@article {1311, title = {Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium.}, journal = {PLoS Genet}, volume = {7}, year = {2011}, month = {2011 Jul}, pages = {e1002193}, abstract = {

Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3 x 10$^{-}$$^{6}$$^{4}$) and lower levels of eicosapentaenoic acid (EPA, p = 5 x 10$^{-}$$^{5}$$^{8}$) and docosapentaenoic acid (DPA, p = 4 x 10$^{-}${\textonesuperior}$^{5}$$^{4}$). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2 x 10$^{-}${\textonesuperior}{\texttwosuperior}) and DPA (p = 1 x 10$^{-}$$^{4}${\textthreesuperior}) and lower docosahexaenoic acid (DHA, p = 1 x 10$^{-}${\textonesuperior}$^{5}$). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1 x 10$^{-}$$^{8}$). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries.

}, keywords = {Alleles, Continental Population Groups, Fatty Acids, Omega-3, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Metabolic Networks and Pathways, Polymorphism, Single Nucleotide}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002193}, author = {Lemaitre, Rozenn N and Tanaka, Toshiko and Tang, Weihong and Manichaikul, Ani and Foy, Millennia and Kabagambe, Edmond K and Nettleton, Jennifer A and King, Irena B and Weng, Lu-Chen and Bhattacharya, Sayanti and Bandinelli, Stefania and Bis, Joshua C and Rich, Stephen S and Jacobs, David R and Cherubini, Antonio and McKnight, Barbara and Liang, Shuang and Gu, Xiangjun and Rice, Kenneth and Laurie, Cathy C and Lumley, Thomas and Browning, Brian L and Psaty, Bruce M and Chen, Yii-der I and Friedlander, Yechiel and Djouss{\'e}, Luc and Wu, Jason H Y and Siscovick, David S and Uitterlinden, Andr{\'e} G and Arnett, Donna K and Ferrucci, Luigi and Fornage, Myriam and Tsai, Michael Y and Mozaffarian, Dariush and Steffen, Lyn M} } @article {6096, title = {Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function.}, journal = {Nat Genet}, volume = {43}, year = {2011}, month = {2011 Sep 25}, pages = {1082-90}, abstract = {

Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 {\texttimes} 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.

}, keywords = {Child, European Continental Ancestry Group, Genome-Wide Association Study, Humans, Pulmonary Disease, Chronic Obstructive, Respiratory Function Tests}, issn = {1546-1718}, doi = {10.1038/ng.941}, author = {Soler Artigas, Maria and Loth, Daan W and Wain, Louise V and Gharib, Sina A and Obeidat, Ma{\textquoteright}en and Tang, Wenbo and Zhai, Guangju and Zhao, Jing Hua and Smith, Albert Vernon and Huffman, Jennifer E and Albrecht, Eva and Jackson, Catherine M and Evans, David M and Cadby, Gemma and Fornage, Myriam and Manichaikul, Ani and Lopez, Lorna M and Johnson, Toby and Aldrich, Melinda C and Aspelund, Thor and Barroso, In{\^e}s and Campbell, Harry and Cassano, Patricia A and Couper, David J and Eiriksdottir, Gudny and Franceschini, Nora and Garcia, Melissa and Gieger, Christian and Gislason, Gauti Kjartan and Grkovic, Ivica and Hammond, Christopher J and Hancock, Dana B and Harris, Tamara B and Ramasamy, Adaikalavan and Heckbert, Susan R and Heli{\"o}vaara, Markku and Homuth, Georg and Hysi, Pirro G and James, Alan L and Jankovic, Stipan and Joubert, Bonnie R and Karrasch, Stefan and Klopp, Norman and Koch, Beate and Kritchevsky, Stephen B and Launer, Lenore J and Liu, Yongmei and Loehr, Laura R and Lohman, Kurt and Loos, Ruth J F and Lumley, Thomas and Al Balushi, Khalid A and Ang, Wei Q and Barr, R Graham and Beilby, John and Blakey, John D and Boban, Mladen and Boraska, Vesna and Brisman, Jonas and Britton, John R and Brusselle, Guy G and Cooper, Cyrus and Curjuric, Ivan and Dahgam, Santosh and Deary, Ian J and Ebrahim, Shah and Eijgelsheim, Mark and Francks, Clyde and Gaysina, Darya and Granell, Raquel and Gu, Xiangjun and Hankinson, John L and Hardy, Rebecca and Harris, Sarah E and Henderson, John and Henry, Amanda and Hingorani, Aroon D and Hofman, Albert and Holt, Patrick G and Hui, Jennie and Hunter, Michael L and Imboden, Medea and Jameson, Karen A and Kerr, Shona M and Kolcic, Ivana and Kronenberg, Florian and Liu, Jason Z and Marchini, Jonathan and McKeever, Tricia and Morris, Andrew D and Olin, Anna-Carin and Porteous, David J and Postma, Dirkje S and Rich, Stephen S and Ring, Susan M and Rivadeneira, Fernando and Rochat, Thierry and Sayer, Avan Aihie and Sayers, Ian and Sly, Peter D and Smith, George Davey and Sood, Akshay and Starr, John M and Uitterlinden, Andr{\'e} G and Vonk, Judith M and Wannamethee, S Goya and Whincup, Peter H and Wijmenga, Cisca and Williams, O Dale and Wong, Andrew and Mangino, Massimo and Marciante, Kristin D and McArdle, Wendy L and Meibohm, Bernd and Morrison, Alanna C and North, Kari E and Omenaas, Ernst and Palmer, Lyle J and Pietil{\"a}inen, Kirsi H and Pin, Isabelle and Pola Sbreve Ek, Ozren and Pouta, Anneli and Psaty, Bruce M and Hartikainen, Anna-Liisa and Rantanen, Taina and Ripatti, Samuli and Rotter, Jerome I and Rudan, Igor and Rudnicka, Alicja R and Schulz, Holger and Shin, So-Youn and Spector, Tim D and Surakka, Ida and Vitart, Veronique and V{\"o}lzke, Henry and Wareham, Nicholas J and Warrington, Nicole M and Wichmann, H-Erich and Wild, Sarah H and Wilk, Jemma B and Wjst, Matthias and Wright, Alan F and Zgaga, Lina and Zemunik, Tatijana and Pennell, Craig E and Nyberg, Fredrik and Kuh, Diana and Holloway, John W and Boezen, H Marike and Lawlor, Debbie A and Morris, Richard W and Probst-Hensch, Nicole and Kaprio, Jaakko and Wilson, James F and Hayward, Caroline and K{\"a}h{\"o}nen, Mika and Heinrich, Joachim and Musk, Arthur W and Jarvis, Deborah L and Gl{\"a}ser, Sven and Jarvelin, Marjo-Riitta and Ch Stricker, Bruno H and Elliott, Paul and O{\textquoteright}Connor, George T and Strachan, David P and London, Stephanie J and Hall, Ian P and Gudnason, Vilmundur and Tobin, Martin D} } @article {6092, title = {Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction.}, journal = {Am J Respir Crit Care Med}, volume = {186}, year = {2012}, month = {2012 Oct 01}, pages = {622-32}, abstract = {

RATIONALE: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known.

OBJECTIVES: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases.

METHODS: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations.

MEASUREMENTS AND MAIN RESULTS: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis.

CONCLUSIONS: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.

}, keywords = {Aged, Female, Forced Expiratory Volume, Genome-Wide Association Study, Humans, Male, Middle Aged, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Pulmonary Disease, Chronic Obstructive, Receptors, Nicotinic, Receptors, Serotonin, 5-HT4, Smoking, Vital Capacity}, issn = {1535-4970}, doi = {10.1164/rccm.201202-0366OC}, author = {Wilk, Jemma B and Shrine, Nick R G and Loehr, Laura R and Zhao, Jing Hua and Manichaikul, Ani and Lopez, Lorna M and Smith, Albert Vernon and Heckbert, Susan R and Smolonska, Joanna and Tang, Wenbo and Loth, Daan W and Curjuric, Ivan and Hui, Jennie and Cho, Michael H and Latourelle, Jeanne C and Henry, Amanda P and Aldrich, Melinda and Bakke, Per and Beaty, Terri H and Bentley, Amy R and Borecki, Ingrid B and Brusselle, Guy G and Burkart, Kristin M and Chen, Ting-Hsu and Couper, David and Crapo, James D and Davies, Gail and Dupuis, Jos{\'e}e and Franceschini, Nora and Gulsvik, Amund and Hancock, Dana B and Harris, Tamara B and Hofman, Albert and Imboden, Medea and James, Alan L and Khaw, Kay-Tee and Lahousse, Lies and Launer, Lenore J and Litonjua, Augusto and Liu, Yongmei and Lohman, Kurt K and Lomas, David A and Lumley, Thomas and Marciante, Kristin D and McArdle, Wendy L and Meibohm, Bernd and Morrison, Alanna C and Musk, Arthur W and Myers, Richard H and North, Kari E and Postma, Dirkje S and Psaty, Bruce M and Rich, Stephen S and Rivadeneira, Fernando and Rochat, Thierry and Rotter, Jerome I and Soler Artigas, Maria and Starr, John M and Uitterlinden, Andr{\'e} G and Wareham, Nicholas J and Wijmenga, Cisca and Zanen, Pieter and Province, Michael A and Silverman, Edwin K and Deary, Ian J and Palmer, Lyle J and Cassano, Patricia A and Gudnason, Vilmundur and Barr, R Graham and Loos, Ruth J F and Strachan, David P and London, Stephanie J and Boezen, H Marike and Probst-Hensch, Nicole and Gharib, Sina A and Hall, Ian P and O{\textquoteright}Connor, George T and Tobin, Martin D and Stricker, Bruno H} } @article {6088, title = {Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1003098}, abstract = {

Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV(1)), and its ratio to forced vital capacity (FEV(1)/FVC). Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV(1) and FEV(1)/FVC across 19 studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest P(JMA = )5.00{\texttimes}10(-11)), HLA-DQB1 and HLA-DQA2 (smallest P(JMA = )4.35{\texttimes}10(-9)), and KCNJ2 and SOX9 (smallest P(JMA = )1.28{\texttimes}10(-8)) were associated with FEV(1)/FVC or FEV(1) in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.

}, keywords = {Forced Expiratory Volume, Gene Expression, Genome, Human, Genome-Wide Association Study, HLA-DQ Antigens, HLA-DQ beta-Chains, Humans, Lung, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Potassium Channels, Inwardly Rectifying, Pulmonary Disease, Chronic Obstructive, Receptors, Cell Surface, Smoking, SOX9 Transcription Factor, Vital Capacity}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003098}, author = {Hancock, Dana B and Soler Artigas, Maria and Gharib, Sina A and Henry, Amanda and Manichaikul, Ani and Ramasamy, Adaikalavan and Loth, Daan W and Imboden, Medea and Koch, Beate and McArdle, Wendy L and Smith, Albert V and Smolonska, Joanna and Sood, Akshay and Tang, Wenbo and Wilk, Jemma B and Zhai, Guangju and Zhao, Jing Hua and Aschard, Hugues and Burkart, Kristin M and Curjuric, Ivan and Eijgelsheim, Mark and Elliott, Paul and Gu, Xiangjun and Harris, Tamara B and Janson, Christer and Homuth, Georg and Hysi, Pirro G and Liu, Jason Z and Loehr, Laura R and Lohman, Kurt and Loos, Ruth J F and Manning, Alisa K and Marciante, Kristin D and Obeidat, Ma{\textquoteright}en and Postma, Dirkje S and Aldrich, Melinda C and Brusselle, Guy G and Chen, Ting-Hsu and Eiriksdottir, Gudny and Franceschini, Nora and Heinrich, Joachim and Rotter, Jerome I and Wijmenga, Cisca and Williams, O Dale and Bentley, Amy R and Hofman, Albert and Laurie, Cathy C and Lumley, Thomas and Morrison, Alanna C and Joubert, Bonnie R and Rivadeneira, Fernando and Couper, David J and Kritchevsky, Stephen B and Liu, Yongmei and Wjst, Matthias and Wain, Louise V and Vonk, Judith M and Uitterlinden, Andr{\'e} G and Rochat, Thierry and Rich, Stephen S and Psaty, Bruce M and O{\textquoteright}Connor, George T and North, Kari E and Mirel, Daniel B and Meibohm, Bernd and Launer, Lenore J and Khaw, Kay-Tee and Hartikainen, Anna-Liisa and Hammond, Christopher J and Gl{\"a}ser, Sven and Marchini, Jonathan and Kraft, Peter and Wareham, Nicholas J and V{\"o}lzke, Henry and Stricker, Bruno H C and Spector, Timothy D and Probst-Hensch, Nicole M and Jarvis, Deborah and Jarvelin, Marjo-Riitta and Heckbert, Susan R and Gudnason, Vilmundur and Boezen, H Marike and Barr, R Graham and Cassano, Patricia A and Strachan, David P and Fornage, Myriam and Hall, Ian P and Dupuis, Jos{\'e}e and Tobin, Martin D and London, Stephanie J} } @article {5880, title = {Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortiu}, journal = {Circ Cardiovasc Genet}, volume = {6}, year = {2013}, month = {2013 Apr}, pages = {171-83}, abstract = {

BACKGROUND- Palmitic acid (16:0), stearic acid (18:0), palmitoleic acid (16:1n-7), and oleic acid (18:1n-9) are major saturated and monounsaturated fatty acids that affect cellular signaling and metabolic pathways. They are synthesized via de novo lipogenesis and are the main saturated and monounsaturated fatty acids in the diet. Levels of these fatty acids have been linked to diseases including type 2 diabetes mellitus and coronary heart disease. METHODS AND RESULTS- Genome-wide association studies were conducted in 5 population-based cohorts comprising 8961 participants of European ancestry to investigate the association of common genetic variation with plasma levels of these 4 fatty acids. We identified polymorphisms in 7 novel loci associated with circulating levels of >=1 of these fatty acids. ALG14 (asparagine-linked glycosylation 14 homolog) polymorphisms were associated with higher 16:0 (P=2.7{\texttimes}10(-11)) and lower 18:0 (P=2.2{\texttimes}10(-18)). FADS1 and FADS2 (desaturases) polymorphisms were associated with higher 16:1n-7 (P=6.6{\texttimes}10(-13)) and 18:1n-9 (P=2.2{\texttimes}10(-32)) and lower 18:0 (P=1.3{\texttimes}10(-20)). LPGAT1 (lysophosphatidylglycerol acyltransferase) polymorphisms were associated with lower 18:0 (P=2.8{\texttimes}10(-9)). GCKR (glucokinase regulator; P=9.8{\texttimes}10(-10)) and HIF1AN (factor inhibiting hypoxia-inducible factor-1; P=5.7{\texttimes}10(-9)) polymorphisms were associated with higher 16:1n-7, whereas PKD2L1 (polycystic kidney disease 2-like 1; P=5.7{\texttimes}10(-15)) and a locus on chromosome 2 (not near known genes) were associated with lower 16:1n-7 (P=4.1{\texttimes}10(-8)). CONCLUSIONS- Our findings provide novel evidence that common variations in genes with diverse functions, including protein-glycosylation, polyunsaturated fatty acid metabolism, phospholipid modeling, and glucose- and oxygen-sensing pathways, are associated with circulating levels of 4 fatty acids in the de novo lipogenesis pathway. These results expand our knowledge of genetic factors relevant to de novo lipogenesis and fatty acid biology.

}, keywords = {Adult, Aged, Chromosomes, Human, Pair 2, Cohort Studies, Coronary Disease, Diabetes Mellitus, Type 2, Fatty Acids, Monounsaturated, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Humans, Linkage Disequilibrium, Lipogenesis, Male, Middle Aged, Oleic Acid, Palmitic Acid, Polymorphism, Single Nucleotide, Stearic Acids}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.112.964619}, author = {Wu, Jason H Y and Lemaitre, Rozenn N and Manichaikul, Ani and Guan, Weihua and Tanaka, Toshiko and Foy, Millennia and Kabagambe, Edmond K and Djouss{\'e}, Luc and Siscovick, David and Fretts, Amanda M and Johnson, Catherine and King, Irena B and Psaty, Bruce M and McKnight, Barbara and Rich, Stephen S and Chen, Yii-der I and Nettleton, Jennifer A and Tang, Weihong and Bandinelli, Stefania and Jacobs, David R and Browning, Brian L and Laurie, Cathy C and Gu, Xiangjun and Tsai, Michael Y and Steffen, Lyn M and Ferrucci, Luigi and Fornage, Myriam and Mozaffarian, Dariush} } @article {6163, title = {Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake.}, journal = {Am J Clin Nutr}, volume = {97}, year = {2013}, month = {2013 Jun}, pages = {1395-402}, abstract = {

BACKGROUND: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants.

OBJECTIVE: The objective of the study was to identify common genetic variants that are associated with macronutrient intake.

DESIGN: We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 {\texttimes} 10(-6) were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n = 7724) provided additional replication data.

RESULTS: A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (β {\textpm} SE: 0.25 {\textpm} 0.04\%; P = 1.68 {\texttimes} 10(-8)) and lower fat (β {\textpm} SE: -0.21 {\textpm} 0.04\%; P = 1.57 {\texttimes} 10(-9)) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI)-increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (β {\textpm} SE: 0.10 {\textpm} 0.02\%; P = 9.96 {\texttimes} 10(-10)), independent of BMI (after adjustment for BMI, β {\textpm} SE: 0.08 {\textpm} 0.02\%; P = 3.15 {\texttimes} 10(-7)).

CONCLUSION: Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetic and Environmental Determinants of Triglycerides), NCT01331512 (InCHIANTI Study), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).

}, keywords = {Alleles, Atherosclerosis, Body Mass Index, Dietary Carbohydrates, Dietary Fats, Dietary Proteins, Energy Intake, European Continental Ancestry Group, Fibroblast Growth Factors, Follow-Up Studies, Gene-Environment Interaction, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Life Style, Obesity, Polymorphism, Single Nucleotide, Prospective Studies, Quantitative Trait Loci, Surveys and Questionnaires}, issn = {1938-3207}, doi = {10.3945/ajcn.112.052183}, author = {Tanaka, Toshiko and Ngwa, Julius S and van Rooij, Frank J A and Zillikens, M Carola and Wojczynski, Mary K and Frazier-Wood, Alexis C and Houston, Denise K and Kanoni, Stavroula and Lemaitre, Rozenn N and Luan, Jian{\textquoteright}an and Mikkil{\"a}, Vera and Renstrom, Frida and Sonestedt, Emily and Zhao, Jing Hua and Chu, Audrey Y and Qi, Lu and Chasman, Daniel I and de Oliveira Otto, Marcia C and Dhurandhar, Emily J and Feitosa, Mary F and Johansson, Ingegerd and Khaw, Kay-Tee and Lohman, Kurt K and Manichaikul, Ani and McKeown, Nicola M and Mozaffarian, Dariush and Singleton, Andrew and Stirrups, Kathleen and Viikari, Jorma and Ye, Zheng and Bandinelli, Stefania and Barroso, In{\^e}s and Deloukas, Panos and Forouhi, Nita G and Hofman, Albert and Liu, Yongmei and Lyytik{\"a}inen, Leo-Pekka and North, Kari E and Dimitriou, Maria and Hallmans, G{\"o}ran and K{\"a}h{\"o}nen, Mika and Langenberg, Claudia and Ordovas, Jose M and Uitterlinden, Andr{\'e} G and Hu, Frank B and Kalafati, Ioanna-Panagiota and Raitakari, Olli and Franco, Oscar H and Johnson, Andrew and Emilsson, Valur and Schrack, Jennifer A and Semba, Richard D and Siscovick, David S and Arnett, Donna K and Borecki, Ingrid B and Franks, Paul W and Kritchevsky, Stephen B and Lehtim{\"a}ki, Terho and Loos, Ruth J F and Orho-Melander, Marju and Rotter, Jerome I and Wareham, Nicholas J and Witteman, Jacqueline C M and Ferrucci, Luigi and Dedoussis, George and Cupples, L Adrienne and Nettleton, Jennifer A} } @article {5879, title = {Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 CHARGE Consortium Studies.}, journal = {J Nutr}, volume = {143}, year = {2013}, month = {2013 Mar}, pages = {345-53}, abstract = {

Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (ln-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [β = -0.009 mmol/L (95\% CI: -0.013, -0.005), P < 0.0001] and insulin [-0.020 ln-pmol/L (95\% CI: -0.024, -0.017), P < 0.0001]. No magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P = 0.03) with glucose, and rs11558471 in SLC30A8 and rs3740393 near CNNM2 showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted.

