Wardlaw, Joanna M and Psaty, Bruce M and Mosley, Thomas H and DeCarli, Charles S and Saykin, Andrew J and Bowden, Donald W and Becker, Diane M and Deary, Ian J and Schmidt, Helena and Kardia, Sharon L R and Ikram, M Arfan and Debette, Stephanie and Grabe, Hans J and Longstreth, W T and Seshadri, Sudha and Launer, Lenore J and Fornage, Myriam} } @article {7784, title = {ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 Jan}, pages = {e001758}, abstract = {

BACKGROUND: QT interval, measured through a standard ECG, captures the time it takes for the cardiac ventricles to depolarize and repolarize. JT interval is the component of the QT interval that reflects ventricular repolarization alone. Prolonged QT interval has been linked to higher risk of sudden cardiac arrest.

METHODS AND RESULTS: We performed an ExomeChip-wide analysis for both QT and JT intervals, including 209 449 variants, both common and rare, in 17 341 genes from the Illumina Infinium HumanExome BeadChip. We identified 10 loci that modulate QT and JT interval duration that have not been previously reported in the literature using single-variant statistical models in a meta-analysis of 95 626 individuals from 23 cohorts (comprised 83 884 European ancestry individuals, 9610 blacks, 1382 Hispanics, and 750 Asians). This brings the total number of ventricular repolarization associated loci to 45. In addition, our approach of using coding variants has highlighted the role of 17 specific genes for involvement in ventricular repolarization, 7 of which are in novel loci.

CONCLUSIONS: Our analyses show a role for myocyte internal structure and interconnections in modulating QT interval duration, adding to previous known roles of potassium, sodium, and calcium ion regulation, as well as autonomic control. We anticipate that these discoveries will open new paths to the goal of making novel remedies for the prevention of lethal ventricular arrhythmias and sudden cardiac arrest.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.117.001758}, author = {Bihlmeyer, Nathan A and Brody, Jennifer A and Smith, Albert Vernon and Warren, Helen R and Lin, Honghuang and Isaacs, Aaron and Liu, Ching-Ti and Marten, Jonathan and Radmanesh, Farid and Hall, Leanne M and Grarup, Niels and Mei, Hao and M{\"u}ller-Nurasyid, Martina and Huffman, Jennifer E and Verweij, Niek and Guo, Xiuqing and Yao, Jie and Li-Gao, Ruifang and van den Berg, Marten and Weiss, Stefan and Prins, Bram P and van Setten, Jessica and Haessler, Jeffrey and Lyytik{\"a}inen, Leo-Pekka and Li, Man and Alonso, Alvaro and Soliman, Elsayed Z and Bis, Joshua C and Austin, Tom and Chen, Yii-Der Ida and Psaty, Bruce M and Harrris, Tamara B and Launer, Lenore J and Padmanabhan, Sandosh and Dominiczak, Anna and Huang, Paul L and Xie, Zhijun and Ellinor, Patrick T and Kors, Jan A and Campbell, Archie and Murray, Alison D and Nelson, Christopher P and Tobin, Martin D and Bork-Jensen, Jette and Hansen, Torben and Pedersen, Oluf and Linneberg, Allan and Sinner, Moritz F and Peters, Annette and Waldenberger, Melanie and Meitinger, Thomas and Perz, Siegfried and Kolcic, Ivana and Rudan, Igor and de Boer, Rudolf A and van der Meer, Peter and Lin, Henry J and Taylor, Kent D and de Mutsert, Ren{\'e}e and Trompet, Stella and Jukema, J Wouter and Maan, Arie C and Stricker, Bruno H C and Rivadeneira, Fernando and Uitterlinden, Andre and V{\"o}lker, Uwe and Homuth, Georg and V{\"o}lzke, Henry and Felix, Stephan B and Mangino, Massimo and Spector, Timothy D and Bots, Michiel L and Perez, Marco and Raitakari, Olli T and K{\"a}h{\"o}nen, Mika and Mononen, Nina and Gudnason, Vilmundur and Munroe, Patricia B and Lubitz, Steven A and van Duijn, Cornelia M and Newton-Cheh, Christopher H and Hayward, Caroline and Rosand, Jonathan and Samani, Nilesh J and Kanters, J{\o}rgen K and Wilson, James G and K{\"a}{\"a}b, Stefan and Polasek, Ozren and van der Harst, Pim and Heckbert, Susan R and Rotter, Jerome I and Mook-Kanamori, Dennis O and Eijgelsheim, Mark and D{\"o}rr, Marcus and Jamshidi, Yalda and Asselbergs, Folkert W and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Arking, Dan E and Sotoodehnia, Nona} } @article {7845, title = {Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Oct}, pages = {1412-1425}, abstract = {

High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0205-x}, author = {Evangelou, Evangelos and Warren, Helen R and Mosen-Ansorena, David and Mifsud, Borbala and Pazoki, Raha and Gao, He and Ntritsos, Georgios and Dimou, Niki and Cabrera, Claudia P and Karaman, Ibrahim and Ng, Fu Liang and Evangelou, Marina and Witkowska, Katarzyna and Tzanis, Evan and Hellwege, Jacklyn N and Giri, Ayush and Velez Edwards, Digna R and Sun, Yan V and Cho, Kelly and Gaziano, J Michael and Wilson, Peter W F and Tsao, Philip S and Kovesdy, Csaba P and Esko, T{\~o}nu and M{\"a}gi, Reedik and Milani, Lili and Almgren, Peter and Boutin, Thibaud and Debette, Stephanie and Ding, Jun and Giulianini, Franco and Holliday, Elizabeth G and Jackson, Anne U and Li-Gao, Ruifang and Lin, Wei-Yu and Luan, Jian{\textquoteright}an and Mangino, Massimo and Oldmeadow, Christopher and Prins, Bram Peter and Qian, Yong and Sargurupremraj, Muralidharan and Shah, Nabi and Surendran, Praveen and Th{\'e}riault, S{\'e}bastien and Verweij, Niek and Willems, Sara M and Zhao, Jing-Hua and Amouyel, Philippe and Connell, John and de Mutsert, Ren{\'e}e and Doney, Alex S F and Farrall, Martin and Menni, Cristina and Morris, Andrew D and Noordam, Raymond and Par{\'e}, Guillaume and Poulter, Neil R and Shields, Denis C and Stanton, Alice and Thom, Simon and Abecasis, Goncalo and Amin, Najaf and Arking, Dan E and Ayers, Kristin L and Barbieri, Caterina M and Batini, Chiara and Bis, Joshua C and Blake, Tineka and Bochud, Murielle and Boehnke, Michael and Boerwinkle, Eric and Boomsma, Dorret I and Bottinger, Erwin P and Braund, Peter S and Brumat, Marco and Campbell, Archie and Campbell, Harry and Chakravarti, Aravinda and Chambers, John C and Chauhan, Ganesh and Ciullo, Marina and Cocca, Massimiliano and Collins, Francis and Cordell, Heather J and Davies, Gail and Borst, Martin H de and Geus, Eco J de and Deary, Ian J and Deelen, Joris and del Greco M, Fabiola and Demirkale, Cumhur Yusuf and D{\"o}rr, Marcus and Ehret, Georg B and Elosua, Roberto and Enroth, Stefan and Erzurumluoglu, A Mesut and Ferreira, Teresa and Fr{\r a}nberg, Mattias and Franco, Oscar H and Gandin, Ilaria and Gasparini, Paolo and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Goel, Anuj and Gow, Alan J and Gudnason, Vilmundur and Guo, Xiuqing and Gyllensten, Ulf and Hamsten, Anders and Harris, Tamara B and Harris, Sarah E and Hartman, Catharina A and Havulinna, Aki S and Hicks, Andrew A and Hofer, Edith and Hofman, Albert and Hottenga, Jouke-Jan and Huffman, Jennifer E and Hwang, Shih-Jen and Ingelsson, Erik and James, Alan and Jansen, Rick and Jarvelin, Marjo-Riitta and Joehanes, Roby and Johansson, Asa and Johnson, Andrew D and Joshi, Peter K and Jousilahti, Pekka and Jukema, J Wouter and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Keavney, Bernard D and Khaw, Kay-Tee and Knekt, Paul and Knight, Joanne and Kolcic, Ivana and Kooner, Jaspal S and Koskinen, Seppo and Kristiansson, Kati and Kutalik, Zolt{\'a}n and Laan, Maris and Larson, Marty and Launer, Lenore J and Lehne, Benjamin and Lehtim{\"a}ki, Terho and Liewald, David C M and Lin, Li and Lind, Lars and Lindgren, Cecilia M and Liu, Yongmei and Loos, Ruth J F and Lopez, Lorna M and Lu, Yingchang and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Mamasoula, Chrysovalanto and Marrugat, Jaume and Marten, Jonathan and Milaneschi, Yuri and Morgan, Anna and Morris, Andrew P and Morrison, Alanna C and Munson, Peter J and Nalls, Mike A and Nandakumar, Priyanka and Nelson, Christopher P and Niiranen, Teemu and Nolte, Ilja M and Nutile, Teresa and Oldehinkel, Albertine J and Oostra, Ben A and O{\textquoteright}Reilly, Paul F and Org, Elin and Padmanabhan, Sandosh and Palmas, Walter and Palotie, Aarno and Pattie, Alison and Penninx, Brenda W J H and Perola, Markus and Peters, Annette and Polasek, Ozren and Pramstaller, Peter P and Nguyen, Quang Tri and Raitakari, Olli T and Ren, Meixia and Rettig, Rainer and Rice, Kenneth and Ridker, Paul M and Ried, Janina S and Riese, Harri{\"e}tte and Ripatti, Samuli and Robino, Antonietta and Rose, Lynda M and Rotter, Jerome I and Rudan, Igor and Ruggiero, Daniela and Saba, Yasaman and Sala, Cinzia F and Salomaa, Veikko and Samani, Nilesh J and Sarin, Antti-Pekka and Schmidt, Reinhold and Schmidt, Helena and Shrine, Nick and Siscovick, David and Smith, Albert V and Snieder, Harold and S{\~o}ber, Siim and Sorice, Rossella and Starr, John M and Stott, David J and Strachan, David P and Strawbridge, Rona J and Sundstr{\"o}m, Johan and Swertz, Morris A and Taylor, Kent D and Teumer, Alexander and Tobin, Martin D and Tomaszewski, Maciej and Toniolo, Daniela and Traglia, Michela and Trompet, Stella and Tuomilehto, Jaakko and Tzourio, Christophe and Uitterlinden, Andr{\'e} G and Vaez, Ahmad and van der Most, Peter J and van Duijn, Cornelia M and Vergnaud, Anne-Claire and Verwoert, Germaine C and Vitart, Veronique and V{\"o}lker, Uwe and Vollenweider, Peter and Vuckovic, Dragana and Watkins, Hugh and Wild, Sarah H and Willemsen, Gonneke and Wilson, James F and Wright, Alan F and Yao, Jie and Zemunik, Tatijana and Zhang, Weihua and Attia, John R and Butterworth, Adam S and Chasman, Daniel I and Conen, David and Cucca, Francesco and Danesh, John and Hayward, Caroline and Howson, Joanna M M and Laakso, Markku and Lakatta, Edward G and Langenberg, Claudia and Melander, Olle and Mook-Kanamori, Dennis O and Palmer, Colin N A and Risch, Lorenz and Scott, Robert A and Scott, Rodney J and Sever, Peter and Spector, Tim D and van der Harst, Pim and Wareham, Nicholas J and Zeggini, Eleftheria and Levy, Daniel and Munroe, Patricia B and Newton-Cheh, Christopher and Brown, Morris J and Metspalu, Andres and Hung, Adriana M and O{\textquoteright}Donnell, Christopher J and Edwards, Todd L and Psaty, Bruce M and Tzoulaki, Ioanna and Barnes, Michael R and Wain, Louise V and Elliott, Paul and Caulfield, Mark J} } @article {7786, title = {Genetic Variation in Genes Underlying Diverse Dementias May Explain a Small Proportion of Cases in the Alzheimer{\textquoteright}s Disease Sequencing Project.}, journal = {Dement Geriatr Cogn Disord}, volume = {45}, year = {2018}, month = {2018}, pages = {1-17}, abstract = {

BACKGROUND/AIMS: The Alzheimer{\textquoteright}s Disease Sequencing Project (ADSP) aims to identify novel genes influencing Alzheimer{\textquoteright}s disease (AD). Variants within genes known to cause dementias other than AD have previously been associated with AD risk. We describe evidence of co-segregation and associations between variants in dementia genes and clinically diagnosed AD within the ADSP.

METHODS: We summarize the properties of known pathogenic variants within dementia genes, describe the co-segregation of variants annotated as "pathogenic" in ClinVar and new candidates observed in ADSP families, and test for associations between rare variants in dementia genes in the ADSP case-control study. The participants were clinically evaluated for AD, and they represent European, Caribbean Hispanic, and isolate Dutch populations.

RESULTS/CONCLUSIONS: Pathogenic variants in dementia genes were predominantly rare and conserved coding changes. Pathogenic variants within ARSA, CSF1R, and GRN were observed, and candidate variants in GRN and CHMP2B were nominated in ADSP families. An independent case-control study provided evidence of an association between variants in TREM2, APOE, ARSA, CSF1R, PSEN1, and MAPT and risk of AD. Variants in genes which cause dementing disorders may influence the clinical diagnosis of AD in a small proportion of cases within the ADSP.

}, issn = {1421-9824}, doi = {10.1159/000485503}, author = {Blue, Elizabeth E and Bis, Joshua C and Dorschner, Michael O and Tsuang, Debby W and Barral, Sandra M and Beecham, Gary and Below, Jennifer E and Bush, William S and Butkiewicz, Mariusz and Cruchaga, Carlos and DeStefano, Anita and Farrer, Lindsay A and Goate, Alison and Haines, Jonathan and Jaworski, Jim and Jun, Gyungah and Kunkle, Brian and Kuzma, Amanda and Lee, Jenny J and Lunetta, Kathryn L and Ma, Yiyi and Martin, Eden and Naj, Adam and Nato, Alejandro Q and Navas, Patrick and Nguyen, Hiep and Reitz, Christiane and Reyes, Dolly and Salerno, William and Schellenberg, Gerard D and Seshadri, Sudha and Sohi, Harkirat and Thornton, Timothy A and Valadares, Otto and van Duijn, Cornelia and Vardarajan, Badri N and Wang, Li-San and Boerwinkle, Eric and Dupuis, Jos{\'e}e and Pericak-Vance, Margaret A and Mayeux, Richard and Wijsman, Ellen M} } @article {7920, title = {Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders.}, journal = {Am J Hum Genet}, volume = {103}, year = {2018}, month = {2018 Nov 01}, pages = {691-706}, abstract = {

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5~{\texttimes} 10). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0\% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2018.09.009}, author = {Ligthart, Symen and Vaez, Ahmad and V{\~o}sa, Urmo and Stathopoulou, Maria G and de Vries, Paul S and Prins, Bram P and van der Most, Peter J and Tanaka, Toshiko and Naderi, Elnaz and Rose, Lynda M and Wu, Ying and Karlsson, Robert and Barbalic, Maja and Lin, Honghuang and Pool, Rene and Zhu, Gu and Mace, Aurelien and Sidore, Carlo and Trompet, Stella and Mangino, Massimo and Sabater-Lleal, Maria and Kemp, John P and Abbasi, Ali and Kacprowski, Tim and Verweij, Niek and Smith, Albert V and Huang, Tao and Marzi, Carola and Feitosa, Mary F and Lohman, Kurt K and Kleber, Marcus E and Milaneschi, Yuri and Mueller, Christian and Huq, Mahmudul and Vlachopoulou, Efthymia and Lyytik{\"a}inen, Leo-Pekka and Oldmeadow, Christopher and Deelen, Joris and Perola, Markus and Zhao, Jing Hua and Feenstra, Bjarke and Amini, Marzyeh and Lahti, Jari and Schraut, Katharina E and Fornage, Myriam and Suktitipat, Bhoom and Chen, Wei-Min and Li, Xiaohui and Nutile, Teresa and Malerba, Giovanni and Luan, Jian{\textquoteright}an and Bak, Tom and Schork, Nicholas and del Greco M, Fabiola and Thiering, Elisabeth and Mahajan, Anubha and Marioni, Riccardo E and Mihailov, Evelin and Eriksson, Joel and Ozel, Ayse Bilge and Zhang, Weihua and Nethander, Maria and Cheng, Yu-Ching and Aslibekyan, Stella and Ang, Wei and Gandin, Ilaria and Yengo, Loic and Portas, Laura and Kooperberg, Charles and Hofer, Edith and Rajan, Kumar B and Schurmann, Claudia and den Hollander, Wouter and Ahluwalia, Tarunveer S and Zhao, Jing and Draisma, Harmen H M and Ford, Ian and Timpson, Nicholas and Teumer, Alexander and Huang, Hongyan and Wahl, Simone and Liu, Yongmei and Huang, Jie and Uh, Hae-Won and Geller, Frank and Joshi, Peter K and Yanek, Lisa R and Trabetti, Elisabetta and Lehne, Benjamin and Vozzi, Diego and Verbanck, Marie and Biino, Ginevra and Saba, Yasaman and Meulenbelt, Ingrid and O{\textquoteright}Connell, Jeff R and Laakso, Markku and Giulianini, Franco and Magnusson, Patrik K E and Ballantyne, Christie M and Hottenga, Jouke Jan and Montgomery, Grant W and Rivadineira, Fernando and Rueedi, Rico and Steri, Maristella and Herzig, Karl-Heinz and Stott, David J and Menni, Cristina and Fr{\r a}nberg, Mattias and St Pourcain, Beate and Felix, Stephan B and Pers, Tune H and Bakker, Stephan J L and Kraft, Peter and Peters, Annette and Vaidya, Dhananjay and Delgado, Graciela and Smit, Johannes H and Gro{\ss}mann, Vera and Sinisalo, Juha and Sepp{\"a}l{\"a}, Ilkka and Williams, Stephen R and Holliday, Elizabeth G and Moed, Matthijs and Langenberg, Claudia and R{\"a}ikk{\"o}nen, Katri and Ding, Jingzhong and Campbell, Harry and Sale, Mich{\`e}le M and Chen, Yii-der I and James, Alan L and Ruggiero, Daniela and Soranzo, Nicole and Hartman, Catharina A and Smith, Erin N and Berenson, Gerald S and Fuchsberger, Christian and Hernandez, Dena and Tiesler, Carla M T and Giedraitis, Vilmantas and Liewald, David and Fischer, Krista and Mellstr{\"o}m, Dan and Larsson, Anders and Wang, Yunmei and Scott, William R and Lorentzon, Matthias and Beilby, John and Ryan, Kathleen A and Pennell, Craig E and Vuckovic, Dragana and Balkau, Beverly and Concas, Maria Pina and Schmidt, Reinhold and Mendes de Leon, Carlos F and Bottinger, Erwin P and Kloppenburg, Margreet and Paternoster, Lavinia and Boehnke, Michael and Musk, A W and Willemsen, Gonneke and Evans, David M and Madden, Pamela A F and K{\"a}h{\"o}nen, Mika and Kutalik, Zolt{\'a}n and Zoledziewska, Magdalena and Karhunen, Ville and Kritchevsky, Stephen B and Sattar, Naveed and Lachance, Genevieve and Clarke, Robert and Harris, Tamara B and Raitakari, Olli T and Attia, John R and van Heemst, Diana and Kajantie, Eero and Sorice, Rossella and Gambaro, Giovanni and Scott, Robert A and Hicks, Andrew A and Ferrucci, Luigi and Standl, Marie and Lindgren, Cecilia M and Starr, John M and Karlsson, Magnus and Lind, Lars and Li, Jun Z and Chambers, John C and Mori, Trevor A and de Geus, Eco J C N and Heath, Andrew C and Martin, Nicholas G and Auvinen, Juha and Buckley, Brendan M and de Craen, Anton J M and Waldenberger, Melanie and Strauch, Konstantin and Meitinger, Thomas and Scott, Rodney J and McEvoy, Mark and Beekman, Marian and Bombieri, Cristina and Ridker, Paul M and Mohlke, Karen L and Pedersen, Nancy L and Morrison, Alanna C and Boomsma, Dorret I and Whitfield, John B and Strachan, David P and Hofman, Albert and Vollenweider, Peter and Cucca, Francesco and Jarvelin, Marjo-Riitta and Jukema, J Wouter and Spector, Tim D and Hamsten, Anders and Zeller, Tanja and Uitterlinden, Andr{\'e} G and Nauck, Matthias and Gudnason, Vilmundur and Qi, Lu and Grallert, Harald and Borecki, Ingrid B and Rotter, Jerome I and M{\"a}rz, Winfried and Wild, Philipp S and Lokki, Marja-Liisa and Boyle, Michael and Salomaa, Veikko and Melbye, Mads and Eriksson, Johan G and Wilson, James F and Penninx, Brenda W J H and Becker, Diane M and Worrall, Bradford B and Gibson, Greg and Krauss, Ronald M and Ciullo, Marina and Zaza, Gianluigi and Wareham, Nicholas J and Oldehinkel, Albertine J and Palmer, Lyle J and Murray, Sarah S and Pramstaller, Peter P and Bandinelli, Stefania and Heinrich, Joachim and Ingelsson, Erik and Deary, Ian J and M{\"a}gi, Reedik and Vandenput, Liesbeth and van der Harst, Pim and Desch, Karl C and Kooner, Jaspal S and Ohlsson, Claes and Hayward, Caroline and Lehtim{\"a}ki, Terho and Shuldiner, Alan R and Arnett, Donna K and Beilin, Lawrence J and Robino, Antonietta and Froguel, Philippe and Pirastu, Mario and Jess, Tine and Koenig, Wolfgang and Loos, Ruth J F and Evans, Denis A and Schmidt, Helena and Smith, George Davey and Slagboom, P Eline and Eiriksdottir, Gudny and Morris, Andrew P and Psaty, Bruce M and Tracy, Russell P and Nolte, Ilja M and Boerwinkle, Eric and Visvikis-Siest, Sophie and Reiner, Alex P and Gross, Myron and Bis, Joshua C and Franke, Lude and Franco, Oscar H and Benjamin, Emelia J and Chasman, Daniel I and Dupuis, Jos{\'e}e and Snieder, Harold and Dehghan, Abbas and Alizadeh, Behrooz Z} } @article {7849, title = {Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Sep 26}, pages = {3945}, abstract = {

The volume of the lateral ventricles (LV) increases with age and their abnormal enlargement is a key feature of several neurological and psychiatric diseases. Although lateral ventricular volume is heritable, a comprehensive investigation of its genetic determinants is lacking. In this meta-analysis of genome-wide association studies of 23,533 healthy middle-aged to elderly individuals from 26 population-based cohorts, we identify 7 genetic loci associated with LV volume. These loci map to chromosomes 3q28, 7p22.3, 10p12.31, 11q23.1, 12q23.3, 16q24.2, and 22q13.1 and implicate pathways related to tau pathology, S1P signaling, and cytoskeleton organization. We also report a significant genetic overlap between the thalamus and LV volumes (ρ = -0.59, p-value = 3.14 {\texttimes} 10), suggesting that these brain structures may share a common biology. These genetic associations of LV volume provide insights into brain morphology.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-06234-w}, author = {Vojinovic, Dina and Adams, Hieab H and Jian, Xueqiu and Yang, Qiong and Smith, Albert Vernon and Bis, Joshua C and Teumer, Alexander and Scholz, Markus and Armstrong, Nicola J and Hofer, Edith and Saba, Yasaman and Luciano, Michelle and Bernard, Manon and Trompet, Stella and Yang, Jingyun and Gillespie, Nathan A and van der Lee, Sven J and Neumann, Alexander and Ahmad, Shahzad and Andreassen, Ole A and Ames, David and Amin, Najaf and Arfanakis, Konstantinos and Bastin, Mark E and Becker, Diane M and Beiser, Alexa S and Beyer, Frauke and Brodaty, Henry and Bryan, R Nick and B{\"u}low, Robin and Dale, Anders M and De Jager, Philip L and Deary, Ian J and DeCarli, Charles and Fleischman, Debra A and Gottesman, Rebecca F and van der Grond, Jeroen and Gudnason, Vilmundur and Harris, Tamara B and Homuth, Georg and Knopman, David S and Kwok, John B and Lewis, Cora E and Li, Shuo and Loeffler, Markus and Lopez, Oscar L and Maillard, Pauline and El Marroun, Hanan and Mather, Karen A and Mosley, Thomas H and Muetzel, Ryan L and Nauck, Matthias and Nyquist, Paul A and Panizzon, Matthew S and Pausova, Zdenka and Psaty, Bruce M and Rice, Ken and Rotter, Jerome I and Royle, Natalie and Satizabal, Claudia L and Schmidt, Reinhold and Schofield, Peter R and Schreiner, Pamela J and Sidney, Stephen and Stott, David J and Thalamuthu, Anbupalam and Uitterlinden, Andr{\'e} G and Vald{\'e}s Hern{\'a}ndez, Maria C and Vernooij, Meike W and Wen, Wei and White, Tonya and Witte, A Veronica and Wittfeld, Katharina and Wright, Margaret J and Yanek, Lisa R and Tiemeier, Henning and Kremen, William S and Bennett, David A and Jukema, J Wouter and Paus, Tom{\'a}{\v s} and Wardlaw, Joanna M and Schmidt, Helena and Sachdev, Perminder S and Villringer, Arno and Grabe, Hans J{\"o}rgen and Longstreth, W T and van Duijn, Cornelia M and Launer, Lenore J and Seshadri, Sudha and Ikram, M Arfan and Fornage, Myriam} } @article {7794, title = {Genome-wide meta-analysis of SNP-by9-ACEI/ARB and SNP-by-thiazide diuretic and effect on serum potassium in cohorts of European and African ancestry.}, journal = {Pharmacogenomics J}, year = {2018}, month = {2018 Jun 01}, abstract = {

We evaluated interactions of SNP-by-ACE-I/ARB and SNP-by-TD on serum potassium (K+) among users of antihypertensive treatments (anti-HTN). Our study included seven European-ancestry (EA) (N = 4835) and four African-ancestry (AA) cohorts (N = 2016). We performed race-stratified, fixed-effect, inverse-variance-weighted meta-analyses of 2.5 million SNP-by-drug interaction estimates; race-combined meta-analysis; and trans-ethnic fine-mapping. Among EAs, we identified 11 significant SNPs (P < 5 {\texttimes} 10) for SNP-ACE-I/ARB interactions on serum K+ that were located between NR2F1-AS1 and ARRDC3-AS1 on chromosome 5 (top SNP rs6878413 P = 1.7 {\texttimes} 10; ratio of serum K+ in ACE-I/ARB exposed compared to unexposed is 1.0476, 1.0280, 1.0088 for the TT, AT, and AA genotypes, respectively). Trans-ethnic fine mapping identified the same group of SNPs on chromosome 5 as genome-wide significant for the ACE-I/ARB analysis. In conclusion, SNP-by-ACE-I /ARB interaction analyses uncovered loci that, if replicated, could have future implications for the prevention of arrhythmias due to anti-HTN treatment-related hyperkalemia. Before these loci can be identified as clinically relevant, future validation studies of equal or greater size in comparison to our discovery effort are needed.

}, issn = {1473-1150}, doi = {10.1038/s41397-018-0021-9}, author = {Irvin, Marguerite R and Sitlani, Colleen M and Noordam, Raymond and Avery, Christie L and Bis, Joshua C and Floyd, James S and Li, Jin and Limdi, Nita A and Srinivasasainagendra, Vinodh and Stewart, James and de Mutsert, Ren{\'e}e and Mook-Kanamori, Dennis O and Lipovich, Leonard and Kleinbrink, Erica L and Smith, Albert and Bartz, Traci M and Whitsel, Eric A and Uitterlinden, Andr{\'e} G and Wiggins, Kerri L and Wilson, James G and Zhi, Degui and Stricker, Bruno H and Rotter, Jerome I and Arnett, Donna K and Psaty, Bruce M and Lange, Leslie A} } @article {7913, title = {GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 12 03}, pages = {5141}, abstract = {

Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans.

