@article {925, title = {Obstructive sleep apnea and plasma natriuretic peptide levels in a community-based sample.}, journal = {Sleep}, volume = {29}, year = {2006}, month = {2006 Oct}, pages = {1301-6}, abstract = {

STUDY OBJECTIVES: We hypothesized that alterations in cardiac hemodynamics associated with obstructive sleep apnea-hypopnea (OSAH) would be reflected in higher natriuretic peptide levels. We examined the association of OSAH with natriuretic peptides in a community-based sample.

DESIGN: Cross-sectional, retrospective, observational study.

SETTING: Framingham Heart Study Offspring Cohort and Sleep Heart Health Study.

PARTICIPANTS: Community-based sample of 623 individuals.

MEASUREMENTS: Full-montage home polysomnography was used to determine apnea-hypopnea index (AHI) and percentage of time with an oxyhemoglobin saturation < 90\% (PctLt90). Sensitive immunoradiometric assays were used to measure plasma B-type (BNP) and N-terminal pro-atrial natriuretic peptide (NT-ANP). Multivariable regression was used to examine the relations between natriuretic peptides and indicators of OSAH, adjusting for age, sex, body mass index, and clinical covariates.

RESULTS: No statistically significant relations between OSAH indices and BNP were observed in the multivariable model. Compared with an AHI < 5, relative levels of 1.20, 0.88, and 0.91 were observed forAHI categories 5-15, 15-30, >30 events per hour, respectively. For NT-ANP, no significant relations were seen with AHI in the multivariable model (relative levels of 0.98, 0.91, and 0.90). An inverse association was observed between NT-ANP and PctLt90 in age- and sex-adjusted models (relative levels of 0.93, 0.87, and 0.80), although this association became statistically nonsignificant after adjusting for body mass index.

CONCLUSION: Lack of association of natriuretic peptides with OSAH indices suggests that undiagnosed OSAH may not be associated with major alterations in left ventricular function, as reflected in morning natriuretic peptide levels.

}, keywords = {Atrial Fibrillation, Body Mass Index, Cohort Studies, Female, Humans, Hypertension, Male, Middle Aged, Myocardial Infarction, Natriuretic Peptides, Obesity, Polysomnography, Prevalence, Residence Characteristics, Severity of Illness Index, Sleep Apnea, Obstructive}, issn = {0161-8105}, doi = {10.1093/sleep/29.10.1301}, author = {Patwardhan, Anjali A and Larson, Martin G and Levy, Daniel and Benjamin, Emelia J and Leip, Eric P and Keyes, Michelle J and Wang, Thomas J and Gottlieb, Daniel J and Vasan, Ramachandran S} } @article {1108, title = {Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data.}, journal = {JAMA}, volume = {302}, year = {2009}, month = {2009 Jul 08}, pages = {168-78}, abstract = {

CONTEXT: Echocardiographic measures of left ventricular (LV) structure and function are heritable phenotypes of cardiovascular disease.

OBJECTIVE: To identify common genetic variants associated with cardiac structure and function by conducting a meta-analysis of genome-wide association data in 5 population-based cohort studies (stage 1) with replication (stage 2) in 2 other community-based samples.

DESIGN, SETTING, AND PARTICIPANTS: Within each of 5 community-based cohorts comprising the EchoGen consortium (stage 1; n = 12 612 individuals of European ancestry; 55\% women, aged 26-95 years; examinations between 1978-2008), we estimated the association between approximately 2.5 million single-nucleotide polymorphisms (SNPs; imputed to the HapMap CEU panel) and echocardiographic traits. In stage 2, SNPs significantly associated with traits in stage 1 were tested for association in 2 other cohorts (n = 4094 people of European ancestry). Using a prespecified P value threshold of 5 x 10(-7) to indicate genome-wide significance, we performed an inverse variance-weighted fixed-effects meta-analysis of genome-wide association data from each cohort.