}, keywords = {Blood Glucose, Female, Genetic Loci, Humans, Insulin, Magnesium, Male, Polymorphism, Single Nucleotide, Trace Elements, TRPM Cation Channels}, issn = {1541-6100}, doi = {10.3945/jn.112.172049}, author = {Hruby, Adela and Ngwa, Julius S and Renstrom, Frida and Wojczynski, Mary K and Ganna, Andrea and Hallmans, G{\"o}ran and Houston, Denise K and Jacques, Paul F and Kanoni, Stavroula and Lehtim{\"a}ki, Terho and Lemaitre, Rozenn N and Manichaikul, Ani and North, Kari E and Ntalla, Ioanna and Sonestedt, Emily and Tanaka, Toshiko and van Rooij, Frank J A and Bandinelli, Stefania and Djouss{\'e}, Luc and Grigoriou, Efi and Johansson, Ingegerd and Lohman, Kurt K and Pankow, James S and Raitakari, Olli T and Riserus, Ulf and Yannakoulia, Mary and Zillikens, M Carola and Hassanali, Neelam and Liu, Yongmei and Mozaffarian, Dariush and Papoutsakis, Constantina and Syv{\"a}nen, Ann-Christine and Uitterlinden, Andr{\'e} G and Viikari, Jorma and Groves, Christopher J and Hofman, Albert and Lind, Lars and McCarthy, Mark I and Mikkil{\"a}, Vera and Mukamal, Kenneth and Franco, Oscar H and Borecki, Ingrid B and Cupples, L Adrienne and Dedoussis, George V and Ferrucci, Luigi and Hu, Frank B and Ingelsson, Erik and K{\"a}h{\"o}nen, Mika and Kao, W H Linda and Kritchevsky, Stephen B and Orho-Melander, Marju and Prokopenko, Inga and Rotter, Jerome I and Siscovick, David S and Witteman, Jacqueline C M and Franks, Paul W and Meigs, James B and McKeown, Nicola M and Nettleton, Jennifer A} } @article {6590, title = {Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks.}, journal = {Am J Hum Genet}, volume = {94}, year = {2014}, month = {2014 Feb 06}, pages = {223-32}, abstract = {

Low-frequency coding DNA sequence variants in the proprotein convertase subtilisin/kexin type 9 gene (PCSK9) lower plasma low-density lipoprotein cholesterol (LDL-C), protect against risk of coronary heart disease (CHD), and have prompted the development of a new class of therapeutics. It is uncertain whether the PCSK9 example represents a paradigm or an isolated exception. We used the "Exome Array" to genotype >200,000 low-frequency and rare coding sequence variants across the genome in 56,538 individuals (42,208 European ancestry [EA] and 14,330 African ancestry [AA]) and tested these variants for association with LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides. Although we did not identify new genes associated with LDL-C, we did identify four low-frequency (frequencies between 0.1\% and 2\%) variants (ANGPTL8 rs145464906 [c.361C>T; p.Gln121*], PAFAH1B2 rs186808413 [c.482C>T; p.Ser161Leu], COL18A1 rs114139997 [c.331G>A; p.Gly111Arg], and PCSK7 rs142953140 [c.1511G>A; p.Arg504His]) with large effects on HDL-C and/or triglycerides. None of these four variants was associated with risk for CHD, suggesting that examples of low-frequency coding variants with robust effects on both lipids and CHD will be limited.

}, keywords = {1-Alkyl-2-acetylglycerophosphocholine Esterase, Adult, African Continental Ancestry Group, Aged, Alleles, Animals, Cholesterol, HDL, Cholesterol, LDL, Cohort Studies, Coronary Disease, European Continental Ancestry Group, Female, Gene Frequency, Genetic Association Studies, Genetic Code, Genetic Variation, Humans, Linear Models, Male, Mice, Mice, Inbred C57BL, Microtubule-Associated Proteins, Middle Aged, Phenotype, Sequence Analysis, DNA, Subtilisins, Triglycerides}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2014.01.009}, author = {Peloso, Gina M and Auer, Paul L and Bis, Joshua C and Voorman, Arend and Morrison, Alanna C and Stitziel, Nathan O and Brody, Jennifer A and Khetarpal, Sumeet A and Crosby, Jacy R and Fornage, Myriam and Isaacs, Aaron and Jakobsdottir, Johanna and Feitosa, Mary F and Davies, Gail and Huffman, Jennifer E and Manichaikul, Ani and Davis, Brian and Lohman, Kurt and Joon, Aron Y and Smith, Albert V and Grove, Megan L and Zanoni, Paolo and Redon, Valeska and Demissie, Serkalem and Lawson, Kim and Peters, Ulrike and Carlson, Christopher and Jackson, Rebecca D and Ryckman, Kelli K and Mackey, Rachel H and Robinson, Jennifer G and Siscovick, David S and Schreiner, Pamela J and Mychaleckyj, Josyf C and Pankow, James S and Hofman, Albert and Uitterlinden, Andr{\'e} G and Harris, Tamara B and Taylor, Kent D and Stafford, Jeanette M and Reynolds, Lindsay M and Marioni, Riccardo E and Dehghan, Abbas and Franco, Oscar H and Patel, Aniruddh P and Lu, Yingchang and Hindy, George and Gottesman, Omri and Bottinger, Erwin P and Melander, Olle and Orho-Melander, Marju and Loos, Ruth J F and Duga, Stefano and Merlini, Piera Angelica and Farrall, Martin and Goel, Anuj and Asselta, Rosanna and Girelli, Domenico and Martinelli, Nicola and Shah, Svati H and Kraus, William E and Li, Mingyao and Rader, Daniel J and Reilly, Muredach P and McPherson, Ruth and Watkins, Hugh and Ardissino, Diego and Zhang, Qunyuan and Wang, Judy and Tsai, Michael Y and Taylor, Herman A and Correa, Adolfo and Griswold, Michael E and Lange, Leslie A and Starr, John M and Rudan, Igor and Eiriksdottir, Gudny and Launer, Lenore J and Ordovas, Jose M and Levy, Daniel and Chen, Y-D Ida and Reiner, Alexander P and Hayward, Caroline and Polasek, Ozren and Deary, Ian J and Borecki, Ingrid B and Liu, Yongmei and Gudnason, Vilmundur and Wilson, James G and van Duijn, Cornelia M and Kooperberg, Charles and Rich, Stephen S and Psaty, Bruce M and Rotter, Jerome I and O{\textquoteright}Donnell, Christopher J and Rice, Kenneth and Boerwinkle, Eric and Kathiresan, Sekar and Cupples, L Adrienne} } @article {6938, title = {FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals.}, journal = {Hum Mol Genet}, volume = {23}, year = {2014}, month = {2014 Dec 20}, pages = {6961-72}, abstract = {

FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177,330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m(2), P = 1.9 {\texttimes} 10(-105)), and all participants (0.30 [0.30, 0.35] kg/m(2), P = 3.6 {\texttimes} 10(-107)). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] \%, P = 2.4 {\texttimes} 10(-16)), and relative weak associations with lower total energy intake (-6.4 [-10.1, -2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (-0.07 [-0.11, -0.02] \%, P = 0.004). The associations with protein (P = 7.5 {\texttimes} 10(-9)) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity.

}, keywords = {Adult, African Americans, Aged, Alleles, Asian Continental Ancestry Group, Body Mass Index, Dietary Carbohydrates, Dietary Fats, Dietary Proteins, Energy Intake, European Continental Ancestry Group, Female, Gene Frequency, Humans, Male, Middle Aged, Obesity, Polymorphism, Single Nucleotide, Proteins}, issn = {1460-2083}, doi = {10.1093/hmg/ddu411}, author = {Qi, Qibin and Kilpel{\"a}inen, Tuomas O and Downer, Mary K and Tanaka, Toshiko and Smith, Caren E and Sluijs, Ivonne and Sonestedt, Emily and Chu, Audrey Y and Renstrom, Frida and Lin, Xiaochen and {\"A}ngquist, Lars H and Huang, Jinyan and Liu, Zhonghua and Li, Yanping and Asif Ali, Muhammad and Xu, Min and Ahluwalia, Tarunveer Singh and Boer, Jolanda M A and Chen, Peng and Daimon, Makoto and Eriksson, Johan and Perola, Markus and Friedlander, Yechiel and Gao, Yu-Tang and Heppe, Denise H M and Holloway, John W and Houston, Denise K and Kanoni, Stavroula and Kim, Yu-Mi and Laaksonen, Maarit A and J{\"a}{\"a}skel{\"a}inen, Tiina and Lee, Nanette R and Lehtim{\"a}ki, Terho and Lemaitre, Rozenn N and Lu, Wei and Luben, Robert N and Manichaikul, Ani and M{\"a}nnist{\"o}, Satu and Marques-Vidal, Pedro and Monda, Keri L and Ngwa, Julius S and Perusse, Louis and van Rooij, Frank J A and Xiang, Yong-Bing and Wen, Wanqing and Wojczynski, Mary K and Zhu, Jingwen and Borecki, Ingrid B and Bouchard, Claude and Cai, Qiuyin and Cooper, Cyrus and Dedoussis, George V and Deloukas, Panos and Ferrucci, Luigi and Forouhi, Nita G and Hansen, Torben and Christiansen, Lene and Hofman, Albert and Johansson, Ingegerd and J{\o}rgensen, Torben and Karasawa, Shigeru and Khaw, Kay-Tee and Kim, Mi-Kyung and Kristiansson, Kati and Li, Huaixing and Lin, Xu and Liu, Yongmei and Lohman, Kurt K and Long, Jirong and Mikkil{\"a}, Vera and Mozaffarian, Dariush and North, Kari and Pedersen, Oluf and Raitakari, Olli and Rissanen, Harri and Tuomilehto, Jaakko and van der Schouw, Yvonne T and Uitterlinden, Andr{\'e} G and Zillikens, M Carola and Franco, Oscar H and Shyong Tai, E and Ou Shu, Xiao and Siscovick, David S and Toft, Ulla and Verschuren, W M Monique and Vollenweider, Peter and Wareham, Nicholas J and Witteman, Jacqueline C M and Zheng, Wei and Ridker, Paul M and Kang, Jae H and Liang, Liming and Jensen, Majken K and Curhan, Gary C and Pasquale, Louis R and Hunter, David J and Mohlke, Karen L and Uusitupa, Matti and Cupples, L Adrienne and Rankinen, Tuomo and Orho-Melander, Marju and Wang, Tao and Chasman, Daniel I and Franks, Paul W and S{\o}rensen, Thorkild I A and Hu, Frank B and Loos, Ruth J F and Nettleton, Jennifer A and Qi, Lu} } @article {6582, title = {Genome-wide association analysis identifies six new loci associated with forced vital capacity.}, journal = {Nat Genet}, volume = {46}, year = {2014}, month = {2014 Jul}, pages = {669-77}, abstract = {

Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 {\texttimes} 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.

}, keywords = {Cohort Studies, Databases, Genetic, Follow-Up Studies, Forced Expiratory Volume, Genetic Loci, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Lung Diseases, Meta-Analysis as Topic, Polymorphism, Single Nucleotide, Prognosis, Quantitative Trait Loci, Respiratory Function Tests, Spirometry, Vital Capacity}, issn = {1546-1718}, doi = {10.1038/ng.3011}, author = {Loth, Daan W and Soler Artigas, Maria and Gharib, Sina A and Wain, Louise V and Franceschini, Nora and Koch, Beate and Pottinger, Tess D and Smith, Albert Vernon and Duan, Qing and Oldmeadow, Chris and Lee, Mi Kyeong and Strachan, David P and James, Alan L and Huffman, Jennifer E and Vitart, Veronique and Ramasamy, Adaikalavan and Wareham, Nicholas J and Kaprio, Jaakko and Wang, Xin-Qun and Trochet, Holly and K{\"a}h{\"o}nen, Mika and Flexeder, Claudia and Albrecht, Eva and Lopez, Lorna M and de Jong, Kim and Thyagarajan, Bharat and Alves, Alexessander Couto and Enroth, Stefan and Omenaas, Ernst and Joshi, Peter K and Fall, Tove and Vi{\~n}uela, Ana and Launer, Lenore J and Loehr, Laura R and Fornage, Myriam and Li, Guo and Wilk, Jemma B and Tang, Wenbo and Manichaikul, Ani and Lahousse, Lies and Harris, Tamara B and North, Kari E and Rudnicka, Alicja R and Hui, Jennie and Gu, Xiangjun and Lumley, Thomas and Wright, Alan F and Hastie, Nicholas D and Campbell, Susan and Kumar, Rajesh and Pin, Isabelle and Scott, Robert A and Pietil{\"a}inen, Kirsi H and Surakka, Ida and Liu, Yongmei and Holliday, Elizabeth G and Schulz, Holger and Heinrich, Joachim and Davies, Gail and Vonk, Judith M and Wojczynski, Mary and Pouta, Anneli and Johansson, Asa and Wild, Sarah H and Ingelsson, Erik and Rivadeneira, Fernando and V{\"o}lzke, Henry and Hysi, Pirro G and Eiriksdottir, Gudny and Morrison, Alanna C and Rotter, Jerome I and Gao, Wei and Postma, Dirkje S and White, Wendy B and Rich, Stephen S and Hofman, Albert and Aspelund, Thor and Couper, David and Smith, Lewis J and Psaty, Bruce M and Lohman, Kurt and Burchard, Esteban G and Uitterlinden, Andr{\'e} G and Garcia, Melissa and Joubert, Bonnie R and McArdle, Wendy L and Musk, A Bill and Hansel, Nadia and Heckbert, Susan R and Zgaga, Lina and van Meurs, Joyce B J and Navarro, Pau and Rudan, Igor and Oh, Yeon-Mok and Redline, Susan and Jarvis, Deborah L and Zhao, Jing Hua and Rantanen, Taina and O{\textquoteright}Connor, George T and Ripatti, Samuli and Scott, Rodney J and Karrasch, Stefan and Grallert, Harald and Gaddis, Nathan C and Starr, John M and Wijmenga, Cisca and Minster, Ryan L and Lederer, David J and Pekkanen, Juha and Gyllensten, Ulf and Campbell, Harry and Morris, Andrew P and Gl{\"a}ser, Sven and Hammond, Christopher J and Burkart, Kristin M and Beilby, John and Kritchevsky, Stephen B and Gudnason, Vilmundur and Hancock, Dana B and Williams, O Dale and Polasek, Ozren and Zemunik, Tatijana and Kolcic, Ivana and Petrini, Marcy F and Wjst, Matthias and Kim, Woo Jin and Porteous, David J and Scotland, Generation and Smith, Blair H and Viljanen, Anne and Heli{\"o}vaara, Markku and Attia, John R and Sayers, Ian and Hampel, Regina and Gieger, Christian and Deary, Ian J and Boezen, H Marike and Newman, Anne and Jarvelin, Marjo-Riitta and Wilson, James F and Lind, Lars and Stricker, Bruno H and Teumer, Alexander and Spector, Timothy D and Mel{\'e}n, Erik and Peters, Marjolein J and Lange, Leslie A and Barr, R Graham and Bracke, Ken R and Verhamme, Fien M and Sung, Joohon and Hiemstra, Pieter S and Cassano, Patricia A and Sood, Akshay and Hayward, Caroline and Dupuis, Jos{\'e}e and Hall, Ian P and Brusselle, Guy G and Tobin, Martin D and London, Stephanie J} } @article {6567, title = {Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {321-331}, abstract = {

BACKGROUND: Omega6 (n6) polyunsaturated fatty acids (PUFAs) and their metabolites are involved in cell signaling, inflammation, clot formation, and other crucial biological processes. Genetic components, such as variants of fatty acid desaturase (FADS) genes, determine the composition of n6 PUFAs.

METHODS AND RESULTS: To elucidate undiscovered biological pathways that may influence n6 PUFA composition, we conducted genome-wide association studies and meta-analyses of associations of common genetic variants with 6 plasma n6 PUFAs in 8631 white adults (55\% women) across 5 prospective studies. Plasma phospholipid or total plasma fatty acids were analyzed by similar gas chromatography techniques. The n6 fatty acids linoleic acid (LA), γ-linolenic acid (GLA), dihomo-GLA, arachidonic acid, and adrenic acid were expressed as percentage of total fatty acids. We performed linear regression with robust SEs to test for single-nucleotide polymorphism-fatty acid associations, with pooling using inverse-variance-weighted meta-analysis. Novel regions were identified on chromosome 10 associated with LA (rs10740118; P=8.1{\texttimes}10(-9); near NRBF2), on chromosome 16 with LA, GLA, dihomo-GLA, and arachidonic acid (rs16966952; P=1.2{\texttimes}10(-15), 5.0{\texttimes}10(-11), 7.6{\texttimes}10(-65), and 2.4{\texttimes}10(-10), respectively; NTAN1), and on chromosome 6 with adrenic acid after adjustment for arachidonic acid (rs3134950; P=2.1{\texttimes}10(-10); AGPAT1). We confirmed previous findings of the FADS cluster on chromosome 11 with LA and arachidonic acid, and further observed novel genome-wide significant association of this cluster with GLA, dihomo-GLA, and adrenic acid (P=2.3{\texttimes}10(-72), 2.6{\texttimes}10(-151), and 6.3{\texttimes}10(-140), respectively).

CONCLUSIONS: Our findings suggest that along with the FADS gene cluster, additional genes may influence n6 PUFA composition.

}, keywords = {Adult, Aged, Aged, 80 and over, Aging, Chromosomes, Human, Pair 10, Chromosomes, Human, Pair 16, Chromosomes, Human, Pair 6, Fatty Acid Desaturases, Fatty Acids, Omega-6, Female, Genome-Wide Association Study, Genomics, Heart Diseases, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Prospective Studies, Sequence Analysis, DNA}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000208}, author = {Guan, Weihua and Steffen, Brian T and Lemaitre, Rozenn N and Wu, Jason H Y and Tanaka, Toshiko and Manichaikul, Ani and Foy, Millennia and Rich, Stephen S and Wang, Lu and Nettleton, Jennifer A and Tang, Weihong and Gu, Xiangjun and Bandinelli, Stafania and King, Irena B and McKnight, Barbara and Psaty, Bruce M and Siscovick, David and Djouss{\'e}, Luc and Chen, Yii-Der Ida and Ferrucci, Luigi and Fornage, Myriam and Mozafarrian, Dariush and Tsai, Michael Y and Steffen, Lyn M} } @article {6844, title = {Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians.}, journal = {Am J Clin Nutr}, volume = {102}, year = {2015}, month = {2015 Nov}, pages = {1266-78}, abstract = {

BACKGROUND: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown.

OBJECTIVE: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus.

DESIGN: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined 1) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations.

RESULTS: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95\% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95\% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-ln-pmol/L (95\% CI: 0.035, 0.063-ln-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance.

CONCLUSION: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms. Six of the participating studies are registered at clinicaltrials.gov as NCT0000513 (Atherosclerosis Risk in Communities), NCT00149435 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetics of Lipid Lowering Drugs and Diet Network), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).

}, keywords = {Blood Glucose, Cohort Studies, Genetic Association Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hyperglycemia, Hyperinsulinism, Insulin, Insulin Resistance, Insulin-Secreting Cells, Meat, Meat Products, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1938-3207}, doi = {10.3945/ajcn.114.101238}, author = {Fretts, Amanda M and Follis, Jack L and Nettleton, Jennifer A and Lemaitre, Rozenn N and Ngwa, Julius S and Wojczynski, Mary K and Kalafati, Ioanna Panagiota and Varga, Tibor V and Frazier-Wood, Alexis C and Houston, Denise K and Lahti, Jari and Ericson, Ulrika and van den Hooven, Edith H and Mikkil{\"a}, Vera and Kiefte-de Jong, Jessica C and Mozaffarian, Dariush and Rice, Kenneth and Renstrom, Frida and North, Kari E and McKeown, Nicola M and Feitosa, Mary F and Kanoni, Stavroula and Smith, Caren E and Garcia, Melissa E and Tiainen, Anna-Maija and Sonestedt, Emily and Manichaikul, Ani and van Rooij, Frank J A and Dimitriou, Maria and Raitakari, Olli and Pankow, James S and Djouss{\'e}, Luc and Province, Michael A and Hu, Frank B and Lai, Chao-Qiang and Keller, Margaux F and Per{\"a}l{\"a}, Mia-Maria and Rotter, Jerome I and Hofman, Albert and Graff, Misa and K{\"a}h{\"o}nen, Mika and Mukamal, Kenneth and Johansson, Ingegerd and Ordovas, Jose M and Liu, Yongmei and M{\"a}nnist{\"o}, Satu and Uitterlinden, Andr{\'e} G and Deloukas, Panos and Sepp{\"a}l{\"a}, Ilkka and Psaty, Bruce M and Cupples, L Adrienne and Borecki, Ingrid B and Franks, Paul W and Arnett, Donna K and Nalls, Mike A and Eriksson, Johan G and Orho-Melander, Marju and Franco, Oscar H and Lehtim{\"a}ki, Terho and Dedoussis, George V and Meigs, James B and Siscovick, David S} } @article {6802, title = {Gene {\texttimes} dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry.}, journal = {Hum Mol Genet}, volume = {24}, year = {2015}, month = {2015 Aug 15}, pages = {4728-38}, abstract = {

Obesity is highly heritable. Genetic variants showing robust associations with obesity traits have been identified through genome-wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist-hip ratio (WHR)-associated single nucleotide polymorphisms were genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjusted WHR~and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006-0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjusted WHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.