}, keywords = {ADAMTS9 Protein, Amino Acid Oxidoreductases, Carotid Intima-Media Thickness, Coronary Disease, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Lod Score, Plaque, Atherosclerotic, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Risk Factors}, issn = {2041-1723}, doi = {10.1038/s41467-018-07340-5}, author = {Franceschini, Nora and Giambartolomei, Claudia and de Vries, Paul S and Finan, Chris and Bis, Joshua C and Huntley, Rachael P and Lovering, Ruth C and Tajuddin, Salman M and Winkler, Thomas W and Graff, Misa and Kavousi, Maryam and Dale, Caroline and Smith, Albert V and Hofer, Edith and van Leeuwen, Elisabeth M and Nolte, Ilja M and Lu, Lingyi and Scholz, Markus and Sargurupremraj, Muralidharan and Pitk{\"a}nen, Niina and Franz{\'e}n, Oscar and Joshi, Peter K and Noordam, Raymond and Marioni, Riccardo E and Hwang, Shih-Jen and Musani, Solomon K and Schminke, Ulf and Palmas, Walter and Isaacs, Aaron and Correa, Adolfo and Zonderman, Alan B and Hofman, Albert and Teumer, Alexander and Cox, Amanda J and Uitterlinden, Andr{\'e} G and Wong, Andrew and Smit, Andries J and Newman, Anne B and Britton, Annie and Ruusalepp, Arno and Sennblad, Bengt and Hedblad, Bo and Pasaniuc, Bogdan and Penninx, Brenda W and Langefeld, Carl D and Wassel, Christina L and Tzourio, Christophe and Fava, Cristiano and Baldassarre, Damiano and O{\textquoteright}Leary, Daniel H and Teupser, Daniel and Kuh, Diana and Tremoli, Elena and Mannarino, Elmo and Grossi, Enzo and Boerwinkle, Eric and Schadt, Eric E and Ingelsson, Erik and Veglia, Fabrizio and Rivadeneira, Fernando and Beutner, Frank and Chauhan, Ganesh and Heiss, Gerardo and Snieder, Harold and Campbell, Harry and V{\"o}lzke, Henry and Markus, Hugh S and Deary, Ian J and Jukema, J Wouter and de Graaf, Jacqueline and Price, Jacqueline and Pott, Janne and Hopewell, Jemma C and Liang, Jingjing and Thiery, Joachim and Engmann, Jorgen and Gertow, Karl and Rice, Kenneth and Taylor, Kent D and Dhana, Klodian and Kiemeney, Lambertus A L M and Lind, Lars and Raffield, Laura M and Launer, Lenore J and Holdt, Lesca M and D{\"o}rr, Marcus and Dichgans, Martin and Traylor, Matthew and Sitzer, Matthias and Kumari, Meena and Kivimaki, Mika and Nalls, Mike A and Melander, Olle and Raitakari, Olli and Franco, Oscar H and Rueda-Ochoa, Oscar L and Roussos, Panos and Whincup, Peter H and Amouyel, Philippe and Giral, Philippe and Anugu, Pramod and Wong, Quenna and Malik, Rainer and Rauramaa, Rainer and Burkhardt, Ralph and Hardy, Rebecca and Schmidt, Reinhold and de Mutsert, Ren{\'e}e and Morris, Richard W and Strawbridge, Rona J and Wannamethee, S Goya and H{\"a}gg, Sara and Shah, Sonia and McLachlan, Stela and Trompet, Stella and Seshadri, Sudha and Kurl, Sudhir and Heckbert, Susan R and Ring, Susan and Harris, Tamara B and Lehtim{\"a}ki, Terho and Galesloot, Tessel E and Shah, Tina and de Faire, Ulf and Plagnol, Vincent and Rosamond, Wayne D and Post, Wendy and Zhu, Xiaofeng and Zhang, Xiaoling and Guo, Xiuqing and Saba, Yasaman and Dehghan, Abbas and Seldenrijk, Adrie and Morrison, Alanna C and Hamsten, Anders and Psaty, Bruce M and van Duijn, Cornelia M and Lawlor, Deborah A and Mook-Kanamori, Dennis O and Bowden, Donald W and Schmidt, Helena and Wilson, James F and Wilson, James G and Rotter, Jerome I and Wardlaw, Joanna M and Deanfield, John and Halcox, Julian and Lyytik{\"a}inen, Leo-Pekka and Loeffler, Markus and Evans, Michele K and Debette, Stephanie and Humphries, Steve E and V{\"o}lker, Uwe and Gudnason, Vilmundur and Hingorani, Aroon D and Bj{\"o}rkegren, Johan L M and Casas, Juan P and O{\textquoteright}Donnell, Christopher J} } @article {7683, title = {Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Apr}, pages = {524-537}, abstract = {

Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and~using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0058-3}, author = {Malik, Rainer and Chauhan, Ganesh and Traylor, Matthew and Sargurupremraj, Muralidharan and Okada, Yukinori and Mishra, Aniket and Rutten-Jacobs, Loes and Giese, Anne-Katrin and van der Laan, Sander W and Gretarsdottir, Solveig and Anderson, Christopher D and Chong, Michael and Adams, Hieab H H and Ago, Tetsuro and Almgren, Peter and Amouyel, Philippe and Ay, Hakan and Bartz, Traci M and Benavente, Oscar R and Bevan, Steve and Boncoraglio, Giorgio B and Brown, Robert D and Butterworth, Adam S and Carrera, Caty and Carty, Cara L and Chasman, Daniel I and Chen, Wei-Min and Cole, John W and Correa, Adolfo and Cotlarciuc, Ioana and Cruchaga, Carlos and Danesh, John and de Bakker, Paul I W and DeStefano, Anita L and den Hoed, Marcel and Duan, Qing and Engelter, Stefan T and Falcone, Guido J and Gottesman, Rebecca F and Grewal, Raji P and Gudnason, Vilmundur and Gustafsson, Stefan and Haessler, Jeffrey and Harris, Tamara B and Hassan, Ahamad and Havulinna, Aki S and Heckbert, Susan R and Holliday, Elizabeth G and Howard, George and Hsu, Fang-Chi and Hyacinth, Hyacinth I and Ikram, M Arfan and Ingelsson, Erik and Irvin, Marguerite R and Jian, Xueqiu and Jimenez-Conde, Jordi and Johnson, Julie A and Jukema, J Wouter and Kanai, Masahiro and Keene, Keith L and Kissela, Brett M and Kleindorfer, Dawn O and Kooperberg, Charles and Kubo, Michiaki and Lange, Leslie A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lee, Jin-Moo and Lemmens, Robin and Leys, Didier and Lewis, Cathryn M and Lin, Wei-Yu and Lindgren, Arne G and Lorentzen, Erik and Magnusson, Patrik K and Maguire, Jane and Manichaikul, Ani and McArdle, Patrick F and Meschia, James F and Mitchell, Braxton D and Mosley, Thomas H and Nalls, Michael A and Ninomiya, Toshiharu and O{\textquoteright}Donnell, Martin J and Psaty, Bruce M and Pulit, Sara L and Rannikmae, Kristiina and Reiner, Alexander P and Rexrode, Kathryn M and Rice, Kenneth and Rich, Stephen S and Ridker, Paul M and Rost, Natalia S and Rothwell, Peter M and Rotter, Jerome I and Rundek, Tatjana and Sacco, Ralph L and Sakaue, Saori and Sale, Mich{\`e}le M and Salomaa, Veikko and Sapkota, Bishwa R and Schmidt, Reinhold and Schmidt, Carsten O and Schminke, Ulf and Sharma, Pankaj and Slowik, Agnieszka and Sudlow, Cathie L M and Tanislav, Christian and Tatlisumak, Turgut and Taylor, Kent D and Thijs, Vincent N S and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiedt, Steffen and Trompet, Stella and Tzourio, Christophe and van Duijn, Cornelia M and Walters, Matthew and Wareham, Nicholas J and Wassertheil-Smoller, Sylvia and Wilson, James G and Wiggins, Kerri L and Yang, Qiong and Yusuf, Salim and Bis, Joshua C and Pastinen, Tomi and Ruusalepp, Arno and Schadt, Eric E and Koplev, Simon and Bj{\"o}rkegren, Johan L M and Codoni, Veronica and Civelek, Mete and Smith, Nicholas L and Tr{\'e}gou{\"e}t, David A and Christophersen, Ingrid E and Roselli, Carolina and Lubitz, Steven A and Ellinor, Patrick T and Tai, E Shyong and Kooner, Jaspal S and Kato, Norihiro and He, Jiang and van der Harst, Pim and Elliott, Paul and Chambers, John C and Takeuchi, Fumihiko and Johnson, Andrew D and Sanghera, Dharambir K and Melander, Olle and Jern, Christina and Strbian, Daniel and Fernandez-Cadenas, Israel and Longstreth, W T and Rolfs, Arndt and Hata, Jun and Woo, Daniel and Rosand, Jonathan and Par{\'e}, Guillaume and Hopewell, Jemma C and Saleheen, Danish and Stefansson, Kari and Worrall, Bradford B and Kittner, Steven J and Seshadri, Sudha and Fornage, Myriam and Markus, Hugh S and Howson, Joanna M M and Kamatani, Yoichiro and Debette, Stephanie and Dichgans, Martin and Malik, Rainer and Chauhan, Ganesh and Traylor, Matthew and Sargurupremraj, Muralidharan and Okada, Yukinori and Mishra, Aniket and Rutten-Jacobs, Loes and Giese, Anne-Katrin and van der Laan, Sander W and Gretarsdottir, Solveig and Anderson, Christopher D and Chong, Michael and Adams, Hieab H H and Ago, Tetsuro and Almgren, Peter and Amouyel, Philippe and Ay, Hakan and Bartz, Traci M and Benavente, Oscar R and Bevan, Steve and Boncoraglio, Giorgio B and Brown, Robert D and Butterworth, Adam S and Carrera, Caty and Carty, Cara L and Chasman, Daniel I and Chen, Wei-Min and Cole, John W and Correa, Adolfo and Cotlarciuc, Ioana and Cruchaga, Carlos and Danesh, John and de Bakker, Paul I W and DeStefano, Anita L and Hoed, Marcel den and Duan, Qing and Engelter, Stefan T and Falcone, Guido J and Gottesman, Rebecca F and Grewal, Raji P and Gudnason, Vilmundur and Gustafsson, Stefan and Haessler, Jeffrey and Harris, Tamara B and Hassan, Ahamad and Havulinna, Aki S and Heckbert, Susan R and Holliday, Elizabeth G and Howard, George and Hsu, Fang-Chi and Hyacinth, Hyacinth I and Ikram, M Arfan and Ingelsson, Erik and Irvin, Marguerite R and Jian, Xueqiu and Jimenez-Conde, Jordi and Johnson, Julie A and Jukema, J Wouter and Kanai, Masahiro and Keene, Keith L and Kissela, Brett M and Kleindorfer, Dawn O and Kooperberg, Charles and Kubo, Michiaki and Lange, Leslie A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lee, Jin-Moo and Lemmens, Robin and Leys, Didier and Lewis, Cathryn M and Lin, Wei-Yu and Lindgren, Arne G and Lorentzen, Erik and Magnusson, Patrik K and Maguire, Jane and Manichaikul, Ani and McArdle, Patrick F and Meschia, James F and Mitchell, Braxton D and Mosley, Thomas H and Nalls, Michael A and Ninomiya, Toshiharu and O{\textquoteright}Donnell, Martin J and Psaty, Bruce M and Pulit, Sara L and Rannikmae, Kristiina and Reiner, Alexander P and Rexrode, Kathryn M and Rice, Kenneth and Rich, Stephen S and Ridker, Paul M and Rost, Natalia S and Rothwell, Peter M and Rotter, Jerome I and Rundek, Tatjana and Sacco, Ralph L and Sakaue, Saori and Sale, Mich{\`e}le M and Salomaa, Veikko and Sapkota, Bishwa R and Schmidt, Reinhold and Schmidt, Carsten O and Schminke, Ulf and Sharma, Pankaj and Slowik, Agnieszka and Sudlow, Cathie L M and Tanislav, Christian and Tatlisumak, Turgut and Taylor, Kent D and Thijs, Vincent N S and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiedt, Steffen and Trompet, Stella and Tzourio, Christophe and van Duijn, Cornelia M and Walters, Matthew and Wareham, Nicholas J and Wassertheil-Smoller, Sylvia and Wilson, James G and Wiggins, Kerri L and Yang, Qiong and Yusuf, Salim and Amin, Najaf and Aparicio, Hugo S and Arnett, Donna K and Attia, John and Beiser, Alexa S and Berr, Claudine and Buring, Julie E and Bustamante, Mariana and Caso, Valeria and Cheng, Yu-Ching and Choi, Seung Hoan and Chowhan, Ayesha and Cullell, Natalia and Dartigues, Jean-Fran{\c c}ois and Delavaran, Hossein and Delgado, Pilar and D{\"o}rr, Marcus and Engstr{\"o}m, Gunnar and Ford, Ian and Gurpreet, Wander S and Hamsten, Anders and Heitsch, Laura and Hozawa, Atsushi and Ibanez, Laura and Ilinca, Andreea and Ingelsson, Martin and Iwasaki, Motoki and Jackson, Rebecca D and Jood, Katarina and Jousilahti, Pekka and Kaffashian, Sara and Kalra, Lalit and Kamouchi, Masahiro and Kitazono, Takanari and Kjartansson, Olafur and Kloss, Manja and Koudstaal, Peter J and Krupinski, Jerzy and Labovitz, Daniel L and Laurie, Cathy C and Levi, Christopher R and Li, Linxin and Lind, Lars and Lindgren, Cecilia M and Lioutas, Vasileios and Liu, Yong Mei and Lopez, Oscar L and Makoto, Hirata and Martinez-Majander, Nicolas and Matsuda, Koichi and Minegishi, Naoko and Montaner, Joan and Morris, Andrew P and Mui{\~n}o, Elena and M{\"u}ller-Nurasyid, Martina and Norrving, Bo and Ogishima, Soichi and Parati, Eugenio A and Peddareddygari, Leema Reddy and Pedersen, Nancy L and Pera, Joanna and Perola, Markus and Pezzini, Alessandro and Pileggi, Silvana and Rabionet, Raquel and Riba-Llena, Iolanda and Ribas{\'e}s, Marta and Romero, Jose R and Roquer, Jaume and Rudd, Anthony G and Sarin, Antti-Pekka and Sarju, Ralhan and Sarnowski, Chloe and Sasaki, Makoto and Satizabal, Claudia L and Satoh, Mamoru and Sattar, Naveed and Sawada, Norie and Sibolt, Gerli and Sigurdsson, {\'A}sgeir and Smith, Albert and Sobue, Kenji and Soriano-T{\'a}rraga, Carolina and Stanne, Tara and Stine, O Colin and Stott, David J and Strauch, Konstantin and Takai, Takako and Tanaka, Hideo and Tanno, Kozo and Teumer, Alexander and Tomppo, Liisa and Torres-Aguila, Nuria P and Touze, Emmanuel and Tsugane, Shoichiro and Uitterlinden, Andr{\'e} G and Valdimarsson, Einar M and van der Lee, Sven J and V{\"o}lzke, Henry and Wakai, Kenji and Weir, David and Williams, Stephen R and Wolfe, Charles D A and Wong, Quenna and Xu, Huichun and Yamaji, Taiki and Sanghera, Dharambir K and Melander, Olle and Jern, Christina and Strbian, Daniel and Fernandez-Cadenas, Israel and Longstreth, W T and Rolfs, Arndt and Hata, Jun and Woo, Daniel and Rosand, Jonathan and Par{\'e}, Guillaume and Hopewell, Jemma C and Saleheen, Danish and Stefansson, Kari and Worrall, Bradford B and Kittner, Steven J and Seshadri, Sudha and Fornage, Myriam and Markus, Hugh S and Howson, Joanna M M and Kamatani, Yoichiro and Debette, Stephanie and Dichgans, Martin} } @article {7811, title = {Multi-ethnic genome-wide association study for atrial fibrillation.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Sep}, pages = {1225-1233}, abstract = {

Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0133-9}, author = {Roselli, Carolina and Chaffin, Mark D and Weng, Lu-Chen and Aeschbacher, Stefanie and Ahlberg, Gustav and Albert, Christine M and Almgren, Peter and Alonso, Alvaro and Anderson, Christopher D and Aragam, Krishna G and Arking, Dan E and Barnard, John and Bartz, Traci M and Benjamin, Emelia J and Bihlmeyer, Nathan A and Bis, Joshua C and Bloom, Heather L and Boerwinkle, Eric and Bottinger, Erwin B and Brody, Jennifer A and Calkins, Hugh and Campbell, Archie and Cappola, Thomas P and Carlquist, John and Chasman, Daniel I and Chen, Lin Y and Chen, Yii-Der Ida and Choi, Eue-Keun and Choi, Seung Hoan and Christophersen, Ingrid E and Chung, Mina K and Cole, John W and Conen, David and Cook, James and Crijns, Harry J and Cutler, Michael J and Damrauer, Scott M and Daniels, Brian R and Darbar, Dawood and Delgado, Graciela and Denny, Joshua C and Dichgans, Martin and D{\"o}rr, Marcus and Dudink, Elton A and Dudley, Samuel C and Esa, Nada and Esko, T{\~o}nu and Eskola, Markku and Fatkin, Diane and Felix, Stephan B and Ford, Ian and Franco, Oscar H and Geelhoed, Bastiaan and Grewal, Raji P and Gudnason, Vilmundur and Guo, Xiuqing and Gupta, Namrata and Gustafsson, Stefan and Gutmann, Rebecca and Hamsten, Anders and Harris, Tamara B and Hayward, Caroline and Heckbert, Susan R and Hernesniemi, Jussi and Hocking, Lynne J and Hofman, Albert and Horimoto, Andrea R V R and Huang, Jie and Huang, Paul L and Huffman, Jennifer and Ingelsson, Erik and Ipek, Esra Gucuk and Ito, Kaoru and Jimenez-Conde, Jordi and Johnson, Renee and Jukema, J Wouter and K{\"a}{\"a}b, Stefan and K{\"a}h{\"o}nen, Mika and Kamatani, Yoichiro and Kane, John P and Kastrati, Adnan and Kathiresan, Sekar and Katschnig-Winter, Petra and Kavousi, Maryam and Kessler, Thorsten and Kietselaer, Bas L and Kirchhof, Paulus and Kleber, Marcus E and Knight, Stacey and Krieger, Jose E and Kubo, Michiaki and Launer, Lenore J and Laurikka, Jari and Lehtim{\"a}ki, Terho and Leineweber, Kirsten and Lemaitre, Rozenn N and Li, Man and Lim, Hong Euy and Lin, Henry J and Lin, Honghuang and Lind, Lars and Lindgren, Cecilia M and Lokki, Marja-Liisa and London, Barry and Loos, Ruth J F and Low, Siew-Kee and Lu, Yingchang and Lyytik{\"a}inen, Leo-Pekka and Macfarlane, Peter W and Magnusson, Patrik K and Mahajan, Anubha and Malik, Rainer and Mansur, Alfredo J and Marcus, Gregory M and Margolin, Lauren and Margulies, Kenneth B and M{\"a}rz, Winfried and McManus, David D and Melander, Olle and Mohanty, Sanghamitra and Montgomery, Jay A and Morley, Michael P and Morris, Andrew P and M{\"u}ller-Nurasyid, Martina and Natale, Andrea and Nazarian, Saman and Neumann, Benjamin and Newton-Cheh, Christopher and Niemeijer, Maartje N and Nikus, Kjell and Nilsson, Peter and Noordam, Raymond and Oellers, Heidi and Olesen, Morten S and Orho-Melander, Marju and Padmanabhan, Sandosh and Pak, Hui-Nam and Par{\'e}, Guillaume and Pedersen, Nancy L and Pera, Joanna and Pereira, Alexandre and Porteous, David and Psaty, Bruce M and Pulit, Sara L and Pullinger, Clive R and Rader, Daniel J and Refsgaard, Lena and Ribas{\'e}s, Marta and Ridker, Paul M and Rienstra, Michiel and Risch, Lorenz and Roden, Dan M and Rosand, Jonathan and Rosenberg, Michael A and Rost, Natalia and Rotter, Jerome I and Saba, Samir and Sandhu, Roopinder K and Schnabel, Renate B and Schramm, Katharina and Schunkert, Heribert and Schurman, Claudia and Scott, Stuart A and Sepp{\"a}l{\"a}, Ilkka and Shaffer, Christian and Shah, Svati and Shalaby, Alaa A and Shim, Jaemin and Shoemaker, M Benjamin and Siland, Joylene E and Sinisalo, Juha and Sinner, Moritz F and Slowik, Agnieszka and Smith, Albert V and Smith, Blair H and Smith, J Gustav and Smith, Jonathan D and Smith, Nicholas L and Soliman, Elsayed Z and Sotoodehnia, Nona and Stricker, Bruno H and Sun, Albert and Sun, Han and Svendsen, Jesper H and Tanaka, Toshihiro and Tanriverdi, Kahraman and Taylor, Kent D and Teder-Laving, Maris and Teumer, Alexander and Th{\'e}riault, S{\'e}bastien and Trompet, Stella and Tucker, Nathan R and Tveit, Arnljot and Uitterlinden, Andr{\'e} G and van der Harst, Pim and Van Gelder, Isabelle C and Van Wagoner, David R and Verweij, Niek and Vlachopoulou, Efthymia and V{\"o}lker, Uwe and Wang, Biqi and Weeke, Peter E and Weijs, Bob and Weiss, Raul and Weiss, Stefan and Wells, Quinn S and Wiggins, Kerri L and Wong, Jorge A and Woo, Daniel and Worrall, Bradford B and Yang, Pil-Sung and Yao, Jie and Yoneda, Zachary T and Zeller, Tanja and Zeng, Lingyao and Lubitz, Steven A and Lunetta, Kathryn L and Ellinor, Patrick T} } @article {7788, title = {Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 May 29}, pages = {2098}, abstract = {

General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 {\texttimes} 10) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3\% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-04362-x}, author = {Davies, Gail and Lam, Max and Harris, Sarah E and Trampush, Joey W and Luciano, Michelle and Hill, W David and Hagenaars, Saskia P and Ritchie, Stuart J and Marioni, Riccardo E and Fawns-Ritchie, Chloe and Liewald, David C M and Okely, Judith A and Ahola-Olli, Ari V and Barnes, Catriona L K and Bertram, Lars and Bis, Joshua C and Burdick, Katherine E and Christoforou, Andrea and DeRosse, Pamela and Djurovic, Srdjan and Espeseth, Thomas and Giakoumaki, Stella and Giddaluru, Sudheer and Gustavson, Daniel E and Hayward, Caroline and Hofer, Edith and Ikram, M Arfan and Karlsson, Robert and Knowles, Emma and Lahti, Jari and Leber, Markus and Li, Shuo and Mather, Karen A and Melle, Ingrid and Morris, Derek and Oldmeadow, Christopher and Palviainen, Teemu and Payton, Antony and Pazoki, Raha and Petrovic, Katja and Reynolds, Chandra A and Sargurupremraj, Muralidharan and Scholz, Markus and Smith, Jennifer A and Smith, Albert V and Terzikhan, Natalie and Thalamuthu, Anbupalam and Trompet, Stella and van der Lee, Sven J and Ware, Erin B and Windham, B Gwen and Wright, Margaret J and Yang, Jingyun and Yu, Jin and Ames, David and Amin, Najaf and Amouyel, Philippe and Andreassen, Ole A and Armstrong, Nicola J and Assareh, Amelia A and Attia, John R and Attix, Deborah and Avramopoulos, Dimitrios and Bennett, David A and B{\"o}hmer, Anne C and Boyle, Patricia A and Brodaty, Henry and Campbell, Harry and Cannon, Tyrone D and Cirulli, Elizabeth T and Congdon, Eliza and Conley, Emily Drabant and Corley, Janie and Cox, Simon R and Dale, Anders M and Dehghan, Abbas and Dick, Danielle and Dickinson, Dwight and Eriksson, Johan G and Evangelou, Evangelos and Faul, Jessica D and Ford, Ian and Freimer, Nelson A and Gao, He and Giegling, Ina and Gillespie, Nathan A and Gordon, Scott D and Gottesman, Rebecca F and Griswold, Michael E and Gudnason, Vilmundur and Harris, Tamara B and Hartmann, Annette M and Hatzimanolis, Alex and Heiss, Gerardo and Holliday, Elizabeth G and Joshi, Peter K and K{\"a}h{\"o}nen, Mika and Kardia, Sharon L R and Karlsson, Ida and Kleineidam, Luca and Knopman, David S and Kochan, Nicole A and Konte, Bettina and Kwok, John B and Le Hellard, Stephanie and Lee, Teresa and Lehtim{\"a}ki, Terho and Li, Shu-Chen and Liu, Tian and Koini, Marisa and London, Edythe and Longstreth, Will T and Lopez, Oscar L and Loukola, Anu and Luck, Tobias and Lundervold, Astri J and Lundquist, Anders and Lyytik{\"a}inen, Leo-Pekka and Martin, Nicholas G and Montgomery, Grant W and Murray, Alison D and Need, Anna C and Noordam, Raymond and Nyberg, Lars and Ollier, William and Papenberg, Goran and Pattie, Alison and Polasek, Ozren and Poldrack, Russell A and Psaty, Bruce M and Reppermund, Simone and Riedel-Heller, Steffi G and Rose, Richard J and Rotter, Jerome I and Roussos, Panos and Rovio, Suvi P and Saba, Yasaman and Sabb, Fred W and Sachdev, Perminder S and Satizabal, Claudia L and Schmid, Matthias and Scott, Rodney J and Scult, Matthew A and Simino, Jeannette and Slagboom, P Eline and Smyrnis, Nikolaos and Soumar{\'e}, A{\"\i}cha and Stefanis, Nikos C and Stott, David J and Straub, Richard E and Sundet, Kjetil and Taylor, Adele M and Taylor, Kent D and Tzoulaki, Ioanna and Tzourio, Christophe and Uitterlinden, Andre and Vitart, Veronique and Voineskos, Aristotle N and Kaprio, Jaakko and Wagner, Michael and Wagner, Holger and Weinhold, Leonie and Wen, K Hoyan and Widen, Elisabeth and Yang, Qiong and Zhao, Wei and Adams, Hieab H H and Arking, Dan E and Bilder, Robert M and Bitsios, Panos and Boerwinkle, Eric and Chiba-Falek, Ornit and Corvin, Aiden and De Jager, Philip L and Debette, Stephanie and Donohoe, Gary and Elliott, Paul and Fitzpatrick, Annette L and Gill, Michael and Glahn, David C and H{\"a}gg, Sara and Hansell, Narelle K and Hariri, Ahmad R and Ikram, M Kamran and Jukema, J Wouter and Vuoksimaa, Eero and Keller, Matthew C and Kremen, William S and Launer, Lenore and Lindenberger, Ulman and Palotie, Aarno and Pedersen, Nancy L and Pendleton, Neil and Porteous, David J and R{\"a}ikk{\"o}nen, Katri and Raitakari, Olli T and Ramirez, Alfredo and Reinvang, Ivar and Rudan, Igor and Schmidt, Reinhold and Schmidt, Helena and Schofield, Peter W and Schofield, Peter R and Starr, John M and Steen, Vidar M and Trollor, Julian N and Turner, Steven T and van Duijn, Cornelia M and Villringer, Arno and Weinberger, Daniel R and Weir, David R and Wilson, James F and Malhotra, Anil and McIntosh, Andrew M and Gale, Catharine R and Seshadri, Sudha and Mosley, Thomas H and Bressler, Jan and Lencz, Todd and Deary, Ian J} } @article {7681, title = {Trans-ethnic Evaluation Identifies Novel Low Frequency Loci Associated with 25-Hydroxyvitamin D Concentrations.}, journal = {J Clin Endocrinol Metab}, year = {2018}, month = {2018 Jan 09}, abstract = {

Context: Vitamin D inadequacy is common in the adult population of the United States. While the genetic determinants underlying vitamin D inadequacy have been studied in people of European ancestry, less is known in Hispanic or African ancestry populations.

Objective: The TRANSCEN-D (TRANS-ethniC Evaluation of vitamiN D GWAS) consortium was assembled to replicate genetic associations with 25-hydroxyvitamin D (25(OH)D) concentrations from the meta-analyses of European ancestry (SUNLIGHT) and to identify novel genetic variants related to vitamin D concentrations in African and Hispanic ancestries.

Design: Ancestry-specific (Hispanic and African) and trans-ethnic (Hispanic, African and European) meta-analyses were performed using the METAL software.

Patients or Other Participants: In total, 8,541 African-American and 3,485 Hispanic-American (from North America) participants from twelve cohorts, and 16,124 European participants from SUNLIGHT were included in the study.

Main Outcome Measure(s): Blood concentrations of 25(OH)D were measured for all participants.

Results: Ancestry-specific analyses in African and Hispanic Americans replicated SNPs in GC (2 and 4 SNPs, respectively). A potentially novel SNP (rs79666294) near the KIF4B gene was identified in the African-American cohort. Trans-ethnic evaluation replicated GC and DHCR7 region SNPs. Additionally, the trans-ethnic analyses revealed novel SNPs rs719700 and rs1410656 near the ANO6/ARID2 and HTR2A genes, respectively.

Conclusions: Ancestry-specific and trans-ethnic GWAS of 25(OH)D confirmed findings in GC and DHCR7 for African and Hispanic American samples and revealed novel findings near KIF4B, ANO6/ARID2, and HTR2A. The biological mechanisms that link these regions with 25(OH)D metabolism require further investigation.

}, issn = {1945-7197}, doi = {10.1210/jc.2017-01802}, author = {Hong, Jaeyoung and Hatchell, Kathryn E and Bradfield, Jonathan P and Andrew, Bjonnes and Alessandra, Chesi and Chao-Qiang, Lai and Langefeld, Carl D and Lu, Lingyi and Lu, Yingchang and Lutsey, Pamela L and Musani, Solomon K and Nalls, Mike A and Robinson-Cohen, Cassianne and Roizen, Jeffery D and Saxena, Richa and Tucker, Katherine L and Ziegler, Julie T and Arking, Dan E and Bis, Joshua C and Boerwinkle, Eric and Bottinger, Erwin P and Bowden, Donald W and Gilsanz, Vincente and Houston, Denise K and Kalkwarf, Heidi J and Kelly, Andrea and Lappe, Joan M and Liu, Yongmei and Michos, Erin D and Oberfield, Sharon E and Palmer, Nicholette D and Rotter, Jerome I and Sapkota, Bishwa and Shepherd, John A and Wilson, James G and Basu, Saonli and de Boer, Ian H and Divers, Jasmin and Freedman, Barry I and Grant, Struan F A and Hakanarson, Hakon and Harris, Tamara B and Kestenbaum, Bryan R and Kritchevsky, Stephen B and Loos, Ruth J F and Norris, Jill M and Norwood, Arnita F and Ordovas, Jose M and Pankow, James S and Psaty, Bruce M and Sanhgera, Dharambir K and Wagenknecht, Lynne E and Zemel, Babette S and Meigs, James and Dupuis, Jos{\'e}e and Florez, Jose C and Wang, Thomas and Liu, Ching-Ti and Engelman, Corinne D and Billings, Liana K} } @article {7785, title = {Whole exome sequencing study identifies novel rare and common Alzheimer{\textquoteright}s-Associated variants involved in immune response and transcriptional regulation.}, journal = {Mol Psychiatry}, year = {2018}, month = {2018 Aug 14}, abstract = {

The Alzheimer{\textquoteright}s Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and 177 controls were Caribbean Hispanic (CH). An age-, sex- and APOE based risk score and family history were used to select cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5 million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing (2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel (9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three novel genes: IGHG3 (p = 9.8 {\texttimes} 10), an immunoglobulin gene whose antibodies interact with β-amyloid, a long non-coding RNA AC099552.4 (p = 1.2 {\texttimes} 10), and a zinc-finger protein ZNF655 (gene-based p = 5.0 {\texttimes} 10). The latter two suggest an important role for transcriptional regulation in AD pathogenesis.