MAIN OUTCOME MEASURES: Echocardiographic traits: LV mass, internal dimensions, wall thickness, systolic dysfunction, aortic root, and left atrial size.

RESULTS: In stage 1, 16 genetic loci were associated with 5 echocardiographic traits: 1 each with LV internal dimensions and systolic dysfunction, 3 each with LV mass and wall thickness, and 8 with aortic root size. In stage 2, 5 loci replicated (6q22 locus associated with LV diastolic dimensions, explaining <1\% of trait variance; 5q23, 12p12, 12q14, and 17p13 associated with aortic root size, explaining 1\%-3\% of trait variance).

CONCLUSIONS: We identified 5 genetic loci harboring common variants that were associated with variation in LV diastolic dimensions and aortic root size, but such findings explained a very small proportion of variance. Further studies are required to replicate these findings, identify the causal variants at or near these loci, characterize their functional significance, and determine whether they are related to overt cardiovascular disease.

}, keywords = {Adult, Aged, Aged, 80 and over, Aorta, Cardiovascular Diseases, Echocardiography, European Continental Ancestry Group, Female, Genome-Wide Association Study, Genotype, Heart Atria, Heart Ventricles, Humans, Male, Middle Aged, Organ Size, Phenotype, Polymorphism, Single Nucleotide, Risk Factors, Ventricular Dysfunction, Left, Ventricular Function, Left}, issn = {1538-3598}, doi = {10.1001/jama.2009.978-a}, author = {Vasan, Ramachandran S and Glazer, Nicole L and Felix, Janine F and Lieb, Wolfgang and Wild, Philipp S and Felix, Stephan B and Watzinger, Norbert and Larson, Martin G and Smith, Nicholas L and Dehghan, Abbas and Grosshennig, Anika and Schillert, Arne and Teumer, Alexander and Schmidt, Reinhold and Kathiresan, Sekar and Lumley, Thomas and Aulchenko, Yurii S and K{\"o}nig, Inke R and Zeller, Tanja and Homuth, Georg and Struchalin, Maksim and Aragam, Jayashri and Bis, Joshua C and Rivadeneira, Fernando and Erdmann, Jeanette and Schnabel, Renate B and D{\"o}rr, Marcus and Zweiker, Robert and Lind, Lars and Rodeheffer, Richard J and Greiser, Karin Halina and Levy, Daniel and Haritunians, Talin and Deckers, Jaap W and Stritzke, Jan and Lackner, Karl J and V{\"o}lker, Uwe and Ingelsson, Erik and Kullo, Iftikhar and Haerting, Johannes and O{\textquoteright}Donnell, Christopher J and Heckbert, Susan R and Stricker, Bruno H and Ziegler, Andreas and Reffelmann, Thorsten and Redfield, Margaret M and Werdan, Karl and Mitchell, Gary F and Rice, Kenneth and Arnett, Donna K and Hofman, Albert and Gottdiener, John S and Uitterlinden, Andr{\'e} G and Meitinger, Thomas and Blettner, Maria and Friedrich, Nele and Wang, Thomas J and Psaty, Bruce M and van Duijn, Cornelia M and Wichmann, H-Erich and Munzel, Thomas F and Kroemer, Heyo K and Benjamin, Emelia J and Rotter, Jerome I and Witteman, Jacqueline C and Schunkert, Heribert and Schmidt, Helena and V{\"o}lzke, Henry and Blankenberg, Stefan} } @article {1098, title = {Genome-wide association study of blood pressure and hypertension.}, journal = {Nat Genet}, volume = {41}, year = {2009}, month = {2009 Jun}, pages = {677-87}, abstract = {