}, keywords = {Adult, Body Mass Index, Case-Control Studies, Diet, Western, Epistasis, Genetic, European Continental Ancestry Group, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Obesity, Polymorphism, Single Nucleotide}, issn = {1460-2083}, doi = {10.1093/hmg/ddv186}, author = {Nettleton, Jennifer A and Follis, Jack L and Ngwa, Julius S and Smith, Caren E and Ahmad, Shafqat and Tanaka, Toshiko and Wojczynski, Mary K and Voortman, Trudy and Lemaitre, Rozenn N and Kristiansson, Kati and Nuotio, Marja-Liisa and Houston, Denise K and Per{\"a}l{\"a}, Mia-Maria and Qi, Qibin and Sonestedt, Emily and Manichaikul, Ani and Kanoni, Stavroula and Ganna, Andrea and Mikkil{\"a}, Vera and North, Kari E and Siscovick, David S and Harald, Kennet and McKeown, Nicola M and Johansson, Ingegerd and Rissanen, Harri and Liu, Yongmei and Lahti, Jari and Hu, Frank B and Bandinelli, Stefania and Rukh, Gull and Rich, Stephen and Booij, Lisanne and Dmitriou, Maria and Ax, Erika and Raitakari, Olli and Mukamal, Kenneth and M{\"a}nnist{\"o}, Satu and Hallmans, G{\"o}ran and Jula, Antti and Ericson, Ulrika and Jacobs, David R and van Rooij, Frank J A and Deloukas, Panos and Sjogren, Per and K{\"a}h{\"o}nen, Mika and Djouss{\'e}, Luc and Perola, Markus and Barroso, In{\^e}s and Hofman, Albert and Stirrups, Kathleen and Viikari, Jorma and Uitterlinden, Andr{\'e} G and Kalafati, Ioanna P and Franco, Oscar H and Mozaffarian, Dariush and Salomaa, Veikko and Borecki, Ingrid B and Knekt, Paul and Kritchevsky, Stephen B and Eriksson, Johan G and Dedoussis, George V and Qi, Lu and Ferrucci, Luigi and Orho-Melander, Marju and Zillikens, M Carola and Ingelsson, Erik and Lehtim{\"a}ki, Terho and Renstrom, Frida and Cupples, L Adrienne and Loos, Ruth J F and Franks, Paul W} } @article {6615, title = {Genetic loci associated with circulating levels of very long-chain saturated fatty acids.}, journal = {J Lipid Res}, volume = {56}, year = {2015}, month = {2015 Jan}, pages = {176-84}, abstract = {

Very long-chain saturated fatty acids (VLSFAs) are saturated fatty acids with 20 or more carbons. In contrast to the more abundant saturated fatty acids, such as palmitic acid, there is growing evidence that circulating VLSFAs may have beneficial biological properties. Whether genetic factors influence circulating levels of VLSFAs is not known. We investigated the association of common genetic variation with plasma phospholipid/erythrocyte levels of three VLSFAs by performing genome-wide association studies in seven population-based cohorts comprising 10,129 subjects of European ancestry. We observed associations of circulating VLSFA concentrations with common variants in two genes, serine palmitoyl-transferase long-chain base subunit 3 (SPTLC3), a gene involved in the rate-limiting step of de novo sphingolipid synthesis, and ceramide synthase 4 (CERS4). The SPTLC3 variant at rs680379 was associated with higher arachidic acid (20:0 , P = 5.81 {\texttimes} 10(-13)). The CERS4 variant at rs2100944 was associated with higher levels of 20:0 (P = 2.65 {\texttimes} 10(-40)) and in analyses that adjusted for 20:0, with lower levels of behenic acid (P = 4.22 {\texttimes} 10(-26)) and lignoceric acid (P = 3.20 {\texttimes} 10(-21)). These novel associations suggest an inter-relationship of circulating VLSFAs and sphingolipid synthesis.

}, keywords = {Cohort Studies, Fatty Acids, Genetic Loci, Genetic Variation, Genome-Wide Association Study, Humans}, issn = {1539-7262}, doi = {10.1194/jlr.M052456}, author = {Lemaitre, Rozenn N and King, Irena B and Kabagambe, Edmond K and Wu, Jason H Y and McKnight, Barbara and Manichaikul, Ani and Guan, Weihua and Sun, Qi and Chasman, Daniel I and Foy, Millennia and Wang, Lu and Zhu, Jingwen and Siscovick, David S and Tsai, Michael Y and Arnett, Donna K and Psaty, Bruce M and Djouss{\'e}, Luc and Chen, Yii-der I and Tang, Weihong and Weng, Lu-Chen and Wu, Hongyu and Jensen, Majken K and Chu, Audrey Y and Jacobs, David R and Rich, Stephen S and Mozaffarian, Dariush and Steffen, Lyn and Rimm, Eric B and Hu, Frank B and Ridker, Paul M and Fornage, Myriam and Friedlander, Yechiel} } @article {6685, title = {Genetic loci associated with circulating phospholipid trans fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium.}, journal = {Am J Clin Nutr}, volume = {101}, year = {2015}, month = {2015 Feb}, pages = {398-406}, abstract = {

BACKGROUND: Circulating trans fatty acids (TFAs), which cannot be synthesized by humans, are linked to adverse health outcomes. Although TFAs are obtained from diet, little is known about subsequent influences (e.g., relating to incorporation, metabolism, or intercompetition with other fatty acids) that could alter circulating concentrations and possibly modulate or mediate impacts on health.

OBJECTIVE: The objective was to elucidate novel biologic pathways that may influence circulating TFAs by evaluating associations between common genetic variation and TFA biomarkers.

DESIGN: We performed meta-analyses using 7 cohorts of European-ancestry participants (n = 8013) having measured genome-wide variation in single-nucleotide polymorphisms (SNPs) and circulating TFA biomarkers (erythrocyte or plasma phospholipids), including trans-16:1n-7, total trans-18:1, trans/cis-18:2, cis/trans-18:2, and trans/trans-18:2. We further evaluated SNPs with genome-wide significant associations among African Americans (n = 1082), Chinese Americans (n = 669), and Hispanic Americans (n = 657) from 2 of these cohorts.

RESULTS: Among European-ancestry participants, 31 SNPs in or near the fatty acid desaturase (FADS) 1 and 2 cluster were associated with cis/trans-18:2; a top hit was rs174548 (β = 0.0035, P = 4.90 {\texttimes} 10(-15)), an SNP previously associated with circulating n-3 and n-6 polyunsaturated fatty acid concentrations. No significant association was identified for other TFAs. rs174548 in FADS1/2 was also associated with cis/trans-18:2 in Hispanic Americans (β = 0.0053, P = 1.05 {\texttimes} 10(-6)) and Chinese Americans (β = 0.0028, P = 0.002) but not African Americans (β = 0.0009, P = 0.34); however, in African Americans, fine mapping identified a top hit in FADS2 associated with cis/trans-18:2 (rs174579: β = 0.0118, P = 4.05 {\texttimes} 10(-5)). The association between rs174548 and cis/trans-18:2 remained significant after further adjustment for individual circulating n-3 and n-6 fatty acids, except arachidonic acid. After adjustment for arachidonic acid concentrations, the association between rs174548 and cis/trans-18:2 was nearly eliminated in European-ancestry participants (β-coefficient reduced by 86\%), with similar reductions in Hispanic Americans and Chinese Americans.

CONCLUSIONS: Our findings provide novel evidence for genetic regulation of cis/trans-18:2 by the FADS1/2 cluster and suggest that this regulation may be influenced/mediated by concentrations of arachidonic acid, an n-6 polyunsaturated fat.

}, keywords = {African Americans, Arachidonic Acid, Asian Americans, Biomarkers, European Continental Ancestry Group, Fatty Acids, Omega-6, Gene Frequency, Genetic Association Studies, Genetic Loci, Genotyping Techniques, Humans, Phospholipids, Polymorphism, Single Nucleotide, Trans Fatty Acids}, issn = {1938-3207}, doi = {10.3945/ajcn.114.094557}, author = {Mozaffarian, Dariush and Kabagambe, Edmond K and Johnson, Catherine O and Lemaitre, Rozenn N and Manichaikul, Ani and Sun, Qi and Foy, Millennia and Wang, Lu and Wiener, Howard and Irvin, Marguerite R and Rich, Stephen S and Wu, Hongyu and Jensen, Majken K and Chasman, Daniel I and Chu, Audrey Y and Fornage, Myriam and Steffen, Lyn and King, Irena B and McKnight, Barbara and Psaty, Bruce M and Djouss{\'e}, Luc and Chen, Ida Y-D and Wu, Jason H Y and Siscovick, David S and Ridker, Paul M and Tsai, Michael Y and Rimm, Eric B and Hu, Frank B and Arnett, Donna K} } @article {6682, title = {Genome of The Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels.}, journal = {Nat Commun}, volume = {6}, year = {2015}, month = {2015}, pages = {6065}, abstract = {

Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of The Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 {\texttimes} 10(-4)), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR.

}, keywords = {ATP-Binding Cassette Transporters, Cholesterol, Gene Frequency, Genetic Association Studies, Humans, Mutation, Missense, Netherlands}, issn = {2041-1723}, doi = {10.1038/ncomms7065}, author = {van Leeuwen, Elisabeth M and Karssen, Lennart C and Deelen, Joris and Isaacs, Aaron and Medina-G{\'o}mez, Carolina and Mbarek, Hamdi and Kanterakis, Alexandros and Trompet, Stella and Postmus, Iris and Verweij, Niek and van Enckevort, David J and Huffman, Jennifer E and White, Charles C and Feitosa, Mary F and Bartz, Traci M and Manichaikul, Ani and Joshi, Peter K and Peloso, Gina M and Deelen, Patrick and van Dijk, Freerk and Willemsen, Gonneke and de Geus, Eco J and Milaneschi, Yuri and Penninx, Brenda W J H and Francioli, Laurent C and Menelaou, Androniki and Pulit, Sara L and Rivadeneira, Fernando and Hofman, Albert and Oostra, Ben A and Franco, Oscar H and Mateo Leach, Irene and Beekman, Marian and de Craen, Anton J M and Uh, Hae-Won and Trochet, Holly and Hocking, Lynne J and Porteous, David J and Sattar, Naveed and Packard, Chris J and Buckley, Brendan M and Brody, Jennifer A and Bis, Joshua C and Rotter, Jerome I and Mychaleckyj, Josyf C and Campbell, Harry and Duan, Qing and Lange, Leslie A and Wilson, James F and Hayward, Caroline and Polasek, Ozren and Vitart, Veronique and Rudan, Igor and Wright, Alan F and Rich, Stephen S and Psaty, Bruce M and Borecki, Ingrid B and Kearney, Patricia M and Stott, David J and Adrienne Cupples, L and Jukema, J Wouter and van der Harst, Pim and Sijbrands, Eric J and Hottenga, Jouke-Jan and Uitterlinden, Andr{\'e} G and Swertz, Morris A and van Ommen, Gert-Jan B and de Bakker, Paul I W and Eline Slagboom, P and Boomsma, Dorret I and Wijmenga, Cisca and van Duijn, Cornelia M} } @article {6860, title = {Integrative pathway genomics of lung function and airflow obstruction.}, journal = {Hum Mol Genet}, volume = {24}, year = {2015}, month = {2015 Dec 1}, pages = {6836-48}, abstract = {

Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies (GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the phenotypic variability. We postulated that integrating pathway-based methods with GWASs of pulmonary function and airflow obstruction would identify a broader repertoire of genes and processes influencing these traits. We performed two independent GWASs of lung function and applied gene set enrichment analysis to one of the studies and validated the results using the second GWAS. We identified 131 significantly enriched gene sets associated with lung function and clustered them into larger biological modules involved in diverse processes including development, immunity, cell signaling, proliferation and arachidonic acid. We found that enrichment of gene sets was not driven by GWAS-significant variants or loci, but instead by those with less stringent association P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow obstruction. We identified several biologic modules that functionally overlapped with those associated with pulmonary function. However, differences were also noted, including enrichment of extracellular matrix (ECM) processes specifically in the airflow obstruction study. Network analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), as a putative disease target. We used a knockout mouse model to functionally validate MMP10{\textquoteright}s role in influencing lung{\textquoteright}s susceptibility to cigarette smoke-induced emphysema. By integrating pathway analysis with population-based genomics, we unraveled biologic processes underlying pulmonary function traits and identified a candidate gene for obstructive lung disease.

}, keywords = {Airway Obstruction, Animals, Cell Proliferation, European Continental Ancestry Group, Genetic Predisposition to Disease, Genome-Wide Association Study, Genomics, Humans, Immune System, Lung, Male, Metabolic Networks and Pathways, Mice, Phenotype, Polymorphism, Single Nucleotide, Signal Transduction}, issn = {1460-2083}, doi = {10.1093/hmg/ddv378}, author = {Gharib, Sina A and Loth, Daan W and Soler Artigas, Maria and Birkland, Timothy P and Wilk, Jemma B and Wain, Louise V and Brody, Jennifer A and Obeidat, Ma{\textquoteright}en and Hancock, Dana B and Tang, Wenbo and Rawal, Rajesh and Boezen, H Marike and Imboden, Medea and Huffman, Jennifer E and Lahousse, Lies and Alves, Alexessander C and Manichaikul, Ani and Hui, Jennie and Morrison, Alanna C and Ramasamy, Adaikalavan and Smith, Albert Vernon and Gudnason, Vilmundur and Surakka, Ida and Vitart, Veronique and Evans, David M and Strachan, David P and Deary, Ian J and Hofman, Albert and Gl{\"a}ser, Sven and Wilson, James F and North, Kari E and Zhao, Jing Hua and Heckbert, Susan R and Jarvis, Deborah L and Probst-Hensch, Nicole and Schulz, Holger and Barr, R Graham and Jarvelin, Marjo-Riitta and O{\textquoteright}Connor, George T and K{\"a}h{\"o}nen, Mika and Cassano, Patricia A and Hysi, Pirro G and Dupuis, Jos{\'e}e and Hayward, Caroline and Psaty, Bruce M and Hall, Ian P and Parks, William C and Tobin, Martin D and London, Stephanie J} } @article {6849, title = {Rare and Coding Region Genetic Variants Associated With Risk of Ischemic Stroke: The NHLBI Exome Sequence Project.}, journal = {JAMA Neurol}, volume = {72}, year = {2015}, month = {2015 Jul}, pages = {781-8}, abstract = {

IMPORTANCE: Stroke is the second leading cause of death and the third leading cause of years of life lost. Genetic factors contribute to stroke prevalence, and candidate gene and genome-wide association studies (GWAS) have identified variants associated with ischemic stroke risk. These variants often have small effects without obvious biological significance. Exome sequencing may discover predicted protein-altering variants with a potentially large effect on ischemic stroke risk.

OBJECTIVE: To investigate the contribution of rare and common genetic variants to ischemic stroke risk by targeting the protein-coding regions of the human genome.

DESIGN, SETTING, AND PARTICIPANTS: The National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP) analyzed approximately 6000 participants from numerous cohorts of European and African ancestry. For discovery, 365 cases of ischemic stroke (small-vessel and large-vessel subtypes) and 809 European ancestry controls were sequenced; for replication, 47 affected sibpairs concordant for stroke subtype and an African American case-control series were sequenced, with 1672 cases and 4509 European ancestry controls genotyped. The ESP{\textquoteright}s exome sequencing and genotyping started on January 1, 2010, and continued through June 30, 2012. Analyses were conducted on the full data set between July 12, 2012, and July 13, 2013.

MAIN OUTCOMES AND MEASURES: Discovery of new variants or genes contributing to ischemic stroke risk and subtype (primary analysis) and determination of support for protein-coding variants contributing to risk in previously published candidate genes (secondary analysis).

RESULTS: We identified 2 novel genes associated with an increased risk of ischemic stroke: a protein-coding variant in PDE4DIP (rs1778155; odds ratio, 2.15; P = 2.63 {\texttimes} 10(-8)) with an intracellular signal transduction mechanism and in ACOT4 (rs35724886; odds ratio, 2.04; P = 1.24 {\texttimes} 10(-7)) with a fatty acid metabolism; confirmation of PDE4DIP was observed in affected sibpair families with large-vessel stroke subtype and in African Americans. Replication of protein-coding variants in candidate genes was observed for 2 previously reported GWAS associations: ZFHX3 (cardioembolic stroke) and ABCA1 (large-vessel stroke).

CONCLUSIONS AND RELEVANCE: Exome sequencing discovered 2 novel genes and mechanisms, PDE4DIP and ACOT4, associated with increased risk for ischemic stroke. In addition, ZFHX3 and ABCA1 were discovered to have protein-coding variants associated with ischemic stroke. These results suggest that genetic variation in novel pathways contributes to ischemic stroke risk and serves as a target for prediction, prevention, and therapy.

}, keywords = {Aged, Brain Ischemia, Exome, Female, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Humans, Male, Middle Aged, Muscle Proteins, National Heart, Lung, and Blood Institute (U.S.), Nuclear Proteins, Open Reading Frames, Palmitoyl-CoA Hydrolase, Stroke, United States}, issn = {2168-6157}, doi = {10.1001/jamaneurol.2015.0582}, author = {Auer, Paul L and Nalls, Mike and Meschia, James F and Worrall, Bradford B and Longstreth, W T and Seshadri, Sudha and Kooperberg, Charles and Burger, Kathleen M and Carlson, Christopher S and Carty, Cara L and Chen, Wei-Min and Cupples, L Adrienne and DeStefano, Anita L and Fornage, Myriam and Hardy, John and Hsu, Li and Jackson, Rebecca D and Jarvik, Gail P and Kim, Daniel S and Lakshminarayan, Kamakshi and Lange, Leslie A and Manichaikul, Ani and Quinlan, Aaron R and Singleton, Andrew B and Thornton, Timothy A and Nickerson, Deborah A and Peters, Ulrike and Rich, Stephen S} } @article {7138, title = {Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits.}, journal = {Am J Hum Genet}, volume = {99}, year = {2016}, month = {2016 Jul 7}, pages = {8-21}, abstract = {

Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from~studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3\%, p = 2~{\texttimes}~10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4\%, p < 3~{\texttimes} 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7\%, p = 7~{\texttimes} 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex~vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2\%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8~{\texttimes} 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8~{\texttimes} 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2016.05.007}, author = {Chami, Nathalie and Chen, Ming-Huei and Slater, Andrew J and Eicher, John D and Evangelou, Evangelos and Tajuddin, Salman M and Love-Gregory, Latisha and Kacprowski, Tim and Schick, Ursula M and Nomura, Akihiro and Giri, Ayush and Lessard, Samuel and Brody, Jennifer A and Schurmann, Claudia and Pankratz, Nathan and Yanek, Lisa R and Manichaikul, Ani and Pazoki, Raha and Mihailov, Evelin and Hill, W David and Raffield, Laura M and Burt, Amber and Bartz, Traci M and Becker, Diane M and Becker, Lewis C and Boerwinkle, Eric and Bork-Jensen, Jette and Bottinger, Erwin P and O{\textquoteright}Donoghue, Michelle L and Crosslin, David R and de Denus, Simon and Dub{\'e}, Marie-Pierre and Elliott, Paul and Engstr{\"o}m, Gunnar and Evans, Michele K and Floyd, James S and Fornage, Myriam and Gao, He and Greinacher, Andreas and Gudnason, Vilmundur and Hansen, Torben and Harris, Tamara B and Hayward, Caroline and Hernesniemi, Jussi and Highland, Heather M and Hirschhorn, Joel N and Hofman, Albert and Irvin, Marguerite R and K{\"a}h{\"o}nen, Mika and Lange, Ethan and Launer, Lenore J and Lehtim{\"a}ki, Terho and Li, Jin and Liewald, David C M and Linneberg, Allan and Liu, Yongmei and Lu, Yingchang and Lyytik{\"a}inen, Leo-Pekka and M{\"a}gi, Reedik and Mathias, Rasika A and Melander, Olle and Metspalu, Andres and Mononen, Nina and Nalls, Mike A and Nickerson, Deborah A and Nikus, Kjell and O{\textquoteright}Donnell, Chris J and Orho-Melander, Marju and Pedersen, Oluf and Petersmann, Astrid and Polfus, Linda and Psaty, Bruce M and Raitakari, Olli T and Raitoharju, Emma and Richard, Melissa and Rice, Kenneth M and Rivadeneira, Fernando and Rotter, Jerome I and Schmidt, Frank and Smith, Albert Vernon and Starr, John M and Taylor, Kent D and Teumer, Alexander and Thuesen, Betina H and Torstenson, Eric S and Tracy, Russell P and Tzoulaki, Ioanna and Zakai, Neil A and Vacchi-Suzzi, Caterina and van Duijn, Cornelia M and van Rooij, Frank J A and Cushman, Mary and Deary, Ian J and Velez Edwards, Digna R and Vergnaud, Anne-Claire and Wallentin, Lars and Waterworth, Dawn M and White, Harvey D and Wilson, James G and Zonderman, Alan B and Kathiresan, Sekar and Grarup, Niels and Esko, T{\~o}nu and Loos, Ruth J F and Lange, Leslie A and Faraday, Nauder and Abumrad, Nada A and Edwards, Todd L and Ganesh, Santhi K and Auer, Paul L and Johnson, Andrew D and Reiner, Alexander P and Lettre, Guillaume} } @article {7256, title = {KLB is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference.}, journal = {Proc Natl Acad Sci U S A}, volume = {113}, year = {2016}, month = {2016 Dec 13}, pages = {14372-14377}, abstract = {

Excessive alcohol consumption is a major public health problem worldwide. Although drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association metaanalysis and replication study among >105,000 individuals of European ancestry and identified β-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P = 9.2 {\texttimes} 10(-12)). β-Klotho is an obligate coreceptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in humans. We show that brain-specific β-Klotho KO mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver-brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption.