}, issn = {1476-5578}, doi = {10.1038/s41380-018-0112-7}, author = {Bis, Joshua C and Jian, Xueqiu and Kunkle, Brian W and Chen, Yuning and Hamilton-Nelson, Kara L and Bush, William S and Salerno, William J and Lancour, Daniel and Ma, Yiyi and Renton, Alan E and Marcora, Edoardo and Farrell, John J and Zhao, Yi and Qu, Liming and Ahmad, Shahzad and Amin, Najaf and Amouyel, Philippe and Beecham, Gary W and Below, Jennifer E and Campion, Dominique and Charbonnier, Camille and Chung, Jaeyoon and Crane, Paul K and Cruchaga, Carlos and Cupples, L Adrienne and Dartigues, Jean-Fran{\c c}ois and Debette, Stephanie and Deleuze, Jean-Francois and Fulton, Lucinda and Gabriel, Stacey B and Genin, Emmanuelle and Gibbs, Richard A and Goate, Alison and Grenier-Boley, Benjamin and Gupta, Namrata and Haines, Jonathan L and Havulinna, Aki S and Helisalmi, Seppo and Hiltunen, Mikko and Howrigan, Daniel P and Ikram, M Arfan and Kaprio, Jaakko and Konrad, Jan and Kuzma, Amanda and Lander, Eric S and Lathrop, Mark and Lehtim{\"a}ki, Terho and Lin, Honghuang and Mattila, Kari and Mayeux, Richard and Muzny, Donna M and Nasser, Waleed and Neale, Benjamin and Nho, Kwangsik and Nicolas, Ga{\"e}l and Patel, Devanshi and Pericak-Vance, Margaret A and Perola, Markus and Psaty, Bruce M and Quenez, Olivier and Rajabli, Farid and Redon, Richard and Reitz, Christiane and Remes, Anne M and Salomaa, Veikko and Sarnowski, Chloe and Schmidt, Helena and Schmidt, Michael and Schmidt, Reinhold and Soininen, Hilkka and Thornton, Timothy A and Tosto, Giuseppe and Tzourio, Christophe and van der Lee, Sven J and van Duijn, Cornelia M and Vardarajan, Badri and Wang, Weixin and Wijsman, Ellen and Wilson, Richard K and Witten, Daniela and Worley, Kim C and Zhang, Xiaoling and Bellenguez, C{\'e}line and Lambert, Jean-Charles and Kurki, Mitja I and Palotie, Aarno and Daly, Mark and Boerwinkle, Eric and Lunetta, Kathryn L and DeStefano, Anita L and Dupuis, Jos{\'e}e and Martin, Eden R and Schellenberg, Gerard D and Seshadri, Sudha and Naj, Adam C and Fornage, Myriam and Farrer, Lindsay A} } @article {7989, title = {Association of variants in HTRA1 and NOTCH3 with MRI-defined extremes of cerebral small vessel disease in older subjects.}, journal = {Brain}, year = {2019}, month = {2019 Mar 11}, abstract = {

We report a composite extreme phenotype design using distribution of white matter hyperintensities and brain infarcts in a population-based cohort of older persons for gene-mapping of cerebral small vessel disease. We demonstrate its application in the 3C-Dijon whole exome sequencing (WES) study (n = 1924, nWESextremes = 512), with both single variant and gene-based association tests. We used other population-based cohort studies participating in the CHARGE consortium for replication, using whole exome sequencing (nWES = 2,868, nWESextremes = 956) and genome-wide genotypes (nGW = 9924, nGWextremes = 3308). We restricted our study to candidate genes known to harbour mutations for Mendelian small vessel disease: NOTCH3, HTRA1, COL4A1, COL4A2 and TREX1. We identified significant associations of a common intronic variant in HTRA1, rs2293871 using single variant association testing (Pdiscovery = 8.21 {\texttimes} 10-5, Preplication = 5.25 {\texttimes} 10-3, Pcombined = 4.72 {\texttimes} 10-5) and of NOTCH3 using gene-based tests (Pdiscovery = 1.61 {\texttimes} 10-2, Preplication = 3.99 {\texttimes} 10-2, Pcombined = 5.31 {\texttimes} 10-3). Follow-up analysis identified significant association of rs2293871 with small vessel ischaemic stroke, and two blood expression quantitative trait loci of HTRA1 in linkage disequilibrium. Additionally, we identified two participants in the 3C-Dijon cohort (0.4\%) carrying heterozygote genotypes at known pathogenic variants for familial small vessel disease within NOTCH3 and HTRA1. In conclusion, our proof-of-concept study provides strong evidence that using a novel composite MRI-derived phenotype for extremes of small vessel disease can facilitate the identification of genetic variants underlying small vessel disease, both common variants and those with rare and low frequency. The findings demonstrate shared mechanisms and a continuum between genes underlying Mendelian small vessel disease and those contributing to the common, multifactorial form of the disease.

}, issn = {1460-2156}, doi = {10.1093/brain/awz024}, author = {Mishra, Aniket and Chauhan, Ganesh and Violleau, Marie-Helene and Vojinovic, Dina and Jian, Xueqiu and Bis, Joshua C and Li, Shuo and Saba, Yasaman and Grenier-Boley, Benjamin and Yang, Qiong and Bartz, Traci M and Hofer, Edith and Soumar{\'e}, A{\"\i}cha and Peng, Fen and Duperron, Marie-Gabrielle and Foglio, Mario and Mosley, Thomas H and Schmidt, Reinhold and Psaty, Bruce M and Launer, Lenore J and Boerwinkle, Eric and Zhu, Yicheng and Mazoyer, Bernard and Lathrop, Mark and Bellenguez, C{\'e}line and van Duijn, Cornelia M and Ikram, M Arfan and Schmidt, Helena and Longstreth, W T and Fornage, Myriam and Seshadri, Sudha and Joutel, Anne and Tzourio, Christophe and Debette, Stephanie} } @article {8206, title = {Genetic architecture of subcortical brain structures in 38,851 individuals.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 Nov}, pages = {1624-1636}, abstract = {

Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.

}, issn = {1546-1718}, doi = {10.1038/s41588-019-0511-y}, author = {Satizabal, Claudia L and Adams, Hieab H H and Hibar, Derrek P and White, Charles C and Knol, Maria J and Stein, Jason L and Scholz, Markus and Sargurupremraj, Muralidharan and Jahanshad, Neda and Roshchupkin, Gennady V and Smith, Albert V and Bis, Joshua C and Jian, Xueqiu and Luciano, Michelle and Hofer, Edith and Teumer, Alexander and van der Lee, Sven J and Yang, Jingyun and Yanek, Lisa R and Lee, Tom V and Li, Shuo and Hu, Yanhui and Koh, Jia Yu and Eicher, John D and Desrivi{\`e}res, Sylvane and Arias-Vasquez, Alejandro and Chauhan, Ganesh and Athanasiu, Lavinia and Renter{\'\i}a, Miguel E and Kim, Sungeun and Hoehn, David and Armstrong, Nicola J and Chen, Qiang and Holmes, Avram J and den Braber, Anouk and Kloszewska, Iwona and Andersson, Micael and Espeseth, Thomas and Grimm, Oliver and Abramovic, Lucija and Alhusaini, Saud and Milaneschi, Yuri and Papmeyer, Martina and Axelsson, Tomas and Ehrlich, Stefan and Roiz-Santia{\~n}ez, Roberto and Kraemer, Bernd and H{\r a}berg, Asta K and Jones, Hannah J and Pike, G Bruce and Stein, Dan J and Stevens, Allison and Bralten, Janita and Vernooij, Meike W and Harris, Tamara B and Filippi, Irina and Witte, A Veronica and Guadalupe, Tulio and Wittfeld, Katharina and Mosley, Thomas H and Becker, James T and Doan, Nhat Trung and Hagenaars, Saskia P and Saba, Yasaman and Cuellar-Partida, Gabriel and Amin, Najaf and Hilal, Saima and Nho, Kwangsik and Mirza-Schreiber, Nazanin and Arfanakis, Konstantinos and Becker, Diane M and Ames, David and Goldman, Aaron L and Lee, Phil H and Boomsma, Dorret I and Lovestone, Simon and Giddaluru, Sudheer and Le Hellard, Stephanie and Mattheisen, Manuel and Bohlken, Marc M and Kasperaviciute, Dalia and Schmaal, Lianne and Lawrie, Stephen M and Agartz, Ingrid and Walton, Esther and Tordesillas-Gutierrez, Diana and Davies, Gareth E and Shin, Jean and Ipser, Jonathan C and Vinke, Louis N and Hoogman, Martine and Jia, Tianye and Burkhardt, Ralph and Klein, Marieke and Crivello, Fabrice and Janowitz, Deborah and Carmichael, Owen and Haukvik, Unn K and Aribisala, Benjamin S and Schmidt, Helena and Strike, Lachlan T and Cheng, Ching-Yu and Risacher, Shannon L and P{\"u}tz, Benno and Fleischman, Debra A and Assareh, Amelia A and Mattay, Venkata S and Buckner, Randy L and Mecocci, Patrizia and Dale, Anders M and Cichon, Sven and Boks, Marco P and Matarin, Mar and Penninx, Brenda W J H and Calhoun, Vince D and Chakravarty, M Mallar and Marquand, Andre F and Macare, Christine and Kharabian Masouleh, Shahrzad and Oosterlaan, Jaap and Amouyel, Philippe and Hegenscheid, Katrin and Rotter, Jerome I and Schork, Andrew J and Liewald, David C M and de Zubicaray, Greig I and Wong, Tien Yin and Shen, Li and S{\"a}mann, Philipp G and Brodaty, Henry and Roffman, Joshua L and de Geus, Eco J C and Tsolaki, Magda and Erk, Susanne and van Eijk, Kristel R and Cavalleri, Gianpiero L and van der Wee, Nic J A and McIntosh, Andrew M and Gollub, Randy L and Bulayeva, Kazima B and Bernard, Manon and Richards, Jennifer S and Himali, Jayandra J and Loeffler, Markus and Rommelse, Nanda and Hoffmann, Wolfgang and Westlye, Lars T and Vald{\'e}s Hern{\'a}ndez, Maria C and Hansell, Narelle K and van Erp, Theo G M and Wolf, Christiane and Kwok, John B J and Vellas, Bruno and Heinz, Andreas and Olde Loohuis, Loes M and Delanty, Norman and Ho, Beng-Choon and Ching, Christopher R K and Shumskaya, Elena and Singh, Baljeet and Hofman, Albert and van der Meer, Dennis and Homuth, Georg and Psaty, Bruce M and Bastin, Mark E and Montgomery, Grant W and Foroud, Tatiana M and Reppermund, Simone and Hottenga, Jouke-Jan and Simmons, Andrew and Meyer-Lindenberg, Andreas and Cahn, Wiepke and Whelan, Christopher D and van Donkelaar, Marjolein M J and Yang, Qiong and Hosten, Norbert and Green, Robert C and Thalamuthu, Anbupalam and Mohnke, Sebastian and Hulshoff Pol, Hilleke E and Lin, Honghuang and Jack, Clifford R and Schofield, Peter R and M{\"u}hleisen, Thomas W and Maillard, Pauline and Potkin, Steven G and Wen, Wei and Fletcher, Evan and Toga, Arthur W and Gruber, Oliver and Huentelman, Matthew and Davey Smith, George and Launer, Lenore J and Nyberg, Lars and J{\"o}nsson, Erik G and Crespo-Facorro, Benedicto and Koen, Nastassja and Greve, Douglas N and Uitterlinden, Andr{\'e} G and Weinberger, Daniel R and Steen, Vidar M and Fedko, Iryna O and Groenewold, Nynke A and Niessen, Wiro J and Toro, Roberto and Tzourio, Christophe and Longstreth, William T and Ikram, M Kamran and Smoller, Jordan W and van Tol, Marie-Jose and Sussmann, Jessika E and Paus, Tom{\'a}{\v s} and Lema{\^\i}tre, Herv{\'e} and Schroeter, Matthias L and Mazoyer, Bernard and Andreassen, Ole A and Holsboer, Florian and Depondt, Chantal and Veltman, Dick J and Turner, Jessica A and Pausova, Zdenka and Schumann, Gunter and van Rooij, Daan and Djurovic, Srdjan and Deary, Ian J and McMahon, Katie L and M{\"u}ller-Myhsok, Bertram and Brouwer, Rachel M and Soininen, Hilkka and Pandolfo, Massimo and Wassink, Thomas H and Cheung, Joshua W and Wolfers, Thomas and Martinot, Jean-Luc and Zwiers, Marcel P and Nauck, Matthias and Melle, Ingrid and Martin, Nicholas G and Kanai, Ryota and Westman, Eric and Kahn, Ren{\'e} S and Sisodiya, Sanjay M and White, Tonya and Saremi, Arvin and van Bokhoven, Hans and Brunner, Han G and V{\"o}lzke, Henry and Wright, Margaret J and van {\textquoteright}t Ent, Dennis and N{\"o}then, Markus M and Ophoff, Roel A and Buitelaar, Jan K and Fern{\'a}ndez, Guill{\'e}n and Sachdev, Perminder S and Rietschel, Marcella and van Haren, Neeltje E M and Fisher, Simon E and Beiser, Alexa S and Francks, Clyde and Saykin, Andrew J and Mather, Karen A and Romanczuk-Seiferth, Nina and Hartman, Catharina A and DeStefano, Anita L and Heslenfeld, Dirk J and Weiner, Michael W and Walter, Henrik and Hoekstra, Pieter J and Nyquist, Paul A and Franke, Barbara and Bennett, David A and Grabe, Hans J and Johnson, Andrew D and Chen, Christopher and van Duijn, Cornelia M and Lopez, Oscar L and Fornage, Myriam and Wardlaw, Joanna M and Schmidt, Reinhold and DeCarli, Charles and De Jager, Philip L and Villringer, Arno and Debette, Stephanie and Gudnason, Vilmundur and Medland, Sarah E and Shulman, Joshua M and Thompson, Paul M and Seshadri, Sudha and Ikram, M Arfan} } @article {7977, title = {Genetic meta-analysis of diagnosed Alzheimer{\textquoteright}s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 Mar}, pages = {414-430}, abstract = {

Risk for late-onset Alzheimer{\textquoteright}s disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer{\textquoteright}s or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and Aβ processing are associated not only with early-onset autosomal dominant Alzheimer{\textquoteright}s disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 1.32 {\texttimes} 10), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.

}, issn = {1546-1718}, doi = {10.1038/s41588-019-0358-2}, author = {Kunkle, Brian W and Grenier-Boley, Benjamin and Sims, Rebecca and Bis, Joshua C and Damotte, Vincent and Naj, Adam C and Boland, Anne and Vronskaya, Maria and van der Lee, Sven J and Amlie-Wolf, Alexandre and Bellenguez, C{\'e}line and Frizatti, Aura and Chouraki, Vincent and Martin, Eden R and Sleegers, Kristel and Badarinarayan, Nandini and Jakobsdottir, Johanna and Hamilton-Nelson, Kara L and Moreno-Grau, Sonia and Olaso, Robert and Raybould, Rachel and Chen, Yuning and Kuzma, Amanda B and Hiltunen, Mikko and Morgan, Taniesha and Ahmad, Shahzad and Vardarajan, Badri N and Epelbaum, Jacques and Hoffmann, Per and Boada, Merce and Beecham, Gary W and Garnier, Jean-Guillaume and Harold, Denise and Fitzpatrick, Annette L and Valladares, Otto and Moutet, Marie-Laure and Gerrish, Amy and Smith, Albert V and Qu, Liming and Bacq, Delphine and Denning, Nicola and Jian, Xueqiu and Zhao, Yi and Del Zompo, Maria and Fox, Nick C and Choi, Seung-Hoan and Mateo, Ignacio and Hughes, Joseph T and Adams, Hieab H and Malamon, John and Sanchez-Garcia, Florentino and Patel, Yogen and Brody, Jennifer A and Dombroski, Beth A and Naranjo, Maria Candida Deniz and Daniilidou, Makrina and Eiriksdottir, Gudny and Mukherjee, Shubhabrata and Wallon, David and Uphill, James and Aspelund, Thor and Cantwell, Laura B and Garzia, Fabienne and Galimberti, Daniela and Hofer, Edith and Butkiewicz, Mariusz and Fin, Bertrand and Scarpini, Elio and Sarnowski, Chloe and Bush, Will S and Meslage, St{\'e}phane and Kornhuber, Johannes and White, Charles C and Song, Yuenjoo and Barber, Robert C and Engelborghs, Sebastiaan and Sordon, Sabrina and Voijnovic, Dina and Adams, Perrie M and Vandenberghe, Rik and Mayhaus, Manuel and Cupples, L Adrienne and Albert, Marilyn S and De Deyn, Peter P and Gu, Wei and Himali, Jayanadra J and Beekly, Duane and Squassina, Alessio and Hartmann, Annette M and Orellana, Adelina and Blacker, Deborah and Rodriguez-Rodriguez, Eloy and Lovestone, Simon and Garcia, Melissa E and Doody, Rachelle S and Munoz-Fernadez, Carmen and Sussams, Rebecca and Lin, Honghuang and Fairchild, Thomas J and Benito, Yolanda A and Holmes, Clive and Karamuji{\'c}-{\v C}omi{\'c}, Hata and Frosch, Matthew P and Thonberg, H{\r a}kan and Maier, Wolfgang and Roschupkin, Gena and Ghetti, Bernardino and Giedraitis, Vilmantas and Kawalia, Amit and Li, Shuo and Huebinger, Ryan M and Kilander, Lena and Moebus, Susanne and Hernandez, Isabel and Kamboh, M Ilyas and Brundin, RoseMarie and Turton, James and Yang, Qiong and Katz, Mindy J and Concari, Letizia and Lord, Jenny and Beiser, Alexa S and Keene, C Dirk and Helisalmi, Seppo and Kloszewska, Iwona and Kukull, Walter A and Koivisto, Anne Maria and Lynch, Aoibhinn and Tarraga, Lluis and Larson, Eric B and Haapasalo, Annakaisa and Lawlor, Brian and Mosley, Thomas H and Lipton, Richard B and Solfrizzi, Vincenzo and Gill, Michael and Longstreth, W T and Montine, Thomas J and Frisardi, Vincenza and Diez-Fairen, Monica and Rivadeneira, Fernando and Petersen, Ronald C and Deramecourt, Vincent and Alvarez, Ignacio and Salani, Francesca and Ciaramella, Antonio and Boerwinkle, Eric and Reiman, Eric M and Fi{\'e}vet, Nathalie and Rotter, Jerome I and Reisch, Joan S and Hanon, Olivier and Cupidi, Chiara and Andre Uitterlinden, A G and Royall, Donald R and Dufouil, Carole and Maletta, Raffaele Giovanni and de Rojas, Itziar and Sano, Mary and Brice, Alexis and Cecchetti, Roberta and George-Hyslop, Peter St and Ritchie, Karen and Tsolaki, Magda and Tsuang, Debby W and Dubois, Bruno and Craig, David and Wu, Chuang-Kuo and Soininen, Hilkka and Avramidou, Despoina and Albin, Roger L and Fratiglioni, Laura and Germanou, Antonia and Apostolova, Liana G and Keller, Lina and Koutroumani, Maria and Arnold, Steven E and Panza, Francesco and Gkatzima, Olymbia and Asthana, Sanjay and Hannequin, Didier and Whitehead, Patrice and Atwood, Craig S and Caffarra, Paolo and Hampel, Harald and Quintela, In{\'e}s and Carracedo, Angel and Lannfelt, Lars and Rubinsztein, David C and Barnes, Lisa L and Pasquier, Florence and Fr{\"o}lich, Lutz and Barral, Sandra and McGuinness, Bernadette and Beach, Thomas G and Johnston, Janet A and Becker, James T and Passmore, Peter and Bigio, Eileen H and Schott, Jonathan M and Bird, Thomas D and Warren, Jason D and Boeve, Bradley F and Lupton, Michelle K and Bowen, James D and Proitsi, Petra and Boxer, Adam and Powell, John F and Burke, James R and Kauwe, John S K and Burns, Jeffrey M and Mancuso, Michelangelo and Buxbaum, Joseph D and Bonuccelli, Ubaldo and Cairns, Nigel J and McQuillin, Andrew and Cao, Chuanhai and Livingston, Gill and Carlson, Chris S and Bass, Nicholas J and Carlsson, Cynthia M and Hardy, John and Carney, Regina M and Bras, Jose and Carrasquillo, Minerva M and Guerreiro, Rita and Allen, Mariet and Chui, Helena C and Fisher, Elizabeth and Masullo, Carlo and Crocco, Elizabeth A and DeCarli, Charles and Bisceglio, Gina and Dick, Malcolm and Ma, Li and Duara, Ranjan and Graff-Radford, Neill R and Evans, Denis A and Hodges, Angela and Faber, Kelley M and Scherer, Martin and Fallon, Kenneth B and Riemenschneider, Matthias and Fardo, David W and Heun, Reinhard and Farlow, Martin R and K{\"o}lsch, Heike and Ferris, Steven and Leber, Markus and Foroud, Tatiana M and Heuser, Isabella and Galasko, Douglas R and Giegling, Ina and Gearing, Marla and H{\"u}ll, Michael and Geschwind, Daniel H and Gilbert, John R and Morris, John and Green, Robert C and Mayo, Kevin and Growdon, John H and Feulner, Thomas and Hamilton, Ronald L and Harrell, Lindy E and Drichel, Dmitriy and Honig, Lawrence S and Cushion, Thomas D and Huentelman, Matthew J and Hollingworth, Paul and Hulette, Christine M and Hyman, Bradley T and Marshall, Rachel and Jarvik, Gail P and Meggy, Alun and Abner, Erin and Menzies, Georgina E and Jin, Lee-Way and Leonenko, Ganna and Real, Luis M and Jun, Gyungah R and Baldwin, Clinton T and Grozeva, Detelina and Karydas, Anna and Russo, Giancarlo and Kaye, Jeffrey A and Kim, Ronald and Jessen, Frank and Kowall, Neil W and Vellas, Bruno and Kramer, Joel H and Vardy, Emma and LaFerla, Frank M and J{\"o}ckel, Karl-Heinz and Lah, James J and Dichgans, Martin and Leverenz, James B and Mann, David and Levey, Allan I and Pickering-Brown, Stuart and Lieberman, Andrew P and Klopp, Norman and Lunetta, Kathryn L and Wichmann, H-Erich and Lyketsos, Constantine G and Morgan, Kevin and Marson, Daniel C and Brown, Kristelle and Martiniuk, Frank and Medway, Christopher and Mash, Deborah C and N{\"o}then, Markus M and Masliah, Eliezer and Hooper, Nigel M and McCormick, Wayne C and Daniele, Antonio and McCurry, Susan M and Bayer, Anthony and McDavid, Andrew N and Gallacher, John and McKee, Ann C and van den Bussche, Hendrik and Mesulam, Marsel and Brayne, Carol and Miller, Bruce L and Riedel-Heller, Steffi and Miller, Carol A and Miller, Joshua W and Al-Chalabi, Ammar and Morris, John C and Shaw, Christopher E and Myers, Amanda J and Wiltfang, Jens and O{\textquoteright}Bryant, Sid and Olichney, John M and Alvarez, Victoria and Parisi, Joseph E and Singleton, Andrew B and Paulson, Henry L and Collinge, John and Perry, William R and Mead, Simon and Peskind, Elaine and Cribbs, David H and Rossor, Martin and Pierce, Aimee and Ryan, Natalie S and Poon, Wayne W and Nacmias, Benedetta and Potter, Huntington and Sorbi, Sandro and Quinn, Joseph F and Sacchinelli, Eleonora and Raj, Ashok and Spalletta, Gianfranco and Raskind, Murray and Caltagirone, Carlo and Boss{\`u}, Paola and Orfei, Maria Donata and Reisberg, Barry and Clarke, Robert and Reitz, Christiane and Smith, A David and Ringman, John M and Warden, Donald and Roberson, Erik D and Wilcock, Gordon and Rogaeva, Ekaterina and Bruni, Amalia Cecilia and Rosen, Howard J and Gallo, Maura and Rosenberg, Roger N and Ben-Shlomo, Yoav and Sager, Mark A and Mecocci, Patrizia and Saykin, Andrew J and Pastor, Pau and Cuccaro, Michael L and Vance, Jeffery M and Schneider, Julie A and Schneider, Lori S and Slifer, Susan and Seeley, William W and Smith, Amanda G and Sonnen, Joshua A and Spina, Salvatore and Stern, Robert A and Swerdlow, Russell H and Tang, Mitchell and Tanzi, Rudolph E and Trojanowski, John Q and Troncoso, Juan C and Van Deerlin, Vivianna M and Van Eldik, Linda J and Vinters, Harry V and Vonsattel, Jean Paul and Weintraub, Sandra and Welsh-Bohmer, Kathleen A and Wilhelmsen, Kirk C and Williamson, Jennifer and Wingo, Thomas S and Woltjer, Randall L and Wright, Clinton B and Yu, Chang-En and Yu, Lei and Saba, Yasaman and Pilotto, Alberto and Bullido, Mar{\'\i}a J and Peters, Oliver and Crane, Paul K and Bennett, David and Bosco, Paola and Coto, Eliecer and Boccardi, Virginia and De Jager, Phil L and Lleo, Alberto and Warner, Nick and Lopez, Oscar L and Ingelsson, Martin and Deloukas, Panagiotis and Cruchaga, Carlos and Graff, Caroline and Gwilliam, Rhian and Fornage, Myriam and Goate, Alison M and S{\'a}nchez-Juan, Pascual and Kehoe, Patrick G and Amin, Najaf and Ertekin-Taner, Nilifur and Berr, Claudine and Debette, Stephanie and Love, Seth and Launer, Lenore J and Younkin, Steven G and Dartigues, Jean-Fran{\c c}ois and Corcoran, Chris and Ikram, M Arfan and Dickson, Dennis W and Nicolas, Ga{\"e}l and Campion, Dominique and Tschanz, JoAnn and Schmidt, Helena and Hakonarson, Hakon and Clarimon, Jordi and Munger, Ron and Schmidt, Reinhold and Farrer, Lindsay A and Van Broeckhoven, Christine and C O{\textquoteright}Donovan, Michael and DeStefano, Anita L and Jones, Lesley and Haines, Jonathan L and Deleuze, Jean-Francois and Owen, Michael J and Gudnason, Vilmundur and Mayeux, Richard and Escott-Price, Valentina and Psaty, Bruce M and Ramirez, Alfredo and Wang, Li-San and Ruiz, Agustin and van Duijn, Cornelia M and Holmans, Peter A and Seshadri, Sudha and Williams, Julie and Amouyel, Phillippe and Schellenberg, Gerard D and Lambert, Jean-Charles and Pericak-Vance, Margaret A} } @article {9372, title = {Genome-Wide Association Study of Apparent Treatment-Resistant Hypertension in the CHARGE Consortium: The CHARGE Pharmacogenetics Working Group.}, journal = {Am J Hypertens}, volume = {32}, year = {2019}, month = {2019 Nov 15}, pages = {1146-1153}, abstract = {

BACKGROUND: Only a handful of genetic discovery efforts in apparent treatment-resistant hypertension (aTRH) have been described.

METHODS: We conducted a case-control genome-wide association study of aTRH among persons treated for hypertension, using data from 10 cohorts of European ancestry (EA) and 5 cohorts of African ancestry (AA). Cases were treated with 3 different antihypertensive medication classes and had blood pressure (BP) above goal (systolic BP >= 140 mm Hg and/or diastolic BP >= 90 mm Hg) or 4 or more medication classes regardless of BP control (nEA = 931, nAA = 228). Both a normotensive control group and a treatment-responsive control group were considered in separate analyses. Normotensive controls were untreated (nEA = 14,210, nAA = 2,480) and had systolic BP/diastolic BP < 140/90 mm Hg. Treatment-responsive controls (nEA = 5,266, nAA = 1,817) had BP at goal (<140/90 mm Hg), while treated with one antihypertensive medication class. Individual cohorts used logistic regression with adjustment for age, sex, study site, and principal components for ancestry to examine the association of single-nucleotide polymorphisms with case-control status. Inverse variance-weighted fixed-effects meta-analyses were carried out using METAL.

RESULTS: The known hypertension locus, CASZ1, was a top finding among EAs (P = 1.1 {\texttimes} 10-8) and in the race-combined analysis (P = 1.5 {\texttimes} 10-9) using the normotensive control group (rs12046278, odds ratio = 0.71 (95\% confidence interval: 0.6-0.8)). Single-nucleotide polymorphisms in this locus were robustly replicated in the Million Veterans Program (MVP) study in consideration of a treatment-responsive control group. There were no statistically significant findings for the discovery analyses including treatment-responsive controls.

CONCLUSION: This genomic discovery effort for aTRH identified CASZ1 as an aTRH risk locus.

}, keywords = {Aged, Antihypertensive Agents, Black or African American, Blood Pressure, Case-Control Studies, DNA (Cytosine-5-)-Methyltransferases, DNA Methyltransferase 3A, DNA-Binding Proteins, Drug Resistance, Dystrophin-Associated Proteins, Europe, Female, Genetic Loci, Genome-Wide Association Study, Humans, Hypertension, Male, Middle Aged, Myosin Heavy Chains, Myosin Type V, Neuropeptides, Pharmacogenetics, Pharmacogenomic Variants, Polymorphism, Single Nucleotide, Risk Assessment, Risk Factors, Transcription Factors, United States, White People}, issn = {1941-7225}, doi = {10.1093/ajh/hpz150}, author = {Irvin, Marguerite R and Sitlani, Colleen M and Floyd, James S and Psaty, Bruce M and Bis, Joshua C and Wiggins, Kerri L and Whitsel, Eric A and St{\"u}rmer, Til and Stewart, James and Raffield, Laura and Sun, Fangui and Liu, Ching-Ti and Xu, Hanfei and Cupples, Adrienne L and Tanner, Rikki M and Rossing, Peter and Smith, Albert and Zilh{\~a}o, Nuno R and Launer, Lenore J and Noordam, Raymond and Rotter, Jerome I and Yao, Jie and Li, Xiaohui and Guo, Xiuqing and Limdi, Nita and Sundaresan, Aishwarya and Lange, Leslie and Correa, Adolfo and Stott, David J and Ford, Ian and Jukema, J Wouter and Gudnason, Vilmundur and Mook-Kanamori, Dennis O and Trompet, Stella and Palmas, Walter and Warren, Helen R and Hellwege, Jacklyn N and Giri, Ayush and O{\textquoteright}donnell, Christopher and Hung, Adriana M and Edwards, Todd L and Ahluwalia, Tarunveer S and Arnett, Donna K and Avery, Christy L} } @article {8508, title = {Genomewide Association Study of Statin-Induced Myopathy in Patients Recruited Using the UK Clinical Practice Research Datalink.}, journal = {Clin Pharmacol Ther}, volume = {106}, year = {2019}, month = {2019 12}, pages = {1353-1361}, abstract = {

Statins can be associated with myopathy. We have undertaken a genomewide association study (GWAS) to discover and validate genetic risk factors for statin-induced myopathy in a "real-world" setting. One hundred thirty-five patients with statin myopathy recruited via the UK Clinical Practice Research Datalink were genotyped using the Illumina OmniExpress Exome version 1.0 Bead Chip and compared with the Wellcome Trust Case-Control Consortium (n~=~2,501). Nominally statistically significant single nucleotide polymorphism (SNP) signals in the GWAS (P~<~5~{\texttimes}~10 ) were further evaluated in several independent cohorts (comprising 332 cases and 449 drug-tolerant controls). Only one (rs4149056/c.521C>T in the SLCO1B1 gene) SNP was genomewide significant in the severe myopathy (creatine kinase~>~10~{\texttimes}~upper limit of normal or rhabdomyolysis) group (P~=~2.55~{\texttimes}~10 ; odds ratio 5.15; 95\% confidence interval 3.13-8.45). The association with SLCO1B1 was present for several statins and replicated in the independent validation cohorts. The data highlight the role of SLCO1B1 c.521C>T SNP as a replicable genetic risk factor for statin myopathy. No other novel genetic risk factors with a similar effect size were identified.

}, keywords = {Adverse Drug Reaction Reporting Systems, Case-Control Studies, Databases, Factual, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Liver-Specific Organic Anion Transporter 1, Muscular Diseases, Pharmacogenomic Variants, Polymorphism, Single Nucleotide, Reproducibility of Results, Risk Factors, Severity of Illness Index, United Kingdom}, issn = {1532-6535}, doi = {10.1002/cpt.1557}, author = {Carr, Daniel F and Francis, Ben and Jorgensen, Andrea L and Zhang, Eunice and Chinoy, Hector and Heckbert, Susan R and Bis, Joshua C and Brody, Jennifer A and Floyd, James S and Psaty, Bruce M and Molokhia, Mariam and Lapeyre-Mestre, Maryse and Conforti, Anita and Alfirevic, Ana and van Staa, Tjeerd and Pirmohamed, Munir} } @article {8102, title = {Pharmacogenomics of statin-related myopathy: Meta-analysis of rare variants from whole-exome sequencing.}, journal = {PLoS One}, volume = {14}, year = {2019}, month = {2019}, pages = {e0218115}, abstract = {

AIMS: Statin-related myopathy (SRM), which includes rhabdomyolysis, is an uncommon but important adverse drug reaction because the number of people prescribed statins world-wide is large. Previous association studies of common genetic variants have had limited success in identifying a genetic basis for this adverse drug reaction. We conducted a multi-site whole-exome sequencing study to investigate whether rare coding variants confer an increased risk of SRM.