Blood pressure is a major cardiovascular disease risk factor. To date, few variants associated with interindividual blood pressure variation have been identified and replicated. Here we report results of a genome-wide association study of systolic (SBP) and diastolic (DBP) blood pressure and hypertension in the CHARGE Consortium (n = 29,136), identifying 13 SNPs for SBP, 20 for DBP and 10 for hypertension at P < 4 {\texttimes} 10(-7). The top ten loci for SBP and DBP were incorporated into a risk score; mean BP and prevalence of hypertension increased in relation to the number of risk alleles carried. When ten CHARGE SNPs for each trait were included in a joint meta-analysis with the Global BPgen Consortium (n = 34,433), four CHARGE loci attained genome-wide significance (P < 5 {\texttimes} 10(-8)) for SBP (ATP2B1, CYP17A1, PLEKHA7, SH2B3), six for DBP (ATP2B1, CACNB2, CSK-ULK3, SH2B3, TBX3-TBX5, ULK4) and one for hypertension (ATP2B1). Identifying genes associated with blood pressure advances our understanding of blood pressure regulation and highlights potential drug targets for the prevention or treatment of hypertension.

}, keywords = {Blood Pressure, Cell Line, Chromosome Mapping, Chromosomes, Human, Diastole, Gene Expression Regulation, Genetic Association Studies, Genome-Wide Association Study, Humans, Hypertension, Liver, Lymphocytes, Meta-Analysis as Topic, Odds Ratio, Phenotype, Prevalence, Risk Assessment, Systole}, issn = {1546-1718}, doi = {10.1038/ng.384}, author = {Levy, Daniel and Ehret, Georg B and Rice, Kenneth and Verwoert, Germaine C and Launer, Lenore J and Dehghan, Abbas and Glazer, Nicole L and Morrison, Alanna C and Johnson, Andrew D and Aspelund, Thor and Aulchenko, Yurii and Lumley, Thomas and K{\"o}ttgen, Anna and Vasan, Ramachandran S and Rivadeneira, Fernando and Eiriksdottir, Gudny and Guo, Xiuqing and Arking, Dan E and Mitchell, Gary F and Mattace-Raso, Francesco U S and Smith, Albert V and Taylor, Kent and Scharpf, Robert B and Hwang, Shih-Jen and Sijbrands, Eric J G and Bis, Joshua and Harris, Tamara B and Ganesh, Santhi K and O{\textquoteright}Donnell, Christopher J and Hofman, Albert and Rotter, Jerome I and Coresh, Josef and Benjamin, Emelia J and Uitterlinden, Andr{\'e} G and Heiss, Gerardo and Fox, Caroline S and Witteman, Jacqueline C M and Boerwinkle, Eric and Wang, Thomas J and Gudnason, Vilmundur and Larson, Martin G and Chakravarti, Aravinda and Psaty, Bruce M and van Duijn, Cornelia M} } @article {1114, title = {Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry.}, journal = {Nat Genet}, volume = {41}, year = {2009}, month = {2009 Aug}, pages = {879-81}, abstract = {

We conducted meta-analyses of genome-wide association studies for atrial fibrillation (AF) in participants from five community-based cohorts. Meta-analyses of 896 prevalent (15,768 referents) and 2,517 incident (21,337 referents) AF cases identified a new locus for AF (ZFHX3, rs2106261, risk ratio RR = 1.19; P = 2.3 x 10(-7)). We replicated this association in an independent cohort from the German AF Network (odds ratio = 1.44; P = 1.6 x 10(-11); combined RR = 1.25; combined P = 1.8 x 10(-15)).