}, issn = {1091-6490}, doi = {10.1073/pnas.1611243113}, author = {Schumann, Gunter and Liu, Chunyu and O{\textquoteright}Reilly, Paul and Gao, He and Song, Parkyong and Xu, Bing and Ruggeri, Barbara and Amin, Najaf and Jia, Tianye and Preis, Sarah and Segura Lepe, Marcelo and Akira, Shizuo and Barbieri, Caterina and Baumeister, Sebastian and Cauchi, Stephane and Clarke, Toni-Kim and Enroth, Stefan and Fischer, Krista and H{\"a}llfors, Jenni and Harris, Sarah E and Hieber, Saskia and Hofer, Edith and Hottenga, Jouke-Jan and Johansson, Asa and Joshi, Peter K and Kaartinen, Niina and Laitinen, Jaana and Lemaitre, Rozenn and Loukola, Anu and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Mangino, Massimo and Manichaikul, Ani and Mbarek, Hamdi and Milaneschi, Yuri and Moayyeri, Alireza and Mukamal, Kenneth and Nelson, Christopher and Nettleton, Jennifer and Partinen, Eemil and Rawal, Rajesh and Robino, Antonietta and Rose, Lynda and Sala, Cinzia and Satoh, Takashi and Schmidt, Reinhold and Schraut, Katharina and Scott, Robert and Smith, Albert Vernon and Starr, John M and Teumer, Alexander and Trompet, Stella and Uitterlinden, Andr{\'e} G and Venturini, Cristina and Vergnaud, Anne-Claire and Verweij, Niek and Vitart, Veronique and Vuckovic, Dragana and Wedenoja, Juho and Yengo, Loic and Yu, Bing and Zhang, Weihua and Zhao, Jing Hua and Boomsma, Dorret I and Chambers, John and Chasman, Daniel I and Daniela, Toniolo and de Geus, Eco and Deary, Ian and Eriksson, Johan G and Esko, T{\~o}nu and Eulenburg, Volker and Franco, Oscar H and Froguel, Philippe and Gieger, Christian and Grabe, Hans J and Gudnason, Vilmundur and Gyllensten, Ulf and Harris, Tamara B and Hartikainen, Anna-Liisa and Heath, Andrew C and Hocking, Lynne and Hofman, Albert and Huth, Cornelia and Jarvelin, Marjo-Riitta and Jukema, J Wouter and Kaprio, Jaakko and Kooner, Jaspal S and Kutalik, Zolt{\'a}n and Lahti, Jari and Langenberg, Claudia and Lehtim{\"a}ki, Terho and Liu, Yongmei and Madden, Pamela A F and Martin, Nicholas and Morrison, Alanna and Penninx, Brenda and Pirastu, Nicola and Psaty, Bruce and Raitakari, Olli and Ridker, Paul and Rose, Richard and Rotter, Jerome I and Samani, Nilesh J and Schmidt, Helena and Spector, Tim D and Stott, David and Strachan, David and Tzoulaki, Ioanna and van der Harst, Pim and van Duijn, Cornelia M and Marques-Vidal, Pedro and Vollenweider, Peter and Wareham, Nicholas J and Whitfield, John B and Wilson, James and Wolffenbuttel, Bruce and Bakalkin, Georgy and Evangelou, Evangelos and Liu, Yun and Rice, Kenneth M and Desrivi{\`e}res, Sylvane and Kliewer, Steven A and Mangelsdorf, David J and M{\"u}ller, Christian P and Levy, Daniel and Elliott, Paul} } @article {7146, title = {Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases.}, journal = {Am J Hum Genet}, volume = {99}, year = {2016}, month = {2016 Jul 7}, pages = {22-39}, abstract = {

White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of~\~{}157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3{\textquoteright} UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2016.05.003}, author = {Tajuddin, Salman M and Schick, Ursula M and Eicher, John D and Chami, Nathalie and Giri, Ayush and Brody, Jennifer A and Hill, W David and Kacprowski, Tim and Li, Jin and Lyytik{\"a}inen, Leo-Pekka and Manichaikul, Ani and Mihailov, Evelin and O{\textquoteright}Donoghue, Michelle L and Pankratz, Nathan and Pazoki, Raha and Polfus, Linda M and Smith, Albert Vernon and Schurmann, Claudia and Vacchi-Suzzi, Caterina and Waterworth, Dawn M and Evangelou, Evangelos and Yanek, Lisa R and Burt, Amber and Chen, Ming-Huei and van Rooij, Frank J A and Floyd, James S and Greinacher, Andreas and Harris, Tamara B and Highland, Heather M and Lange, Leslie A and Liu, Yongmei and M{\"a}gi, Reedik and Nalls, Mike A and Mathias, Rasika A and Nickerson, Deborah A and Nikus, Kjell and Starr, John M and Tardif, Jean-Claude and Tzoulaki, Ioanna and Velez Edwards, Digna R and Wallentin, Lars and Bartz, Traci M and Becker, Lewis C and Denny, Joshua C and Raffield, Laura M and Rioux, John D and Friedrich, Nele and Fornage, Myriam and Gao, He and Hirschhorn, Joel N and Liewald, David C M and Rich, Stephen S and Uitterlinden, Andre and Bastarache, Lisa and Becker, Diane M and Boerwinkle, Eric and de Denus, Simon and Bottinger, Erwin P and Hayward, Caroline and Hofman, Albert and Homuth, Georg and Lange, Ethan and Launer, Lenore J and Lehtim{\"a}ki, Terho and Lu, Yingchang and Metspalu, Andres and O{\textquoteright}Donnell, Chris J and Quarells, Rakale C and Richard, Melissa and Torstenson, Eric S and Taylor, Kent D and Vergnaud, Anne-Claire and Zonderman, Alan B and Crosslin, David R and Deary, Ian J and D{\"o}rr, Marcus and Elliott, Paul and Evans, Michele K and Gudnason, Vilmundur and K{\"a}h{\"o}nen, Mika and Psaty, Bruce M and Rotter, Jerome I and Slater, Andrew J and Dehghan, Abbas and White, Harvey D and Ganesh, Santhi K and Loos, Ruth J F and Esko, T{\~o}nu and Faraday, Nauder and Wilson, James G and Cushman, Mary and Johnson, Andrew D and Edwards, Todd L and Zakai, Neil A and Lettre, Guillaume and Reiner, Alex P and Auer, Paul L} } @article {7011, title = {Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels.}, journal = {J Med Genet}, volume = {53}, year = {2016}, month = {2016 Jul}, pages = {441-9}, abstract = {

BACKGROUND: So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels.

METHODS: We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from \~{}60 000 individuals in the discovery stage and \~{}90 000 samples in the replication stage.

RESULTS: Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene.

CONCLUSIONS: This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels.

}, issn = {1468-6244}, doi = {10.1136/jmedgenet-2015-103439}, author = {van Leeuwen, Elisabeth M and Sabo, Aniko and Bis, Joshua C and Huffman, Jennifer E and Manichaikul, Ani and Smith, Albert V and Feitosa, Mary F and Demissie, Serkalem and Joshi, Peter K and Duan, Qing and Marten, Jonathan and van Klinken, Jan B and Surakka, Ida and Nolte, Ilja M and Zhang, Weihua and Mbarek, Hamdi and Li-Gao, Ruifang and Trompet, Stella and Verweij, Niek and Evangelou, Evangelos and Lyytik{\"a}inen, Leo-Pekka and Tayo, Bamidele O and Deelen, Joris and van der Most, Peter J and van der Laan, Sander W and Arking, Dan E and Morrison, Alanna and Dehghan, Abbas and Franco, Oscar H and Hofman, Albert and Rivadeneira, Fernando and Sijbrands, Eric J and Uitterlinden, Andr{\'e} G and Mychaleckyj, Josyf C and Campbell, Archie and Hocking, Lynne J and Padmanabhan, Sandosh and Brody, Jennifer A and Rice, Kenneth M and White, Charles C and Harris, Tamara and Isaacs, Aaron and Campbell, Harry and Lange, Leslie A and Rudan, Igor and Kolcic, Ivana and Navarro, Pau and Zemunik, Tatijana and Salomaa, Veikko and Kooner, Angad S and Kooner, Jaspal S and Lehne, Benjamin and Scott, William R and Tan, Sian-Tsung and de Geus, Eco J and Milaneschi, Yuri and Penninx, Brenda W J H and Willemsen, Gonneke and de Mutsert, Ren{\'e}e and Ford, Ian and Gansevoort, Ron T and Segura-Lepe, Marcelo P and Raitakari, Olli T and Viikari, Jorma S and Nikus, Kjell and Forrester, Terrence and McKenzie, Colin A and de Craen, Anton J M and de Ruijter, Hester M and Pasterkamp, Gerard and Snieder, Harold and Oldehinkel, Albertine J and Slagboom, P Eline and Cooper, Richard S and K{\"a}h{\"o}nen, Mika and Lehtim{\"a}ki, Terho and Elliott, Paul and van der Harst, Pim and Jukema, J Wouter and Mook-Kanamori, Dennis O and Boomsma, Dorret I and Chambers, John C and Swertz, Morris and Ripatti, Samuli and Willems van Dijk, Ko and Vitart, Veronique and Polasek, Ozren and Hayward, Caroline and Wilson, James G and Wilson, James F and Gudnason, Vilmundur and Rich, Stephen S and Psaty, Bruce M and Borecki, Ingrid B and Boerwinkle, Eric and Rotter, Jerome I and Cupples, L Adrienne and van Duijn, Cornelia M} } @article {7139, title = {Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals.}, journal = {Am J Hum Genet}, volume = {99}, year = {2016}, month = {2016 Jul 7}, pages = {40-55}, abstract = {

Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets{\textquoteright} important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common (ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2016.05.005}, author = {Eicher, John D and Chami, Nathalie and Kacprowski, Tim and Nomura, Akihiro and Chen, Ming-Huei and Yanek, Lisa R and Tajuddin, Salman M and Schick, Ursula M and Slater, Andrew J and Pankratz, Nathan and Polfus, Linda and Schurmann, Claudia and Giri, Ayush and Brody, Jennifer A and Lange, Leslie A and Manichaikul, Ani and Hill, W David and Pazoki, Raha and Elliot, Paul and Evangelou, Evangelos and Tzoulaki, Ioanna and Gao, He and Vergnaud, Anne-Claire and Mathias, Rasika A and Becker, Diane M and Becker, Lewis C and Burt, Amber and Crosslin, David R and Lyytik{\"a}inen, Leo-Pekka and Nikus, Kjell and Hernesniemi, Jussi and K{\"a}h{\"o}nen, Mika and Raitoharju, Emma and Mononen, Nina and Raitakari, Olli T and Lehtim{\"a}ki, Terho and Cushman, Mary and Zakai, Neil A and Nickerson, Deborah A and Raffield, Laura M and Quarells, Rakale and Willer, Cristen J and Peloso, Gina M and Abecasis, Goncalo R and Liu, Dajiang J and Deloukas, Panos and Samani, Nilesh J and Schunkert, Heribert and Erdmann, Jeanette and Fornage, Myriam and Richard, Melissa and Tardif, Jean-Claude and Rioux, John D and Dub{\'e}, Marie-Pierre and de Denus, Simon and Lu, Yingchang and Bottinger, Erwin P and Loos, Ruth J F and Smith, Albert Vernon and Harris, Tamara B and Launer, Lenore J and Gudnason, Vilmundur and Velez Edwards, Digna R and Torstenson, Eric S and Liu, Yongmei and Tracy, Russell P and Rotter, Jerome I and Rich, Stephen S and Highland, Heather M and Boerwinkle, Eric and Li, Jin and Lange, Ethan and Wilson, James G and Mihailov, Evelin and M{\"a}gi, Reedik and Hirschhorn, Joel and Metspalu, Andres and Esko, T{\~o}nu and Vacchi-Suzzi, Caterina and Nalls, Mike A and Zonderman, Alan B and Evans, Michele K and Engstr{\"o}m, Gunnar and Orho-Melander, Marju and Melander, Olle and O{\textquoteright}Donoghue, Michelle L and Waterworth, Dawn M and Wallentin, Lars and White, Harvey D and Floyd, James S and Bartz, Traci M and Rice, Kenneth M and Psaty, Bruce M and Starr, J M and Liewald, David C M and Hayward, Caroline and Deary, Ian J and Greinacher, Andreas and V{\"o}lker, Uwe and Thiele, Thomas and V{\"o}lzke, Henry and van Rooij, Frank J A and Uitterlinden, Andr{\'e} G and Franco, Oscar H and Dehghan, Abbas and Edwards, Todd L and Ganesh, Santhi K and Kathiresan, Sekar and Faraday, Nauder and Auer, Paul L and Reiner, Alex P and Lettre, Guillaume and Johnson, Andrew D} } @article {7346, title = {Discovery and fine-mapping of loci associated with monounsaturated fatty acids through trans-ethnic meta-analysis in Chinese and European populations.}, journal = {J Lipid Res}, year = {2017}, month = {2017 Mar 15}, abstract = {

Monounsaturated fatty acids (MUFAs) are unsaturated fatty acids with one double bond and are derived from endogenous synthesis and dietary intake. Accumulating evidence has suggested that plasma and erythrocyte MUFA levels were associated with cardiometabolic disorders including cardiovascular disease (CVD), type 2 diabetes (T2D) and metabolic syndrome (MS). Previous genome-wide association studies (GWAS) have identified seven loci for plasma and erythrocyte palmitoleic acid and oleic acid levels in populations of European origin. To identify additional MUFA-associated loci and the potential causal variant at each locus, we performed ethnic-specific GWAS meta-analyses and trans-ethnic meta-analyses in over 15,000 participants of Chinese- and European-ancestry. We identified novel genome-wide significant associations for vaccenic acid at FADS1/2 and PKD2L1 [log10(Bayes factor)>=8.07] and for gondoic acid at FADS1/2 and GCKR [log10(Bayes factor)>=61619;6.22], and also observed improved fine-mapping resolutions at FADS1/2 and GCKR loci. The greatest improvement was observed at GCKR, where the number of variants in the 99\% credible set was reduced from 16 (covering ~95kb) to five (covering ~20kb, including a missense variant rs1260326) after trans-ethnic meta-analysis. We also confirmed the previously reported associations of PKD2L1, FADS1/2, GCKR and HIF1AN with palmitoleic acid and of FADS1/2 and LPCAT3 with oleic acid in the Chinese-specific GWAS and trans-ethnic meta-analyses. Pathway-based analyses suggested that the identified loci were enriched in unsaturated fatty acids metabolism and signaling pathways. Our findings provided novel insight into the genetic basis relevant to MUFA metabolism and biology.

}, issn = {1539-7262}, doi = {10.1194/jlr.P071860}, author = {Hu, Yao and Tanaka, Toshiko and Zhu, Jingwen and Guan, Weihua and Wu, Jason H Y and Psaty, Bruce M and McKnight, Barbara and King, Irena B and Sun, Qi and Richard, Melissa and Manichaikul, Ani and Frazier-Wood, Alexis C and Kabagambe, Edmond K and Hopkins, Paul N and Ordovas, Jose M and Ferrucci, Luigi and Bandinelli, Stefania and Arnett, Donna K and Chen, Yii-der I and Liang, Shuang and Siscovick, David S and Tsai, Michael Y and Rich, Stephen S and Fornage, Myriam and Hu, Frank B and Rimm, Eric B and Jensen, Majken K and Lemaitre, Rozenn N and Mozaffarian, Dariush and Steffen, Lyn M and Morris, Andrew P and Li, Huaixing and Lin, Xu} } @article {7573, title = {Exome-wide association study of plasma lipids in >300,000 individuals.}, journal = {Nat Genet}, volume = {49}, year = {2017}, month = {2017 Dec}, pages = {1758-1766}, abstract = {

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.

}, keywords = {Coronary Artery Disease, Diabetes Mellitus, Type 2, Exome, Genetic Association Studies, Genetic Predisposition to Disease, Genetic Variation, Genotype, Humans, Lipids, Macular Degeneration, Phenotype, Risk Factors}, issn = {1546-1718}, doi = {10.1038/ng.3977}, author = {Liu, Dajiang J and Peloso, Gina M and Yu, Haojie and Butterworth, Adam S and Wang, Xiao and Mahajan, Anubha and Saleheen, Danish and Emdin, Connor and Alam, Dewan and Alves, Alexessander Couto and Amouyel, Philippe and Di Angelantonio, Emanuele and Arveiler, Dominique and Assimes, Themistocles L and Auer, Paul L and Baber, Usman and Ballantyne, Christie M and Bang, Lia E and Benn, Marianne and Bis, Joshua C and Boehnke, Michael and Boerwinkle, Eric and Bork-Jensen, Jette and Bottinger, Erwin P and Brandslund, Ivan and Brown, Morris and Busonero, Fabio and Caulfield, Mark J and Chambers, John C and Chasman, Daniel I and Chen, Y Eugene and Chen, Yii-Der Ida and Chowdhury, Rajiv and Christensen, Cramer and Chu, Audrey Y and Connell, John M and Cucca, Francesco and Cupples, L Adrienne and Damrauer, Scott M and Davies, Gail and Deary, Ian J and Dedoussis, George and Denny, Joshua C and Dominiczak, Anna and Dub{\'e}, Marie-Pierre and Ebeling, Tapani and Eiriksdottir, Gudny and Esko, T{\~o}nu and Farmaki, Aliki-Eleni and Feitosa, Mary F and Ferrario, Marco and Ferrieres, Jean and Ford, Ian and Fornage, Myriam and Franks, Paul W and Frayling, Timothy M and Frikke-Schmidt, Ruth and Fritsche, Lars G and Frossard, Philippe and Fuster, Valentin and Ganesh, Santhi K and Gao, Wei and Garcia, Melissa E and Gieger, Christian and Giulianini, Franco and Goodarzi, Mark O and Grallert, Harald and Grarup, Niels and Groop, Leif and Grove, Megan L and Gudnason, Vilmundur and Hansen, Torben and Harris, Tamara B and Hayward, Caroline and Hirschhorn, Joel N and Holmen, Oddgeir L and Huffman, Jennifer and Huo, Yong and Hveem, Kristian and Jabeen, Sehrish and Jackson, Anne U and Jakobsdottir, Johanna and Jarvelin, Marjo-Riitta and Jensen, Gorm B and J{\o}rgensen, Marit E and Jukema, J Wouter and Justesen, Johanne M and Kamstrup, Pia R and Kanoni, Stavroula and Karpe, Fredrik and Kee, Frank and Khera, Amit V and Klarin, Derek and Koistinen, Heikki A and Kooner, Jaspal S and Kooperberg, Charles and Kuulasmaa, Kari and Kuusisto, Johanna and Laakso, Markku and Lakka, Timo and Langenberg, Claudia and Langsted, Anne and Launer, Lenore J and Lauritzen, Torsten and Liewald, David C M and Lin, Li An and Linneberg, Allan and Loos, Ruth J F and Lu, Yingchang and Lu, Xiangfeng and M{\"a}gi, Reedik and M{\"a}larstig, Anders and Manichaikul, Ani and Manning, Alisa K and M{\"a}ntyselk{\"a}, Pekka and Marouli, Eirini and Masca, Nicholas G D and Maschio, Andrea and Meigs, James B and Melander, Olle and Metspalu, Andres and Morris, Andrew P and Morrison, Alanna C and Mulas, Antonella and M{\"u}ller-Nurasyid, Martina and Munroe, Patricia B and Neville, Matt J and Nielsen, Jonas B and Nielsen, Sune F and Nordestgaard, B{\o}rge G and Ordovas, Jose M and Mehran, Roxana and O{\textquoteright}Donnell, Christoper J and Orho-Melander, Marju and Molony, Cliona M and Muntendam, Pieter and Padmanabhan, Sandosh and Palmer, Colin N A and Pasko, Dorota and Patel, Aniruddh P and Pedersen, Oluf and Perola, Markus and Peters, Annette and Pisinger, Charlotta and Pistis, Giorgio and Polasek, Ozren and Poulter, Neil and Psaty, Bruce M and Rader, Daniel J and Rasheed, Asif and Rauramaa, Rainer and Reilly, Dermot F and Reiner, Alex P and Renstrom, Frida and Rich, Stephen S and Ridker, Paul M and Rioux, John D and Robertson, Neil R and Roden, Dan M and Rotter, Jerome I and Rudan, Igor and Salomaa, Veikko and Samani, Nilesh J and Sanna, Serena and Sattar, Naveed and Schmidt, Ellen M and Scott, Robert A and Sever, Peter and Sevilla, Raquel S and Shaffer, Christian M and Sim, Xueling and Sivapalaratnam, Suthesh and Small, Kerrin S and Smith, Albert V and Smith, Blair H and Somayajula, Sangeetha and Southam, Lorraine and Spector, Timothy D and Speliotes, Elizabeth K and Starr, John M and Stirrups, Kathleen E and Stitziel, Nathan and Strauch, Konstantin and Stringham, Heather M and Surendran, Praveen and Tada, Hayato and Tall, Alan R and Tang, Hua and Tardif, Jean-Claude and Taylor, Kent D and Trompet, Stella and Tsao, Philip S and Tuomilehto, Jaakko and Tybjaerg-Hansen, Anne and van Zuydam, Natalie R and Varbo, Anette and Varga, Tibor V and Virtamo, Jarmo and Waldenberger, Melanie and Wang, Nan and Wareham, Nick J and Warren, Helen R and Weeke, Peter E and Weinstock, Joshua and Wessel, Jennifer and Wilson, James G and Wilson, Peter W F and Xu, Ming and Yaghootkar, Hanieh and Young, Robin and Zeggini, Eleftheria and Zhang, He and Zheng, Neil S and Zhang, Weihua and Zhang, Yan and Zhou, Wei and Zhou, Yanhua and Zoledziewska, Magdalena and Howson, Joanna M M and Danesh, John and McCarthy, Mark I and Cowan, Chad A and Abecasis, Goncalo and Deloukas, Panos and Musunuru, Kiran and Willer, Cristen J and Kathiresan, Sekar} } @article {7345, title = {Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis.}, journal = {Nat Genet}, volume = {49}, year = {2017}, month = {2017 Mar}, pages = {426-432}, abstract = {