METHODS AND RESULTS: SRM 3-5 cases (N = 505) and statin treatment-tolerant controls (N = 2047) were recruited from multiple sites in North America and Europe. SRM 3-5 was defined as symptoms consistent with muscle injury and an elevated creatine phosphokinase level >4 times upper limit of normal without another likely cause of muscle injury. Whole-exome sequencing and variant calling was coordinated from two analysis centres, and results of single-variant and gene-based burden tests were meta-analysed. No genome-wide significant associations were identified. Given the large number of cases, we had 80\% power to identify a variant with minor allele frequency of 0.01 that increases the risk of SRM 6-fold at genome-wide significance.

CONCLUSIONS: In this large whole-exome sequencing study of severe statin-related muscle injury conducted to date, we did not find evidence that rare coding variants are responsible for this adverse drug reaction. Larger sample sizes would be required to identify rare variants with small effects, but it is unclear whether such findings would be clinically actionable.

}, issn = {1932-6203}, doi = {10.1371/journal.pone.0218115}, author = {Floyd, James S and Bloch, Katarzyna M and Brody, Jennifer A and Maroteau, Cyrielle and Siddiqui, Moneeza K and Gregory, Richard and Carr, Daniel F and Molokhia, Mariam and Liu, Xiaoming and Bis, Joshua C and Ahmed, Ammar and Liu, Xuan and Hallberg, P{\"a}r and Yue, Qun-Ying and Magnusson, Patrik K E and Brisson, Diane and Wiggins, Kerri L and Morrison, Alanna C and Khoury, Etienne and McKeigue, Paul and Stricker, Bruno H and Lapeyre-Mestre, Maryse and Heckbert, Susan R and Gallagher, Arlene M and Chinoy, Hector and Gibbs, Richard A and Bondon-Guitton, Emmanuelle and Tracy, Russell and Boerwinkle, Eric and Gaudet, Daniel and Conforti, Anita and van Staa, Tjeerd and Sitlani, Colleen M and Rice, Kenneth M and Maitland-van der Zee, Anke-Hilse and Wadelius, Mia and Morris, Andrew P and Pirmohamed, Munir and Palmer, Colin A N and Psaty, Bruce M and Alfirevic, Ana} } @article {8287, title = {Association of CD14 with incident dementia and markers of brain aging and injury.}, journal = {Neurology}, volume = {94}, year = {2020}, month = {2020 01 21}, pages = {e254-e266}, abstract = {

OBJECTIVE: To test the hypothesis that the inflammatory marker plasma soluble CD14 (sCD14) associates with incident dementia and related endophenotypes in 2 community-based cohorts.

METHODS: Our samples included the prospective community-based Framingham Heart Study (FHS) and Cardiovascular Health Study (CHS) cohorts. Plasma sCD14 was measured at baseline and related to the incidence of dementia, domains of cognitive function, and MRI-defined brain volumes. Follow-up for dementia occurred over a mean of 10 years (SD 4) in the FHS and a mean of 6 years (SD 3) in the CHS.

RESULTS: We studied 1,588 participants from the FHS (mean age 69 {\textpm} 6 years, 47\% male, 131 incident events) and 3,129 participants from the CHS (mean age 72 {\textpm} 5 years, 41\% male, 724 incident events) for the risk of incident dementia. Meta-analysis across the 2 cohorts showed that each SD unit increase in sCD14 was associated with a 12\% increase in the risk of incident dementia (95\% confidence interval 1.03-1.23; = 0.01) following adjustments for age, sex, ε4 status, and vascular risk factors. Higher levels of sCD14 were associated with various cognitive and MRI markers of accelerated brain aging in both cohorts and with a greater progression of brain atrophy and a decline in executive function in the FHS.

CONCLUSION: sCD14 is an inflammatory marker related to brain atrophy, cognitive decline, and incident dementia.

}, issn = {1526-632X}, doi = {10.1212/WNL.0000000000008682}, author = {Pase, Matthew P and Himali, Jayandra J and Beiser, Alexa S and DeCarli, Charles and McGrath, Emer R and Satizabal, Claudia L and Aparicio, Hugo J and Adams, Hieab H H and Reiner, Alexander P and Longstreth, W T and Fornage, Myriam and Tracy, Russell P and Lopez, Oscar and Psaty, Bruce M and Levy, Daniel and Seshadri, Sudha and Bis, Joshua C} } @article {8625, title = {Genetic loci associated with prevalent and incident myocardial infarction and coronary heart disease in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.}, journal = {PLoS One}, volume = {15}, year = {2020}, month = {2020}, pages = {e0230035}, abstract = {

BACKGROUND: Genome-wide association studies have identified multiple genomic loci associated with coronary artery disease, but most are common variants in non-coding regions that provide limited information on causal genes and etiology of the disease. To overcome the limited scope that common variants provide, we focused our investigation on low-frequency and rare sequence variations primarily residing in coding regions of the genome.

METHODS AND RESULTS: Using samples of individuals of European ancestry from ten cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-sectional and prospective analyses were conducted to examine associations between genetic variants and myocardial infarction (MI), coronary heart disease (CHD), and all-cause mortality following these events. For prevalent events, a total of 27,349 participants of European ancestry, including 1831 prevalent MI cases and 2518 prevalent CHD cases were used. For incident cases, a total of 55,736 participants of European ancestry were included (3,031 incident MI cases and 5,425 incident CHD cases). There were 1,860 all-cause deaths among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-cause mortality. Single variant and gene-based analyses were performed separately in each cohort and then meta-analyzed for each outcome. A low-frequency intronic variant (rs988583) in PLCL1 was significantly associated with prevalent MI (OR = 1.80, 95\% confidence interval: 1.43, 2.27; P = 7.12 {\texttimes} 10-7). We conducted gene-based burden tests for genes with a cumulative minor allele count (cMAC) >= 5 and variants with minor allele frequency (MAF) < 5\%. TMPRSS5 and LDLRAD1 were significantly associated with prevalent MI and CHD, respectively, and RC3H2 and ANGPTL4 were significantly associated with incident MI and CHD, respectively. No loci were significantly associated with all-cause mortality following a MI or CHD event.

CONCLUSION: This study identified one known locus (ANGPTL4) and four new loci (PLCL1, RC3H2, TMPRSS5, and LDLRAD1) associated with cardiovascular disease risk that warrant further investigation.

}, keywords = {Aging, Coronary Artery Disease, Cross-Sectional Studies, Europe, European Continental Ancestry Group, Genetic Loci, Genome-Wide Association Study, Humans, Myocardial Infarction, Polymorphism, Single Nucleotide, Prospective Studies}, issn = {1932-6203}, doi = {10.1371/journal.pone.0230035}, author = {Hahn, Julie and Fu, Yi-Ping and Brown, Michael R and Bis, Joshua C and de Vries, Paul S and Feitosa, Mary F and Yanek, Lisa R and Weiss, Stefan and Giulianini, Franco and Smith, Albert Vernon and Guo, Xiuqing and Bartz, Traci M and Becker, Diane M and Becker, Lewis C and Boerwinkle, Eric and Brody, Jennifer A and Chen, Yii-Der Ida and Franco, Oscar H and Grove, Megan and Harris, Tamara B and Hofman, Albert and Hwang, Shih-Jen and Kral, Brian G and Launer, Lenore J and Markus, Marcello R P and Rice, Kenneth M and Rich, Stephen S and Ridker, Paul M and Rivadeneira, Fernando and Rotter, Jerome I and Sotoodehnia, Nona and Taylor, Kent D and Uitterlinden, Andr{\'e} G and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Yao, Jie and Chasman, Daniel I and D{\"o}rr, Marcus and Gudnason, Vilmundur and Mathias, Rasika A and Post, Wendy and Psaty, Bruce M and Dehghan, Abbas and O{\textquoteright}Donnell, Christopher J and Morrison, Alanna C} } @article {8621, title = {Inherited causes of clonal haematopoiesis in 97,691 whole genomes.}, journal = {Nature}, volume = {586}, year = {2020}, month = {2020 10}, pages = {763-768}, abstract = {

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer and coronary heart disease-this phenomenon is~termed clonal haematopoiesis of indeterminate potential (CHIP). Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP~driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.

}, issn = {1476-4687}, doi = {10.1038/s41586-020-2819-2}, author = {Bick, Alexander G and Weinstock, Joshua S and Nandakumar, Satish K and Fulco, Charles P and Bao, Erik L and Zekavat, Seyedeh M and Szeto, Mindy D and Liao, Xiaotian and Leventhal, Matthew J and Nasser, Joseph and Chang, Kyle and Laurie, Cecelia and Burugula, Bala Bharathi and Gibson, Christopher J and Lin, Amy E and Taub, Margaret A and Aguet, Francois and Ardlie, Kristin and Mitchell, Braxton D and Barnes, Kathleen C and Moscati, Arden and Fornage, Myriam and Redline, Susan and Psaty, Bruce M and Silverman, Edwin K and Weiss, Scott T and Palmer, Nicholette D and Vasan, Ramachandran S and Burchard, Esteban G and Kardia, Sharon L R and He, Jiang and Kaplan, Robert C and Smith, Nicholas L and Arnett, Donna K and Schwartz, David A and Correa, Adolfo and de Andrade, Mariza and Guo, Xiuqing and Konkle, Barbara A and Custer, Brian and Peralta, Juan M and Gui, Hongsheng and Meyers, Deborah A and McGarvey, Stephen T and Chen, Ida Yii-Der and Shoemaker, M Benjamin and Peyser, Patricia A and Broome, Jai G and Gogarten, Stephanie M and Wang, Fei Fei and Wong, Quenna and Montasser, May E and Daya, Michelle and Kenny, Eimear E and North, Kari E and Launer, Lenore J and Cade, Brian E and Bis, Joshua C and Cho, Michael H and Lasky-Su, Jessica and Bowden, Donald W and Cupples, L Adrienne and Mak, Angel C Y and Becker, Lewis C and Smith, Jennifer A and Kelly, Tanika N and Aslibekyan, Stella and Heckbert, Susan R and Tiwari, Hemant K and Yang, Ivana V and Heit, John A and Lubitz, Steven A and Johnsen, Jill M and Curran, Joanne E and Wenzel, Sally E and Weeks, Daniel E and Rao, Dabeeru C and Darbar, Dawood and Moon, Jee-Young and Tracy, Russell P and Buth, Erin J and Rafaels, Nicholas and Loos, Ruth J F and Durda, Peter and Liu, Yongmei and Hou, Lifang and Lee, Jiwon and Kachroo, Priyadarshini and Freedman, Barry I and Levy, Daniel and Bielak, Lawrence F and Hixson, James E and Floyd, James S and Whitsel, Eric A and Ellinor, Patrick T and Irvin, Marguerite R and Fingerlin, Tasha E and Raffield, Laura M and Armasu, Sebastian M and Wheeler, Marsha M and Sabino, Ester C and Blangero, John and Williams, L Keoki and Levy, Bruce D and Sheu, Wayne Huey-Herng and Roden, Dan M and Boerwinkle, Eric and Manson, JoAnn E and Mathias, Rasika A and Desai, Pinkal and Taylor, Kent D and Johnson, Andrew D and Auer, Paul L and Kooperberg, Charles and Laurie, Cathy C and Blackwell, Thomas W and Smith, Albert V and Zhao, Hongyu and Lange, Ethan and Lange, Leslie and Rich, Stephen S and Rotter, Jerome I and Wilson, James G and Scheet, Paul and Kitzman, Jacob O and Lander, Eric S and Engreitz, Jesse M and Ebert, Benjamin L and Reiner, Alexander P and Jaiswal, Siddhartha and Abecasis, Goncalo and Sankaran, Vijay G and Kathiresan, Sekar and Natarajan, Pradeep} } @article {8368, title = {Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction.}, journal = {Nat Commun}, volume = {11}, year = {2020}, month = {2020 May 21}, pages = {2542}, abstract = {

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5\% to 62.6\%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.

}, issn = {2041-1723}, doi = {10.1038/s41467-020-15706-x}, author = {Ntalla, Ioanna and Weng, Lu-Chen and Cartwright, James H and Hall, Amelia Weber and Sveinbjornsson, Gardar and Tucker, Nathan R and Choi, Seung Hoan and Chaffin, Mark D and Roselli, Carolina and Barnes, Michael R and Mifsud, Borbala and Warren, Helen R and Hayward, Caroline and Marten, Jonathan and Cranley, James J and Concas, Maria Pina and Gasparini, Paolo and Boutin, Thibaud and Kolcic, Ivana and Polasek, Ozren and Rudan, Igor and Araujo, Nathalia M and Lima-Costa, Maria Fernanda and Ribeiro, Antonio Luiz P and Souza, Renan P and Tarazona-Santos, Eduardo and Giedraitis, Vilmantas and Ingelsson, Erik and Mahajan, Anubha and Morris, Andrew P and del Greco M, Fabiola and Foco, Luisa and G{\"o}gele, Martin and Hicks, Andrew A and Cook, James P and Lind, Lars and Lindgren, Cecilia M and Sundstr{\"o}m, Johan and Nelson, Christopher P and Riaz, Muhammad B and Samani, Nilesh J and Sinagra, Gianfranco and Ulivi, Sheila and K{\"a}h{\"o}nen, Mika and Mishra, Pashupati P and Mononen, Nina and Nikus, Kjell and Caulfield, Mark J and Dominiczak, Anna and Padmanabhan, Sandosh and Montasser, May E and O{\textquoteright}Connell, Jeff R and Ryan, Kathleen and Shuldiner, Alan R and Aeschbacher, Stefanie and Conen, David and Risch, Lorenz and Th{\'e}riault, S{\'e}bastien and Hutri-K{\"a}h{\"o}nen, Nina and Lehtim{\"a}ki, Terho and Lyytik{\"a}inen, Leo-Pekka and Raitakari, Olli T and Barnes, Catriona L K and Campbell, Harry and Joshi, Peter K and Wilson, James F and Isaacs, Aaron and Kors, Jan A and van Duijn, Cornelia M and Huang, Paul L and Gudnason, Vilmundur and Harris, Tamara B and Launer, Lenore J and Smith, Albert V and Bottinger, Erwin P and Loos, Ruth J F and Nadkarni, Girish N and Preuss, Michael H and Correa, Adolfo and Mei, Hao and Wilson, James and Meitinger, Thomas and M{\"u}ller-Nurasyid, Martina and Peters, Annette and Waldenberger, Melanie and Mangino, Massimo and Spector, Timothy D and Rienstra, Michiel and van de Vegte, Yordi J and van der Harst, Pim and Verweij, Niek and K{\"a}{\"a}b, Stefan and Schramm, Katharina and Sinner, Moritz F and Strauch, Konstantin and Cutler, Michael J and Fatkin, Diane and London, Barry and Olesen, Morten and Roden, Dan M and Benjamin Shoemaker, M and Gustav Smith, J and Biggs, Mary L and Bis, Joshua C and Brody, Jennifer A and Psaty, Bruce M and Rice, Kenneth and Sotoodehnia, Nona and De Grandi, Alessandro and Fuchsberger, Christian and Pattaro, Cristian and Pramstaller, Peter P and Ford, Ian and Wouter Jukema, J and Macfarlane, Peter W and Trompet, Stella and D{\"o}rr, Marcus and Felix, Stephan B and V{\"o}lker, Uwe and Weiss, Stefan and Havulinna, Aki S and Jula, Antti and S{\"a}{\"a}ksj{\"a}rvi, Katri and Salomaa, Veikko and Guo, Xiuqing and Heckbert, Susan R and Lin, Henry J and Rotter, Jerome I and Taylor, Kent D and Yao, Jie and de Mutsert, Ren{\'e}e and Maan, Arie C and Mook-Kanamori, Dennis O and Noordam, Raymond and Cucca, Francesco and Ding, Jun and Lakatta, Edward G and Qian, Yong and Tarasov, Kirill V and Levy, Daniel and Lin, Honghuang and Newton-Cheh, Christopher H and Lunetta, Kathryn L and Murray, Alison D and Porteous, David J and Smith, Blair H and Stricker, Bruno H and Uitterlinden, Andre and van den Berg, Marten E and Haessler, Jeffrey and Jackson, Rebecca D and Kooperberg, Charles and Peters, Ulrike and Reiner, Alexander P and Whitsel, Eric A and Alonso, Alvaro and Arking, Dan E and Boerwinkle, Eric and Ehret, Georg B and Soliman, Elsayed Z and Avery, Christy L and Gogarten, Stephanie M and Kerr, Kathleen F and Laurie, Cathy C and Seyerle, Amanda A and Stilp, Adrienne and Assa, Solmaz and Abdullah Said, M and Yldau van der Ende, M and Lambiase, Pier D and Orini, Michele and Ramirez, Julia and Van Duijvenboden, Stefan and Arnar, David O and Gudbjartsson, Daniel F and Holm, Hilma and Sulem, Patrick and Thorleifsson, Gudmar and Thorolfsdottir, Rosa B and Thorsteinsdottir, Unnur and Benjamin, Emelia J and Tinker, Andrew and Stefansson, Kari and Ellinor, Patrick T and Jamshidi, Yalda and Lubitz, Steven A and Munroe, Patricia B} } @article {8988, title = {Association of low-frequency and rare coding variants with information processing speed.}, journal = {Transl Psychiatry}, volume = {11}, year = {2021}, month = {2021 12 04}, pages = {613}, abstract = {

Measures of information processing speed vary between individuals and decline with age. Studies of aging twins suggest heritability may be as high as 67\%. The Illumina HumanExome Bead Chip genotyping array was used to examine the association of rare coding variants with performance on the Digit-Symbol Substitution Test (DSST) in community-dwelling adults participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. DSST scores were available for 30,576 individuals of European ancestry from nine cohorts and for 5758 individuals of African ancestry from four cohorts who were older than 45 years and free of dementia and clinical stroke. Linear regression models adjusted for age and gender were used for analysis of single genetic variants, and the T5, T1, and T01 burden tests that aggregate the number of rare alleles by gene were also applied. Secondary analyses included further adjustment for education. Meta-analyses to combine cohort-specific results were carried out separately for each ancestry group. Variants in RNF19A reached the threshold for statistical significance (p = 2.01 {\texttimes} 10) using the T01 test in individuals of European descent. RNF19A belongs to the class of E3 ubiquitin ligases that confer substrate specificity when proteins are ubiquitinated and targeted for degradation through the 26S proteasome. Variants in SLC22A7 and OR51A7 were suggestively associated with DSST scores after adjustment for education for African-American participants and in the European cohorts, respectively. Further functional characterization of its substrates will be required to confirm the role of RNF19A in cognitive function.

}, keywords = {Adult, Aging, Cognition, Genome-Wide Association Study, Geroscience, Humans, Polymorphism, Single Nucleotide, Ubiquitin-Protein Ligases}, issn = {2158-3188}, doi = {10.1038/s41398-021-01736-6}, author = {Bressler, Jan and Davies, Gail and Smith, Albert V and Saba, Yasaman and Bis, Joshua C and Jian, Xueqiu and Hayward, Caroline and Yanek, Lisa and Smith, Jennifer A and Mirza, Saira S and Wang, Ruiqi and Adams, Hieab H H and Becker, Diane and Boerwinkle, Eric and Campbell, Archie and Cox, Simon R and Eiriksdottir, Gudny and Fawns-Ritchie, Chloe and Gottesman, Rebecca F and Grove, Megan L and Guo, Xiuqing and Hofer, Edith and Kardia, Sharon L R and Knol, Maria J and Koini, Marisa and Lopez, Oscar L and Marioni, Riccardo E and Nyquist, Paul and Pattie, Alison and Polasek, Ozren and Porteous, David J and Rudan, Igor and Satizabal, Claudia L and Schmidt, Helena and Schmidt, Reinhold and Sidney, Stephen and Simino, Jeannette and Smith, Blair H and Turner, Stephen T and van der Lee, Sven J and Ware, Erin B and Whitmer, Rachel A and Yaffe, Kristine and Yang, Qiong and Zhao, Wei and Gudnason, Vilmundur and Launer, Lenore J and Fitzpatrick, Annette L and Psaty, Bruce M and Fornage, Myriam and Arfan Ikram, M and van Duijn, Cornelia M and Seshadri, Sudha and Mosley, Thomas H and Deary, Ian J} } @article {8997, title = {Association of mitochondrial DNA copy number with cardiometabolic diseases.}, journal = {Cell Genom}, volume = {1}, year = {2021}, month = {2021 Oct 13}, abstract = {

Mitochondrial DNA (mtDNA) is present in multiple copies in human cells. We evaluated cross-sectional associations of whole blood mtDNA copy number (CN) with several cardiometabolic disease traits in 408,361 participants of multiple ancestries in TOPMed and UK Biobank. Age showed a threshold association with mtDNA CN: among younger participants (<65 years of age), each additional 10 years of age was associated with 0.03 standard deviation (s.d.) higher level of mtDNA CN ( = 0.0014) versus a 0.14 s.d. lower level of mtDNA CN ( = 1.82 {\texttimes} 10) among older participants (>=65 years). At lower mtDNA CN levels, we found age-independent associations with increased odds of obesity ( = 5.6 {\texttimes} 10), hypertension ( = 2.8 {\texttimes} 10), diabetes ( = 3.6 {\texttimes} 10), and hyperlipidemia ( = 6.3 {\texttimes} 10). The observed decline in mtDNA CN after 65 years of age may be a key to understanding age-related diseases.

}, issn = {2666-979X}, doi = {10.1016/j.xgen.2021.100006}, author = {Liu, Xue and Longchamps, Ryan J and Wiggins, Kerri L and Raffield, Laura M and Bielak, Lawrence F and Zhao, Wei and Pitsillides, Achilleas and Blackwell, Thomas W and Yao, Jie and Guo, Xiuqing and Kurniansyah, Nuzulul and Thyagarajan, Bharat and Pankratz, Nathan and Rich, Stephen S and Taylor, Kent D and Peyser, Patricia A and Heckbert, Susan R and Seshadri, Sudha and Cupples, L Adrienne and Boerwinkle, Eric and Grove, Megan L and Larson, Nicholas B and Smith, Jennifer A and Vasan, Ramachandran S and Sofer, Tamar and Fitzpatrick, Annette L and Fornage, Myriam and Ding, Jun and Correa, Adolfo and Abecasis, Goncalo and Psaty, Bruce M and Wilson, James G and Levy, Daniel and Rotter, Jerome I and Bis, Joshua C and Satizabal, Claudia L and Arking, Dan E and Liu, Chunyu} } @article {8711, title = {Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices.}, journal = {Nat Commun}, volume = {12}, year = {2021}, month = {2021 04 12}, pages = {2182}, abstract = {

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 {\texttimes} 10), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 {\texttimes} 10), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 {\texttimes} 10). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.

}, issn = {2041-1723}, doi = {10.1038/s41467-021-22339-1}, author = {Natarajan, Pradeep and Pampana, Akhil and Graham, Sarah E and Ruotsalainen, Sanni E and Perry, James A and de Vries, Paul S and Broome, Jai G and Pirruccello, James P and Honigberg, Michael C and Aragam, Krishna and Wolford, Brooke and Brody, Jennifer A and Antonacci-Fulton, Lucinda and Arden, Moscati and Aslibekyan, Stella and Assimes, Themistocles L and Ballantyne, Christie M and Bielak, Lawrence F and Bis, Joshua C and Cade, Brian E and Do, Ron and Doddapaneni, Harsha and Emery, Leslie S and Hung, Yi-Jen and Irvin, Marguerite R and Khan, Alyna T and Lange, Leslie and Lee, Jiwon and Lemaitre, Rozenn N and Martin, Lisa W and Metcalf, Ginger and Montasser, May E and Moon, Jee-Young and Muzny, Donna and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Peralta, Juan M and Peyser, Patricia A and Stilp, Adrienne M and Tsai, Michael and Wang, Fei Fei and Weeks, Daniel E and Yanek, Lisa R and Wilson, James G and Abecasis, Goncalo and Arnett, Donna K and Becker, Lewis C and Blangero, John and Boerwinkle, Eric and Bowden, Donald W and Chang, Yi-Cheng and Chen, Yii-der I and Choi, Won Jung and Correa, Adolfo and Curran, Joanne E and Daly, Mark J and Dutcher, Susan K and Ellinor, Patrick T and Fornage, Myriam and Freedman, Barry I and Gabriel, Stacey and Germer, Soren and Gibbs, Richard A and He, Jiang and Hveem, Kristian and Jarvik, Gail P and Kaplan, Robert C and Kardia, Sharon L R and Kenny, Eimear and Kim, Ryan W and Kooperberg, Charles and Laurie, Cathy C and Lee, Seonwook and Lloyd-Jones, Don M and Loos, Ruth J F and Lubitz, Steven A and Mathias, Rasika A and Martinez, Karine A Viaud and McGarvey, Stephen T and Mitchell, Braxton D and Nickerson, Deborah A and North, Kari E and Palotie, Aarno and Park, Cheol Joo and Psaty, Bruce M and Rao, D C and Redline, Susan and Reiner, Alexander P and Seo, Daekwan and Seo, Jeong-Sun and Smith, Albert V and Tracy, Russell P and Vasan, Ramachandran S and Kathiresan, Sekar and Cupples, L Adrienne and Rotter, Jerome I and Morrison, Alanna C and Rich, Stephen S and Ripatti, Samuli and Willer, Cristen and Peloso, Gina M} } @article {8789, title = {Meta-analysis of epigenome-wide association studies of carotid intima-media thickness.}, journal = {Eur J Epidemiol}, year = {2021}, month = {2021 Jun 06}, abstract = {

Common carotid intima-media thickness (cIMT) is an index of subclinical atherosclerosis that is associated with ischemic stroke and coronary artery disease (CAD). We undertook a cross-sectional epigenome-wide association study (EWAS) of measures of cIMT in 6400 individuals. Mendelian randomization analysis was applied to investigate the potential causal role of DNA methylation in the link between atherosclerotic cardiovascular risk factors and cIMT or clinical cardiovascular disease. The CpG site cg05575921 was associated with cIMT (beta = -0.0264, p value = 3.5 {\texttimes} 10) in the discovery panel and was replicated in replication panel (beta = -0.07, p value = 0.005). This CpG is located at chr5:81649347 in the intron 3 of the aryl hydrocarbon receptor repressor gene (AHRR). Our results indicate that DNA methylation at cg05575921 might be in the pathway between smoking, cIMT and stroke. Moreover, in a region-based analysis, 34 differentially methylated regions (DMRs) were identified of which a DMR upstream of ALOX12 showed the strongest association with cIMT (p value = 1.4 {\texttimes} 10). In conclusion, our study suggests that DNA methylation may play a role in the link between cardiovascular risk factors, cIMT and clinical cardiovascular disease.

}, issn = {1573-7284}, doi = {10.1007/s10654-021-00759-z}, author = {Portilla-Fern{\'a}ndez, Eliana and Hwang, Shih-Jen and Wilson, Rory and Maddock, Jane and Hill, W David and Teumer, Alexander and Mishra, Pashupati P and Brody, Jennifer A and Joehanes, Roby and Ligthart, Symen and Ghanbari, Mohsen and Kavousi, Maryam and Roks, Anton J M and Danser, A H Jan and Levy, Daniel and Peters, Annette and Ghasemi, Sahar and Schminke, Ulf and D{\"o}rr, Marcus and Grabe, Hans J and Lehtim{\"a}ki, Terho and K{\"a}h{\"o}nen, Mika and Hurme, Mikko A and Bartz, Traci M and Sotoodehnia, Nona and Bis, Joshua C and Thiery, Joachim and Koenig, Wolfgang and Ong, Ken K and Bell, Jordana T and Meisinger, Christine and Wardlaw, Joanna M and Starr, John M and Seissler, Jochen and Then, Cornelia and Rathmann, Wolfgang and Ikram, M Arfan and Psaty, Bruce M and Raitakari, Olli T and V{\"o}lzke, Henry and Deary, Ian J and Wong, Andrew and Waldenberger, Melanie and O{\textquoteright}Donnell, Christopher J and Dehghan, Abbas} } @article {8714, title = {Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure.}, journal = {Mol Psychiatry}, year = {2021}, month = {2021 Apr 15}, abstract = {

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 P < 5 {\texttimes} 10), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (P < 5 {\texttimes} 10). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (P = 2 {\texttimes} 10). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (P < 10). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.

}, issn = {1476-5578}, doi = {10.1038/s41380-021-01087-0}, author = {Wang, Heming and Noordam, Raymond and Cade, Brian E and Schwander, Karen and Winkler, Thomas W and Lee, Jiwon and Sung, Yun Ju and Bentley, Amy R and Manning, Alisa K and Aschard, Hugues and Kilpel{\"a}inen, Tuomas O and Ilkov, Marjan and Brown, Michael R and Horimoto, Andrea R and Richard, Melissa and Bartz, Traci M and Vojinovic, Dina and Lim, Elise and Nierenberg, Jovia L and Liu, Yongmei and Chitrala, Kumaraswamynaidu and Rankinen, Tuomo and Musani, Solomon K and Franceschini, Nora and Rauramaa, Rainer and Alver, Maris and Zee, Phyllis C and Harris, Sarah E and van der Most, Peter J and Nolte, Ilja M and Munroe, Patricia B and Palmer, Nicholette D and Kuhnel, Brigitte and Weiss, Stefan and Wen, Wanqing and Hall, Kelly A and Lyytik{\"a}inen, Leo-Pekka and O{\textquoteright}Connell, Jeff and Eiriksdottir, Gudny and Launer, Lenore J and de Vries, Paul S and Arking, Dan E and Chen, Han and Boerwinkle, Eric and Krieger, Jose E and Schreiner, Pamela J and Sidney, Stephen and Shikany, James M and Rice, Kenneth and Chen, Yii-Der Ida and Gharib, Sina A and Bis, Joshua C and Luik, Annemarie I and Ikram, M Arfan and Uitterlinden, Andr{\'e} G and Amin, Najaf and Xu, Hanfei and Levy, Daniel and He, Jiang and Lohman, Kurt K and Zonderman, Alan B and Rice, Treva K and Sims, Mario and Wilson, Gregory and Sofer, Tamar and Rich, Stephen S and Palmas, Walter and Yao, Jie and Guo, Xiuqing and Rotter, Jerome I and Biermasz, Nienke R and Mook-Kanamori, Dennis O and Martin, Lisa W and Barac, Ana and Wallace, Robert B and Gottlieb, Daniel J and Komulainen, Pirjo and Heikkinen, Sami and M{\"a}gi, Reedik and Milani, Lili and Metspalu, Andres and Starr, John M and Milaneschi, Yuri and Waken, R J and Gao, Chuan and Waldenberger, Melanie and Peters, Annette and Strauch, Konstantin and Meitinger, Thomas and Roenneberg, Till and V{\"o}lker, Uwe and D{\"o}rr, Marcus and Shu, Xiao-Ou and Mukherjee, Sutapa and Hillman, David R and K{\"a}h{\"o}nen, Mika and Wagenknecht, Lynne E and Gieger, Christian and Grabe, Hans J and Zheng, Wei and Palmer, Lyle J and Lehtim{\"a}ki, Terho and Gudnason, Vilmundur and Morrison, Alanna C and Pereira, Alexandre C and Fornage, Myriam and Psaty, Bruce M and van Duijn, Cornelia M and Liu, Ching-Ti and Kelly, Tanika N and Evans, Michele K and Bouchard, Claude and Fox, Ervin R and Kooperberg, Charles and Zhu, Xiaofeng and Lakka, Timo A and Esko, T{\~o}nu and North, Kari E and Deary, Ian J and Snieder, Harold and Penninx, Brenda W J H and Gauderman, W James and Rao, Dabeeru C and Redline, Susan and van Heemst, Diana} } @article {8832, title = {Multiethnic Genome-Wide Association Study of Subclinical Atherosclerosis in Individuals With Type 2 Diabetes.}, journal = {Circ Genom Precis Med}, volume = {14}, year = {2021}, month = {2021 Aug}, pages = {e003258}, abstract = {

BACKGROUND: Coronary artery calcification (CAC) and carotid artery intima-media thickness (cIMT) are measures of subclinical atherosclerosis in asymptomatic individuals and strong risk factors for cardiovascular disease. Type 2 diabetes (T2D) is an independent cardiovascular disease risk factor that accelerates atherosclerosis.