}, keywords = {Atrial Fibrillation, Chromosomes, Human, Pair 16, European Continental Ancestry Group, Genetic Predisposition to Disease, Genome-Wide Association Study, Homeodomain Proteins, Humans, Meta-Analysis as Topic, Mutation, Polymorphism, Single Nucleotide, Reproducibility of Results}, issn = {1546-1718}, doi = {10.1038/ng.416}, author = {Benjamin, Emelia J and Rice, Kenneth M and Arking, Dan E and Pfeufer, Arne and van Noord, Charlotte and Smith, Albert V and Schnabel, Renate B and Bis, Joshua C and Boerwinkle, Eric and Sinner, Moritz F and Dehghan, Abbas and Lubitz, Steven A and D{\textquoteright}Agostino, Ralph B and Lumley, Thomas and Ehret, Georg B and Heeringa, Jan and Aspelund, Thor and Newton-Cheh, Christopher and Larson, Martin G and Marciante, Kristin D and Soliman, Elsayed Z and Rivadeneira, Fernando and Wang, Thomas J and Eiriksdottir, Gudny and Levy, Daniel and Psaty, Bruce M and Li, Man and Chamberlain, Alanna M and Hofman, Albert and Vasan, Ramachandran S and Harris, Tamara B and Rotter, Jerome I and Kao, W H Linda and Agarwal, Sunil K and Stricker, Bruno H Ch and Wang, Ke and Launer, Lenore J and Smith, Nicholas L and Chakravarti, Aravinda and Uitterlinden, Andr{\'e} G and Wolf, Philip A and Sotoodehnia, Nona and K{\"o}ttgen, Anna and van Duijn, Cornelia M and Meitinger, Thomas and Mueller, Martina and Perz, Siegfried and Steinbeck, Gerhard and Wichmann, H-Erich and Lunetta, Kathryn L and Heckbert, Susan R and Gudnason, Vilmundur and Alonso, Alvaro and K{\"a}{\"a}b, Stefan and Ellinor, Patrick T and Witteman, Jacqueline C M} } @article {1197, title = {Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium.}, journal = {Circ Cardiovasc Genet}, volume = {3}, year = {2010}, month = {2010 Jun}, pages = {256-66}, abstract = {

BACKGROUND: Although genetic factors contribute to the onset of heart failure (HF), no large-scale genome-wide investigation of HF risk has been published to date. We have investigated the association of 2,478,304 single-nucleotide polymorphisms with incident HF by meta-analyzing data from 4 community-based prospective cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Rotterdam Study.

METHODS AND RESULTS: Eligible participants for these analyses were of European or African ancestry and free of clinical HF at baseline. Each study independently conducted genome-wide scans and imputed data to the approximately 2.5 million single-nucleotide polymorphisms in HapMap. Within each study, Cox proportional hazards regression models provided age- and sex-adjusted estimates of the association between each variant and time to incident HF. Fixed-effect meta-analyses combined results for each single-nucleotide polymorphism from the 4 cohorts to produce an overall association estimate and P value. A genome-wide significance P value threshold was set a priori at 5.0x10(-7). During a mean follow-up of 11.5 years, 2526 incident HF events (12\%) occurred in 20 926 European-ancestry participants. The meta-analysis identified a genome-wide significant locus at chromosomal position 15q22 (1.4x10(-8)), which was 58.8 kb from USP3. Among 2895 African-ancestry participants, 466 incident HF events (16\%) occurred during a mean follow-up of 13.7 years. One genome-wide significant locus was identified at 12q14 (6.7x10(-8)), which was 6.3 kb from LRIG3.

CONCLUSIONS: We identified 2 loci that were associated with incident HF and exceeded genome-wide significance. The findings merit replication in other community-based settings of incident HF.