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 {\texttimes} 10(-6)) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases.

}, issn = {1546-1718}, doi = {10.1038/ng.3752}, author = {Hobbs, Brian D and de Jong, Kim and Lamontagne, Maxime and Boss{\'e}, Yohan and Shrine, Nick and Artigas, Maria Soler and Wain, Louise V and Hall, Ian P and Jackson, Victoria E and Wyss, Annah B and London, Stephanie J and North, Kari E and Franceschini, Nora and Strachan, David P and Beaty, Terri H and Hokanson, John E and Crapo, James D and Castaldi, Peter J and Chase, Robert P and Bartz, Traci M and Heckbert, Susan R and Psaty, Bruce M and Gharib, Sina A and Zanen, Pieter and Lammers, Jan W and Oudkerk, Matthijs and Groen, H J and Locantore, Nicholas and Tal-Singer, Ruth and Rennard, Stephen I and Vestbo, J{\o}rgen and Timens, Wim and Par{\'e}, Peter D and Latourelle, Jeanne C and Dupuis, Jos{\'e}e and O{\textquoteright}Connor, George T and Wilk, Jemma B and Kim, Woo Jin and Lee, Mi Kyeong and Oh, Yeon-Mok and Vonk, Judith M and de Koning, Harry J and Leng, Shuguang and Belinsky, Steven A and Tesfaigzi, Yohannes and Manichaikul, Ani and Wang, Xin-Qun and Rich, Stephen S and Barr, R Graham and Sparrow, David and Litonjua, Augusto A and Bakke, Per and Gulsvik, Amund and Lahousse, Lies and Brusselle, Guy G and Stricker, Bruno H and Uitterlinden, Andr{\'e} G and Ampleford, Elizabeth J and Bleecker, Eugene R and Woodruff, Prescott G and Meyers, Deborah A and Qiao, Dandi and Lomas, David A and Yim, Jae-Joon and Kim, Deog Kyeom and Hawrylkiewicz, Iwona and Sliwinski, Pawel and Hardin, Megan and Fingerlin, Tasha E and Schwartz, David A and Postma, Dirkje S and MacNee, William and Tobin, Martin D and Silverman, Edwin K and Boezen, H Marike and Cho, Michael H} } @article {7578, title = {Genome-wide association meta-analysis of fish and EPA+DHA consumption in 17 US and European cohorts.}, journal = {PLoS One}, volume = {12}, year = {2017}, month = {2017}, pages = {e0186456}, abstract = {

BACKGROUND: Regular fish and omega-3 consumption may have several health benefits and are recommended by major dietary guidelines. Yet, their intakes remain remarkably variable both within and across populations, which could partly owe to genetic influences.

OBJECTIVE: To identify common genetic variants that influence fish and dietary eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA) consumption.

DESIGN: We conducted genome-wide association (GWA) meta-analysis of fish (n = 86,467) and EPA+DHA (n = 62,265) consumption in 17 cohorts of European descent from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium Nutrition Working Group. Results from cohort-specific GWA analyses (additive model) for fish and EPA+DHA consumption were adjusted for age, sex, energy intake, and population stratification, and meta-analyzed separately using fixed-effect meta-analysis with inverse variance weights (METAL software). Additionally, heritability was estimated in 2 cohorts.

RESULTS: Heritability estimates for fish and EPA+DHA consumption ranged from 0.13-0.24 and 0.12-0.22, respectively. A significant GWA for fish intake was observed for rs9502823 on chromosome 6: each copy of the minor allele (FreqA = 0.015) was associated with 0.029 servings/day (~1 serving/month) lower fish consumption (P = 1.96x10-8). No significant association was observed for EPA+DHA, although rs7206790 in the obesity-associated FTO gene was among top hits (P = 8.18x10-7). Post-hoc calculations demonstrated 95\% statistical power to detect a genetic variant associated with effect size of 0.05\% for fish and 0.08\% for EPA+DHA.

CONCLUSIONS: These novel findings suggest that non-genetic personal and environmental factors are principal determinants of the remarkable variation in fish consumption, representing modifiable targets for increasing intakes among all individuals. Genes underlying the signal at rs72838923 and mechanisms for the association warrant further investigation.

}, keywords = {Adult, Aged, Cohort Studies, Docosahexaenoic Acids, Eicosapentaenoic Acid, Europe, European Continental Ancestry Group, Female, Genome-Wide Association Study, Humans, Male, Middle Aged, Seafood, United States}, issn = {1932-6203}, doi = {10.1371/journal.pone.0186456}, author = {Mozaffarian, Dariush and Dashti, Hassan S and Wojczynski, Mary K and Chu, Audrey Y and Nettleton, Jennifer A and M{\"a}nnist{\"o}, Satu and Kristiansson, Kati and Reedik, M{\"a}gi and Lahti, Jari and Houston, Denise K and Cornelis, Marilyn C and van Rooij, Frank J A and Dimitriou, Maria and Kanoni, Stavroula and Mikkil{\"a}, Vera and Steffen, Lyn M and de Oliveira Otto, Marcia C and Qi, Lu and Psaty, Bruce and Djouss{\'e}, Luc and Rotter, Jerome I and Harald, Kennet and Perola, Markus and Rissanen, Harri and Jula, Antti and Krista, Fischer and Mihailov, Evelin and Feitosa, Mary F and Ngwa, Julius S and Xue, Luting and Jacques, Paul F and Per{\"a}l{\"a}, Mia-Maria and Palotie, Aarno and Liu, Yongmei and Nalls, Nike A and Ferrucci, Luigi and Hernandez, Dena and Manichaikul, Ani and Tsai, Michael Y and Kiefte-de Jong, Jessica C and Hofman, Albert and Uitterlinden, Andr{\'e} G and Rallidis, Loukianos and Ridker, Paul M and Rose, Lynda M and Buring, Julie E and Lehtim{\"a}ki, Terho and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Lemaitre, Rozenn and Salomaa, Veikko and Knekt, Paul and Metspalu, Andres and Borecki, Ingrid B and Cupples, L Adrienne and Eriksson, Johan G and Kritchevsky, Stephen B and Bandinelli, Stefania and Siscovick, David and Franco, Oscar H and Deloukas, Panos and Dedoussis, George and Chasman, Daniel I and Raitakari, Olli and Tanaka, Toshiko} } @article {7791, title = {Genome-wide association meta-analysis of circulating odd-numbered chain saturated fatty acids: Results from the CHARGE Consortium.}, journal = {PLoS One}, volume = {13}, year = {2018}, month = {2018}, pages = {e0196951}, abstract = {

BACKGROUND: Odd-numbered chain saturated fatty acids (OCSFA) have been associated with potential health benefits. Although some OCSFA (e.g., C15:0 and C17:0) are found in meats and dairy products, sources and metabolism of C19:0 and C23:0 are relatively unknown, and the influence of non-dietary determinants, including genetic factors, on circulating levels of OCSFA is not established.

OBJECTIVE: To elucidate the biological processes that influence circulating levels of OCSFA by investigating associations between genetic variation and OCSFA.

DESIGN: We performed a meta-analysis of genome-wide association studies (GWAS) of plasma phospholipid/erythrocyte levels of C15:0, C17:0, C19:0, and C23:0 among 11,494 individuals of European descent. We also investigated relationships between specific single nucleotide polymorphisms (SNPs) in the lactase (LCT) gene, associated with adult-onset lactase intolerance, with circulating levels of dairy-derived OCSFA, and evaluated associations of candidate sphingolipid genes with C23:0 levels.

RESULTS: We found no genome-wide significant evidence that common genetic variation is associated with circulating levels of C15:0 or C23:0. In two cohorts with available data, we identified one intronic SNP (rs13361131) in myosin X gene (MYO10) associated with C17:0 level (P = 1.37{\texttimes}10-8), and two intronic SNP (rs12874278 and rs17363566) in deleted in lymphocytic leukemia 1 (DLEU1) region associated with C19:0 level (P = 7.07{\texttimes}10-9). In contrast, when using a candidate-gene approach, we found evidence that three SNPs in LCT (rs11884924, rs16832067, and rs3816088) are associated with circulating C17:0 level (adjusted P = 4{\texttimes}10-2). In addition, nine SNPs in the ceramide synthase 4 (CERS4) region were associated with circulating C23:0 levels (adjusted P<5{\texttimes}10-2).

CONCLUSIONS: Our findings suggest that circulating levels of OCSFA may be predominantly influenced by non-genetic factors. SNPs associated with C17:0 level in the LCT gene may reflect genetic influence in dairy consumption or in metabolism of dairy foods. SNPs associated with C23:0 may reflect a role of genetic factors in the synthesis of sphingomyelin.

}, keywords = {Fatty Acids, Genome-Wide Association Study, Humans, Introns, Lactase, Myosins, Polymorphism, Single Nucleotide, Sphingomyelins, Sphingosine N-Acyltransferase, Tumor Suppressor Proteins}, issn = {1932-6203}, doi = {10.1371/journal.pone.0196951}, author = {de Oliveira Otto, Marcia C and Lemaitre, Rozenn N and Sun, Qi and King, Irena B and Wu, Jason H Y and Manichaikul, Ani and Rich, Stephen S and Tsai, Michael Y and Chen, Y D and Fornage, Myriam and Weihua, Guan and Aslibekyan, Stella and Irvin, Marguerite R and Kabagambe, Edmond K and Arnett, Donna K and Jensen, Majken K and McKnight, Barbara and Psaty, Bruce M and Steffen, Lyn M and Smith, Caren E and Riserus, Ulf and Lind, Lars and Hu, Frank B and Rimm, Eric B and Siscovick, David S and Mozaffarian, Dariush} } @article {7795, title = {Meta-analysis of exome array data identifies six novel genetic loci for lung function.}, journal = {Wellcome Open Res}, volume = {3}, year = {2018}, month = {2018}, pages = {4}, abstract = {

Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV ), forced vital capacity (FVC) and the ratio of FEV to FVC (FEV /FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. We identified significant (P<2{\textperiodcentered}8x10 ) associations with six SNPs: a nonsynonymous variant in , which is predicted to be damaging, three intronic SNPs ( and ) and two intergenic SNPs near to and Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including and . Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.

}, issn = {2398-502X}, doi = {10.12688/wellcomeopenres.12583.3}, author = {Jackson, Victoria E and Latourelle, Jeanne C and Wain, Louise V and Smith, Albert V and Grove, Megan L and Bartz, Traci M and Obeidat, Ma{\textquoteright}en and Province, Michael A and Gao, Wei and Qaiser, Beenish and Porteous, David J and Cassano, Patricia A and Ahluwalia, Tarunveer S and Grarup, Niels and Li, Jin and Altmaier, Elisabeth and Marten, Jonathan and Harris, Sarah E and Manichaikul, Ani and Pottinger, Tess D and Li-Gao, Ruifang and Lind-Thomsen, Allan and Mahajan, Anubha and Lahousse, Lies and Imboden, Medea and Teumer, Alexander and Prins, Bram and Lyytik{\"a}inen, Leo-Pekka and Eiriksdottir, Gudny and Franceschini, Nora and Sitlani, Colleen M and Brody, Jennifer A and Boss{\'e}, Yohan and Timens, Wim and Kraja, Aldi and Loukola, Anu and Tang, Wenbo and Liu, Yongmei and Bork-Jensen, Jette and Justesen, Johanne M and Linneberg, Allan and Lange, Leslie A and Rawal, Rajesh and Karrasch, Stefan and Huffman, Jennifer E and Smith, Blair H and Davies, Gail and Burkart, Kristin M and Mychaleckyj, Josyf C and Bonten, Tobias N and Enroth, Stefan and Lind, Lars and Brusselle, Guy G and Kumar, Ashish and Stubbe, Beate and K{\"a}h{\"o}nen, Mika and Wyss, Annah B and Psaty, Bruce M and Heckbert, Susan R and Hao, Ke and Rantanen, Taina and Kritchevsky, Stephen B and Lohman, Kurt and Skaaby, Tea and Pisinger, Charlotta and Hansen, Torben and Schulz, Holger and Polasek, Ozren and Campbell, Archie and Starr, John M and Rich, Stephen S and Mook-Kanamori, Dennis O and Johansson, Asa and Ingelsson, Erik and Uitterlinden, Andr{\'e} G and Weiss, Stefan and Raitakari, Olli T and Gudnason, Vilmundur and North, Kari E and Gharib, Sina A and Sin, Don D and Taylor, Kent D and O{\textquoteright}Connor, George T and Kaprio, Jaakko and Harris, Tamara B and Pederson, Oluf and Vestergaard, Henrik and Wilson, James G and Strauch, Konstantin and Hayward, Caroline and Kerr, Shona and Deary, Ian J and Barr, R Graham and de Mutsert, Ren{\'e}e and Gyllensten, Ulf and Morris, Andrew P and Ikram, M Arfan and Probst-Hensch, Nicole and Gl{\"a}ser, Sven and Zeggini, Eleftheria and Lehtim{\"a}ki, Terho and Strachan, David P and Dupuis, Jos{\'e}e and Morrison, Alanna C and Hall, Ian P and Tobin, Martin D and London, Stephanie J} } @article {7558, title = {Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Jan}, pages = {42-53}, abstract = {

We examined common variation in asthma risk by conducting a meta-analysis of worldwide asthma genome-wide association studies (23,948 asthma cases, 118,538 controls) of individuals from ethnically diverse populations. We identified five new asthma loci, found two new associations at two known asthma loci, established asthma associations at two loci previously implicated in the comorbidity of asthma plus hay fever, and confirmed nine known loci. Investigation of pleiotropy showed large overlaps in genetic variants with autoimmune and inflammatory diseases. The enrichment in enhancer marks at asthma risk loci, especially in immune cells, suggested a major role of these loci in the regulation of immunologically related mechanisms.

}, issn = {1546-1718}, doi = {10.1038/s41588-017-0014-7}, author = {Demenais, Florence and Margaritte-Jeannin, Patricia and Barnes, Kathleen C and Cookson, William O C and Altm{\"u}ller, Janine and Ang, Wei and Barr, R Graham and Beaty, Terri H and Becker, Allan B and Beilby, John and Bisgaard, Hans and Bjornsdottir, Unnur Steina and Bleecker, Eugene and B{\o}nnelykke, Klaus and Boomsma, Dorret I and Bouzigon, Emmanuelle and Brightling, Christopher E and Brossard, Myriam and Brusselle, Guy G and Burchard, Esteban and Burkart, Kristin M and Bush, Andrew and Chan-Yeung, Moira and Chung, Kian Fan and Couto Alves, Alexessander and Curtin, John A and Custovic, Adnan and Daley, Denise and de Jongste, Johan C and Del-Rio-Navarro, Blanca E and Donohue, Kathleen M and Duijts, Liesbeth and Eng, Celeste and Eriksson, Johan G and Farrall, Martin and Fedorova, Yuliya and Feenstra, Bjarke and Ferreira, Manuel A and Freidin, Maxim B and Gajdos, Zofia and Gauderman, Jim and Gehring, Ulrike and Geller, Frank and Genuneit, Jon and Gharib, Sina A and Gilliland, Frank and Granell, Raquel and Graves, Penelope E and Gudbjartsson, Daniel F and Haahtela, Tari and Heckbert, Susan R and Heederik, Dick and Heinrich, Joachim and Heli{\"o}vaara, Markku and Henderson, John and Himes, Blanca E and Hirose, Hiroshi and Hirschhorn, Joel N and Hofman, Albert and Holt, Patrick and Hottenga, Jouke and Hudson, Thomas J and Hui, Jennie and Imboden, Medea and Ivanov, Vladimir and Jaddoe, Vincent W V and James, Alan and Janson, Christer and Jarvelin, Marjo-Riitta and Jarvis, Deborah and Jones, Graham and Jonsdottir, Ingileif and Jousilahti, Pekka and Kabesch, Michael and K{\"a}h{\"o}nen, Mika and Kantor, David B and Karunas, Alexandra S and Khusnutdinova, Elza and Koppelman, Gerard H and Kozyrskyj, Anita L and Kreiner, Eskil and Kubo, Michiaki and Kumar, Rajesh and Kumar, Ashish and Kuokkanen, Mikko and Lahousse, Lies and Laitinen, Tarja and Laprise, Catherine and Lathrop, Mark and Lau, Susanne and Lee, Young-Ae and Lehtim{\"a}ki, Terho and Letort, S{\'e}bastien and Levin, Albert M and Li, Guo and Liang, Liming and Loehr, Laura R and London, Stephanie J and Loth, Daan W and Manichaikul, Ani and Marenholz, Ingo and Martinez, Fernando J and Matheson, Melanie C and Mathias, Rasika A and Matsumoto, Kenji and Mbarek, Hamdi and McArdle, Wendy L and Melbye, Mads and Mel{\'e}n, Erik and Meyers, Deborah and Michel, Sven and Mohamdi, Hamida and Musk, Arthur W and Myers, Rachel A and Nieuwenhuis, Maartje A E and Noguchi, Emiko and O{\textquoteright}Connor, George T and Ogorodova, Ludmila M and Palmer, Cameron D and Palotie, Aarno and Park, Julie E and Pennell, Craig E and Pershagen, G{\"o}ran and Polonikov, Alexey and Postma, Dirkje S and Probst-Hensch, Nicole and Puzyrev, Valery P and Raby, Benjamin A and Raitakari, Olli T and Ramasamy, Adaikalavan and Rich, Stephen S and Robertson, Colin F and Romieu, Isabelle and Salam, Muhammad T and Salomaa, Veikko and Schl{\"u}nssen, Vivi and Scott, Robert and Selivanova, Polina A and Sigsgaard, Torben and Simpson, Angela and Siroux, Val{\'e}rie and Smith, Lewis J and Solodilova, Maria and Standl, Marie and Stefansson, Kari and Strachan, David P and Stricker, Bruno H and Takahashi, Atsushi and Thompson, Philip J and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiesler, Carla M T and Torgerson, Dara G and Tsunoda, Tatsuhiko and Uitterlinden, Andr{\'e} G and van der Valk, Ralf J P and Vaysse, Amaury and Vedantam, Sailaja and von Berg, Andrea and von Mutius, Erika and Vonk, Judith M and Waage, Johannes and Wareham, Nick J and Weiss, Scott T and White, Wendy B and Wickman, Magnus and Widen, Elisabeth and Willemsen, Gonneke and Williams, L Keoki and Wouters, Inge M and Yang, James J and Zhao, Jing Hua and Moffatt, Miriam F and Ober, Carole and Nicolae, Dan L} } @article {7683, title = {Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Apr}, pages = {524-537}, abstract = {

Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and~using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0058-3}, author = {Malik, Rainer and Chauhan, Ganesh and Traylor, Matthew and Sargurupremraj, Muralidharan and Okada, Yukinori and Mishra, Aniket and Rutten-Jacobs, Loes and Giese, Anne-Katrin and van der Laan, Sander W and Gretarsdottir, Solveig and Anderson, Christopher D and Chong, Michael and Adams, Hieab H H and Ago, Tetsuro and Almgren, Peter and Amouyel, Philippe and Ay, Hakan and Bartz, Traci M and Benavente, Oscar R and Bevan, Steve and Boncoraglio, Giorgio B and Brown, Robert D and Butterworth, Adam S and Carrera, Caty and Carty, Cara L and Chasman, Daniel I and Chen, Wei-Min and Cole, John W and Correa, Adolfo and Cotlarciuc, Ioana and Cruchaga, Carlos and Danesh, John and de Bakker, Paul I W and DeStefano, Anita L and den Hoed, Marcel and Duan, Qing and Engelter, Stefan T and Falcone, Guido J and Gottesman, Rebecca F and Grewal, Raji P and Gudnason, Vilmundur and Gustafsson, Stefan and Haessler, Jeffrey and Harris, Tamara B and Hassan, Ahamad and Havulinna, Aki S and Heckbert, Susan R and Holliday, Elizabeth G and Howard, George and Hsu, Fang-Chi and Hyacinth, Hyacinth I and Ikram, M Arfan and Ingelsson, Erik and Irvin, Marguerite R and Jian, Xueqiu and Jimenez-Conde, Jordi and Johnson, Julie A and Jukema, J Wouter and Kanai, Masahiro and Keene, Keith L and Kissela, Brett M and Kleindorfer, Dawn O and Kooperberg, Charles and Kubo, Michiaki and Lange, Leslie A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lee, Jin-Moo and Lemmens, Robin and Leys, Didier and Lewis, Cathryn M and Lin, Wei-Yu and Lindgren, Arne G and Lorentzen, Erik and Magnusson, Patrik K and Maguire, Jane and Manichaikul, Ani and McArdle, Patrick F and Meschia, James F and Mitchell, Braxton D and Mosley, Thomas H and Nalls, Michael A and Ninomiya, Toshiharu and O{\textquoteright}Donnell, Martin J and Psaty, Bruce M and Pulit, Sara L and Rannikmae, Kristiina and Reiner, Alexander P and Rexrode, Kathryn M and Rice, Kenneth and Rich, Stephen S and Ridker, Paul M and Rost, Natalia S and Rothwell, Peter M and Rotter, Jerome I and Rundek, Tatjana and Sacco, Ralph L and Sakaue, Saori and Sale, Mich{\`e}le M and Salomaa, Veikko and Sapkota, Bishwa R and Schmidt, Reinhold and Schmidt, Carsten O and Schminke, Ulf and Sharma, Pankaj and Slowik, Agnieszka and Sudlow, Cathie L M and Tanislav, Christian and Tatlisumak, Turgut and Taylor, Kent D and Thijs, Vincent N S and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiedt, Steffen and Trompet, Stella and Tzourio, Christophe and van Duijn, Cornelia M and Walters, Matthew and Wareham, Nicholas J and Wassertheil-Smoller, Sylvia and Wilson, James G and Wiggins, Kerri L and Yang, Qiong and Yusuf, Salim and Bis, Joshua C and Pastinen, Tomi and Ruusalepp, Arno and Schadt, Eric E and Koplev, Simon and Bj{\"o}rkegren, Johan L M and Codoni, Veronica and Civelek, Mete and Smith, Nicholas L and Tr{\'e}gou{\"e}t, David A and Christophersen, Ingrid E and Roselli, Carolina and Lubitz, Steven A and Ellinor, Patrick T and Tai, E Shyong and Kooner, Jaspal S and Kato, Norihiro and He, Jiang and van der Harst, Pim and Elliott, Paul and Chambers, John C and Takeuchi, Fumihiko and Johnson, Andrew D and Sanghera, Dharambir K and Melander, Olle and Jern, Christina and Strbian, Daniel and Fernandez-Cadenas, Israel and Longstreth, W T and Rolfs, Arndt and Hata, Jun and Woo, Daniel and Rosand, Jonathan and Par{\'e}, Guillaume and Hopewell, Jemma C and Saleheen, Danish and Stefansson, Kari and Worrall, Bradford B and Kittner, Steven J and Seshadri, Sudha and Fornage, Myriam and Markus, Hugh S and Howson, Joanna M M and Kamatani, Yoichiro and Debette, Stephanie and Dichgans, Martin and Malik, Rainer and Chauhan, Ganesh and Traylor, Matthew and Sargurupremraj, Muralidharan and Okada, Yukinori and Mishra, Aniket and Rutten-Jacobs, Loes and Giese, Anne-Katrin and van der Laan, Sander W and Gretarsdottir, Solveig and Anderson, Christopher D and Chong, Michael and Adams, Hieab H H and Ago, Tetsuro and Almgren, Peter and Amouyel, Philippe and Ay, Hakan and Bartz, Traci M and Benavente, Oscar R and Bevan, Steve and Boncoraglio, Giorgio B and Brown, Robert D and Butterworth, Adam S and Carrera, Caty and Carty, Cara L and Chasman, Daniel I and Chen, Wei-Min and Cole, John W and Correa, Adolfo and Cotlarciuc, Ioana and Cruchaga, Carlos and Danesh, John and de Bakker, Paul I W and DeStefano, Anita L and Hoed, Marcel den and Duan, Qing and Engelter, Stefan T and Falcone, Guido J and Gottesman, Rebecca F and Grewal, Raji P and Gudnason, Vilmundur and Gustafsson, Stefan and Haessler, Jeffrey and Harris, Tamara B and Hassan, Ahamad and Havulinna, Aki S and Heckbert, Susan R and Holliday, Elizabeth G and Howard, George and Hsu, Fang-Chi and Hyacinth, Hyacinth I and Ikram, M Arfan and Ingelsson, Erik and Irvin, Marguerite R and Jian, Xueqiu and Jimenez-Conde, Jordi and Johnson, Julie A and Jukema, J Wouter and Kanai, Masahiro and Keene, Keith L and Kissela, Brett M and Kleindorfer, Dawn O and Kooperberg, Charles and Kubo, Michiaki and Lange, Leslie A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lee, Jin-Moo and Lemmens, Robin and Leys, Didier and Lewis, Cathryn M and Lin, Wei-Yu and Lindgren, Arne G and Lorentzen, Erik and Magnusson, Patrik K and Maguire, Jane and Manichaikul, Ani and McArdle, Patrick F and Meschia, James F and Mitchell, Braxton D and Mosley, Thomas H and Nalls, Michael A and Ninomiya, Toshiharu and O{\textquoteright}Donnell, Martin J and Psaty, Bruce M and Pulit, Sara L and Rannikmae, Kristiina and Reiner, Alexander P and Rexrode, Kathryn M and Rice, Kenneth and Rich, Stephen S and Ridker, Paul M and Rost, Natalia S and Rothwell, Peter M and Rotter, Jerome I and Rundek, Tatjana and Sacco, Ralph L and Sakaue, Saori and Sale, Mich{\`e}le M and Salomaa, Veikko and Sapkota, Bishwa R and Schmidt, Reinhold and Schmidt, Carsten O and Schminke, Ulf and Sharma, Pankaj and Slowik, Agnieszka and Sudlow, Cathie L M and Tanislav, Christian and Tatlisumak, Turgut and Taylor, Kent D and Thijs, Vincent N S and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiedt, Steffen and Trompet, Stella and Tzourio, Christophe and van Duijn, Cornelia M and Walters, Matthew and Wareham, Nicholas J and Wassertheil-Smoller, Sylvia and Wilson, James G and Wiggins, Kerri L and Yang, Qiong and Yusuf, Salim and Amin, Najaf and Aparicio, Hugo S and Arnett, Donna K and Attia, John and Beiser, Alexa S and Berr, Claudine and Buring, Julie E and Bustamante, Mariana and Caso, Valeria and Cheng, Yu-Ching and Choi, Seung Hoan and Chowhan, Ayesha and Cullell, Natalia and Dartigues, Jean-Fran{\c c}ois and Delavaran, Hossein and Delgado, Pilar and D{\"o}rr, Marcus and Engstr{\"o}m, Gunnar and Ford, Ian and Gurpreet, Wander S and Hamsten, Anders and Heitsch, Laura and Hozawa, Atsushi and Ibanez, Laura and Ilinca, Andreea and Ingelsson, Martin and Iwasaki, Motoki and Jackson, Rebecca D and Jood, Katarina and Jousilahti, Pekka and Kaffashian, Sara and Kalra, Lalit and Kamouchi, Masahiro and Kitazono, Takanari and Kjartansson, Olafur and Kloss, Manja and Koudstaal, Peter J and Krupinski, Jerzy and Labovitz, Daniel L and Laurie, Cathy C and Levi, Christopher R and Li, Linxin and Lind, Lars and Lindgren, Cecilia M and Lioutas, Vasileios and Liu, Yong Mei and Lopez, Oscar L and Makoto, Hirata and Martinez-Majander, Nicolas and Matsuda, Koichi and Minegishi, Naoko and Montaner, Joan and Morris, Andrew P and Mui{\~n}o, Elena and M{\"u}ller-Nurasyid, Martina and Norrving, Bo and Ogishima, Soichi and Parati, Eugenio A and Peddareddygari, Leema Reddy and Pedersen, Nancy L and Pera, Joanna and Perola, Markus and Pezzini, Alessandro and Pileggi, Silvana and Rabionet, Raquel and Riba-Llena, Iolanda and Ribas{\'e}s, Marta and Romero, Jose R and Roquer, Jaume and Rudd, Anthony G and Sarin, Antti-Pekka and Sarju, Ralhan and Sarnowski, Chloe and Sasaki, Makoto and Satizabal, Claudia L and Satoh, Mamoru and Sattar, Naveed and Sawada, Norie and Sibolt, Gerli and Sigurdsson, {\'A}sgeir and Smith, Albert and Sobue, Kenji and Soriano-T{\'a}rraga, Carolina and Stanne, Tara and Stine, O Colin and Stott, David J and Strauch, Konstantin and Takai, Takako and Tanaka, Hideo and Tanno, Kozo and Teumer, Alexander and Tomppo, Liisa and Torres-Aguila, Nuria P and Touze, Emmanuel and Tsugane, Shoichiro and Uitterlinden, Andr{\'e} G and Valdimarsson, Einar M and van der Lee, Sven J and V{\"o}lzke, Henry and Wakai, Kenji and Weir, David and Williams, Stephen R and Wolfe, Charles D A and Wong, Quenna and Xu, Huichun and Yamaji, Taiki and Sanghera, Dharambir K and Melander, Olle and Jern, Christina and Strbian, Daniel and Fernandez-Cadenas, Israel and Longstreth, W T and Rolfs, Arndt and Hata, Jun and Woo, Daniel and Rosand, Jonathan and Par{\'e}, Guillaume and Hopewell, Jemma C and Saleheen, Danish and Stefansson, Kari and Worrall, Bradford B and Kittner, Steven J and Seshadri, Sudha and Fornage, Myriam and Markus, Hugh S and Howson, Joanna M M and Kamatani, Yoichiro and Debette, Stephanie and Dichgans, Martin} } @article {7819, title = {Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Jul 30}, pages = {2976}, abstract = {

Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of lung function and clinical relevance of implicated loci.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-05369-0}, author = {Wyss, Annah B and Sofer, Tamar and Lee, Mi Kyeong and Terzikhan, Natalie and Nguyen, Jennifer N and Lahousse, Lies and Latourelle, Jeanne C and Smith, Albert Vernon and Bartz, Traci M and Feitosa, Mary F and Gao, Wei and Ahluwalia, Tarunveer S and Tang, Wenbo and Oldmeadow, Christopher and Duan, Qing and de Jong, Kim and Wojczynski, Mary K and Wang, Xin-Qun and Noordam, Raymond and Hartwig, Fernando Pires and Jackson, Victoria E and Wang, Tianyuan and Obeidat, Ma{\textquoteright}en and Hobbs, Brian D and Huan, Tianxiao and Gui, Hongsheng and Parker, Margaret M and Hu, Donglei and Mogil, Lauren S and Kichaev, Gleb and Jin, Jianping and Graff, Mariaelisa and Harris, Tamara B and Kalhan, Ravi and Heckbert, Susan R and Paternoster, Lavinia and Burkart, Kristin M and Liu, Yongmei and Holliday, Elizabeth G and Wilson, James G and Vonk, Judith M and Sanders, Jason L and Barr, R Graham and de Mutsert, Ren{\'e}e and Menezes, Ana Maria Baptista and Adams, Hieab H H and van den Berge, Maarten and Joehanes, Roby and Levin, Albert M and Liberto, Jennifer and Launer, Lenore J and Morrison, Alanna C and Sitlani, Colleen M and Celed{\'o}n, Juan C and Kritchevsky, Stephen B and Scott, Rodney J and Christensen, Kaare and Rotter, Jerome I and Bonten, Tobias N and Wehrmeister, Fernando C{\'e}sar and Boss{\'e}, Yohan and Xiao, Shujie and Oh, Sam and Franceschini, Nora and Brody, Jennifer A and Kaplan, Robert C and Lohman, Kurt and McEvoy, Mark and Province, Michael A and Rosendaal, Frits R and Taylor, Kent D and Nickle, David C and Williams, L Keoki and Burchard, Esteban G and Wheeler, Heather E and Sin, Don D and Gudnason, Vilmundur and North, Kari E and Fornage, Myriam and Psaty, Bruce M and Myers, Richard H and O{\textquoteright}Connor, George and Hansen, Torben and Laurie, Cathy C and Cassano, Patricia A and Sung, Joohon and Kim, Woo Jin and Attia, John R and Lange, Leslie and Boezen, H Marike and Thyagarajan, Bharat and Rich, Stephen S and Mook-Kanamori, Dennis O and Horta, Bernardo Lessa and Uitterlinden, Andr{\'e} G and Im, Hae Kyung and Cho, Michael H and Brusselle, Guy G and Gharib, Sina A and Dupuis, Jos{\'e}e and Manichaikul, Ani and London, Stephanie J} } @article {7976, title = {Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 01 22}, pages = {376}, abstract = {

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.

}, keywords = {Adolescent, Adult, African Continental Ancestry Group, Aged, Aged, 80 and over, Asian Continental Ancestry Group, Brazil, Calcium-Binding Proteins, Cholesterol, Cholesterol, HDL, Cholesterol, LDL, European Continental Ancestry Group, Exercise, Female, Genetic Loci, Genome-Wide Association Study, Genotype, Hispanic Americans, Humans, LIM-Homeodomain Proteins, Lipid Metabolism, Lipids, Male, Membrane Proteins, Microtubule-Associated Proteins, Middle Aged, Muscle Proteins, Nerve Tissue Proteins, Transcription Factors, Triglycerides, Young Adult}, issn = {2041-1723}, doi = {10.1038/s41467-018-08008-w}, author = {Kilpel{\"a}inen, Tuomas O and Bentley, Amy R and Noordam, Raymond and Sung, Yun Ju and Schwander, Karen and Winkler, Thomas W and Jakupovi{\'c}, Hermina and Chasman, Daniel I and Manning, Alisa and Ntalla, Ioanna and Aschard, Hugues and Brown, Michael R and de Las Fuentes, Lisa and Franceschini, Nora and Guo, Xiuqing and Vojinovic, Dina and Aslibekyan, Stella and Feitosa, Mary F and Kho, Minjung and Musani, Solomon K and Richard, Melissa and Wang, Heming and Wang, Zhe and Bartz, Traci M and Bielak, Lawrence F and Campbell, Archie and Dorajoo, Rajkumar and Fisher, Virginia and Hartwig, Fernando P and Horimoto, Andrea R V R and Li, Changwei and Lohman, Kurt K and Marten, Jonathan and Sim, Xueling and Smith, Albert V and Tajuddin, Salman M and Alver, Maris and Amini, Marzyeh and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Graff, Mariaelisa and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Jackson, Anne U and Zhao, Jing Hua and Kraja, Aldi T and Kuhnel, Brigitte and Laguzzi, Federica and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Rauramaa, Rainer and Riaz, Muhammad and Robino, Antonietta and Rueedi, Rico and Stringham, Heather M and Takeuchi, Fumihiko and van der Most, Peter J and Varga, Tibor V and Verweij, Niek and Ware, Erin B and Wen, Wanqing and Li, Xiaoyin and Yanek, Lisa R and Amin, Najaf and Arnett, Donna K and Boerwinkle, Eric and Brumat, Marco and Cade, Brian and Canouil, Micka{\"e}l and Chen, Yii-Der Ida and Concas, Maria Pina and Connell, John and de Mutsert, Ren{\'e}e and de Silva, H Janaka and de Vries, Paul S and Demirkan, Ayse and Ding, Jingzhong and Eaton, Charles B and Faul, Jessica D and Friedlander, Yechiel and Gabriel, Kelley P and Ghanbari, Mohsen and Giulianini, Franco and Gu, Chi Charles and Gu, Dongfeng and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hunt, Steven C and Ikram, M Arfan and Jonas, Jost B and Koh, Woon-Puay and Komulainen, Pirjo and Krieger, Jose E and Kritchevsky, Stephen B and Kutalik, Zolt{\'a}n and Kuusisto, Johanna and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Leander, Karin and Lemaitre, Rozenn N and Lewis, Cora E and Liang, Jingjing and Liu, Jianjun and M{\"a}gi, Reedik and Manichaikul, Ani and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Mohlke, Karen L and Mosley, Thomas H and Murray, Alison D and Nalls, Mike A and Nang, Ei-Ei Khaing and Nelson, Christopher P and Nona, Sotoodehnia and Norris, Jill M and Nwuba, Chiamaka Vivian and O{\textquoteright}Connell, Jeff and Palmer, Nicholette D and Papanicolau, George J and Pazoki, Raha and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Porteous, David J and Poveda, Alaitz and Raitakari, Olli T and Rich, Stephen S and Risch, Neil and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Schreiner, Pamela J and Scott, Robert A and Sidney, Stephen S and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Sofer, Tamar and Starr, John M and Sternfeld, Barbara and Strauch, Konstantin and Tang, Hua and Taylor, Kent D and Tsai, Michael Y and Tuomilehto, Jaakko and Uitterlinden, Andr{\'e} G and van der Ende, M Yldau and van Heemst, Diana and Voortman, Trudy and Waldenberger, Melanie and Wennberg, Patrik and Wilson, Gregory and Xiang, Yong-Bing and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Kato, Norihiro and Laakso, Markku and Lakka, Timo A and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Samani, Nilesh J and Shu, Xiao-Ou and van der Harst, Pim and van Vliet-Ostaptchouk, Jana V and Vollenweider, Peter and Wagenknecht, Lynne E and Wang, Ya X and Wareham, Nicholas J and Weir, David R and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Evans, Michele K and Franks, Paul W and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kelly, Tanika N and Liu, Yongmei and North, Kari E and Pereira, Alexandre C and Ridker, Paul M and Tai, E Shyong and van Dam, Rob M and Fox, Ervin R and Kardia, Sharon L R and Liu, Ching-Ti and Mook-Kanamori, Dennis O and Province, Michael A and Redline, Susan and van Duijn, Cornelia M and Rotter, Jerome I and Kooperberg, Charles B and Gauderman, W James and Psaty, Bruce M and Rice, Kenneth and Munroe, Patricia B and Fornage, Myriam and Cupples, L Adrienne and Rotimi, Charles N and Morrison, Alanna C and Rao, Dabeeru C and Loos, Ruth J F} } @article {8199, title = {Sequencing Analysis at 8p23 Identifies Multiple Rare Variants in DLC1 Associated with Sleep-Related Oxyhemoglobin Saturation Level.}, journal = {Am J Hum Genet}, volume = {105}, year = {2019}, month = {2019 Nov 07}, pages = {1057-1068}, abstract = {

Average arterial oxyhemoglobin saturation during sleep (AvSpOS) is a clinically relevant measure of physiological stress associated with sleep-disordered breathing, and this measure predicts incident cardiovascular disease and mortality. Using high-depth whole-genome sequencing data from the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) project and focusing on genes with linkage evidence on chromosome 8p23, we observed that six coding and 51 noncoding variants in a gene that encodes the GTPase-activating protein (DLC1) are significantly associated with AvSpOS and replicated in independent subjects. The combined DLC1 association evidence of discovery and replication cohorts reaches genome-wide significance in European Americans (p = 7.9~{\texttimes} 10). A risk score for these variants, built on an independent dataset, explains 0.97\% of the AvSpOS variation and contributes to the linkage evidence. The 51 noncoding variants are enriched in regulatory features in a human lung fibroblast cell line and contribute to DLC1 expression variation. Mendelian randomization analysis using these variants indicates a significant causal effect of DLC1 expression in fibroblasts on AvSpOS. Multiple sources of information, including genetic variants, gene expression, and methylation, consistently suggest that DLC1 is a gene associated with AvSpOS.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2019.10.002}, author = {Liang, Jingjing and Cade, Brian E and He, Karen Y and Wang, Heming and Lee, Jiwon and Sofer, Tamar and Williams, Stephanie and Li, Ruitong and Chen, Han and Gottlieb, Daniel J and Evans, Daniel S and Guo, Xiuqing and Gharib, Sina A and Hale, Lauren and Hillman, David R and Lutsey, Pamela L and Mukherjee, Sutapa and Ochs-Balcom, Heather M and Palmer, Lyle J and Rhodes, Jessica and Purcell, Shaun and Patel, Sanjay R and Saxena, Richa and Stone, Katie L and Tang, Weihong and Tranah, Gregory J and Boerwinkle, Eric and Lin, Xihong and Liu, Yongmei and Psaty, Bruce M and Vasan, Ramachandran S and Cho, Michael H and Manichaikul, Ani and Silverman, Edwin K and Barr, R Graham and Rich, Stephen S and Rotter, Jerome I and Wilson, James G and Redline, Susan and Zhu, Xiaofeng} } @article {8400, title = {Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts.}, journal = {Lancet Respir Med}, volume = {8}, year = {2020}, month = {2020 07}, pages = {696-708}, abstract = {

BACKGROUND: Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes.