METHODS: We performed meta-analyses of genome-wide association studies in up to 2500 T2D individuals of European ancestry (EA) and 1590 T2D individuals of African ancestry with or without exclusion of prevalent cardiovascular disease, for CAC measured by cardiac computed tomography, and 3608 individuals of EA and 838 individuals of African ancestry with T2D for cIMT measured by ultrasonography within the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium.

RESULTS: We replicated 2 loci (rs9369640 and rs9349379 near and rs10757278 near ) for CAC and one locus for cIMT (rs7412 and rs445925 near ) that were previously reported in the general EA populations. We identified one novel CAC locus (rs8000449 near at 13q13.3) at =2.0{\texttimes}10 in EA. No additional loci were identified with the meta-analyses of EA and African ancestry. The expression quantitative trait loci analysis with nearby expressed genes derived from arterial wall and metabolic tissues from the Genotype-Tissue Expression project pinpoints , encoding a matricellular protein involved in bone formation and bone matrix organization, as the potential candidate gene at this locus. In addition, we found significant associations (<3.1{\texttimes}10) for 3 previously reported coronary artery disease loci for these subclinical atherosclerotic phenotypes (rs2891168 near and rs11170820 near for CAC, and rs7412 near for cIMT).

CONCLUSIONS: Our results provide potential biological mechanisms that could link CAC and cIMT to increased cardiovascular disease risk in individuals with T2D.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.120.003258}, author = {Lu, Yingchang and Dimitrov, Latchezar and Chen, Shyh-Huei and Bielak, Lawrence F and Bis, Joshua C and Feitosa, Mary F and Lu, Lingyi and Kavousi, Maryam and Raffield, Laura M and Smith, Albert V and Wang, Lihua and Weiss, Stefan and Yao, Jie and Zhu, Jiaxi and Gudmundsson, Elias F and Gudmundsdottir, Valborg and Bos, Daniel and Ghanbari, Mohsen and Ikram, M Arfan and Hwang, Shih-Jen and Taylor, Kent D and Budoff, Matthew J and Gislason, Gauti K and O{\textquoteright}Donnell, Christopher J and An, Ping and Franceschini, Nora and Freedman, Barry I and Fu, Yi-Ping and Guo, Xiuqing and Heiss, Gerardo and Kardia, Sharon L R and Wilson, James G and Langefeld, Carl D and Schminke, Ulf and Uitterlinden, Andr{\'e} G and Lange, Leslie A and Peyser, Patricia A and Gudnason, Vilmundur G and Psaty, Bruce M and Rotter, Jerome I and Bowden, Donald W and Ng, Maggie C Y} } @article {8713, title = {A System for Phenotype Harmonization in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program.}, journal = {Am J Epidemiol}, year = {2021}, month = {2021 Apr 16}, abstract = {

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data sharing mechanisms. This system was developed for the National Heart, Lung and Blood Institute{\textquoteright}s Trans-Omics for Precision Medicine program, which is generating genomic and other omics data for >80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants from up to 17 studies per phenotype (participants recruited 1948-2012). We discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled-access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include (1) the code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify or extend these harmonizations to additional studies; and (2) results of labeling thousands of phenotype variables with controlled vocabulary terms.

}, issn = {1476-6256}, doi = {10.1093/aje/kwab115}, author = {Stilp, Adrienne M and Emery, Leslie S and Broome, Jai G and Buth, Erin J and Khan, Alyna T and Laurie, Cecelia A and Wang, Fei Fei and Wong, Quenna and Chen, Dongquan and D{\textquoteright}Augustine, Catherine M and Heard-Costa, Nancy L and Hohensee, Chancellor R and Johnson, William Craig and Juarez, Lucia D and Liu, Jingmin and Mutalik, Karen M and Raffield, Laura M and Wiggins, Kerri L and de Vries, Paul S and Kelly, Tanika N and Kooperberg, Charles and Natarajan, Pradeep and Peloso, Gina M and Peyser, Patricia A and Reiner, Alex P and Arnett, Donna K and Aslibekyan, Stella and Barnes, Kathleen C and Bielak, Lawrence F and Bis, Joshua C and Cade, Brian E and Chen, Ming-Huei and Correa, Adolfo and Cupples, L Adrienne and de Andrade, Mariza and Ellinor, Patrick T and Fornage, Myriam and Franceschini, Nora and Gan, Weiniu and Ganesh, Santhi K and Graffelman, Jan and Grove, Megan L and Guo, Xiuqing and Hawley, Nicola L and Hsu, Wan-Ling and Jackson, Rebecca D and Jaquish, Cashell E and Johnson, Andrew D and Kardia, Sharon L R and Kelly, Shannon and Lee, Jiwon and Mathias, Rasika A and McGarvey, Stephen T and Mitchell, Braxton D and Montasser, May E and Morrison, Alanna C and North, Kari E and Nouraie, Seyed Mehdi and Oelsner, Elizabeth C and Pankratz, Nathan and Rich, Stephen S and Rotter, Jerome I and Smith, Jennifer A and Taylor, Kent D and Vasan, Ramachandran S and Weeks, Daniel E and Weiss, Scott T and Wilson, Carla G and Yanek, Lisa R and Psaty, Bruce M and Heckbert, Susan R and Laurie, Cathy C} } @article {8990, title = {Association of Serum Neurofilament Light Chain Concentration and MRI Findings in Older Adults: The Cardiovascular Health Study.}, journal = {Neurology}, volume = {98}, year = {2022}, month = {2022 Mar 01}, pages = {e903-e911}, abstract = {

BACKGROUND AND OBJECTIVES: Neurofilament light chain (NfL) in blood is a sensitive but nonspecific marker of brain injury. This study sought to evaluate associations between NfL concentration and MRI findings of vascular brain injury in older adults.

METHODS: A longitudinal cohort study included 2 cranial MRI scans performed about 5 years apart and assessed for white matter hyperintensities (WMH) and infarcts. About 1 year before their second MRI, 1,362 participants (median age 77 years, 61.4\% women) without a history of TIA or stroke had measurement of 4 biomarkers: NfL, total tau, glial fibrillary acidic protein (GFAP), and ubiquitin carboxyl-terminal hydrolase L1. Most (n = 1,279) also had the first MRI scan, and some (n = 633) had quantitative measurements of hippocampal and WMH. In primary analyses, we assessed associations of NfL with a 10-point white matter grade (WMG) and prevalent infarcts on second MRI and with worsening WMG and incident infarct comparing the 2 scans. A value <0.0125 (0.05/4) was considered significant for these analyses. We also assessed associations with hippocampal and WMH volume.

RESULTS: In fully adjusted models, log(NfL) concentration was associated with WMG (β = 0.27; = 2.3 {\texttimes} 10) and worsening WMG (relative risk [RR] 1.24; = 0.0022), but less strongly with prevalent brain infarcts (RR 1.18; = 0.013) and not with incident brain infarcts (RR 1.18; = 0.18). Associations were also present with WMH volume (β = 2,242.9, = 0.0036). For the other 3 biomarkers, the associations for log (GFAP) concentration with WMG and worsening WMG were significant.

DISCUSSION: Among older adults without a history of stroke, higher serum NfL concentration was associated with covert MRI findings of vascular brain injury, especially the burden of WMH and its worsening. Whether these results offer opportunities for the use of NfL as a noninvasive biomarker of WMH or to control vascular risk factors remains to be determined.

}, issn = {1526-632X}, doi = {10.1212/WNL.0000000000013229}, author = {Fohner, Alison E and Bartz, Traci M and Tracy, Russell P and Adams, Hieab H H and Bis, Joshua C and Djouss{\'e}, Luc and Satizabal, Claudia L and Lopez, Oscar L and Seshadri, Sudha and Mukamal, Kenneth J and Kuller, Lewis H and Psaty, Bruce M and Longstreth, W T} } @article {8986, title = {Clonal Hematopoiesis Is Associated With Higher Risk of Stroke.}, journal = {Stroke}, volume = {53}, year = {2022}, month = {2022 Mar}, pages = {788-797}, abstract = {

BACKGROUND AND PURPOSE: Clonal hematopoiesis of indeterminate potential (CHIP) is a novel age-related risk factor for cardiovascular disease-related morbidity and mortality. The association of CHIP with risk of incident ischemic stroke was reported previously in an exploratory analysis including a small number of incident stroke cases without replication and lack of stroke subphenotyping. The purpose of this study was to discover whether CHIP is a risk factor for ischemic or hemorrhagic stroke.

METHODS: We utilized plasma genome sequence data of blood DNA to identify CHIP in 78 752 individuals from 8 prospective cohorts and biobanks. We then assessed the association of CHIP and commonly mutated individual CHIP driver genes (, , and ) with any stroke, ischemic stroke, and hemorrhagic stroke.

RESULTS: CHIP was associated with an increased risk of total stroke (hazard ratio, 1.14 [95\% CI, 1.03-1.27]; =0.01) after adjustment for age, sex, and race. We observed associations with CHIP with risk of hemorrhagic stroke (hazard ratio, 1.24 [95\% CI, 1.01-1.51]; =0.04) and with small vessel ischemic stroke subtypes. In gene-specific association results, showed the strongest association with total stroke and ischemic stroke, whereas and were each associated with increased risk of hemorrhagic stroke.

CONCLUSIONS: CHIP is associated with an increased risk of stroke, particularly with hemorrhagic and small vessel ischemic stroke. Future studies clarifying the relationship between CHIP and subtypes of stroke are needed.

}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.121.037388}, author = {Bhattacharya, Romit and Zekavat, Seyedeh M and Haessler, Jeffrey and Fornage, Myriam and Raffield, Laura and Uddin, Md Mesbah and Bick, Alexander G and Niroula, Abhishek and Yu, Bing and Gibson, Christopher and Griffin, Gabriel and Morrison, Alanna C and Psaty, Bruce M and Longstreth, William T and Bis, Joshua C and Rich, Stephen S and Rotter, Jerome I and Tracy, Russell P and Correa, Adolfo and Seshadri, Sudha and Johnson, Andrew and Collins, Jason M and Hayden, Kathleen M and Madsen, Tracy E and Ballantyne, Christie M and Jaiswal, Siddhartha and Ebert, Benjamin L and Kooperberg, Charles and Manson, JoAnn E and Whitsel, Eric A and Natarajan, Pradeep and Reiner, Alexander P} } @article {9184, title = {Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI.}, journal = {Brain}, year = {2022}, month = {2022 Aug 09}, abstract = {

Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at approximately 450,000 CpG sites in 9,732 middle-aged to older adults from 14 community-based studies. Single-CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single-CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 {\texttimes} 10-8), was associated with F2 expression in blood (P = 6.4 {\texttimes} 10-5), and colocalized with FOLH1 expression in brain (posterior probability =0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single-CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis, and multi-omics colocalization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug repositioning analysis indicated antihyperlipidemic agents, more specifically peroxisome proliferator-activated receptor alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood brain barrier disruption.

}, issn = {1460-2156}, doi = {10.1093/brain/awac290}, author = {Yang, Yunju and Knol, Maria J and Wang, Ruiqi and Mishra, Aniket and Liu, Dan and Luciano, Michelle and Teumer, Alexander and Armstrong, Nicola and Bis, Joshua C and Jhun, Min A and Li, Shuo and Adams, Hieab H H and Aziz, Nasir Ahmad and Bastin, Mark E and Bourgey, Mathieu and Brody, Jennifer A and Frenzel, Stefan and Gottesman, Rebecca F and Hosten, Norbert and Hou, Lifang and Kardia, Sharon L R and Lohner, Valerie and Marquis, Pascale and Maniega, Susana Mu{\~n}oz and Satizabal, Claudia L and Sorond, Farzaneh A and Vald{\'e}s Hern{\'a}ndez, Maria C and van Duijn, Cornelia M and Vernooij, Meike W and Wittfeld, Katharina and Yang, Qiong and Zhao, Wei and Boerwinkle, Eric and Levy, Daniel and Deary, Ian J and Jiang, Jiyang and Mather, Karen A and Mosley, Thomas H and Psaty, Bruce M and Sachdev, Perminder S and Smith, Jennifer A and Sotoodehnia, Nona and DeCarli, Charles S and Breteler, Monique M B and Arfan Ikram, M and Grabe, Hans J and Wardlaw, Joanna and Longstreth, W T and Launer, Lenore J and Seshadri, Sudha and Debette, Stephanie and Fornage, Myriam} } @article {9253, title = {A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies.}, journal = {Nat Methods}, volume = {19}, year = {2022}, month = {2022 Dec}, pages = {1599-1611}, abstract = {

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.

}, keywords = {Genetic Variation, Genome, Genome-Wide Association Study, Humans, Phenotype, Whole Genome Sequencing}, issn = {1548-7105}, doi = {10.1038/s41592-022-01640-x}, author = {Li, Zilin and Li, Xihao and Zhou, Hufeng and Gaynor, Sheila M and Selvaraj, Margaret Sunitha and Arapoglou, Theodore and Quick, Corbin and Liu, Yaowu and Chen, Han and Sun, Ryan and Dey, Rounak and Arnett, Donna K and Auer, Paul L and Bielak, Lawrence F and Bis, Joshua C and Blackwell, Thomas W and Blangero, John and Boerwinkle, Eric and Bowden, Donald W and Brody, Jennifer A and Cade, Brian E and Conomos, Matthew P and Correa, Adolfo and Cupples, L Adrienne and Curran, Joanne E and de Vries, Paul S and Duggirala, Ravindranath and Franceschini, Nora and Freedman, Barry I and G{\"o}ring, Harald H H and Guo, Xiuqing and Kalyani, Rita R and Kooperberg, Charles and Kral, Brian G and Lange, Leslie A and Lin, Bridget M and Manichaikul, Ani and Manning, Alisa K and Martin, Lisa W and Mathias, Rasika A and Meigs, James B and Mitchell, Braxton D and Montasser, May E and Morrison, Alanna C and Naseri, Take and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Peyser, Patricia A and Psaty, Bruce M and Raffield, Laura M and Redline, Susan and Reiner, Alexander P and Reupena, Muagututi{\textquoteright}a Sefuiva and Rice, Kenneth M and Rich, Stephen S and Smith, Jennifer A and Taylor, Kent D and Taub, Margaret A and Vasan, Ramachandran S and Weeks, Daniel E and Wilson, James G and Yanek, Lisa R and Zhao, Wei and Rotter, Jerome I and Willer, Cristen J and Natarajan, Pradeep and Peloso, Gina M and Lin, Xihong} } @article {9169, title = {Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning.}, journal = {Mol Psychiatry}, year = {2022}, month = {2022 Aug 16}, abstract = {

Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.

}, issn = {1476-5578}, doi = {10.1038/s41380-022-01710-8}, author = {Lahti, Jari and Tuominen, Samuli and Yang, Qiong and Pergola, Giulio and Ahmad, Shahzad and Amin, Najaf and Armstrong, Nicola J and Beiser, Alexa and Bey, Katharina and Bis, Joshua C and Boerwinkle, Eric and Bressler, Jan and Campbell, Archie and Campbell, Harry and Chen, Qiang and Corley, Janie and Cox, Simon R and Davies, Gail and De Jager, Philip L and Derks, Eske M and Faul, Jessica D and Fitzpatrick, Annette L and Fohner, Alison E and Ford, Ian and Fornage, Myriam and Gerring, Zachary and Grabe, Hans J and Grodstein, Francine and Gudnason, Vilmundur and Simonsick, Eleanor and Holliday, Elizabeth G and Joshi, Peter K and Kajantie, Eero and Kaprio, Jaakko and Karell, Pauliina and Kleineidam, Luca and Knol, Maria J and Kochan, Nicole A and Kwok, John B and Leber, Markus and Lam, Max and Lee, Teresa and Li, Shuo and Loukola, Anu and Luck, Tobias and Marioni, Riccardo E and Mather, Karen A and Medland, Sarah and Mirza, Saira S and Nalls, Mike A and Nho, Kwangsik and O{\textquoteright}Donnell, Adrienne and Oldmeadow, Christopher and Painter, Jodie and Pattie, Alison and Reppermund, Simone and Risacher, Shannon L and Rose, Richard J and Sadashivaiah, Vijay and Scholz, Markus and Satizabal, Claudia L and Schofield, Peter W and Schraut, Katharina E and Scott, Rodney J and Simino, Jeannette and Smith, Albert V and Smith, Jennifer A and Stott, David J and Surakka, Ida and Teumer, Alexander and Thalamuthu, Anbupalam and Trompet, Stella and Turner, Stephen T and van der Lee, Sven J and Villringer, Arno and V{\"o}lker, Uwe and Wilson, Robert S and Wittfeld, Katharina and Vuoksimaa, Eero and Xia, Rui and Yaffe, Kristine and Yu, Lei and Zare, Habil and Zhao, Wei and Ames, David and Attia, John and Bennett, David A and Brodaty, Henry and Chasman, Daniel I and Goldman, Aaron L and Hayward, Caroline and Ikram, M Arfan and Jukema, J Wouter and Kardia, Sharon L R and Lencz, Todd and Loeffler, Markus and Mattay, Venkata S and Palotie, Aarno and Psaty, Bruce M and Ramirez, Alfredo and Ridker, Paul M and Riedel-Heller, Steffi G and Sachdev, Perminder S and Saykin, Andrew J and Scherer, Martin and Schofield, Peter R and Sidney, Stephen and Starr, John M and Trollor, Julian and Ulrich, William and Wagner, Michael and Weir, David R and Wilson, James F and Wright, Margaret J and Weinberger, Daniel R and Debette, Stephanie and Eriksson, Johan G and Mosley, Thomas H and Launer, Lenore J and van Duijn, Cornelia M and Deary, Ian J and Seshadri, Sudha and R{\"a}ikk{\"o}nen, Katri} } @article {9176, title = {Large-scale genome-wide association study of coronary artery disease in genetically diverse populations.}, journal = {Nat Med}, volume = {28}, year = {2022}, month = {2022 08}, pages = {1679-1692}, abstract = {

We report a genome-wide association study (GWAS) of coronary artery disease (CAD) incorporating nearly a quarter of a million cases, in which existing studies are integrated with data from cohorts of white, Black and Hispanic individuals from the Million Veteran Program. We document near equivalent heritability of CAD across multiple ancestral groups, identify 95 novel loci, including nine on the X chromosome, detect eight loci of genome-wide significance in Black and Hispanic individuals, and demonstrate that two common haplotypes at the 9p21 locus are responsible for risk stratification in all populations except those of African origin, in which these haplotypes are virtually absent. Moreover, in the largest GWAS for angiographically derived coronary atherosclerosis performed to date, we find 15 loci of genome-wide significance that robustly overlap with established loci for clinical CAD. Phenome-wide association analyses of novel loci and polygenic risk scores (PRSs) augment signals related to insulin resistance, extend pleiotropic associations of these loci to include smoking and family history, and precisely document the markedly reduced transferability of existing PRSs to Black individuals. Downstream integrative analyses reinforce the critical roles of vascular endothelial, fibroblast, and smooth muscle cells in CAD susceptibility, but also point to a shared biology between atherosclerosis and oncogenesis. This study highlights the value of diverse populations in further characterizing the genetic architecture of CAD.

}, keywords = {Coronary Artery Disease, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1546-170X}, doi = {10.1038/s41591-022-01891-3}, author = {Tcheandjieu, Catherine and Zhu, Xiang and Hilliard, Austin T and Clarke, Shoa L and Napolioni, Valerio and Ma, Shining and Lee, Kyung Min and Fang, Huaying and Chen, Fei and Lu, Yingchang and Tsao, Noah L and Raghavan, Sridharan and Koyama, Satoshi and Gorman, Bryan R and Vujkovic, Marijana and Klarin, Derek and Levin, Michael G and Sinnott-Armstrong, Nasa and Wojcik, Genevieve L and Plomondon, Mary E and Maddox, Thomas M and Waldo, Stephen W and Bick, Alexander G and Pyarajan, Saiju and Huang, Jie and Song, Rebecca and Ho, Yuk-Lam and Buyske, Steven and Kooperberg, Charles and Haessler, Jeffrey and Loos, Ruth J F and Do, Ron and Verbanck, Marie and Chaudhary, Kumardeep and North, Kari E and Avery, Christy L and Graff, Mariaelisa and Haiman, Christopher A and Le Marchand, Lo{\"\i}c and Wilkens, Lynne R and Bis, Joshua C and Leonard, Hampton and Shen, Botong and Lange, Leslie A and Giri, Ayush and Dikilitas, Ozan and Kullo, Iftikhar J and Stanaway, Ian B and Jarvik, Gail P and Gordon, Adam S and Hebbring, Scott and Namjou, Bahram and Kaufman, Kenneth M and Ito, Kaoru and Ishigaki, Kazuyoshi and Kamatani, Yoichiro and Verma, Shefali S and Ritchie, Marylyn D and Kember, Rachel L and Baras, Aris and Lotta, Luca A and Kathiresan, Sekar and Hauser, Elizabeth R and Miller, Donald R and Lee, Jennifer S and Saleheen, Danish and Reaven, Peter D and Cho, Kelly and Gaziano, J Michael and Natarajan, Pradeep and Huffman, Jennifer E and Voight, Benjamin F and Rader, Daniel J and Chang, Kyong-Mi and Lynch, Julie A and Damrauer, Scott M and Wilson, Peter W F and Tang, Hua and Sun, Yan V and Tsao, Philip S and O{\textquoteright}Donnell, Christopher J and Assimes, Themistocles L} } @article {9100, title = {A multi-ethnic polygenic risk score is associated with hypertension prevalence and progression throughout adulthood.}, journal = {Nat Commun}, volume = {13}, year = {2022}, month = {2022 Jun 21}, pages = {3549}, abstract = {

In a multi-stage analysis of 52,436 individuals aged 17-90 across diverse cohorts and biobanks, we train, test, and evaluate a polygenic risk score (PRS) for hypertension risk and progression. The PRS is trained using genome-wide association studies (GWAS) for systolic, diastolic blood pressure, and hypertension, respectively. For each trait, PRS is selected by optimizing the coefficient of variation (CV) across estimated effect sizes from multiple potential PRS using the same GWAS, after which the 3 trait-specific PRSs are combined via an unweighted sum called "PRSsum", forming the HTN-PRS. The HTN-PRS is associated with both prevalent and incident hypertension at 4-6 years of follow up. This association is further confirmed in age-stratified analysis. In an independent biobank of 40,201 individuals, the HTN-PRS is confirmed to be predictive of increased risk for coronary artery disease, ischemic stroke, type 2 diabetes, and chronic kidney disease.

}, keywords = {Adult, Diabetes Mellitus, Type 2, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hypertension, Multifactorial Inheritance, Prevalence, Risk Factors}, issn = {2041-1723}, doi = {10.1038/s41467-022-31080-2}, author = {Kurniansyah, Nuzulul and Goodman, Matthew O and Kelly, Tanika N and Elfassy, Tali and Wiggins, Kerri L and Bis, Joshua C and Guo, Xiuqing and Palmas, Walter and Taylor, Kent D and Lin, Henry J and Haessler, Jeffrey and Gao, Yan and Shimbo, Daichi and Smith, Jennifer A and Yu, Bing and Feofanova, Elena V and Smit, Roelof A J and Wang, Zhe and Hwang, Shih-Jen and Liu, Simin and Wassertheil-Smoller, Sylvia and Manson, JoAnn E and Lloyd-Jones, Donald M and Rich, Stephen S and Loos, Ruth J F and Redline, Susan and Correa, Adolfo and Kooperberg, Charles and Fornage, Myriam and Kaplan, Robert C and Psaty, Bruce M and Rotter, Jerome I and Arnett, Donna K and Morrison, Alanna C and Franceschini, Nora and Levy, Daniel and Sofer, Tamar} } @article {9035, title = {New insights into the genetic etiology of Alzheimer{\textquoteright}s disease and related dementias.}, journal = {Nat Genet}, volume = {54}, year = {2022}, month = {2022 Apr}, pages = {412-436}, abstract = {

Characterization of the genetic landscape of Alzheimer{\textquoteright}s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/{\textquoteright}proxy{\textquoteright} AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.

}, keywords = {Alzheimer Disease, Cognitive Dysfunction, Genome-Wide Association Study, Humans, tau Proteins}, issn = {1546-1718}, doi = {10.1038/s41588-022-01024-z}, author = {Bellenguez, C{\'e}line and K{\"u}{\c c}{\"u}kali, Fahri and Jansen, Iris E and Kleineidam, Luca and Moreno-Grau, Sonia and Amin, Najaf and Naj, Adam C and Campos-Martin, Rafael and Grenier-Boley, Benjamin and Andrade, Victor and Holmans, Peter A and Boland, Anne and Damotte, Vincent and van der Lee, Sven J and Costa, Marcos R and Kuulasmaa, Teemu and Yang, Qiong and de Rojas, Itziar and Bis, Joshua C and Yaqub, Amber and Prokic, Ivana and Chapuis, Julien and Ahmad, Shahzad and Giedraitis, Vilmantas and Aarsland, Dag and Garcia-Gonzalez, Pablo and Abdelnour, Carla and Alarc{\'o}n-Mart{\'\i}n, Emilio and Alcolea, Daniel and Alegret, Montserrat and Alvarez, Ignacio and Alvarez, Victoria and Armstrong, Nicola J and Tsolaki, Anthoula and Antunez, Carmen and Appollonio, Ildebrando and Arcaro, Marina and Archetti, Silvana and Pastor, Alfonso Arias and Arosio, Beatrice and Athanasiu, Lavinia and Bailly, Henri and Banaj, Nerisa and Baquero, Miquel and Barral, Sandra and Beiser, Alexa and Pastor, Ana Bel{\'e}n and Below, Jennifer E and Benchek, Penelope and Benussi, Luisa and Berr, Claudine and Besse, C{\'e}line and Bessi, Valentina and Binetti, Giuliano and Bizarro, Alessandra and Blesa, Rafael and Boada, Merce and Boerwinkle, Eric and Borroni, Barbara and Boschi, Silvia and Boss{\`u}, Paola and Br{\r a}then, Geir and Bressler, Jan and Bresner, Catherine and Brodaty, Henry and Brookes, Keeley J and Brusco, Luis Ignacio and Buiza-Rueda, Dolores and B{\^u}rger, Katharina and Burholt, Vanessa and Bush, William S and Calero, Miguel and Cantwell, Laura B and Chene, Genevi{\`e}ve and Chung, Jaeyoon and Cuccaro, Michael L and Carracedo, Angel and Cecchetti, Roberta and Cervera-Carles, Laura and Charbonnier, Camille and Chen, Hung-Hsin and Chillotti, Caterina and Ciccone, Simona and Claassen, Jurgen A H R and Clark, Christopher and Conti, Elisa and Corma-G{\'o}mez, Ana{\"\i}s and Costantini, Emanuele and Custodero, Carlo and Daian, Delphine and Dalmasso, Maria Carolina and Daniele, Antonio and Dardiotis, Efthimios and Dartigues, Jean-Fran{\c c}ois and de Deyn, Peter Paul and de Paiva Lopes, Katia and de Witte, Lot D and Debette, Stephanie and Deckert, J{\"u}rgen and Del Ser, Teodoro and Denning, Nicola and DeStefano, Anita and Dichgans, Martin and Diehl-Schmid, Janine and Diez-Fairen, Monica and Rossi, Paolo Dionigi and Djurovic, Srdjan and Duron, Emmanuelle and D{\"u}zel, Emrah and Dufouil, Carole and Eiriksdottir, Gudny and Engelborghs, Sebastiaan and Escott-Price, Valentina and Espinosa, Ana and Ewers, Michael and Faber, Kelley M and Fabrizio, Tagliavini and Nielsen, Sune Fallgaard and Fardo, David W and Farotti, Lucia and Fenoglio, Chiara and Fern{\'a}ndez-Fuertes, Marta and Ferrari, Raffaele and Ferreira, Catarina B and Ferri, Evelyn and Fin, Bertrand and Fischer, Peter and Fladby, Tormod and Flie{\ss}bach, Klaus and Fongang, Bernard and Fornage, Myriam and Fortea, Juan and Foroud, Tatiana M and Fostinelli, Silvia and Fox, Nick C and Franco-Mac{\'\i}as, Emlio and Bullido, Mar{\'\i}a J and Frank-Garc{\'\i}a, Ana and Froelich, Lutz and Fulton-Howard, Brian and Galimberti, Daniela and Garc{\'\i}a-Alberca, Jose Maria and Garcia-Gonzalez, Pablo and Garcia-Madrona, Sebastian and Garcia-Ribas, Guillermo and Ghidoni, Roberta and Giegling, Ina and Giorgio, Giaccone and Goate, Alison M and Goldhardt, Oliver and Gomez-Fonseca, Duber and Gonz{\'a}lez-Perez, Antonio and Graff, Caroline and Grande, Giulia and Green, Emma and Grimmer, Timo and Gr{\"u}nblatt, Edna and Grunin, Michelle and Gudnason, Vilmundur and Guetta-Baranes, Tamar and Haapasalo, Annakaisa and Hadjigeorgiou, Georgios and Haines, Jonathan L and Hamilton-Nelson, Kara L and Hampel, Harald and Hanon, Olivier and Hardy, John and Hartmann, Annette M and Hausner, Lucrezia and Harwood, Janet and Heilmann-Heimbach, Stefanie and Helisalmi, Seppo and Heneka, Michael T and Hernandez, Isabel and Herrmann, Martin J and Hoffmann, Per and Holmes, Clive and Holstege, Henne and Vilas, Raquel Huerto and Hulsman, Marc and Humphrey, Jack and Biessels, Geert Jan and Jian, Xueqiu and Johansson, Charlotte and Jun, Gyungah R and Kastumata, Yuriko and Kauwe, John and Kehoe, Patrick G and Kilander, Lena and St{\r a}hlbom, Anne Kinhult and Kivipelto, Miia and Koivisto, Anne and Kornhuber, Johannes and Kosmidis, Mary H and Kukull, Walter A and Kuksa, Pavel P and Kunkle, Brian W and Kuzma, Amanda B and Lage, Carmen and Laukka, Erika J and Launer, Lenore and Lauria, Alessandra and Lee, Chien-Yueh and Lehtisalo, Jenni and Lerch, Ondrej and Lleo, Alberto and Longstreth, William and Lopez, Oscar and de Munain, Adolfo Lopez and Love, Seth and L{\"o}wemark, Malin and Luckcuck, Lauren and Lunetta, Kathryn L and Ma, Yiyi and Mac{\'\i}as, Juan and MacLeod, Catherine A and Maier, Wolfgang and Mangialasche, Francesca and Spallazzi, Marco and Marqui{\'e}, Marta and Marshall, Rachel and Martin, Eden R and Montes, Angel Mart{\'\i}n and Rodr{\'\i}guez, Carmen Mart{\'\i}nez and Masullo, Carlo and Mayeux, Richard and Mead, Simon and Mecocci, Patrizia and Medina, Miguel and Meggy, Alun and Mehrabian, Shima and Mendoza, Silvia and Men{\'e}ndez-Gonz{\'a}lez, Manuel and Mir, Pablo and Moebus, Susanne and Mol, Merel and Molina-Porcel, Laura and Montrreal, Laura and Morelli, Laura and Moreno, Fermin and Morgan, Kevin and Mosley, Thomas and N{\"o}then, Markus M and Muchnik, Carolina and Mukherjee, Shubhabrata and Nacmias, Benedetta and Ngandu, Tiia and Nicolas, Ga{\"e}l and Nordestgaard, B{\o}rge G and Olaso, Robert and Orellana, Adelina and Orsini, Michela and Ortega, Gemma and Padovani, Alessandro and Paolo, Caffarra and Papenberg, Goran and Parnetti, Lucilla and Pasquier, Florence and Pastor, Pau and Peloso, Gina and P{\'e}rez-Cord{\'o}n, Alba and P{\'e}rez-Tur, Jordi and Pericard, Pierre and Peters, Oliver and Pijnenburg, Yolande A L and Pineda, Juan A and Pi{\~n}ol-Ripoll, Gerard and Pisanu, Claudia and Polak, Thomas and Popp, Julius and Posthuma, Danielle and Priller, Josef and Puerta, Raquel and Quenez, Olivier and Quintela, In{\'e}s and Thomassen, Jesper Qvist and R{\'a}bano, Alberto and Rainero, Innocenzo and Rajabli, Farid and Ramakers, Inez and Real, Luis M and Reinders, Marcel J T and Reitz, Christiane and Reyes-Dumeyer, Dolly and Ridge, Perry and Riedel-Heller, Steffi and Riederer, Peter and Roberto, Natalia and Rodriguez-Rodriguez, Eloy and Rongve, Arvid and Allende, Irene Rosas and Rosende-Roca, Mait{\'e}e and Royo, Jose Luis and Rubino, Elisa and Rujescu, Dan and S{\'a}ez, Mar{\'\i}a Eugenia and Sakka, Paraskevi and Saltvedt, Ingvild and Sanabria, {\'A}ngela and S{\'a}nchez-Arjona, Mar{\'\i}a Bernal and Sanchez-Garcia, Florentino and Juan, Pascual S{\'a}nchez and S{\'a}nchez-Valle, Raquel and Sando, Sigrid B and Sarnowski, Chloe and Satizabal, Claudia L and Scamosci, Michela and Scarmeas, Nikolaos and Scarpini, Elio and Scheltens, Philip and Scherbaum, Norbert and Scherer, Martin and Schmid, Matthias and Schneider, Anja and Schott, Jonathan M and Selb{\ae}k, Geir and Seripa, Davide and Serrano, Manuel and Sha, Jin and Shadrin, Alexey A and Skrobot, Olivia and Slifer, Susan and Snijders, Gijsje J L and Soininen, Hilkka and Solfrizzi, Vincenzo and Solomon, Alina and Song, Yeunjoo and Sorbi, Sandro and Sotolongo-Grau, Oscar and Spalletta, Gianfranco and Spottke, Annika and Squassina, Alessio and Stordal, Eystein and Tartan, Juan Pablo and Tarraga, Lluis and Tes{\'\i}, Niccolo and Thalamuthu, Anbupalam and Thomas, Tegos and Tosto, Giuseppe and Traykov, Latchezar and Tremolizzo, Lucio and Tybj{\ae}rg-Hansen, Anne and Uitterlinden, Andre and Ullgren, Abbe and Ulstein, Ingun and Valero, Sergi and Valladares, Otto and Broeckhoven, Christine Van and Vance, Jeffery and Vardarajan, Badri N and van der Lugt, Aad and Dongen, Jasper Van and van Rooij, Jeroen and van Swieten, John and Vandenberghe, Rik and Verhey, Frans and Vidal, Jean-S{\'e}bastien and Vogelgsang, Jonathan and Vyhnalek, Martin and Wagner, Michael and Wallon, David and Wang, Li-San and Wang, Ruiqi and Weinhold, Leonie and Wiltfang, Jens and Windle, Gill and Woods, Bob and Yannakoulia, Mary and Zare, Habil and Zhao, Yi and Zhang, Xiaoling and Zhu, Congcong and Zulaica, Miren and Farrer, Lindsay A and Psaty, Bruce M and Ghanbari, Mohsen and Raj, Towfique and Sachdev, Perminder and Mather, Karen and Jessen, Frank and Ikram, M Arfan and de Mendon{\c c}a, Alexandre and Hort, Jakub and Tsolaki, Magda and Pericak-Vance, Margaret A and Amouyel, Philippe and Williams, Julie and Frikke-Schmidt, Ruth and Clarimon, Jordi and Deleuze, Jean-Francois and Rossi, Giacomina and Seshadri, Sudha and Andreassen, Ole A and Ingelsson, Martin and Hiltunen, Mikko and Sleegers, Kristel and Schellenberg, Gerard D and van Duijn, Cornelia M and Sims, Rebecca and van der Flier, Wiesje M and Ruiz, Agustin and Ramirez, Alfredo and Lambert, Jean-Charles} } @article {9086, title = {Proteomics and Population Biology in the Cardiovascular Health Study (CHS): design of a study with mentored access and active data sharing.}, journal = {Eur J Epidemiol}, year = {2022}, month = {2022 Jul 05}, abstract = {

BACKGROUND: In the last decade, genomic studies have identified and replicated thousands of genetic associations with measures of health and disease and contributed to the understanding of the etiology of a variety of health conditions. Proteins are key biomarkers in clinical medicine and often drug-therapy targets. Like genomics, proteomics can advance our understanding of biology.

METHODS AND RESULTS: In the setting of the Cardiovascular Health Study (CHS), a cohort study of older adults, an aptamer-based method that has high sensitivity for low-abundance proteins was used to assay 4979 proteins in frozen, stored plasma from 3188 participants (61\% women, mean age 74~years). CHS provides active support, including central analysis, for seven phenotype-specific working groups (WGs). Each CHS WG is led by one or two senior investigators and includes 10 to 20 early or mid-career scientists. In this setting of mentored access, the proteomic data and analytic methods are widely shared with the WGs and investigators so that they may evaluate associations between baseline levels of circulating proteins and the incidence of a variety of health outcomes in prospective cohort analyses. We describe the design of CHS, the CHS Proteomics Study, characteristics of participants, quality control measures, and structural characteristics of the data provided to CHS WGs. We additionally highlight plans for validation and replication of novel proteomic associations.

CONCLUSION: The CHS Proteomics Study offers an opportunity for collaborative data sharing to improve our understanding of the etiology of a variety of health conditions in older adults.

}, issn = {1573-7284}, doi = {10.1007/s10654-022-00888-z}, author = {Austin, Thomas R and McHugh, Caitlin P and Brody, Jennifer A and Bis, Joshua C and Sitlani, Colleen M and Bartz, Traci M and Biggs, Mary L and Bansal, Nisha and B{\r u}zkov{\'a}, Petra and Carr, Steven A and deFilippi, Christopher R and Elkind, Mitchell S V and Fink, Howard A and Floyd, James S and Fohner, Alison E and Gerszten, Robert E and Heckbert, Susan R and Katz, Daniel H and Kizer, Jorge R and Lemaitre, Rozenn N and Longstreth, W T and McKnight, Barbara and Mei, Hao and Mukamal, Kenneth J and Newman, Anne B and Ngo, Debby and Odden, Michelle C and Vasan, Ramachandran S and Shojaie, Ali and Simon, Noah and Smith, George Davey and Davies, Neil M and Siscovick, David S and Sotoodehnia, Nona and Tracy, Russell P and Wiggins, Kerri L and Zheng, Jie and Psaty, Bruce M} } @article {8975, title = {Rare coding variants in 35 genes associate with circulating lipid levels-A multi-ancestry analysis of 170,000 exomes.}, journal = {Am J Hum Genet}, volume = {109}, year = {2022}, month = {2022 01 06}, pages = {81-96}, abstract = {

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1\%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.

}, keywords = {Alleles, Blood Glucose, Case-Control Studies, Computational Biology, Databases, Genetic, Diabetes Mellitus, Type 2, Exome, Genetic Predisposition to Disease, Genetic Variation, Genetics, Population, Genome-Wide Association Study, Humans, Lipid Metabolism, Lipids, Liver, Molecular Sequence Annotation, Multifactorial Inheritance, Open Reading Frames, Phenotype, Polymorphism, Single Nucleotide}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2021.11.021}, author = {Hindy, George and Dornbos, Peter and Chaffin, Mark D and Liu, Dajiang J and Wang, Minxian and Selvaraj, Margaret Sunitha and Zhang, David and Park, Joseph and Aguilar-Salinas, Carlos A and Antonacci-Fulton, Lucinda and Ardissino, Diego and Arnett, Donna K and Aslibekyan, Stella and Atzmon, Gil and Ballantyne, Christie M and Barajas-Olmos, Francisco and Barzilai, Nir and Becker, Lewis C and Bielak, Lawrence F and Bis, Joshua C and Blangero, John and Boerwinkle, Eric and Bonnycastle, Lori L and Bottinger, Erwin and Bowden, Donald W and Bown, Matthew J and Brody, Jennifer A and Broome, Jai G and Burtt, Noel P and Cade, Brian E and Centeno-Cruz, Federico and Chan, Edmund and Chang, Yi-Cheng and Chen, Yii-der I and Cheng, Ching-Yu and Choi, Won Jung and Chowdhury, Rajiv and Contreras-Cubas, Cecilia and C{\'o}rdova, Emilio J and Correa, Adolfo and Cupples, L Adrienne and Curran, Joanne E and Danesh, John and de Vries, Paul S and DeFronzo, Ralph A and Doddapaneni, Harsha and Duggirala, Ravindranath and Dutcher, Susan K and Ellinor, Patrick T and Emery, Leslie S and Florez, Jose C and Fornage, Myriam and Freedman, Barry I and Fuster, Valentin and Garay-Sevilla, Ma Eugenia and Garc{\'\i}a-Ortiz, Humberto and Germer, Soren and Gibbs, Richard A and Gieger, Christian and Glaser, Benjamin and Gonzalez, Clicerio and Gonzalez-Villalpando, Maria Elena and Graff, Mariaelisa and Graham, Sarah E and Grarup, Niels and Groop, Leif C and Guo, Xiuqing and Gupta, Namrata and Han, Sohee and Hanis, Craig L and Hansen, Torben and He, Jiang and Heard-Costa, Nancy L and Hung, Yi-Jen and Hwang, Mi Yeong and Irvin, Marguerite R and Islas-Andrade, Sergio and Jarvik, Gail P and Kang, Hyun Min and Kardia, Sharon L R and Kelly, Tanika and Kenny, Eimear E and Khan, Alyna T and Kim, Bong-Jo and Kim, Ryan W and Kim, Young Jin and Koistinen, Heikki A and Kooperberg, Charles and Kuusisto, Johanna and Kwak, Soo Heon and Laakso, Markku and Lange, Leslie A and Lee, Jiwon and Lee, Juyoung and Lee, Seonwook and Lehman, Donna M and Lemaitre, Rozenn N and Linneberg, Allan and Liu, Jianjun and Loos, Ruth J F and Lubitz, Steven A and Lyssenko, Valeriya and Ma, Ronald C W and Martin, Lisa Warsinger and Mart{\'\i}nez-Hern{\'a}ndez, Ang{\'e}lica and Mathias, Rasika A and McGarvey, Stephen T and McPherson, Ruth and Meigs, James B and Meitinger, Thomas and Melander, Olle and Mendoza-Caamal, Elvia and Metcalf, Ginger A and Mi, Xuenan and Mohlke, Karen L and Montasser, May E and Moon, Jee-Young and Moreno-Macias, Hortensia and Morrison, Alanna C and Muzny, Donna M and Nelson, Sarah C and Nilsson, Peter M and O{\textquoteright}Connell, Jeffrey R and Orho-Melander, Marju and Orozco, Lorena and Palmer, Colin N A and Palmer, Nicholette D and Park, Cheol Joo and Park, Kyong Soo and Pedersen, Oluf and Peralta, Juan M and Peyser, Patricia A and Post, Wendy S and Preuss, Michael and Psaty, Bruce M and Qi, Qibin and Rao, D C and Redline, Susan and Reiner, Alexander P and Revilla-Monsalve, Cristina and Rich, Stephen S and Samani, Nilesh and Schunkert, Heribert and Schurmann, Claudia and Seo, Daekwan and Seo, Jeong-Sun and Sim, Xueling and Sladek, Rob and Small, Kerrin S and So, Wing Yee and Stilp, Adrienne M and Tai, E Shyong and Tam, Claudia H T and Taylor, Kent D and Teo, Yik Ying and Thameem, Farook and Tomlinson, Brian and Tsai, Michael Y and Tuomi, Tiinamaija and Tuomilehto, Jaakko and Tusi{\'e}-Luna, Teresa and Udler, Miriam S and van Dam, Rob M and Vasan, Ramachandran S and Viaud Martinez, Karine A and Wang, Fei Fei and Wang, Xuzhi and Watkins, Hugh and Weeks, Daniel E and Wilson, James G and Witte, Daniel R and Wong, Tien-Yin and Yanek, Lisa R and Kathiresan, Sekar and Rader, Daniel J and Rotter, Jerome I and Boehnke, Michael and McCarthy, Mark I and Willer, Cristen J and Natarajan, Pradeep and Flannick, Jason A and Khera, Amit V and Peloso, Gina M} } @article {9168, title = {Rare genetic variants explain missing heritability in smoking.}, journal = {Nat Hum Behav}, year = {2022}, month = {2022 Aug 04}, abstract = {

Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this {\textquoteright}missing heritability{\textquoteright}. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74\% of it attributable to rare variants with minor allele frequencies between 0.01\% and 1\%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60\% to 100\% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.

}, issn = {2397-3374}, doi = {10.1038/s41562-022-01408-5}, author = {Jang, Seon-Kyeong and Evans, Luke and Fialkowski, Allison and Arnett, Donna K and Ashley-Koch, Allison E and Barnes, Kathleen C and Becker, Diane M and Bis, Joshua C and Blangero, John and Bleecker, Eugene R and Boorgula, Meher Preethi and Bowden, Donald W and Brody, Jennifer A and Cade, Brian E and Jenkins, Brenda W Campbell and Carson, April P and Chavan, Sameer and Cupples, L Adrienne and Custer, Brian and Damrauer, Scott M and David, Sean P and de Andrade, Mariza and Dinardo, Carla L and Fingerlin, Tasha E and Fornage, Myriam and Freedman, Barry I and Garrett, Melanie E and Gharib, Sina A and Glahn, David C and Haessler, Jeffrey and Heckbert, Susan R and Hokanson, John E and Hou, Lifang and Hwang, Shih-Jen and Hyman, Matthew C and Judy, Renae and Justice, Anne E and Kaplan, Robert C and Kardia, Sharon L R and Kelly, Shannon and Kim, Wonji and Kooperberg, Charles and Levy, Daniel and Lloyd-Jones, Donald M and Loos, Ruth J F and Manichaikul, Ani W and Gladwin, Mark T and Martin, Lisa Warsinger and Nouraie, Mehdi and Melander, Olle and Meyers, Deborah A and Montgomery, Courtney G and North, Kari E and Oelsner, Elizabeth C and Palmer, Nicholette D and Payton, Marinelle and Peljto, Anna L and Peyser, Patricia A and Preuss, Michael and Psaty, Bruce M and Qiao, Dandi and Rader, Daniel J and Rafaels, Nicholas and Redline, Susan and Reed, Robert M and Reiner, Alexander P and Rich, Stephen S and Rotter, Jerome I and Schwartz, David A and Shadyab, Aladdin H and Silverman, Edwin K and Smith, Nicholas L and Smith, J Gustav and Smith, Albert V and Smith, Jennifer A and Tang, Weihong and Taylor, Kent D and Telen, Marilyn J and Vasan, Ramachandran S and Gordeuk, Victor R and Wang, Zhe and Wiggins, Kerri L and Yanek, Lisa R and Yang, Ivana V and Young, Kendra A and Young, Kristin L and Zhang, Yingze and Liu, Dajiang J and Keller, Matthew C and Vrieze, Scott} } @article {9172, title = {Stroke genetics informs drug discovery and risk prediction across ancestries.}, journal = {Nature}, year = {2022}, month = {2022 Sep 30}, abstract = {

Previous genome-wide association studies (GWASs) of stroke~-~the second leading cause of death worldwide~-~were conducted predominantly in populations of European ancestry. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33\% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30\% non-European) and 1,013,843 control individuals, 87\% of the primary stroke risk loci and 60\% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.

}, issn = {1476-4687}, doi = {10.1038/s41586-022-05165-3}, author = {Mishra, Aniket and Malik, Rainer and Hachiya, Tsuyoshi and J{\"u}rgenson, Tuuli and Namba, Shinichi and Posner, Daniel C and Kamanu, Frederick K and Koido, Masaru and Le Grand, Quentin and Shi, Mingyang and He, Yunye and Georgakis, Marios K and Caro, Ilana and Krebs, Kristi and Liaw, Yi-Ching and Vaura, Felix C and Lin, Kuang and Winsvold, Bendik Slagsvold and Srinivasasainagendra, Vinodh and Parodi, Livia and Bae, Hee-Joon and Chauhan, Ganesh and Chong, Michael R and Tomppo, Liisa and Akinyemi, Rufus and Roshchupkin, Gennady V and Habib, Naomi and Jee, Yon Ho and Thomassen, Jesper Qvist and Abedi, Vida and C{\'a}rcel-M{\'a}rquez, Jara and Nygaard, Marianne and Leonard, Hampton L and Yang, Chaojie and Yonova-Doing, Ekaterina and Knol, Maria J and Lewis, Adam J and Judy, Renae L and Ago, Tetsuro and Amouyel, Philippe and Armstrong, Nicole D and Bakker, Mark K and Bartz, Traci M and Bennett, David A and Bis, Joshua C and Bordes, Constance and B{\o}rte, Sigrid and Cain, Anael and Ridker, Paul M and Cho, Kelly and Chen, Zhengming and Cruchaga, Carlos and Cole, John W and De Jager, Phil L and de Cid, Rafael and Endres, Matthias and Ferreira, Leslie E and Geerlings, Mirjam I and Gasca, Natalie C and Gudnason, Vilmundur and Hata, Jun and He, Jing and Heath, Alicia K and Ho, Yuk-Lam and Havulinna, Aki S and Hopewell, Jemma C and Hyacinth, Hyacinth I and Inouye, Michael and Jacob, Mina A and Jeon, Christina E and Jern, Christina and Kamouchi, Masahiro and Keene, Keith L and Kitazono, Takanari and Kittner, Steven J and Konuma, Takahiro and Kumar, Amit and Lacaze, Paul and Launer, Lenore J and Lee, Keon-Joo and Lepik, Kaido and Li, Jiang and Li, Liming and Manichaikul, Ani and Markus, Hugh S and Marston, Nicholas A and Meitinger, Thomas and Mitchell, Braxton D and Montellano, Felipe A and Morisaki, Takayuki and Mosley, Thomas H and Nalls, Mike A and Nordestgaard, B{\o}rge G and O{\textquoteright}Donnell, Martin J and Okada, Yukinori and Onland-Moret, N Charlotte and Ovbiagele, Bruce and Peters, Annette and Psaty, Bruce M and Rich, Stephen S and Rosand, Jonathan and Sabatine, Marc S and Sacco, Ralph L and Saleheen, Danish and Sandset, Else Charlotte and Salomaa, Veikko and Sargurupremraj, Muralidharan and Sasaki, Makoto and Satizabal, Claudia L and Schmidt, Carsten O and Shimizu, Atsushi and Smith, Nicholas L and Sloane, Kelly L and Sutoh, Yoichi and Sun, Yan V and Tanno, Kozo and Tiedt, Steffen and Tatlisumak, Turgut and Torres-Aguila, Nuria P and Tiwari, Hemant K and Tr{\'e}gou{\"e}t, David-Alexandre and Trompet, Stella and Tuladhar, Anil Man and Tybj{\ae}rg-Hansen, Anne and van Vugt, Marion and Vibo, Riina and Verma, Shefali S and Wiggins, Kerri L and Wennberg, Patrik and Woo, Daniel and Wilson, Peter W F and Xu, Huichun and Yang, Qiong and Yoon, Kyungheon and Millwood, Iona Y and Gieger, Christian and Ninomiya, Toshiharu and Grabe, Hans J and Jukema, J Wouter and Rissanen, Ina L and Strbian, Daniel and Kim, Young Jin and Chen, Pei-Hsin and Mayerhofer, Ernst and Howson, Joanna M M and Irvin, Marguerite R and Adams, Hieab and Wassertheil-Smoller, Sylvia and Christensen, Kaare and Ikram, Mohammad A and Rundek, Tatjana and Worrall, Bradford B and Lathrop, G Mark and Riaz, Moeen and Simonsick, Eleanor M and K{\~o}rv, Janika and Fran{\c c}a, Paulo H C and Zand, Ramin and Prasad, Kameshwar and Frikke-Schmidt, Ruth and de Leeuw, Frank-Erik and Liman, Thomas and Haeusler, Karl Georg and Ruigrok, Ynte M and Heuschmann, Peter Ulrich and Longstreth, W T and Jung, Keum Ji and Bastarache, Lisa and Par{\'e}, Guillaume and Damrauer, Scott M and Chasman, Daniel I and Rotter, Jerome I and Anderson, Christopher D and Zwart, John-Anker and Niiranen, Teemu J and Fornage, Myriam and Liaw, Yung-Po and Seshadri, Sudha and Fernandez-Cadenas, Israel and Walters, Robin G and Ruff, Christian T and Owolabi, Mayowa O and Huffman, Jennifer E and Milani, Lili and Kamatani, Yoichiro and Dichgans, Martin and Debette, Stephanie} } @article {9109, title = {The Value of Rare Genetic Variation in the Prediction of Common Obesity in European Ancestry Populations.}, journal = {Front Endocrinol (Lausanne)}, volume = {13}, year = {2022}, month = {2022}, pages = {863893}, abstract = {

Polygenic risk scores (PRSs) aggregate the effects of genetic variants across the genome and are used to predict risk of complex diseases, such as obesity. Current PRSs only include common variants (minor allele frequency (MAF) >=1\%), whereas the contribution of rare variants in PRSs to predict disease remains unknown. Here, we examine whether augmenting the standard common variant PRS (PRS) with a rare variant PRS (PRS) improves prediction of obesity. We used genome-wide genotyped and imputed data on 451,145 European-ancestry participants of the UK Biobank, as well as whole exome sequencing (WES) data on 184,385 participants. We performed single variant analyses (for both common and rare variants) and gene-based analyses (for rare variants) for association with BMI (kg/m), obesity (BMI >= 30 kg/m), and extreme obesity (BMI >= 40 kg/m). We built PRSs and PRSs using a range of methods (Clumping+Thresholding [C+T], PRS-CS, lassosum, gene-burden test). We selected the best-performing PRSs and assessed their performance in 36,757 European-ancestry unrelated participants with whole genome sequencing (WGS) data from the Trans-Omics for Precision Medicine (TOPMed) program. The best-performing PRS explained 10.1\% of variation in BMI, and 18.3\% and 22.5\% of the susceptibility to obesity and extreme obesity, respectively, whereas the best-performing PRS explained 1.49\%, and 2.97\% and 3.68\%, respectively. The PRS was associated with an increased risk of obesity and extreme obesity (OR = 1.37 per SD, = 1.7x10; OR = 1.55 per SD, = 3.8x10), which was attenuated, after adjusting for PRS (OR = 1.08 per SD, = 9.8x10; OR= 1.09 per SD, = 0.02). When PRS and PRS are combined, the increase in explained variance attributed to PRS was small (incremental Nagelkerke R = 0.24\% for obesity and 0.51\% for extreme obesity). Consistently, combining PRS to PRS provided little improvement to the prediction of obesity (PRS AUC = 0.591; PRS AUC = 0.708; PRS AUC = 0.710). In summary, while rare variants show convincing association with BMI, obesity and extreme obesity, the PRS provides limited improvement over PRS in the prediction of obesity risk, based on these large populations.

}, keywords = {Gene Frequency, Genetic Variation, Genome-Wide Association Study, Humans, Obesity, Whole Genome Sequencing}, issn = {1664-2392}, doi = {10.3389/fendo.2022.863893}, author = {Wang, Zhe and Choi, Shing Wan and Chami, Nathalie and Boerwinkle, Eric and Fornage, Myriam and Redline, Susan and Bis, Joshua C and Brody, Jennifer A and Psaty, Bruce M and Kim, Wonji and McDonald, Merry-Lynn N and Regan, Elizabeth A and Silverman, Edwin K and Liu, Ching-Ti and Vasan, Ramachandran S and Kalyani, Rita R and Mathias, Rasika A and Yanek, Lisa R and Arnett, Donna K and Justice, Anne E and North, Kari E and Kaplan, Robert and Heckbert, Susan R and de Andrade, Mariza and Guo, Xiuqing and Lange, Leslie A and Rich, Stephen S and Rotter, Jerome I and Ellinor, Patrick T and Lubitz, Steven A and Blangero, John and Shoemaker, M Benjamin and Darbar, Dawood and Gladwin, Mark T and Albert, Christine M and Chasman, Daniel I and Jackson, Rebecca D and Kooperberg, Charles and Reiner, Alexander P and O{\textquoteright}Reilly, Paul F and Loos, Ruth J F} } @article {9387, title = {Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.}, journal = {Nature}, volume = {616}, year = {2023}, month = {2023 Apr}, pages = {755-763}, abstract = {

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis. These lesions are precursors for blood cancers, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but~this effect was not seen in~clones with~driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental~knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.

}, keywords = {Alleles, Animals, Clonal Hematopoiesis, Genome-Wide Association Study, Hematopoiesis, Hematopoietic Stem Cells, Humans, Mice, Mutation, Promoter Regions, Genetic}, issn = {1476-4687}, doi = {10.1038/s41586-023-05806-1}, author = {Weinstock, Joshua S and Gopakumar, Jayakrishnan and Burugula, Bala Bharathi and Uddin, Md Mesbah and Jahn, Nikolaus and Belk, Julia A and Bouzid, Hind and Daniel, Bence and Miao, Zhuang and Ly, Nghi and Mack, Taralynn M and Luna, Sofia E and Prothro, Katherine P and Mitchell, Shaneice R and Laurie, Cecelia A and Broome, Jai G and Taylor, Kent D and Guo, Xiuqing and Sinner, Moritz F and von Falkenhausen, Aenne S and K{\"a}{\"a}b, Stefan and Shuldiner, Alan R and O{\textquoteright}Connell, Jeffrey R and Lewis, Joshua P and Boerwinkle, Eric and Barnes, Kathleen C and Chami, Nathalie and Kenny, Eimear E and Loos, Ruth J F and Fornage, Myriam and Hou, Lifang and Lloyd-Jones, Donald M and Redline, Susan and Cade, Brian E and Psaty, Bruce M and Bis, Joshua C and Brody, Jennifer A and Silverman, Edwin K and Yun, Jeong H and Qiao, Dandi and Palmer, Nicholette D and Freedman, Barry I and Bowden, Donald W and Cho, Michael H and DeMeo, Dawn L and Vasan, Ramachandran S and Yanek, Lisa R and Becker, Lewis C and Kardia, Sharon L R and Peyser, Patricia A and He, Jiang and Rienstra, Michiel and van der Harst, Pim and Kaplan, Robert and Heckbert, Susan R and Smith, Nicholas L and Wiggins, Kerri L and Arnett, Donna K and Irvin, Marguerite R and Tiwari, Hemant and Cutler, Michael J and Knight, Stacey and Muhlestein, J Brent and Correa, Adolfo and Raffield, Laura M and Gao, Yan and de Andrade, Mariza and Rotter, Jerome I and Rich, Stephen S and Tracy, Russell P and Konkle, Barbara A and Johnsen, Jill M and Wheeler, Marsha M and Smith, J Gustav and Melander, Olle and Nilsson, Peter M and Custer, Brian S and Duggirala, Ravindranath and Curran, Joanne E and Blangero, John and McGarvey, Stephen and Williams, L Keoki and Xiao, Shujie and Yang, Mao and Gu, C Charles and Chen, Yii-Der Ida and Lee, Wen-Jane and Marcus, Gregory M and Kane, John P and Pullinger, Clive R and Shoemaker, M Benjamin and Darbar, Dawood and Roden, Dan M and Albert, Christine and Kooperberg, Charles and Zhou, Ying and Manson, JoAnn E and Desai, Pinkal and Johnson, Andrew D and Mathias, Rasika A and Blackwell, Thomas W and Abecasis, Goncalo R and Smith, Albert V and Kang, Hyun M and Satpathy, Ansuman T and Natarajan, Pradeep and Kitzman, Jacob O and Whitsel, Eric A and Reiner, Alexander P and Bick, Alexander G and Jaiswal, Siddhartha} } @article {9502, title = {Association Between Whole Blood-Derived Mitochondrial DNA Copy Number, Low-Density Lipoprotein Cholesterol, and Cardiovascular Disease Risk.}, journal = {J Am Heart Assoc}, year = {2023}, month = {2023 Oct 07}, pages = {e029090}, abstract = {

Background The relationship between mitochondrial DNA copy number (mtDNA CN) and cardiovascular disease remains elusive. Methods and Results We performed cross-sectional and prospective association analyses of blood-derived mtDNA CN and cardiovascular disease outcomes in 27 316 participants in 8 cohorts of multiple racial and ethnic groups with whole-genome sequencing. We also performed Mendelian randomization to explore causal relationships of mtDNA CN with coronary heart disease (CHD) and cardiometabolic risk factors (obesity, diabetes, hypertension, and hyperlipidemia). <0.01 was used for significance. We validated most of the previously reported associations between mtDNA CN and cardiovascular disease outcomes. For example, 1-SD unit lower level of mtDNA CN was associated with 1.08 (95\% CI, 1.04-1.12; <0.001) times the hazard for developing incident CHD, adjusting for covariates. Mendelian randomization analyses showed no causal effect from a lower level of mtDNA CN to a higher CHD risk (β=0.091; =0.11) or in the reverse direction (β=-0.012; =0.076). Additional bidirectional Mendelian randomization analyses revealed that low-density lipoprotein cholesterol had a causal effect on mtDNA CN (β=-0.084; <0.001), but the reverse direction was not significant (=0.059). No causal associations were observed between mtDNA CN and obesity, diabetes, and hypertension, in either direction. Multivariable Mendelian randomization analyses showed no causal effect of CHD on mtDNA CN, controlling for low-density lipoprotein cholesterol level (=0.52), whereas there was a strong direct causal effect of higher low-density lipoprotein cholesterol on lower mtDNA CN, adjusting for CHD status (β=-0.092; <0.001). Conclusions Our findings indicate that high low-density lipoprotein cholesterol may underlie the complex relationships between mtDNA CN and vascular atherosclerosis.