METHODS: We constructed a polygenic risk score using a genome-wide association study of lung function (FEV and FEV/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV/FVC <0{\textperiodcentered}7 and FEV <80\% of predicted). Associations were tested using logistic regression models, adjusting for age, sex, height, smoking pack-years, and principal components of genetic ancestry. We assessed predictive performance of models by area under the curve. In a subset of studies, we also studied quantitative and qualitative CT imaging phenotypes that reflect parenchymal and airway pathology, and patterns of reduced lung growth.

FINDINGS: The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1{\textperiodcentered}81 [95\% CI 1{\textperiodcentered}74-1{\textperiodcentered}88] and non-European (1{\textperiodcentered}42 [1{\textperiodcentered}34-1{\textperiodcentered}51]) populations. Compared with the first decile, the tenth decile of the polygenic risk score was associated with COPD, with an OR of 7{\textperiodcentered}99 (6{\textperiodcentered}56-9{\textperiodcentered}72) in European ancestry and 4{\textperiodcentered}83 (3{\textperiodcentered}45-6{\textperiodcentered}77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0{\textperiodcentered}80 [0{\textperiodcentered}79-0{\textperiodcentered}81] vs 0{\textperiodcentered}76 [0{\textperiodcentered}75-0{\textperiodcentered}76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern.

INTERPRETATION: A risk score comprised of genetic variants can identify a small subset of individuals at markedly increased risk for moderate-to-severe COPD, emphysema subtypes associated with cigarette smoking, and patterns of reduced lung growth.

FUNDING: US National Institutes of Health, Wellcome Trust.

}, keywords = {Adult, Case-Control Studies, Cohort Studies, Female, Forced Expiratory Volume, Genome-Wide Association Study, Humans, Male, Middle Aged, Phenotype, Pulmonary Disease, Chronic Obstructive, Risk Factors, Vital Capacity}, issn = {2213-2619}, doi = {10.1016/S2213-2600(20)30101-6}, author = {Moll, Matthew and Sakornsakolpat, Phuwanat and Shrine, Nick and Hobbs, Brian D and DeMeo, Dawn L and John, Catherine and Guyatt, Anna L and McGeachie, Michael J and Gharib, Sina A and Obeidat, Ma{\textquoteright}en and Lahousse, Lies and Wijnant, Sara R A and Brusselle, Guy and Meyers, Deborah A and Bleecker, Eugene R and Li, Xingnan and Tal-Singer, Ruth and Manichaikul, Ani and Rich, Stephen S and Won, Sungho and Kim, Woo Jin and Do, Ah Ra and Washko, George R and Barr, R Graham and Psaty, Bruce M and Bartz, Traci M and Hansel, Nadia N and Barnes, Kathleen and Hokanson, John E and Crapo, James D and Lynch, David and Bakke, Per and Gulsvik, Amund and Hall, Ian P and Wain, Louise and Weiss, Scott T and Silverman, Edwin K and Dudbridge, Frank and Tobin, Martin D and Cho, Michael H} } @article {8490, title = {The Polygenic and Monogenic Basis of Blood Traits and Diseases.}, journal = {Cell}, volume = {182}, year = {2020}, month = {2020 Sep 03}, pages = {1214-1231.e11}, abstract = {

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.

}, issn = {1097-4172}, doi = {10.1016/j.cell.2020.08.008}, author = {Vuckovic, Dragana and Bao, Erik L and Akbari, Parsa and Lareau, Caleb A and Mousas, Abdou and Jiang, Tao and Chen, Ming-Huei and Raffield, Laura M and Tardaguila, Manuel and Huffman, Jennifer E and Ritchie, Scott C and Megy, Karyn and Ponstingl, Hannes and Penkett, Christopher J and Albers, Patrick K and Wigdor, Emilie M and Sakaue, Saori and Moscati, Arden and Manansala, Regina and Lo, Ken Sin and Qian, Huijun and Akiyama, Masato and Bartz, Traci M and Ben-Shlomo, Yoav and Beswick, Andrew and Bork-Jensen, Jette and Bottinger, Erwin P and Brody, Jennifer A and van Rooij, Frank J A and Chitrala, Kumaraswamy N and Wilson, Peter W F and Choquet, Helene and Danesh, John and Di Angelantonio, Emanuele and Dimou, Niki and Ding, Jingzhong and Elliott, Paul and Esko, T{\~o}nu and Evans, Michele K and Felix, Stephan B and Floyd, James S and Broer, Linda and Grarup, Niels and Guo, Michael H and Guo, Qi and Greinacher, Andreas and Haessler, Jeff and Hansen, Torben and Howson, Joanna M M and Huang, Wei and Jorgenson, Eric and Kacprowski, Tim and K{\"a}h{\"o}nen, Mika and Kamatani, Yoichiro and Kanai, Masahiro and Karthikeyan, Savita and Koskeridis, Fotios and Lange, Leslie A and Lehtim{\"a}ki, Terho and Linneberg, Allan and Liu, Yongmei and Lyytik{\"a}inen, Leo-Pekka and Manichaikul, Ani and Matsuda, Koichi and Mohlke, Karen L and Mononen, Nina and Murakami, Yoshinori and Nadkarni, Girish N and Nikus, Kjell and Pankratz, Nathan and Pedersen, Oluf and Preuss, Michael and Psaty, Bruce M and Raitakari, Olli T and Rich, Stephen S and Rodriguez, Benjamin A T and Rosen, Jonathan D and Rotter, Jerome I and Schubert, Petra and Spracklen, Cassandra N and Surendran, Praveen and Tang, Hua and Tardif, Jean-Claude and Ghanbari, Mohsen and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Watkins, Nicholas A and Weiss, Stefan and Cai, Na and Kundu, Kousik and Watt, Stephen B and Walter, Klaudia and Zonderman, Alan B and Cho, Kelly and Li, Yun and Loos, Ruth J F and Knight, Julian C and Georges, Michel and Stegle, Oliver and Evangelou, Evangelos and Okada, Yukinori and Roberts, David J and Inouye, Michael and Johnson, Andrew D and Auer, Paul L and Astle, William J and Reiner, Alexander P and Butterworth, Adam S and Ouwehand, Willem H and Lettre, Guillaume and Sankaran, Vijay G and Soranzo, Nicole} } @article {8481, title = {Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations.}, journal = {Cell}, volume = {182}, year = {2020}, month = {2020 Sep 03}, pages = {1198-1213.e14}, abstract = {

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p~< 5~{\texttimes} 10, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in~vivo and IL-7 secretion levels in~vitro. Fine-mapping prioritized variants annotated as functional and generated 95\% credible sets that were 30\% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.

}, issn = {1097-4172}, doi = {10.1016/j.cell.2020.06.045}, author = {Chen, Ming-Huei and Raffield, Laura M and Mousas, Abdou and Sakaue, Saori and Huffman, Jennifer E and Moscati, Arden and Trivedi, Bhavi and Jiang, Tao and Akbari, Parsa and Vuckovic, Dragana and Bao, Erik L and Zhong, Xue and Manansala, Regina and Laplante, V{\'e}ronique and Chen, Minhui and Lo, Ken Sin and Qian, Huijun and Lareau, Caleb A and Beaudoin, M{\'e}lissa and Hunt, Karen A and Akiyama, Masato and Bartz, Traci M and Ben-Shlomo, Yoav and Beswick, Andrew and Bork-Jensen, Jette and Bottinger, Erwin P and Brody, Jennifer A and van Rooij, Frank J A and Chitrala, Kumaraswamynaidu and Cho, Kelly and Choquet, Helene and Correa, Adolfo and Danesh, John and Di Angelantonio, Emanuele and Dimou, Niki and Ding, Jingzhong and Elliott, Paul and Esko, T{\~o}nu and Evans, Michele K and Floyd, James S and Broer, Linda and Grarup, Niels and Guo, Michael H and Greinacher, Andreas and Haessler, Jeff and Hansen, Torben and Howson, Joanna M M and Huang, Qin Qin and Huang, Wei and Jorgenson, Eric and Kacprowski, Tim and K{\"a}h{\"o}nen, Mika and Kamatani, Yoichiro and Kanai, Masahiro and Karthikeyan, Savita and Koskeridis, Fotis and Lange, Leslie A and Lehtim{\"a}ki, Terho and Lerch, Markus M and Linneberg, Allan and Liu, Yongmei and Lyytik{\"a}inen, Leo-Pekka and Manichaikul, Ani and Martin, Hilary C and Matsuda, Koichi and Mohlke, Karen L and Mononen, Nina and Murakami, Yoshinori and Nadkarni, Girish N and Nauck, Matthias and Nikus, Kjell and Ouwehand, Willem H and Pankratz, Nathan and Pedersen, Oluf and Preuss, Michael and Psaty, Bruce M and Raitakari, Olli T and Roberts, David J and Rich, Stephen S and Rodriguez, Benjamin A T and Rosen, Jonathan D and Rotter, Jerome I and Schubert, Petra and Spracklen, Cassandra N and Surendran, Praveen and Tang, Hua and Tardif, Jean-Claude and Trembath, Richard C and Ghanbari, Mohsen and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Watkins, Nicholas A and Zonderman, Alan B and Wilson, Peter W F and Li, Yun and Butterworth, Adam S and Gauchat, Jean-Fran{\c c}ois and Chiang, Charleston W K and Li, Bingshan and Loos, Ruth J F and Astle, William J and Evangelou, Evangelos and van Heel, David A and Sankaran, Vijay G and Okada, Yukinori and Soranzo, Nicole and Johnson, Andrew D and Reiner, Alexander P and Auer, Paul L and Lettre, Guillaume} } @article {8639, title = {Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants.}, journal = {Nat Commun}, volume = {11}, year = {2020}, month = {2020 10 14}, pages = {5182}, abstract = {

Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans. Four novel common variants within the regions of PIAS1, RGN (two variants) and FTO show evidence of replication in the UK Biobank (European ancestry n ~ 320,000), while colocalization analyses leveraging multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Our study demonstrates the value of performing WGS analyses and multi-omic follow-up in cohorts of diverse ancestry.

}, keywords = {Adult, African Americans, Aged, Aged, 80 and over, Alpha-Ketoglutarate-Dependent Dioxygenase FTO, Calcium-Binding Proteins, Feasibility Studies, Female, Follow-Up Studies, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Intracellular Signaling Peptides and Proteins, Lung, Male, Middle Aged, Polymorphism, Single Nucleotide, Protein Inhibitors of Activated STAT, Pulmonary Disease, Chronic Obstructive, Respiratory Physiological Phenomena, Small Ubiquitin-Related Modifier Proteins, Whole Genome Sequencing}, issn = {2041-1723}, doi = {10.1038/s41467-020-18334-7}, author = {Zhao, Xutong and Qiao, Dandi and Yang, Chaojie and Kasela, Silva and Kim, Wonji and Ma, Yanlin and Shrine, Nick and Batini, Chiara and Sofer, Tamar and Taliun, Sarah A Gagliano and Sakornsakolpat, Phuwanat and Balte, Pallavi P and Prokopenko, Dmitry and Yu, Bing and Lange, Leslie A and Dupuis, Jos{\'e}e and Cade, Brian E and Lee, Jiwon and Gharib, Sina A and Daya, Michelle and Laurie, Cecelia A and Ruczinski, Ingo and Cupples, L Adrienne and Loehr, Laura R and Bartz, Traci M and Morrison, Alanna C and Psaty, Bruce M and Vasan, Ramachandran S and Wilson, James G and Taylor, Kent D and Durda, Peter and Johnson, W Craig and Cornell, Elaine and Guo, Xiuqing and Liu, Yongmei and Tracy, Russell P and Ardlie, Kristin G and Aguet, Francois and VanDenBerg, David J and Papanicolaou, George J and Rotter, Jerome I and Barnes, Kathleen C and Jain, Deepti and Nickerson, Deborah A and Muzny, Donna M and Metcalf, Ginger A and Doddapaneni, Harshavardhan and Dugan-Perez, Shannon and Gupta, Namrata and Gabriel, Stacey and Rich, Stephen S and O{\textquoteright}Connor, George T and Redline, Susan and Reed, Robert M and Laurie, Cathy C and Daviglus, Martha L and Preudhomme, Liana K and Burkart, Kristin M and Kaplan, Robert C and Wain, Louise V and Tobin, Martin D and London, Stephanie J and Lappalainen, Tuuli and Oelsner, Elizabeth C and Abecasis, Goncalo R and Silverman, Edwin K and Barr, R Graham and Cho, Michael H and Manichaikul, Ani} } @article {8666, title = {Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.}, journal = {Nature}, volume = {590}, year = {2021}, month = {2021 02}, pages = {290-299}, abstract = {

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes). In the first 53,831 TOPMed samples, we detected more than 400~million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400~million detected variants, 97\% have frequencies of less than 1\% and 46\% are singletons that are present in only one individual (53\% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01\%.

}, issn = {1476-4687}, doi = {10.1038/s41586-021-03205-y}, author = {Taliun, Daniel and Harris, Daniel N and Kessler, Michael D and Carlson, Jedidiah and Szpiech, Zachary A and Torres, Raul and Taliun, Sarah A Gagliano and Corvelo, Andr{\'e} and Gogarten, Stephanie M and Kang, Hyun Min and Pitsillides, Achilleas N and LeFaive, Jonathon and Lee, Seung-Been and Tian, Xiaowen and Browning, Brian L and Das, Sayantan and Emde, Anne-Katrin and Clarke, Wayne E and Loesch, Douglas P and Shetty, Amol C and Blackwell, Thomas W and Smith, Albert V and Wong, Quenna and Liu, Xiaoming and Conomos, Matthew P and Bobo, Dean M and Aguet, Francois and Albert, Christine and Alonso, Alvaro and Ardlie, Kristin G and Arking, Dan E and Aslibekyan, Stella and Auer, Paul L and Barnard, John and Barr, R Graham and Barwick, Lucas and Becker, Lewis C and Beer, Rebecca L and Benjamin, Emelia J and Bielak, Lawrence F and Blangero, John and Boehnke, Michael and Bowden, Donald W and Brody, Jennifer A and Burchard, Esteban G and Cade, Brian E and Casella, James F and Chalazan, Brandon and Chasman, Daniel I and Chen, Yii-Der Ida and Cho, Michael H and Choi, Seung Hoan and Chung, Mina K and Clish, Clary B and Correa, Adolfo and Curran, Joanne E and Custer, Brian and Darbar, Dawood and Daya, Michelle and de Andrade, Mariza and DeMeo, Dawn L and Dutcher, Susan K and Ellinor, Patrick T and Emery, Leslie S and Eng, Celeste and Fatkin, Diane and Fingerlin, Tasha and Forer, Lukas and Fornage, Myriam and Franceschini, Nora and Fuchsberger, Christian and Fullerton, Stephanie M and Germer, Soren and Gladwin, Mark T and Gottlieb, Daniel J and Guo, Xiuqing and Hall, Michael E and He, Jiang and Heard-Costa, Nancy L and Heckbert, Susan R and Irvin, Marguerite R and Johnsen, Jill M and Johnson, Andrew D and Kaplan, Robert and Kardia, Sharon L R and Kelly, Tanika and Kelly, Shannon and Kenny, Eimear E and Kiel, Douglas P and Klemmer, Robert and Konkle, Barbara A and Kooperberg, Charles and K{\"o}ttgen, Anna and Lange, Leslie A and Lasky-Su, Jessica and Levy, Daniel and Lin, Xihong and Lin, Keng-Han and Liu, Chunyu and Loos, Ruth J F and Garman, Lori and Gerszten, Robert and Lubitz, Steven A and Lunetta, Kathryn L and Mak, Angel C Y and Manichaikul, Ani and Manning, Alisa K and Mathias, Rasika A and McManus, David D and McGarvey, Stephen T and Meigs, James B and Meyers, Deborah A and Mikulla, Julie L and Minear, Mollie A and Mitchell, Braxton D and Mohanty, Sanghamitra and Montasser, May E and Montgomery, Courtney and Morrison, Alanna C and Murabito, Joanne M and Natale, Andrea and Natarajan, Pradeep and Nelson, Sarah C and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Pankratz, Nathan and Peloso, Gina M and Peyser, Patricia A and Pleiness, Jacob and Post, Wendy S and Psaty, Bruce M and Rao, D C and Redline, Susan and Reiner, Alexander P and Roden, Dan and Rotter, Jerome I and Ruczinski, Ingo and Sarnowski, Chloe and Schoenherr, Sebastian and Schwartz, David A and Seo, Jeong-Sun and Seshadri, Sudha and Sheehan, Vivien A and Sheu, Wayne H and Shoemaker, M Benjamin and Smith, Nicholas L and Smith, Jennifer A and Sotoodehnia, Nona and Stilp, Adrienne M and Tang, Weihong and Taylor, Kent D and Telen, Marilyn and Thornton, Timothy A and Tracy, Russell P and Van Den Berg, David J and Vasan, Ramachandran S and Viaud-Martinez, Karine A and Vrieze, Scott and Weeks, Daniel E and Weir, Bruce S and Weiss, Scott T and Weng, Lu-Chen and Willer, Cristen J and Zhang, Yingze and Zhao, Xutong and Arnett, Donna K and Ashley-Koch, Allison E and Barnes, Kathleen C and Boerwinkle, Eric and Gabriel, Stacey and Gibbs, Richard and Rice, Kenneth M and Rich, Stephen S and Silverman, Edwin K and Qasba, Pankaj and Gan, Weiniu and Papanicolaou, George J and Nickerson, Deborah A and Browning, Sharon R and Zody, Michael C and Z{\"o}llner, Sebastian and Wilson, James G and Cupples, L Adrienne and Laurie, Cathy C and Jaquish, Cashell E and Hernandez, Ryan D and O{\textquoteright}Connor, Timothy D and Abecasis, Goncalo R} } @article {8913, title = {Whole genome sequence analysis of platelet traits in the NHLBI trans-omics for precision medicine initiative.}, journal = {Hum Mol Genet}, year = {2021}, month = {2021 Sep 06}, abstract = {

Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing from NHLBI{\textquoteright}s Trans-Omics for Precision Medicine Initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several GWAS identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of whole genome sequencing in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddab252}, author = {Little, Amarise and Hu, Yao and Sun, Quan and Jain, Deepti and Broome, Jai and Chen, Ming-Huei and Thibord, Florian and McHugh, Caitlin and Surendran, Praveen and Blackwell, Thomas W and Brody, Jennifer A and Bhan, Arunoday and Chami, Nathalie and Vries, Paul S and Ekunwe, Lynette and Heard-Costa, Nancy and Hobbs, Brian D and Manichaikul, Ani and Moon, Jee-Young and Preuss, Michael H and Ryan, Kathleen and Wang, Zhe and Wheeler, Marsha and Yanek, Lisa R and Abecasis, Goncalo R and Almasy, Laura and Beaty, Terri H and Becker, Lewis C and Blangero, John and Boerwinkle, Eric and Butterworth, Adam S and Choquet, Helene and Correa, Adolfo and Curran, Joanne E and Faraday, Nauder and Fornage, Myriam and Glahn, David C and Hou, Lifang and Jorgenson, Eric and Kooperberg, Charles and Lewis, Joshua P and Lloyd-Jones, Donald M and Loos, Ruth J F and Min, Nancy and Mitchell, Braxton D and Morrison, Alanna C and Nickerson, Debbie and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Pankratz, Nathan and Psaty, Bruce M and Vasan, Ramachandran S and Rich, Stephen S and Rotter, Jerome I and Smith, Albert V and Smith, Nicholas L and Tang, Hua and Tracy, Russell P and Conomos, Matthew P and Laurie, Cecelia A and Mathias, Rasika A and Li, Yun and Auer, Paul L and Thornton, Timothy and Reiner, Alexander P and Johnson, Andrew D and Raffield, Laura M} } @article {8914, title = {Whole-genome sequencing in diverse subjects identifies genetic correlates of leukocyte traits: The NHLBI TOPMed program.}, journal = {Am J Hum Genet}, volume = {108}, year = {2021}, month = {2021 10 07}, pages = {1836-1851}, abstract = {

Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.