}, issn = {2047-9980}, doi = {10.1161/JAHA.122.029090}, author = {Liu, Xue and Sun, Xianbang and Zhang, Yuankai and Jiang, Wenqing and Lai, Meng and Wiggins, Kerri L and Raffield, Laura M and Bielak, Lawrence F and Zhao, Wei and Pitsillides, Achilleas and Haessler, Jeffrey and Zheng, Yinan and Blackwell, Thomas W and Yao, Jie and Guo, Xiuqing and Qian, Yong and Thyagarajan, Bharat and Pankratz, Nathan and Rich, Stephen S and Taylor, Kent D and Peyser, Patricia A and Heckbert, Susan R and Seshadri, Sudha and Boerwinkle, Eric and Grove, Megan L and Larson, Nicholas B and Smith, Jennifer A and Vasan, Ramachandran S and Fitzpatrick, Annette L and Fornage, Myriam and Ding, Jun and Carson, April P and Abecasis, Goncalo and Dupuis, Jos{\'e}e and Reiner, Alexander and Kooperberg, Charles and Hou, Lifang and Psaty, Bruce M and Wilson, James G and Levy, Daniel and Rotter, Jerome I and Bis, Joshua C and Satizabal, Claudia L and Arking, Dan E and Liu, Chunyu} } @article {9323, title = {Association of Mitochondrial DNA Copy Number With Brain MRI Markers and Cognitive Function: A Meta-analysis of Community-Based Cohorts.}, journal = {Neurology}, year = {2023}, month = {2023 Mar 16}, abstract = {

BACKGROUND AND OBJECTIVES: Previous studies suggest lower mitochondrial DNA (mtDNA) copy number (CN) is associated with neurodegenerative diseases. However, whether mtDNA CN in whole blood is related to endophenotypes of Alzheimer{\textquoteright}s disease (AD) and AD related dementia (AD/ADRD) needs further investigation. We assessed the association of mtDNA CN with cognitive function and MRI measures in community-based samples of middle-aged to older adults.

METHODS: We included dementia-free participants from nine diverse community-based cohorts with whole-genome sequencing in the Trans-Omics for Precision Medicine (TOPMed) program. Circulating mtDNA CN was estimated as twice the ratio of the average coverage of mtDNA to nuclear DNA. Brain MRI markers included total brain, hippocampal, and white matter hyperintensity volumes. General cognitive function was derived from distinct cognitive domains. We performed cohort-specific association analyses of mtDNA CN with AD/ADRD endophenotypes assessed within {\textpm}5 years (i.e., cross-sectional analyses) or 5 to 20 years after blood draw (i.e., prospective analyses) adjusting for potential confounders. We further explored associations stratified by sex and age (<60 vs. >=60 years). Fixed-effects or sample size-weighted meta-analyses were performed to combine results. Finally, we performed Mendelian randomization (MR) analyses to assess causality.

RESULTS: We included up to 19,152 participants (mean age 59 years, 57\% women). Higher mtDNA CN was cross-sectionally associated with better general cognitive function (Beta=0.04; 95\% CI 0.02, 0.06) independent of age, sex, batch effects, race/ethnicity, time between blood draw and cognitive evaluation, cohort-specific variables, and education. Additional adjustment for blood cell counts or cardiometabolic traits led to slightly attenuated results. We observed similar significant associations with cognition in prospective analyses, although of reduced magnitude. We found no significant associations between mtDNA CN and brain MRI measures in meta-analyses. MR analyses did not reveal a causal relation between mtDNA CN in blood and cognition.

DISCUSSION: Higher mtDNA CN in blood is associated with better current and future general cognitive function in large and diverse communities across the US. Although MR analyses did not support a causal role, additional research is needed to assess causality. Circulating mtDNA CN could serve nevertheless as a biomarker of current and future cognitive function in the community.

}, issn = {1526-632X}, doi = {10.1212/WNL.0000000000207157}, author = {Zhang, Yuankai and Liu, Xue and Wiggins, Kerri L and Kurniansyah, Nuzulul and Guo, Xiuqing and Rodrigue, Amanda L and Zhao, Wei and Yanek, Lisa R and Ratliff, Scott M and Pitsillides, Achilleas and Aguirre Pati{\~n}o, Juan Sebastian and Sofer, Tamar and Arking, Dan E and Austin, Thomas R and Beiser, Alexa S and Blangero, John and Boerwinkle, Eric and Bressler, Jan and Curran, Joanne E and Hou, Lifang and Hughes, Timothy M and Kardia, Sharon L and Launer, Lenore and Levy, Daniel and Mosley, Tom H and Nasrallah, Ilya M and Rich, Stephen S and Rotter, Jerome I and Seshadri, Sudha and Tarraf, Wassim and Gonz{\'a}lez, Kevin A and Ramachandran, Vasan and Yaffe, Kristine and Nyquist, Paul A and Psaty, Bruce M and DeCarli, Charles S and Smith, Jennifer A and Glahn, David C and Gonz{\'a}lez, Hector M and Bis, Joshua C and Fornage, Myriam and Heckbert, Susan R and Fitzpatrick, Annette L and Liu, Chunyu and Satizabal, Claudia L} } @article {9285, title = {Association of Rare Protein-Truncating DNA Variants in APOB or PCSK9 With Low-density Lipoprotein Cholesterol Level and Risk of Coronary Heart Disease.}, journal = {JAMA Cardiol}, year = {2023}, month = {2023 Feb 01}, abstract = {

IMPORTANCE: Protein-truncating variants (PTVs) in apolipoprotein B (APOB) and proprotein convertase subtilisin/kexin type 9 (PCSK9) are associated with significantly lower low-density lipoprotein (LDL) cholesterol concentrations. The association of these PTVs with coronary heart disease (CHD) warrants further characterization in large, multiracial prospective cohort studies.

OBJECTIVE: To evaluate the association of PTVs in APOB and PCSK9 with LDL cholesterol concentrations and CHD risk.

DESIGN, SETTING, AND PARTICIPANTS: This studied included participants from 5 National Heart, Lung, and Blood Institute (NHLBI) studies and the UK Biobank. NHLBI study participants aged 5 to 84 years were recruited between 1971 and 2002 across the US and underwent whole-genome sequencing. UK Biobank participants aged 40 to 69 years were recruited between 2006 and 2010 in the UK and underwent whole-exome sequencing. Data were analyzed from June 2021 to October 2022.

EXPOSURES: PTVs in APOB and PCSK9.

MAIN OUTCOMES AND MEASURES: Estimated untreated LDL cholesterol levels and CHD.

RESULTS: Among 19 073 NHLBI participants (10 598 [55.6\%] female; mean [SD] age, 52 [17] years), 139 (0.7\%) carried an APOB or PCSK9 PTV, which was associated with 49 mg/dL (95\% CI, 43-56) lower estimated untreated LDL cholesterol level. Over a median (IQR) follow-up of 21.5 (13.9-29.4) years, incident CHD was observed in 12 of 139 carriers (8.6\%) vs 3029 of 18 934 noncarriers (16.0\%), corresponding to an adjusted hazard ratio of 0.51 (95\% CI, 0.28-0.89; P = .02). Among 190 464 UK Biobank participants (104 831 [55.0\%] female; mean [SD] age, 57 [8] years), 662 (0.4\%) carried a PTV, which was associated with 45 mg/dL (95\% CI, 42-47) lower estimated untreated LDL cholesterol level. Estimated CHD risk by age 75 years was 3.7\% (95\% CI, 2.0-5.3) in carriers vs 7.0\% (95\% CI, 6.9-7.2) in noncarriers, corresponding to an adjusted hazard ratio of 0.51 (95\% CI, 0.32-0.81; P = .004).

CONCLUSIONS AND RELEVANCE: Among 209 537 individuals in this study, 0.4\% carried an APOB or PCSK9 PTV that was associated with less exposure to LDL cholesterol and a 49\% lower risk of CHD.

}, issn = {2380-6591}, doi = {10.1001/jamacardio.2022.5271}, author = {Dron, Jacqueline S and Patel, Aniruddh P and Zhang, Yiyi and Jurgens, Sean J and Maamari, Dimitri J and Wang, Minxian and Boerwinkle, Eric and Morrison, Alanna C and de Vries, Paul S and Fornage, Myriam and Hou, Lifang and Lloyd-Jones, Donald M and Psaty, Bruce M and Tracy, Russell P and Bis, Joshua C and Vasan, Ramachandran S and Levy, Daniel and Heard-Costa, Nancy and Rich, Stephen S and Guo, Xiuqing and Taylor, Kent D and Gibbs, Richard A and Rotter, Jerome I and Willer, Cristen J and Oelsner, Elizabeth C and Moran, Andrew E and Peloso, Gina M and Natarajan, Pradeep and Khera, Amit V} } @article {9388, title = {Association of Severe Hypercholesterolemia and Familial Hypercholesterolemia Genotype With Risk of Coronary Heart Disease.}, journal = {Circulation}, volume = {147}, year = {2023}, month = {2023 May 16}, pages = {1556-1559}, keywords = {Coronary Disease, Genotype, Humans, Hypercholesterolemia, Hyperlipoproteinemia Type II}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.123.064168}, author = {Zhang, Yiyi and Dron, Jacqueline S and Bellows, Brandon K and Khera, Amit V and Liu, Junxiu and Balte, Pallavi P and Oelsner, Elizabeth C and Amr, Sami Samir and Lebo, Matthew S and Nagy, Anna and Peloso, Gina M and Natarajan, Pradeep and Rotter, Jerome I and Willer, Cristen and Boerwinkle, Eric and Ballantyne, Christie M and Lutsey, Pamela L and Fornage, Myriam and Lloyd-Jones, Donald M and Hou, Lifang and Psaty, Bruce M and Bis, Joshua C and Floyd, James S and Vasan, Ramachandran S and Heard-Costa, Nancy L and Carson, April P and Hall, Michael E and Rich, Stephen S and Guo, Xiuqing and Kazi, Dhruv S and de Ferranti, Sarah D and Moran, Andrew E} } @article {9479, title = {Carriers of rare damaging genetic variants are at lower risk of atherosclerotic disease.}, journal = {medRxiv}, year = {2023}, month = {2023 Aug 16}, abstract = {

BACKGROUND: The CCL2/CCR2 axis governs monocyte trafficking and recruitment to atherosclerotic lesions. Human genetic analyses and population-based studies support an association between circulating CCL2 levels and atherosclerosis. Still, it remains unknown whether pharmacological targeting of CCR2, the main CCL2 receptor, would provide protection against human atherosclerotic disease.

METHODS: In whole-exome sequencing data from 454,775 UK Biobank participants (40-69 years), we identified predicted loss-of-function (LoF) or damaging missense (REVEL score >0.5) variants within the gene. We prioritized variants associated with lower monocyte count (p<0.05) and tested associations with vascular risk factors and risk of atherosclerotic disease over a mean follow-up of 14 years. The results were replicated in a pooled cohort of three independent datasets (TOPMed, deCODE and Penn Medicine BioBank; total n=441,445) and the effect of the most frequent damaging variant was experimentally validated.

RESULTS: A total of 45 predicted LoF or damaging missense variants were identified in the gene, 4 of which were also significantly associated with lower monocyte count, but not with other white blood cell counts. Heterozygous carriers of these variants were at a lower risk of a combined atherosclerosis outcome, showed a lower burden of atherosclerosis across four vascular beds, and were at a lower lifetime risk of coronary artery disease and myocardial infarction. There was no evidence of association with vascular risk factors including LDL-cholesterol, blood pressure, glycemic status, or C-reactive protein. Using a cAMP assay, we found that cells transfected with the most frequent damaging variant (3:46358273:T:A, M249K, 547 carriers, frequency: 0.14\%) show a decrease in signaling in response to CCL2. The associations of the M249K variant with myocardial infarction were consistent across cohorts (OR : 0.62 95\%CI: 0.39-0.96; OR : 0.64 95\%CI: 0.34-1.19; OR : 0.64 95\%CI: 0.45-0.90). In a phenome-wide association study, we found no evidence for higher risk of common infections or mortality among carriers of damaging variants.

CONCLUSIONS: Heterozygous carriers of damaging variants have a lower burden of atherosclerosis and lower lifetime risk of myocardial infarction. In conjunction with previous evidence from experimental and epidemiological studies, our findings highlight the translational potential of CCR2-targeting as an atheroprotective approach.

}, doi = {10.1101/2023.08.14.23294063}, author = {Georgakis, Marios K and Malik, Rainer and Hasbani, Natalie R and Shakt, Gabrielle and Morrison, Alanna C and Tsao, Noah L and Judy, Renae and Mitchell, Braxton D and Xu, Huichun and Montasser, May E and Do, Ron and Kenny, Eimear E and Loos, Ruth J F and Terry, James G and Carr, John Jeffrey and Bis, Joshua C and Psaty, Bruce M and Longstreth, W T and Young, Kendra A and Lutz, Sharon M and Cho, Michael H and Broome, Jai and Khan, Alyna T and Wang, Fei Fei and Heard-Costa, Nancy and Seshadri, Sudha and Vasan, Ramachandran S and Palmer, Nicholette D and Freedman, Barry I and Bowden, Donald W and Yanek, Lisa R and Kral, Brian G and Becker, Lewis C and Peyser, Patricia A and Bielak, Lawrence F and Ammous, Farah and Carson, April P and Hall, Michael E and Raffield, Laura M and Rich, Stephen S and Post, Wendy S and Tracy, Russel P and Taylor, Kent D and Guo, Xiuqing and Mahaney, Michael C and Curran, Joanne E and Blangero, John and Clarke, Shoa L and Haessler, Jeffrey W and Hu, Yao and Assimes, Themistocles L and Kooperberg, Charles and Damrauer, Scott M and Rotter, Jerome I and de Vries, Paul S and Dichgans, Martin} } @article {9411, title = {Clonal hematopoiesis is associated with protection from Alzheimer{\textquoteright}s disease.}, journal = {Nat Med}, volume = {29}, year = {2023}, month = {2023 Jul}, pages = {1662-1670}, abstract = {

Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer{\textquoteright}s disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 {\texttimes} 10), and Mendelian randomization analyses supported a potential causal association. We observed that the same mutations found in blood were also detected in microglia-enriched fraction of the brain in seven of eight CHIP carriers. Single-nucleus chromatin accessibility profiling of brain-derived nuclei in six CHIP carriers revealed that the mutated cells comprised a large proportion of the microglial pool in the samples examined. While additional studies are required to validate the mechanistic findings, these results suggest that CHIP may have a role in attenuating the risk of AD.

}, issn = {1546-170X}, doi = {10.1038/s41591-023-02397-2}, author = {Bouzid, Hind and Belk, Julia A and Jan, Max and Qi, Yanyan and Sarnowski, Chloe and Wirth, Sara and Ma, Lisa and Chrostek, Matthew R and Ahmad, Herra and Nachun, Daniel and Yao, Winnie and Beiser, Alexa and Bick, Alexander G and Bis, Joshua C and Fornage, Myriam and Longstreth, William T and Lopez, Oscar L and Natarajan, Pradeep and Psaty, Bruce M and Satizabal, Claudia L and Weinstock, Joshua and Larson, Eric B and Crane, Paul K and Keene, C Dirk and Seshadri, Sudha and Satpathy, Ansuman T and Montine, Thomas J and Jaiswal, Siddhartha} } @article {9505, title = {Complexities of cerebral small vessel disease, blood pressure, and dementia relationship: new insights from genetics.}, journal = {medRxiv}, year = {2023}, month = {2023 Aug 13}, abstract = {

IMPORTANCE: There is increasing recognition that vascular disease, which can be treated, is a key contributor to dementia risk. However, the contribution of specific markers of vascular disease is unclear and, as a consequence, optimal prevention strategies remain unclear.

OBJECTIVE: To disentangle the causal relation of several key vascular traits to dementia risk: (i) white matter hyperintensity (WMH) burden, a highly prevalent imaging marker of covert cerebral small vessel disease (cSVD); (ii) clinical stroke; and (iii) blood pressure (BP), the leading risk factor for cSVD and stroke, for which efficient therapies exist. To account for potential epidemiological biases inherent to late-onset conditions like dementia.

DESIGN SETTING AND PARTICIPANTS: This study first explored the association of genetically determined WMH, BP levels and stroke risk with AD using summary-level data from large genome-wide association studies (GWASs) in a two-sample Mendelian randomization (MR) framework. Second, leveraging individual-level data from large longitudinal population-based cohorts and biobanks with prospective dementia surveillance, the association of weighted genetic risk scores (wGRSs) for WMH, BP, and stroke with incident all-cause-dementia was explored using Cox-proportional hazard and multi-state models. The data analysis was performed from July 26, 2020, through July 24, 2022.

EXPOSURES: Genetically determined levels of WMH volume and BP (systolic, diastolic and pulse blood pressures) and genetic liability to stroke.

MAIN OUTCOMES AND MEASURES: The summary-level MR analyses focused on the outcomes from GWAS of clinically diagnosed AD (n-cases=21,982) and GWAS additionally including self-reported parental history of dementia as a proxy for AD diagnosis (AD , n-cases=53,042). For the longitudinal analyses, individual-level data of 157,698 participants with 10,699 incident all-cause-dementia were studied, exploring AD, vascular or mixed dementia in secondary analyses.

RESULTS: In the two-sample MR analyses, WMH showed strong evidence for a causal association with increased risk of AD (OR, 1.16; 95\%CI:1.05-1.28; P=.003) and AD (OR, 1.28; 95\%CI:1.07-1.53; P=.008), after accounting for genetically determined pulse pressure for the latter. Genetically predicted BP traits showed evidence for a protective association with both clinically defined AD and AD , with evidence for confounding by shared genetic instruments. In longitudinal analyses the wGRSs for WMH, but not BP or stroke, showed suggestive association with incident all-cause-dementia (HR, 1.02; 95\%CI:1.00-1.04; P=.06). BP and stroke wGRSs were strongly associated with mortality but there was no evidence for selective survival bias during follow-up. In secondary analyses, polygenic scores with more liberal instrument definition showed association of both WMH and stroke with all-cause-dementia, AD, and vascular or mixed dementia; associations of stroke, but not WMH, with dementia outcomes were markedly attenuated after adjusting for interim stroke.

CONCLUSION: These findings provide converging evidence that WMH is a leading vascular contributor to dementia risk, which may better capture the brain damage caused by BP (and other etiologies) than BP itself and should be targeted in priority for dementia prevention in the population.

KEY POINTS: Do instrumental variable analyses leveraging genetic information provide evidence for a causal association of various vascular traits with Alzheimer{\textquoteright}s disease (AD) and all-cause-dementia? How do these associations compare for white matter hyperintensity (WMH) burden, a highly prevalent marker of covert cerebral small vessel disease (cSVD), stroke, and blood pressure traits, the strongest known risk factor for cSVD and stroke? Using Mendelian randomization (MR) leveraging large, published genome-wide association studies, this study showed a putative causal association of larger WMH burden with increased AD risk after accounting for pulse pressure effects, and some evidence for association of lower BP with AD risk with possible confounding by shared genetic instruments. Longitudinal analyses on individual-level data also supported association of genetically determined WMH with incident all-cause-dementia and AD, independently of interim stroke. This study using complementary genetic epidemiology approaches, identified increasing WMH burden to be associated with dementia and AD risk, suggesting the association as specific for cSVD and independent of BP and stroke.

}, doi = {10.1101/2023.08.08.23293761}, author = {Sargurupremraj, Muralidharan and Soumar{\'e}, A{\"\i}cha and Bis, Joshua C and Surakka, Ida and J{\"u}rgenson, Tuuli and Joly, Pierre and Knol, Maria J and Wang, Ruiqi and Yang, Qiong and Satizabal, Claudia L and Gudjonsson, Alexander and Mishra, Aniket and Bouteloup, Vincent and Phuah, Chia-Ling and van Duijn, Cornelia M and Cruchaga, Carlos and Dufouil, Carole and Chene, Genevi{\`e}ve and Lopez, Oscar and Psaty, Bruce M and Tzourio, Christophe and Amouyel, Philippe and Adams, Hieab H and Jacqmin-Gadda, H{\'e}l{\`e}ne and Ikram, Mohammad Arfan and Gudnason, Vilmundur and Milani, Lili and Winsvold, Bendik S and Hveem, Kristian and Matthews, Paul M and Longstreth, W T and Seshadri, Sudha and Launer, Lenore J and Debette, Stephanie} } @article {9588, title = {Determinants of mosaic chromosomal alteration fitness.}, journal = {medRxiv}, year = {2023}, month = {2023 Oct 21}, abstract = {

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well-understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our estimates of mCA fitness were correlated (R = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using a theoretical probability distribution. Individuals with lymphoid-associated mCAs had a significantly higher white blood cell count and faster clonal expansion rate. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified , , and locus variants as modulators of mCA clonal expansion rate.

}, doi = {10.1101/2023.10.20.23297280}, author = {Pershad, Yash and Mack, Taralynn and Poisner, Hannah and Jakubek, Yasminka A and Stilp, Adrienne M and Mitchell, Braxton D and Lewis, Joshua P and Boerwinkle, Eric and Loos, Ruth J and Chami, Nathalie and Wang, Zhe and Barnes, Kathleen and Pankratz, Nathan and Fornage, Myriam and Redline, Susan and Psaty, Bruce M and Bis, Joshua C and Shojaie, Ali and Silverman, Edwin K and Cho, Michael H and Yun, Jeong and DeMeo, Dawn and Levy, Daniel and Johnson, Andrew and Mathias, Rasika and Taub, Margaret and Arnett, Donna and North, Kari and Raffield, Laura M and Carson, April and Doyle, Margaret F and Rich, Stephen S and Rotter, Jerome I and Guo, Xiuqing and Cox, Nancy and Roden, Dan M and Franceschini, Nora and Desai, Pinkal and Reiner, Alex and Auer, Paul L and Scheet, Paul and Jaiswal, Siddhartha and Weinstock, Joshua S and Bick, Alexander G} } @article {9379, title = {Evaluating the use of blood pressure polygenic risk scores across race/ethnic background groups.}, journal = {Nat Commun}, volume = {14}, year = {2023}, month = {2023 Jun 02}, pages = {3202}, abstract = {

We assess performance and limitations of polygenic risk scores (PRSs) for multiple blood pressure (BP) phenotypes in diverse population groups. We compare "clumping-and-thresholding" (PRSice2) and LD-based (LDPred2) methods to construct PRSs from each of multiple GWAS, as well as multi-PRS approaches that sum PRSs with and without weights, including PRS-CSx. We use datasets from the MGB Biobank, TOPMed study, UK biobank, and from All of Us to train, assess, and validate PRSs in groups defined by self-reported race/ethnic background (Asian, Black, Hispanic/Latino, and White). For both SBP and DBP, the PRS-CSx based PRS, constructed as a weighted sum of PRSs developed from multiple independent GWAS, perform best across all race/ethnic backgrounds. Stratified analysis in All of Us shows that PRSs are better predictive of BP in females compared to males, individuals without obesity, and middle-aged (40-60 years) compared to older and younger individuals.

}, keywords = {Blood Pressure, Ethnicity, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Multifactorial Inheritance, Population Health, Risk Factors}, issn = {2041-1723}, doi = {10.1038/s41467-023-38990-9}, author = {Kurniansyah, Nuzulul and Goodman, Matthew O and Khan, Alyna T and Wang, Jiongming and Feofanova, Elena and Bis, Joshua C and Wiggins, Kerri L and Huffman, Jennifer E and Kelly, Tanika and Elfassy, Tali and Guo, Xiuqing and Palmas, Walter and Lin, Henry J and Hwang, Shih-Jen and Gao, Yan and Young, Kendra and Kinney, Gregory L and Smith, Jennifer A and Yu, Bing and Liu, Simin and Wassertheil-Smoller, Sylvia and Manson, JoAnn E and Zhu, Xiaofeng and Chen, Yii-Der Ida and Lee, I-Te and Gu, C Charles and Lloyd-Jones, Donald M and Z{\"o}llner, Sebastian and Fornage, Myriam and Kooperberg, Charles and Correa, Adolfo and Psaty, Bruce M and Arnett, Donna K and Isasi, Carmen R and Rich, Stephen S and Kaplan, Robert C and Redline, Susan and Mitchell, Braxton D and Franceschini, Nora and Levy, Daniel and Rotter, Jerome I and Morrison, Alanna C and Sofer, Tamar} } @article {9419, title = {The genetic determinants of recurrent somatic mutations in 43,693 blood genomes.}, journal = {Sci Adv}, volume = {9}, year = {2023}, month = {2023 Apr 28}, pages = {eabm4945}, abstract = {

Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences.

}, keywords = {Germ-Line Mutation, Hematopoiesis, Humans, Middle Aged, Mutation, Mutation, Missense, Phenotype}, issn = {2375-2548}, doi = {10.1126/sciadv.abm4945}, author = {Weinstock, Joshua S and Laurie, Cecelia A and Broome, Jai G and Taylor, Kent D and Guo, Xiuqing and Shuldiner, Alan R and O{\textquoteright}Connell, Jeffrey R and Lewis, Joshua P and Boerwinkle, Eric and Barnes, Kathleen C and Chami, Nathalie and Kenny, Eimear E and Loos, Ruth J F and Fornage, Myriam and Redline, Susan and Cade, Brian E and Gilliland, Frank D and Chen, Zhanghua and Gauderman, W James and Kumar, Rajesh and Grammer, Leslie and Schleimer, Robert P and Psaty, Bruce M and Bis, Joshua C and Brody, Jennifer A and Silverman, Edwin K and Yun, Jeong H and Qiao, Dandi and Weiss, Scott T and Lasky-Su, Jessica and DeMeo, Dawn L and Palmer, Nicholette D and Freedman, Barry I and Bowden, Donald W and Cho, Michael H and Vasan, Ramachandran S and Johnson, Andrew D and Yanek, Lisa R and Becker, Lewis C and Kardia, Sharon and He, Jiang and Kaplan, Robert and Heckbert, Susan R and Smith, Nicholas L and Wiggins, Kerri L and Arnett, Donna K and Irvin, Marguerite R and Tiwari, Hemant and Correa, Adolfo and Raffield, Laura M and Gao, Yan and de Andrade, Mariza and Rotter, Jerome I and Rich, Stephen S and Manichaikul, Ani W and Konkle, Barbara A and Johnsen, Jill M and Wheeler, Marsha M and Custer, Brian S and Duggirala, Ravindranath and Curran, Joanne E and Blangero, John and Gui, Hongsheng and Xiao, Shujie and Williams, L Keoki and Meyers, Deborah A and Li, Xingnan and Ortega, Victor and McGarvey, Stephen and Gu, C Charles and Chen, Yii-Der Ida and Lee, Wen-Jane and Shoemaker, M Benjamin and Darbar, Dawood and Roden, Dan and Albert, Christine and Kooperberg, Charles and Desai, Pinkal and Blackwell, Thomas W and Abecasis, Goncalo R and Smith, Albert V and Kang, Hyun M and Mathias, Rasika and Natarajan, Pradeep and Jaiswal, Siddhartha and Reiner, Alexander P and Bick, Alexander G} } @article {9538, title = {Mosaic chromosomal alterations in blood across ancestries using whole-genome sequencing.}, journal = {Nat Genet}, volume = {55}, year = {2023}, month = {2023 Nov}, pages = {1912-1919}, abstract = {

Megabase-scale mosaic chromosomal alterations (mCAs) in blood are prognostic markers for a host of human diseases. Here, to gain a better understanding of mCA rates in genetically diverse populations, we analyzed whole-genome sequencing data from 67,390 individuals from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program. We observed higher sensitivity with whole-genome sequencing data, compared with array-based data, in uncovering mCAs at low mutant cell fractions and found that individuals of European ancestry have the highest rates of autosomal mCAs and the lowest rates of chromosome X mCAs, compared with individuals of African or Hispanic ancestry. Although further studies in diverse populations will be needed to replicate our findings, we report three loci associated with loss of chromosome X, associations between autosomal mCAs and rare variants in DCPS, ADM17, PPP1R16B and TET2 and ancestry-specific variants in ATM and MPL with mCAs in cis.

}, keywords = {Black People, Genome, Human, Genome-Wide Association Study, Hispanic or Latino, Humans, Mosaicism, Precision Medicine}, issn = {1546-1718}, doi = {10.1038/s41588-023-01553-1}, author = {Jakubek, Yasminka A and Zhou, Ying and Stilp, Adrienne and Bacon, Jason and Wong, Justin W and Ozcan, Zuhal and Arnett, Donna and Barnes, Kathleen and Bis, Joshua C and Boerwinkle, Eric and Brody, Jennifer A and Carson, April P and Chasman, Daniel I and Chen, Jiawen and Cho, Michael and Conomos, Matthew P and Cox, Nancy and Doyle, Margaret F and Fornage, Myriam and Guo, Xiuqing and Kardia, Sharon L R and Lewis, Joshua P and Loos, Ruth J F and Ma, Xiaolong and Machiela, Mitchell J and Mack, Taralynn M and Mathias, Rasika A and Mitchell, Braxton D and Mychaleckyj, Josyf C and North, Kari and Pankratz, Nathan and Peyser, Patricia A and Preuss, Michael H and Psaty, Bruce and Raffield, Laura M and Vasan, Ramachandran S and Redline, Susan and Rich, Stephen S and Rotter, Jerome I and Silverman, Edwin K and Smith, Jennifer A and Smith, Aaron P and Taub, Margaret and Taylor, Kent D and Yun, Jeong and Li, Yun and Desai, Pinkal and Bick, Alexander G and Reiner, Alexander P and Scheet, Paul and Auer, Paul L} } @article {9501, title = {Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification.}, journal = {Nat Genet}, volume = {55}, year = {2023}, month = {2023 Oct}, pages = {1651-1664}, abstract = {

Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.

}, issn = {1546-1718}, doi = {10.1038/s41588-023-01518-4}, author = {Kavousi, Maryam and Bos, Maxime M and Barnes, Hanna J and Lino Cardenas, Christian L and Wong, Doris and Lu, Haojie and Hodonsky, Chani J and Landsmeer, Lennart P L and Turner, Adam W and Kho, Minjung and Hasbani, Natalie R and de Vries, Paul S and Bowden, Donald W and Chopade, Sandesh and Deelen, Joris and Benavente, Ernest Diez and Guo, Xiuqing and Hofer, Edith and Hwang, Shih-Jen and Lutz, Sharon M and Lyytik{\"a}inen, Leo-Pekka and Slenders, Lotte and Smith, Albert V and Stanislawski, Maggie A and van Setten, Jessica and Wong, Quenna and Yanek, Lisa R and Becker, Diane M and Beekman, Marian and Budoff, Matthew J and Feitosa, Mary F and Finan, Chris and Hilliard, Austin T and Kardia, Sharon L R and Kovacic, Jason C and Kral, Brian G and Langefeld, Carl D and Launer, Lenore J and Malik, Shaista and Hoesein, Firdaus A A Mohamed and Mokry, Michal and Schmidt, Reinhold and Smith, Jennifer A and Taylor, Kent D and Terry, James G and van der Grond, Jeroen and van Meurs, Joyce and Vliegenthart, Rozemarijn and Xu, Jianzhao and Young, Kendra A and Zilh{\~a}o, Nuno R and Zweiker, Robert and Assimes, Themistocles L and Becker, Lewis C and Bos, Daniel and Carr, J Jeffrey and Cupples, L Adrienne and de Kleijn, Dominique P V and de Winther, Menno and den Ruijter, Hester M and Fornage, Myriam and Freedman, Barry I and Gudnason, Vilmundur and Hingorani, Aroon D and Hokanson, John E and Ikram, M Arfan and I{\v s}gum, Ivana and Jacobs, David R and K{\"a}h{\"o}nen, Mika and Lange, Leslie A and Lehtim{\"a}ki, Terho and Pasterkamp, Gerard and Raitakari, Olli T and Schmidt, Helena and Slagboom, P Eline and Uitterlinden, Andr{\'e} G and Vernooij, Meike W and Bis, Joshua C and Franceschini, Nora and Psaty, Bruce M and Post, Wendy S and Rotter, Jerome I and Bj{\"o}rkegren, Johan L M and O{\textquoteright}Donnell, Christopher J and Bielak, Lawrence F and Peyser, Patricia A and Malhotra, Rajeev and van der Laan, Sander W and Miller, Clint L} } @article {9412, title = {Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing.}, journal = {Nat Genet}, volume = {55}, year = {2023}, month = {2023 Feb}, pages = {291-300}, abstract = {

Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55\% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.

}, keywords = {Biology, Drug Repositioning, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide, Tobacco Use, Transcriptome}, issn = {1546-1718}, doi = {10.1038/s41588-022-01282-x}, author = {Chen, Fang and Wang, Xingyan and Jang, Seon-Kyeong and Quach, Bryan C and Weissenkampen, J Dylan and Khunsriraksakul, Chachrit and Yang, Lina and Sauteraud, Renan and Albert, Christine M and Allred, Nicholette D D and Arnett, Donna K and Ashley-Koch, Allison E and Barnes, Kathleen C and Barr, R Graham and Becker, Diane M and Bielak, Lawrence F and Bis, Joshua C and Blangero, John and Boorgula, Meher Preethi and Chasman, Daniel I and Chavan, Sameer and Chen, Yii-der I and Chuang, Lee-Ming and Correa, Adolfo and Curran, Joanne E and David, Sean P and Fuentes, Lisa de Las and Deka, Ranjan and Duggirala, Ravindranath and Faul, Jessica D and Garrett, Melanie E and Gharib, Sina A and Guo, Xiuqing and Hall, Michael E and Hawley, Nicola L and He, Jiang and Hobbs, Brian D and Hokanson, John E and Hsiung, Chao A and Hwang, Shih-Jen and Hyde, Thomas M and Irvin, Marguerite R and Jaffe, Andrew E and Johnson, Eric O and Kaplan, Robert and Kardia, Sharon L R and Kaufman, Joel D and Kelly, Tanika N and Kleinman, Joel E and Kooperberg, Charles and Lee, I-Te and Levy, Daniel and Lutz, Sharon M and Manichaikul, Ani W and Martin, Lisa W and Marx, Olivia and McGarvey, Stephen T and Minster, Ryan L and Moll, Matthew and Moussa, Karine A and Naseri, Take and North, Kari E and Oelsner, Elizabeth C and Peralta, Juan M and Peyser, Patricia A and Psaty, Bruce M and Rafaels, Nicholas and Raffield, Laura M and Reupena, Muagututi{\textquoteright}a Sefuiva and Rich, Stephen S and Rotter, Jerome I and Schwartz, David A and Shadyab, Aladdin H and Sheu, Wayne H-H and Sims, Mario and Smith, Jennifer A and Sun, Xiao and Taylor, Kent D and Telen, Marilyn J and Watson, Harold and Weeks, Daniel E and Weir, David R and Yanek, Lisa R and Young, Kendra A and Young, Kristin L and Zhao, Wei and Hancock, Dana B and Jiang, Bibo and Vrieze, Scott and Liu, Dajiang J} } @article {9331, title = {Plasma Proteomic Associations With Incident Ischemic Stroke in Older Adults: The Cardiovascular Health Study.}, journal = {Neurology}, year = {2023}, month = {2023 Apr 04}, abstract = {

BACKGROUND: Plasma proteomics may elucidate novel insights into the pathophysiology of ischemic stroke (IS), identify biomarkers of IS risk, and guide development of nascent prevention strategies. We evaluated the relationship between the plasma proteome and IS risk in the population-based Cardiovascular Health Study (CHS).

METHODS: Eligible CHS participants were free of prevalent stroke and underwent quantification of 1298 plasma proteins using the aptamer-based SOMAScan assay platform from the 1992-1993 study visit. Multivariable Cox proportional hazards regression was used to evaluate associations between a 1-standard deviation increase in the log-2 transformed estimated plasma protein concentrations and incident IS, adjusting for demographics, IS risk factors, and estimated glomerular filtration rate. For proteins independently associated with incident IS, a secondary stratified analysis evaluated associations in subgroups defined by sex and race. Exploratory analyses evaluated plasma proteomic associations with cardioembolic and non-cardioembolic IS as well as proteins associated with IS risk in participants with left atrial dysfunction but without atrial fibrillation.

RESULTS: Of 2983 eligible participants, the mean age was 74.3 ({\textpm} 4.8) years, 61.2\% were women, and 15.4\% were Black. Over a median follow-up of 12.6 years, 450 participants experienced an incident IS. N-terminal pro-brain natriuretic peptide (NTproBNP, adjusted HR 1.37, 95\% CI 1.23-1.53, P=2.08x10) and macrophage metalloelastase (MMP12, adjusted HR 1.30, 95\% CI 1.16-1.45, P=4.55x10) were independently associated with IS risk. These two associations were similar in men and women and in Black and non-Black participants. In exploratory analyses, NTproBNP was independently associated with incident cardioembolic IS, E-selectin with incident non-cardioembolic IS, and secreted frizzled-related protein 1 with IS risk in participants with left atrial dysfunction.

CONCLUSIONS: In a cohort of older adults, NTproBNP and MMP12 were independently associated with IS risk. We identified plasma proteomic determinants of incident cardioembolic and non-cardioembolic IS and found a novel protein associated with IS risk in those with left atrial dysfunction.

}, issn = {1526-632X}, doi = {10.1212/WNL.0000000000207242}, author = {Kalani, Rizwan and Bartz, Traci M and Psaty, Bruce M and Elkind, Mitchell S V and Floyd, James S and Gerszten, Robert E and Shojaie, Ali and Heckbert, Susan R and Bis, Joshua C and Austin, Thomas R and Tirschwell, David L and Delaney, Joseph A C and Longstreth, W T} } @article {9239, title = {Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies.}, journal = {Nat Genet}, volume = {55}, year = {2023}, month = {2023 Jan}, pages = {154-164}, abstract = {

Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.

}, keywords = {Exome Sequencing, Genome-Wide Association Study, Lipids, Phenotype, Whole Genome Sequencing}, issn = {1546-1718}, doi = {10.1038/s41588-022-01225-6}, author = {Li, Xihao and Quick, Corbin and Zhou, Hufeng and Gaynor, Sheila M and Liu, Yaowu and Chen, Han and Selvaraj, Margaret Sunitha and Sun, Ryan and Dey, Rounak and Arnett, Donna K and Bielak, Lawrence F and Bis, Joshua C and Blangero, John and Boerwinkle, Eric and Bowden, Donald W and Brody, Jennifer A and Cade, Brian E and Correa, Adolfo and Cupples, L Adrienne and Curran, Joanne E and de Vries, Paul S and Duggirala, Ravindranath and Freedman, Barry I and G{\"o}ring, Harald H H and Guo, Xiuqing and Haessler, Jeffrey and Kalyani, Rita R and Kooperberg, Charles and Kral, Brian G and Lange, Leslie A and Manichaikul, Ani and Martin, Lisa W and McGarvey, Stephen T and Mitchell, Braxton D and Montasser, May E and Morrison, Alanna C and Naseri, Take and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Peyser, Patricia A and Psaty, Bruce M and Raffield, Laura M and Redline, Susan and Reiner, Alexander P and Reupena, Muagututi{\textquoteright}a Sefuiva and Rice, Kenneth M and Rich, Stephen S and Sitlani, Colleen M and Smith, Jennifer A and Taylor, Kent D and Vasan, Ramachandran S and Willer, Cristen J and Wilson, James G and Yanek, Lisa R and Zhao, Wei and Rotter, Jerome I and Natarajan, Pradeep and Peloso, Gina M and Li, Zilin and Lin, Xihong} } @article {9418, title = {Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed Whole Genome Sequencing Study.}, journal = {medRxiv}, year = {2023}, month = {2023 Jun 29}, abstract = {

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess the associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant aggregate association tests using the STAAR (variant-Set Test for Association using Annotation infoRmation) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a {\textpm}500 kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73\%) were conditionally independent of common regulatory variations and rare protein coding variations at the same loci. We replicated 34 out of 61 (56\%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNA, implicating new therapeutic opportunities.

}, doi = {10.1101/2023.06.28.23291966}, author = {Wang, Yuxuan and Selvaraj, Margaret Sunitha and Li, Xihao and Li, Zilin and Holdcraft, Jacob A and Arnett, Donna K and Bis, Joshua C and Blangero, John and Boerwinkle, Eric and Bowden, Donald W and Cade, Brian E and Carlson, Jenna C and Carson, April P and Chen, Yii-Der Ida and Curran, Joanne E and de Vries, Paul S and Dutcher, Susan K and Ellinor, Patrick T and Floyd, James S and Fornage, Myriam and Freedman, Barry I and Gabriel, Stacey and Germer, Soren and Gibbs, Richard A and Guo, Xiuqing and He, Jiang and Heard-Costa, Nancy and Hildalgo, Bertha and Hou, Lifang and Irvin, Marguerite R and Joehanes, Roby and Kaplan, Robert C and Kardia, Sharon Lr and Kelly, Tanika N and Kim, Ryan and Kooperberg, Charles and Kral, Brian G and Levy, Daniel and Li, Changwei and Liu, Chunyu and Lloyd-Jone, Don and Loos, Ruth Jf and Mahaney, Michael C and Martin, Lisa W and Mathias, Rasika A and Minster, Ryan L and Mitchell, Braxton D and Montasser, May E and Morrison, Alanna C and Murabito, Joanne M and Naseri, Take and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Preuss, Michael H and Psaty, Bruce M and Raffield, Laura M and Rao, Dabeeru C and Redline, Susan and Reiner, Alexander P and Rich, Stephen S and Ruepena, Muagututi{\textquoteright}a Sefuiva and Sheu, Wayne H-H and Smith, Jennifer A and Smith, Albert and Tiwari, Hemant K and Tsai, Michael Y and Viaud-Martinez, Karine A and Wang, Zhe and Yanek, Lisa R and Zhao, Wei and Rotter, Jerome I and Lin, Xihong and Natarajan, Pradeep and Peloso, Gina M} } @article {9543, title = {A statistical framework for powerful multi-trait rare variant analysis in large-scale whole-genome sequencing studies.}, journal = {bioRxiv}, year = {2023}, month = {2023 Nov 02}, abstract = {

Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally-scalable analytical pipeline for functionally-informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits (low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides) in 61,861 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered new associations with lipid traits missed by single-trait analysis, including rare variants within an enhancer of and an intergenic region on chromosome 1.

}, doi = {10.1101/2023.10.30.564764}, author = {Li, Xihao and Chen, Han and Selvaraj, Margaret Sunitha and Van Buren, Eric and Zhou, Hufeng and Wang, Yuxuan and Sun, Ryan and McCaw, Zachary R and Yu, Zhi and Arnett, Donna K and Bis, Joshua C and Blangero, John and Boerwinkle, Eric and Bowden, Donald W and Brody, Jennifer A and Cade, Brian E and Carson, April P and Carlson, Jenna C and Chami, Nathalie and Chen, Yii-Der Ida and Curran, Joanne E and de Vries, Paul S and Fornage, Myriam and Franceschini, Nora and Freedman, Barry I and Gu, Charles and Heard-Costa, Nancy L and He, Jiang and Hou, Lifang and Hung, Yi-Jen and Irvin, Marguerite R and Kaplan, Robert C and Kardia, Sharon L R and Kelly, Tanika and Konigsberg, Iain and Kooperberg, Charles and Kral, Brian G and Li, Changwei and Loos, Ruth J F and Mahaney, Michael C and Martin, Lisa W and Mathias, Rasika A and Minster, Ryan L and Mitchell, Braxton D and Montasser, May E and Morrison, Alanna C and Palmer, Nicholette D and Peyser, Patricia A and Psaty, Bruce M and Raffield, Laura M and Redline, Susan and Reiner, Alexander P and Rich, Stephen S and Sitlani, Colleen M and Smith, Jennifer A and Taylor, Kent D and Tiwari, Hemant and Vasan, Ramachandran S and Wang, Zhe and Yanek, Lisa R and Yu, Bing and Rice, Kenneth M and Rotter, Jerome I and Peloso, Gina M and Natarajan, Pradeep and Li, Zilin and Liu, Zhonghua and Lin, Xihong} } @article {9537, title = {Type 2 Diabetes Modifies the Association of CAD Genomic Risk Variants With Subclinical Atherosclerosis.}, journal = {Circ Genom Precis Med}, year = {2023}, month = {2023 Nov 28}, pages = {e004176}, abstract = {

BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D.

METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test.

RESULTS: Using a Bonferroni-corrected significance threshold of <1.6{\texttimes}10, we identified 3 genes (, , and ) associated with CAC and 2 genes ( and ) associated with carotid intima-media thickness and carotid plaque, respectively, through gene-based rare variant set analysis. Both and also had significantly different associations for CAC in T2D cases versus controls. No significant interaction tests were identified through the candidate single-variant analysis.

CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.123.004176}, author = {Hasbani, Natalie R and Westerman, Kenneth E and Heon Kwak, Soo and Chen, Han and Li, Xihao and DiCorpo, Daniel and Wessel, Jennifer and Bis, Joshua C and Sarnowski, Chloe and Wu, Peitao and Bielak, Lawrence F and Guo, Xiuqing and Heard-Costa, Nancy and Kinney, Gregory and Mahaney, Michael C and Montasser, May E and Palmer, Nicholette D and Raffield, Laura M and Terry, James G and Yanek, Lisa R and Bon, Jessica and Bowden, Donald W and Brody, Jennifer A and Duggirala, Ravindranath and Jacobs, David R and Kalyani, Rita R and Lange, Leslie A and Mitchell, Braxton D and Smith, Jennifer A and Taylor, Kent D and Carson, April and Curran, Joanne E and Fornage, Myriam and Freedman, Barry I and Gabriel, Stacey and Gibbs, Richard A and Gupta, Namrata and Kardia, Sharon L R and Kral, Brian G and Momin, Zeineen and Newman, Anne B and Post, Wendy S and Viaud-Martinez, Karine A and Young, Kendra A and Becker, Lewis C and Bertoni, Alain and Blangero, John and Carr, John J and Pratte, Katherine and Psaty, Bruce M and Rich, Stephen S and Wu, Joseph C and Malhotra, Rajeev and Peyser, Patricia A and Morrison, Alanna C and Vasan, Ramachandran S and Lin, Xihong and Rotter, Jerome I and Meigs, James B and Manning, Alisa K and de Vries, Paul S} } @article {9484, title = {WHOLE GENOME SEQUENCING ANALYSIS OF BODY MASS INDEX IDENTIFIES NOVEL AFRICAN ANCESTRY-SPECIFIC RISK ALLELE.}, journal = {medRxiv}, year = {2023}, month = {2023 Aug 22}, abstract = {

Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51\% were of non-European population groups. We discovered 18 BMI-associated signals ( < 5 {\texttimes} 10 ). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the and loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.

}, doi = {10.1101/2023.08.21.23293271}, author = {Zhang, Xinruo and Brody, Jennifer A and Graff, Mariaelisa and Highland, Heather M and Chami, Nathalie and Xu, Hanfei and Wang, Zhe and Ferrier, Kendra and Chittoor, Geetha and Josyula, Navya S and Li, Xihao and Li, Zilin and Allison, Matthew A and Becker, Diane M and Bielak, Lawrence F and Bis, Joshua C and Boorgula, Meher Preethi and Bowden, Donald W and Broome, Jai G and Buth, Erin J and Carlson, Christopher S and Chang, Kyong-Mi and Chavan, Sameer and Chiu, Yen-Feng and Chuang, Lee-Ming and Conomos, Matthew P and DeMeo, Dawn L and Du, Margaret and Duggirala, Ravindranath and Eng, Celeste and Fohner, Alison E and Freedman, Barry I and Garrett, Melanie E and Guo, Xiuqing and Haiman, Chris and Heavner, Benjamin D and Hidalgo, Bertha and Hixson, James E and Ho, Yuk-Lam and Hobbs, Brian D and Hu, Donglei and Hui, Qin and Hwu, Chii-Min and Jackson, Rebecca D and Jain, Deepti and Kalyani, Rita R and Kardia, Sharon L R and Kelly, Tanika N and Lange, Ethan M and LeNoir, Michael and Li, Changwei and Marchand, Loic Le and McDonald, Merry-Lynn N and McHugh, Caitlin P and Morrison, Alanna C and Naseri, Take and O{\textquoteright}Connell, Jeffrey and O{\textquoteright}Donnell, Christopher J and Palmer, Nicholette D and Pankow, James S and Perry, James A and Peters, Ulrike and Preuss, Michael H and Rao, D C and Regan, Elizabeth A and Reupena, Sefuiva M and Roden, Dan M and Rodriguez-Santana, Jose and Sitlani, Colleen M and Smith, Jennifer A and Tiwari, Hemant K and Vasan, Ramachandran S and Wang, Zeyuan and Weeks, Daniel E and Wessel, Jennifer and Wiggins, Kerri L and Wilkens, Lynne R and Wilson, Peter W F and Yanek, Lisa R and Yoneda, Zachary T and Zhao, Wei and Z{\"o}llner, Sebastian and Arnett, Donna K and Ashley-Koch, Allison E and Barnes, Kathleen C and Blangero, John and Boerwinkle, Eric and Burchard, Esteban G and Carson, April P and Chasman, Daniel I and Chen, Yii-Der Ida and Curran, Joanne E and Fornage, Myriam and Gordeuk, Victor R and He, Jiang and Heckbert, Susan R and Hou, Lifang and Irvin, Marguerite R and Kooperberg, Charles and Minster, Ryan L and Mitchell, Braxton D and Nouraie, Mehdi and Psaty, Bruce M and Raffield, Laura M and Reiner, Alexander P and Rich, Stephen S and Rotter, Jerome I and Shoemaker, M Benjamin and Smith, Nicholas L and Taylor, Kent D and Telen, Marilyn J and Weiss, Scott T and Zhang, Yingze and Costa, Nancy Heard- and Sun, Yan V and Lin, Xihong and Cupples, L Adrienne and Lange, Leslie A and Liu, Ching-Ti and Loos, Ruth J F and North, Kari E and Justice, Anne E} } @article {9500, title = {Whole Genome Sequencing Based Analysis of Inflammation Biomarkers in the Trans-Omics for Precision Medicine (TOPMed) Consortium.}, journal = {bioRxiv}, year = {2023}, month = {2023 Sep 12}, abstract = {

Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38,465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program. We identified 22 distinct single-variant associations across 6 traits - E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin - that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.

}, doi = {10.1101/2023.09.10.555215}, author = {Jiang, Min-Zhi and Gaynor, Sheila M and Li, Xihao and Van Buren, Eric and Stilp, Adrienne and Buth, Erin and Wang, Fei Fei and Manansala, Regina and Gogarten, Stephanie M and Li, Zilin and Polfus, Linda M and Salimi, Shabnam and Bis, Joshua C and Pankratz, Nathan and Yanek, Lisa R and Durda, Peter and Tracy, Russell P and Rich, Stephen S and Rotter, Jerome I and Mitchell, Braxton D and Lewis, Joshua P and Psaty, Bruce M and Pratte, Katherine A and Silverman, Edwin K and Kaplan, Robert C and Avery, Christy and North, Kari and Mathias, Rasika A and Faraday, Nauder and Lin, Honghuang and Wang, Biqi and Carson, April P and Norwood, Arnita F and Gibbs, Richard A and Kooperberg, Charles and Lundin, Jessica and Peters, Ulrike and Dupuis, Jos{\'e}e and Hou, Lifang and Fornage, Myriam and Benjamin, Emelia J and Reiner, Alexander P and Bowler, Russell P and Lin, Xihong and Auer, Paul L and Raffield, Laura M} } @article {9580, title = {Association analysis of mitochondrial DNA heteroplasmic variants: methods and application.}, journal = {medRxiv}, year = {2024}, month = {2024 Jan 13}, abstract = {

We rigorously assessed a comprehensive association testing framework for heteroplasmy, employing both simulated and real-world data. This framework employed a variant allele fraction (VAF) threshold and harnessed multiple gene-based tests for robust identification and association testing of heteroplasmy. Our simulation studies demonstrated that gene-based tests maintained an appropriate type I error rate at α=0.001. Notably, when 5\% or more heteroplasmic variants within a target region were linked to an outcome, burden-extension tests (including the adaptive burden test, variable threshold burden test, and z-score weighting burden test) outperformed the sequence kernel association test (SKAT) and the original burden test. Applying this framework, we conducted association analyses on whole-blood derived heteroplasmy in 17,507 individuals of African and European ancestries (31\% of African Ancestry, mean age of 62, with 58\% women) with whole genome sequencing data. We performed both cohort- and ancestry-specific association analyses, followed by meta-analysis on bothpooled samples and within each ancestry group. Our results suggest that mtDNA-Enco ded genes/regions are likely to exhibit varying rates in somatic aging, with the notably strong associations observed between heteroplasmy in the and genes ( <0.001) and advance aging by the Original Burden test. In contrast, SKAT identified significant associations ( <0.001) between diabetes and the aggregated effects of heteroplasmy in several protein-coding genes. Further research is warranted to validate these findings. In summary, our proposed statistical framework represents a valuable tool for facilitating association testing of heteroplasmy with disease traits in large human populations.

}, doi = {10.1101/2024.01.12.24301233}, author = {Sun, Xianbang and Bulekova, Katia and Yang, Jian and Lai, Meng and Pitsillides, Achilleas N and Liu, Xue and Zhang, Yuankai and Guo, Xiuqing and Yong, Qian and Raffield, Laura M and Rotter, Jerome I and Rich, Stephen S and Abecasis, Goncalo and Carson, April P and Vasan, Ramachandran S and Bis, Joshua C and Psaty, Bruce M and Boerwinkle, Eric and Fitzpatrick, Annette L and Satizabal, Claudia L and Arking, Dan E and Ding, Jun and Levy, Daniel and Liu, Chunyu} } @article {9620, title = {Familial Hypercholesterolemia Variant and Cardiovascular Risk in Individuals With Elevated Cholesterol.}, journal = {JAMA Cardiol}, year = {2024}, month = {2024 Jan 31}, abstract = {

IMPORTANCE: Familial hypercholesterolemia (FH) is a genetic disorder that often results in severely high low-density lipoprotein cholesterol (LDL-C) and high risk of premature coronary heart disease (CHD). However, the impact of FH variants on CHD risk among individuals with moderately elevated LDL-C is not well quantified.

OBJECTIVE: To assess CHD risk associated with FH variants among individuals with moderately (130-189 mg/dL) and severely (>=190 mg/dL) elevated LDL-C and to quantify excess CHD deaths attributable to FH variants in US adults.

DESIGN, SETTING, AND PARTICIPANTS: A total of 21 426 individuals without preexisting CHD from 6 US cohort studies (Atherosclerosis Risk in Communities study, Coronary Artery Risk Development in Young Adults study, Cardiovascular Health Study, Framingham Heart Study Offspring cohort, Jackson Heart Study, and Multi-Ethnic Study of Atherosclerosis) were included, 63 of whom had an FH variant. Data were collected from 1971 to 2018, and the median (IQR) follow-up was 18 (13-28) years. Data were analyzed from March to May 2023.

EXPOSURES: LDL-C, cumulative past LDL-C, FH variant status.

MAIN OUTCOMES AND MEASURES: Cox proportional hazards models estimated associations between FH variants and incident CHD. The Cardiovascular Disease Policy Model projected excess CHD deaths associated with FH variants in US adults.

RESULTS: Of the 21 426 individuals without preexisting CHD (mean [SD] age 52.1 [15.5] years; 12 041 [56.2\%] female), an FH variant was found in 22 individuals with moderately elevated LDL-C (0.3\%) and in 33 individuals with severely elevated LDL-C (2.5\%). The adjusted hazard ratios for incident CHD comparing those with and without FH variants were 2.9 (95\% CI, 1.4-6.0) and 2.6 (95\% CI, 1.4-4.9) among individuals with moderately and severely elevated LDL-C, respectively. The association between FH variants and CHD was slightly attenuated when further adjusting for baseline LDL-C level, whereas the association was no longer statistically significant after adjusting for cumulative past LDL-C exposure. Among US adults 20 years and older with no history of CHD and LDL-C 130 mg/dL or higher, more than 417 000 carry an FH variant and were projected to experience more than 12 000 excess CHD deaths in those with moderately elevated LDL-C and 15 000 in those with severely elevated LDL-C compared with individuals without an FH variant.

CONCLUSIONS AND RELEVANCE: In this pooled cohort study, the presence of FH variants was associated with a 2-fold higher CHD risk, even when LDL-C was only moderately elevated. The increased CHD risk appeared to be largely explained by the higher cumulative LDL-C exposure in individuals with an FH variant compared to those without. Further research is needed to assess the value of adding genetic testing to traditional phenotypic FH screening.

}, issn = {2380-6591}, doi = {10.1001/jamacardio.2023.5366}, author = {Zhang, Yiyi and Dron, Jacqueline S and Bellows, Brandon K and Khera, Amit V and Liu, Junxiu and Balte, Pallavi P and Oelsner, Elizabeth C and Amr, Sami Samir and Lebo, Matthew S and Nagy, Anna and Peloso, Gina M and Natarajan, Pradeep and Rotter, Jerome I and Willer, Cristen and Boerwinkle, Eric and Ballantyne, Christie M and Lutsey, Pamela L and Fornage, Myriam and Lloyd-Jones, Donald M and Hou, Lifang and Psaty, Bruce M and Bis, Joshua C and Floyd, James S and Vasan, Ramachandran S and Heard-Costa, Nancy L and Carson, April P and Hall, Michael E and Rich, Stephen S and Guo, Xiuqing and Kazi, Dhruv S and de Ferranti, Sarah D and Moran, Andrew E} } @article {9578, title = {Multi-omics and pathway analyses of genome-wide associations implicate regulation and immunity in verbal declarative memory performance.}, journal = {Alzheimers Res Ther}, volume = {16}, year = {2024}, month = {2024 Jan 20}, pages = {14}, abstract = {

BACKGROUND: Uncovering the functional relevance underlying verbal declarative memory (VDM) genome-wide association study (GWAS) results may facilitate the development of interventions to reduce age-related memory decline and dementia.

METHODS: We performed multi-omics and pathway enrichment analyses of paragraph (PAR-dr) and word list (WL-dr) delayed recall GWAS from 29,076 older non-demented individuals of European descent. We assessed the relationship between single-variant associations and expression quantitative trait loci (eQTLs) in 44 tissues and methylation quantitative trait loci (meQTLs) in the hippocampus. We determined the relationship between gene associations and transcript levels in 53 tissues, annotation as immune genes, and regulation by transcription factors (TFs) and microRNAs. To identify significant pathways, gene set enrichment was tested in each cohort and meta-analyzed across cohorts. Analyses of differential expression in brain tissues were conducted for pathway component genes.

RESULTS: The single-variant associations of VDM showed significant linkage disequilibrium (LD) with eQTLs across all tissues and meQTLs within the hippocampus. Stronger WL-dr gene associations correlated with reduced expression in four brain tissues, including the hippocampus. More robust PAR-dr and/or WL-dr gene associations were intricately linked with immunity and were influenced by 31 TFs and 2 microRNAs. Six pathways, including type I diabetes, exhibited significant associations with both PAR-dr and WL-dr. These pathways included fifteen MHC genes intricately linked to VDM performance, showing diverse expression patterns based on cognitive status in brain tissues.

CONCLUSIONS: VDM genetic associations influence expression regulation via eQTLs and meQTLs. The involvement of TFs, microRNAs, MHC genes, and immune-related pathways contributes to VDM performance in older individuals.

}, keywords = {Aged, Cognition, Genome-Wide Association Study, Humans, Memory, MicroRNAs, Multiomics, Polymorphism, Single Nucleotide}, issn = {1758-9193}, doi = {10.1186/s13195-023-01376-6}, author = {Mei, Hao and Simino, Jeannette and Li, Lianna and Jiang, Fan and Bis, Joshua C and Davies, Gail and Hill, W David and Xia, Charley and Gudnason, Vilmundur and Yang, Qiong and Lahti, Jari and Smith, Jennifer A and Kirin, Mirna and De Jager, Philip and Armstrong, Nicola J and Ghanbari, Mohsen and Kolcic, Ivana and Moran, Christopher and Teumer, Alexander and Sargurupremraj, Murali and Mahmud, Shamsed and Fornage, Myriam and Zhao, Wei and Satizabal, Claudia L and Polasek, Ozren and R{\"a}ikk{\"o}nen, Katri and Liewald, David C and Homuth, Georg and Callisaya, Michele and Mather, Karen A and Windham, B Gwen and Zemunik, Tatijana and Palotie, Aarno and Pattie, Alison and van der Auwera, Sandra and Thalamuthu, Anbupalam and Knopman, David S and Rudan, Igor and Starr, John M and Wittfeld, Katharina and Kochan, Nicole A and Griswold, Michael E and Vitart, Veronique and Brodaty, Henry and Gottesman, Rebecca and Cox, Simon R and Psaty, Bruce M and Boerwinkle, Eric and Chasman, Daniel I and Grodstein, Francine and Sachdev, Perminder S and Srikanth, Velandai and Hayward, Caroline and Wilson, James F and Eriksson, Johan G and Kardia, Sharon L R and Grabe, Hans J and Bennett, David A and Ikram, M Arfan and Deary, Ian J and van Duijn, Cornelia M and Launer, Lenore and Fitzpatrick, Annette L and Seshadri, Sudha and Bressler, Jan and Debette, Stephanie and Mosley, Thomas H} }