}, keywords = {Asthma, Biomarkers, Dermatitis, Atopic, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Leukocytes, National Heart, Lung, and Blood Institute (U.S.), Phenotype, Polymorphism, Single Nucleotide, Prognosis, Proteome, Pulmonary Disease, Chronic Obstructive, Quantitative Trait Loci, United Kingdom, United States, Whole Genome Sequencing}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2021.08.007}, author = {Mikhaylova, Anna V and McHugh, Caitlin P and Polfus, Linda M and Raffield, Laura M and Boorgula, Meher Preethi and Blackwell, Thomas W and Brody, Jennifer A and Broome, Jai and Chami, Nathalie and Chen, Ming-Huei and Conomos, Matthew P and Cox, Corey and Curran, Joanne E and Daya, Michelle and Ekunwe, Lynette and Glahn, David C and Heard-Costa, Nancy and Highland, Heather M and Hobbs, Brian D and Ilboudo, Yann and Jain, Deepti and Lange, Leslie A and Miller-Fleming, Tyne W and Min, Nancy and Moon, Jee-Young and Preuss, Michael H and Rosen, Jonathon and Ryan, Kathleen and Smith, Albert V and Sun, Quan and Surendran, Praveen and de Vries, Paul S and Walter, Klaudia and Wang, Zhe and Wheeler, Marsha and Yanek, Lisa R and Zhong, Xue and Abecasis, Goncalo R and Almasy, Laura and Barnes, Kathleen C and Beaty, Terri H and Becker, Lewis C and Blangero, John and Boerwinkle, Eric and Butterworth, Adam S and Chavan, Sameer and Cho, Michael H and Choquet, Helene and Correa, Adolfo and Cox, Nancy and DeMeo, Dawn L and Faraday, Nauder and Fornage, Myriam and Gerszten, Robert E and Hou, Lifang and Johnson, Andrew D and Jorgenson, Eric and Kaplan, Robert and Kooperberg, Charles and Kundu, Kousik and Laurie, Cecelia A and Lettre, Guillaume and Lewis, Joshua P and Li, Bingshan and Li, Yun and Lloyd-Jones, Donald M and Loos, Ruth J F and Manichaikul, Ani and Meyers, Deborah A and Mitchell, Braxton D and Morrison, Alanna C and Ngo, Debby and Nickerson, Deborah A and Nongmaithem, Suraj and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Ortega, Victor E and Pankratz, Nathan and Perry, James A and Psaty, Bruce M and Rich, Stephen S and Soranzo, Nicole and Rotter, Jerome I and Silverman, Edwin K and Smith, Nicholas L and Tang, Hua and Tracy, Russell P and Thornton, Timothy A and Vasan, Ramachandran S and Zein, Joe and Mathias, Rasika A and Reiner, Alexander P and Auer, Paul L} } @article {9253, title = {A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies.}, journal = {Nat Methods}, volume = {19}, year = {2022}, month = {2022 Dec}, pages = {1599-1611}, abstract = {

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.

}, keywords = {Genetic Variation, Genome, Genome-Wide Association Study, Humans, Phenotype, Whole Genome Sequencing}, issn = {1548-7105}, doi = {10.1038/s41592-022-01640-x}, author = {Li, Zilin and Li, Xihao and Zhou, Hufeng and Gaynor, Sheila M and Selvaraj, Margaret Sunitha and Arapoglou, Theodore and Quick, Corbin and Liu, Yaowu and Chen, Han and Sun, Ryan and Dey, Rounak and Arnett, Donna K and Auer, Paul L and Bielak, Lawrence F and Bis, Joshua C and Blackwell, Thomas W and Blangero, John and Boerwinkle, Eric and Bowden, Donald W and Brody, Jennifer A and Cade, Brian E and Conomos, Matthew P and Correa, Adolfo and Cupples, L Adrienne and Curran, Joanne E and de Vries, Paul S and Duggirala, Ravindranath and Franceschini, Nora and Freedman, Barry I and G{\"o}ring, Harald H H and Guo, Xiuqing and Kalyani, Rita R and Kooperberg, Charles and Kral, Brian G and Lange, Leslie A and Lin, Bridget M and Manichaikul, Ani and Manning, Alisa K and Martin, Lisa W and Mathias, Rasika A and Meigs, James B and Mitchell, Braxton D and Montasser, May E and Morrison, Alanna C and Naseri, Take and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Peyser, Patricia A and Psaty, Bruce M and Raffield, Laura M and Redline, Susan and Reiner, Alexander P and Reupena, Muagututi{\textquoteright}a Sefuiva and Rice, Kenneth M and Rich, Stephen S and Smith, Jennifer A and Taylor, Kent D and Taub, Margaret A and Vasan, Ramachandran S and Weeks, Daniel E and Wilson, James G and Yanek, Lisa R and Zhao, Wei and Rotter, Jerome I and Willer, Cristen J and Natarajan, Pradeep and Peloso, Gina M and Lin, Xihong} } @article {9037, title = {Polygenic transcriptome risk scores for COPD and lung function improve cross-ethnic portability of prediction in the NHLBI TOPMed program.}, journal = {Am J Hum Genet}, year = {2022}, month = {2022 Mar 31}, abstract = {

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1~s [FEV] and its ratio to forced vital capacity [FEV/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV and FEV/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR]~= 1.24 [95\% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with >= 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p~<~2.2~{\texttimes}~10 with portability gains ranging from 5\% to 28\%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2022.03.007}, author = {Hu, Xiaowei and Qiao, Dandi and Kim, Wonji and Moll, Matthew and Balte, Pallavi P and Lange, Leslie A and Bartz, Traci M and Kumar, Rajesh and Li, Xingnan and Yu, Bing and Cade, Brian E and Laurie, Cecelia A and Sofer, Tamar and Ruczinski, Ingo and Nickerson, Deborah A and Muzny, Donna M and Metcalf, Ginger A and Doddapaneni, Harshavardhan and Gabriel, Stacy and Gupta, Namrata and Dugan-Perez, Shannon and Cupples, L Adrienne and Loehr, Laura R and Jain, Deepti and Rotter, Jerome I and Wilson, James G and Psaty, Bruce M and Fornage, Myriam and Morrison, Alanna C and Vasan, Ramachandran S and Washko, George and Rich, Stephen S and O{\textquoteright}Connor, George T and Bleecker, Eugene and Kaplan, Robert C and Kalhan, Ravi and Redline, Susan and Gharib, Sina A and Meyers, Deborah and Ortega, Victor and Dupuis, Jos{\'e}e and London, Stephanie J and Lappalainen, Tuuli and Oelsner, Elizabeth C and Silverman, Edwin K and Barr, R Graham and Thornton, Timothy A and Wheeler, Heather E and Cho, Michael H and Im, Hae Kyung and Manichaikul, Ani} } @article {9172, title = {Stroke genetics informs drug discovery and risk prediction across ancestries.}, journal = {Nature}, year = {2022}, month = {2022 Sep 30}, abstract = {

Previous genome-wide association studies (GWASs) of stroke~-~the second leading cause of death worldwide~-~were conducted predominantly in populations of European ancestry. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33\% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30\% non-European) and 1,013,843 control individuals, 87\% of the primary stroke risk loci and 60\% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.

}, issn = {1476-4687}, doi = {10.1038/s41586-022-05165-3}, author = {Mishra, Aniket and Malik, Rainer and Hachiya, Tsuyoshi and J{\"u}rgenson, Tuuli and Namba, Shinichi and Posner, Daniel C and Kamanu, Frederick K and Koido, Masaru and Le Grand, Quentin and Shi, Mingyang and He, Yunye and Georgakis, Marios K and Caro, Ilana and Krebs, Kristi and Liaw, Yi-Ching and Vaura, Felix C and Lin, Kuang and Winsvold, Bendik Slagsvold and Srinivasasainagendra, Vinodh and Parodi, Livia and Bae, Hee-Joon and Chauhan, Ganesh and Chong, Michael R and Tomppo, Liisa and Akinyemi, Rufus and Roshchupkin, Gennady V and Habib, Naomi and Jee, Yon Ho and Thomassen, Jesper Qvist and Abedi, Vida and C{\'a}rcel-M{\'a}rquez, Jara and Nygaard, Marianne and Leonard, Hampton L and Yang, Chaojie and Yonova-Doing, Ekaterina and Knol, Maria J and Lewis, Adam J and Judy, Renae L and Ago, Tetsuro and Amouyel, Philippe and Armstrong, Nicole D and Bakker, Mark K and Bartz, Traci M and Bennett, David A and Bis, Joshua C and Bordes, Constance and B{\o}rte, Sigrid and Cain, Anael and Ridker, Paul M and Cho, Kelly and Chen, Zhengming and Cruchaga, Carlos and Cole, John W and De Jager, Phil L and de Cid, Rafael and Endres, Matthias and Ferreira, Leslie E and Geerlings, Mirjam I and Gasca, Natalie C and Gudnason, Vilmundur and Hata, Jun and He, Jing and Heath, Alicia K and Ho, Yuk-Lam and Havulinna, Aki S and Hopewell, Jemma C and Hyacinth, Hyacinth I and Inouye, Michael and Jacob, Mina A and Jeon, Christina E and Jern, Christina and Kamouchi, Masahiro and Keene, Keith L and Kitazono, Takanari and Kittner, Steven J and Konuma, Takahiro and Kumar, Amit and Lacaze, Paul and Launer, Lenore J and Lee, Keon-Joo and Lepik, Kaido and Li, Jiang and Li, Liming and Manichaikul, Ani and Markus, Hugh S and Marston, Nicholas A and Meitinger, Thomas and Mitchell, Braxton D and Montellano, Felipe A and Morisaki, Takayuki and Mosley, Thomas H and Nalls, Mike A and Nordestgaard, B{\o}rge G and O{\textquoteright}Donnell, Martin J and Okada, Yukinori and Onland-Moret, N Charlotte and Ovbiagele, Bruce and Peters, Annette and Psaty, Bruce M and Rich, Stephen S and Rosand, Jonathan and Sabatine, Marc S and Sacco, Ralph L and Saleheen, Danish and Sandset, Else Charlotte and Salomaa, Veikko and Sargurupremraj, Muralidharan and Sasaki, Makoto and Satizabal, Claudia L and Schmidt, Carsten O and Shimizu, Atsushi and Smith, Nicholas L and Sloane, Kelly L and Sutoh, Yoichi and Sun, Yan V and Tanno, Kozo and Tiedt, Steffen and Tatlisumak, Turgut and Torres-Aguila, Nuria P and Tiwari, Hemant K and Tr{\'e}gou{\"e}t, David-Alexandre and Trompet, Stella and Tuladhar, Anil Man and Tybj{\ae}rg-Hansen, Anne and van Vugt, Marion and Vibo, Riina and Verma, Shefali S and Wiggins, Kerri L and Wennberg, Patrik and Woo, Daniel and Wilson, Peter W F and Xu, Huichun and Yang, Qiong and Yoon, Kyungheon and Millwood, Iona Y and Gieger, Christian and Ninomiya, Toshiharu and Grabe, Hans J and Jukema, J Wouter and Rissanen, Ina L and Strbian, Daniel and Kim, Young Jin and Chen, Pei-Hsin and Mayerhofer, Ernst and Howson, Joanna M M and Irvin, Marguerite R and Adams, Hieab and Wassertheil-Smoller, Sylvia and Christensen, Kaare and Ikram, Mohammad A and Rundek, Tatjana and Worrall, Bradford B and Lathrop, G Mark and Riaz, Moeen and Simonsick, Eleanor M and K{\~o}rv, Janika and Fran{\c c}a, Paulo H C and Zand, Ramin and Prasad, Kameshwar and Frikke-Schmidt, Ruth and de Leeuw, Frank-Erik and Liman, Thomas and Haeusler, Karl Georg and Ruigrok, Ynte M and Heuschmann, Peter Ulrich and Longstreth, W T and Jung, Keum Ji and Bastarache, Lisa and Par{\'e}, Guillaume and Damrauer, Scott M and Chasman, Daniel I and Rotter, Jerome I and Anderson, Christopher D and Zwart, John-Anker and Niiranen, Teemu J and Fornage, Myriam and Liaw, Yung-Po and Seshadri, Sudha and Fernandez-Cadenas, Israel and Walters, Robin G and Ruff, Christian T and Owolabi, Mayowa O and Huffman, Jennifer E and Milani, Lili and Kamatani, Yoichiro and Dichgans, Martin and Debette, Stephanie} } @article {9101, title = {Targeted Genome Sequencing Identifies Multiple Rare Variants in Caveolin-1 Associated with Obstructive Sleep Apnea.}, journal = {Am J Respir Crit Care Med}, year = {2022}, month = {2022 Jul 13}, abstract = {

INTRODUCTION: Obstructive sleep apnea (OSA) is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. There is strong clinical and epi-demiologic evidence supporting the importance of genetic factors influencing OSA, but limited data implicating specific genes.

METHODS: Leveraging high depth genomic sequencing data from the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program and imputed genotype data from multiple population-based studies, we performed linkage analysis in the Cleve-land Family Study (CFS) followed by multi-stage gene-based association analyses in independent cohorts to search for rare variants contributing to OSA severity as assessed by the apnea-hypopnea index (AHI) in a total of 7,708 individuals of European ancestry.

RESULTS: Linkage analysis in CFS identified a suggestive linkage peak on chromosome 7q31 (LOD=2.31). Gene-based analysis identified 21 non-coding rare variants in Caveolin-1 (CAV1) associated with lower AHI after accounting for multiple comparisons (p=7.4{\texttimes}10-8). These non-coding variants together significantly contributed to the linkage evidence (p<10-3). Follow-up anal-ysis revealed significant associations between these variants and increased CAV1 expression, and increased CAV1 expression in peripheral monocytes was associated with lower AHI (p=0.024) and higher minimum overnight oxygen saturation (p=0.007).

CONCLUSION: Rare variants in CAV1, a membrane scaffolding protein essential in multiple cellular and metabolic functions, are associated with higher CAV1 gene expression and lower OSA severity, suggesting a novel target for modulating OSA severity.

}, issn = {1535-4970}, doi = {10.1164/rccm.202203-0618OC}, author = {Liang, Jingjing and Wang, Heming and Cade, Brian E and Kurniansyah, Nuzulul and He, Karen Y and Lee, Jiwon and Sands, Scott A and Brody, Jennifer and Chen, Han and Gottlieb, Daniel J and Evans, Daniel S and Guo, Xiuqing and Gharib, Sina A and Hale, Lauren and Hillman, David R and Lutsey, Pamela L and Mukherjee, Sutapa and Ochs-Balcom, Heather M and Palmer, Lyle J and Purcell, Shaun and Saxena, Richa and Patel, Sanjay R and Stone, Katie L and Tranah, Gregory J and Boerwinkle, Eric and Lin, Xihong and Liu, Yongmei and Psaty, Bruce M and Vasan, Ramachandran S and Manichaikul, Ani and Rich, Stephen S and Rotter, Jerome I and Sofer, Tamar and Redline, Susan and Zhu, Xiaofeng} } @article {9465, title = {Genome-Wide Association Studies and fine-mapping of genomic loci for n-3 and n-6 Polyunsaturated Fatty Acids in Hispanic American and African American Cohorts.}, journal = {Res Sq}, year = {2023}, month = {2023 Feb 24}, abstract = {

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play critical roles in human health. Prior genome-wide association studies (GWAS) of n-3 and n-6 PUFAs in European Americans from the CHARGE Consortium have documented strong genetic signals in/near the locus on chromosome 11. We performed a GWAS of four n-3 and four n-6 PUFAs in Hispanic American (n = 1454) and African American (n = 2278) participants from three CHARGE cohorts. Applying a genome-wide significance threshold of < 5 x 10 , we confirmed association of the signal and found evidence of two additional signals (in and ) within 200 kb of the originally reported signal. Outside of the region, we identified novel signals for arachidonic acid (AA) in Hispanic Americans located in/near genes including , , and spanning a > 9 Mb region on chromosome 11 (57.5Mb ~ 67.1Mb). Among these novel signals, we found associations unique to Hispanic Americans, including rs28364240, a missense variant for AA that is common in CHARGE Hispanic Americans but absent in other race/ancestry groups. Our study sheds light on the genetics of PUFAs and the value of investigating complex trait genetics across diverse ancestry populations.

}, doi = {10.21203/rs.3.rs-2073736/v1}, author = {Yang, Chaojie and Veenstra, Jenna and Bartz, Traci and Pahl, Matthew and Hallmark, Brian and Chen, Yii-Der Ida and Westra, Jason and Steffen, Lyn and Brown, Christopher and Siscovick, David and Tsai, Michael and Wood, Alexis and Rich, Stephen and Smith, Caren and O{\textquoteright}Connor, Timothy and Mozaffarian, Dariush and Grant, Struan and Chilton, Floyd and Tintle, Nathan and Lemaitre, Rozenn and Manichaikul, Ani} } @article {9239, title = {Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies.}, journal = {Nat Genet}, volume = {55}, year = {2023}, month = {2023 Jan}, pages = {154-164}, abstract = {

Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.

}, keywords = {Exome Sequencing, Genome-Wide Association Study, Lipids, Phenotype, Whole Genome Sequencing}, issn = {1546-1718}, doi = {10.1038/s41588-022-01225-6}, author = {Li, Xihao and Quick, Corbin and Zhou, Hufeng and Gaynor, Sheila M and Liu, Yaowu and Chen, Han and Selvaraj, Margaret Sunitha and Sun, Ryan and Dey, Rounak and Arnett, Donna K and Bielak, Lawrence F and Bis, Joshua C and Blangero, John and Boerwinkle, Eric and Bowden, Donald W and Brody, Jennifer A and Cade, Brian E and Correa, Adolfo and Cupples, L Adrienne and Curran, Joanne E and de Vries, Paul S and Duggirala, Ravindranath and Freedman, Barry I and G{\"o}ring, Harald H H and Guo, Xiuqing and Haessler, Jeffrey and Kalyani, Rita R and Kooperberg, Charles and Kral, Brian G and Lange, Leslie A and Manichaikul, Ani and Martin, Lisa W and McGarvey, Stephen T and Mitchell, Braxton D and Montasser, May E and Morrison, Alanna C and Naseri, Take and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Peyser, Patricia A and Psaty, Bruce M and Raffield, Laura M and Redline, Susan and Reiner, Alexander P and Reupena, Muagututi{\textquoteright}a Sefuiva and Rice, Kenneth M and Rich, Stephen S and Sitlani, Colleen M and Smith, Jennifer A and Taylor, Kent D and Vasan, Ramachandran S and Willer, Cristen J and Wilson, James G and Yanek, Lisa R and Zhao, Wei and Rotter, Jerome I and Natarajan, Pradeep and Peloso, Gina M and Li, Zilin and Lin, Xihong} }