}, keywords = {African Americans, Aged, Aged, 80 and over, Cohort Studies, Endopeptidases, European Continental Ancestry Group, Female, Genome-Wide Association Study, Heart Failure, Humans, Incidence, Male, Middle Aged, Polymorphism, Single Nucleotide, Risk, Ubiquitin-Specific Proteases}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.109.895763}, author = {Smith, Nicholas L and Felix, Janine F and Morrison, Alanna C and Demissie, Serkalem and Glazer, Nicole L and Loehr, Laura R and Cupples, L Adrienne and Dehghan, Abbas and Lumley, Thomas and Rosamond, Wayne D and Lieb, Wolfgang and Rivadeneira, Fernando and Bis, Joshua C and Folsom, Aaron R and Benjamin, Emelia and Aulchenko, Yurii S and Haritunians, Talin and Couper, David and Murabito, Joanne and Wang, Ying A and Stricker, Bruno H and Gottdiener, John S and Chang, Patricia P and Wang, Thomas J and Rice, Kenneth M and Hofman, Albert and Heckbert, Susan R and Fox, Ervin R and O{\textquoteright}Donnell, Christopher J and Uitterlinden, Andr{\'e} G and Rotter, Jerome I and Willerson, James T and Levy, Daniel and van Duijn, Cornelia M and Psaty, Bruce M and Witteman, Jacqueline C M and Boerwinkle, Eric and Vasan, Ramachandran S} } @article {1204, title = {Common genetic determinants of vitamin D insufficiency: a genome-wide association study.}, journal = {Lancet}, volume = {376}, year = {2010}, month = {2010 Jul 17}, pages = {180-8}, abstract = {

BACKGROUND: Vitamin D is crucial for maintenance of musculoskeletal health, and might also have a role in extraskeletal tissues. Determinants of circulating 25-hydroxyvitamin D concentrations include sun exposure and diet, but high heritability suggests that genetic factors could also play a part. We aimed to identify common genetic variants affecting vitamin D concentrations and risk of insufficiency.

METHODS: We undertook a genome-wide association study of 25-hydroxyvitamin D concentrations in 33 996 individuals of European descent from 15 cohorts. Five epidemiological cohorts were designated as discovery cohorts (n=16 125), five as in-silico replication cohorts (n=9367), and five as de-novo replication cohorts (n=8504). 25-hydroxyvitamin D concentrations were measured by radioimmunoassay, chemiluminescent assay, ELISA, or mass spectrometry. Vitamin D insufficiency was defined as concentrations lower than 75 nmol/L or 50 nmol/L. We combined results of genome-wide analyses across cohorts using Z-score-weighted meta-analysis. Genotype scores were constructed for confirmed variants.

FINDINGS: Variants at three loci reached genome-wide significance in discovery cohorts for association with 25-hydroxyvitamin D concentrations, and were confirmed in replication cohorts: 4p12 (overall p=1.9x10(-109) for rs2282679, in GC); 11q12 (p=2.1x10(-27) for rs12785878, near DHCR7); and 11p15 (p=3.3x10(-20) for rs10741657, near CYP2R1). Variants at an additional locus (20q13, CYP24A1) were genome-wide significant in the pooled sample (p=6.0x10(-10) for rs6013897). Participants with a genotype score (combining the three confirmed variants) in the highest quartile were at increased risk of having 25-hydroxyvitamin D concentrations lower than 75 nmol/L (OR 2.47, 95\% CI 2.20-2.78, p=2.3x10(-48)) or lower than 50 nmol/L (1.92, 1.70-2.16, p=1.0x10(-26)) compared with those in the lowest quartile.

INTERPRETATION: Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status. Genetic variation at these loci identifies individuals who have substantially raised risk of vitamin D insufficiency.

FUNDING: Full funding sources listed at end of paper (see Acknowledgments).

}, keywords = {Canada, Chromosomes, Human, Pair 11, Chromosomes, Human, Pair 4, Cohort Studies, Dietary Supplements, Europe, European Continental Ancestry Group, Genetic Predisposition to Disease, Genome-Wide Association Study, Heterozygote, Homozygote, Humans, Immunoassay, International Cooperation, Linkage Disequilibrium, Polymorphism, Single Nucleotide, Seasons, United States, Vitamin D, Vitamin D Deficiency}, issn = {1474-547X}, doi = {10.1016/S0140-6736(10)60588-0}, author = {Wang, Thomas J and Zhang, Feng and Richards, J Brent and Kestenbaum, Bryan and van Meurs, Joyce B and Berry, Diane and Kiel, Douglas P and Streeten, Elizabeth A and Ohlsson, Claes and Koller, Daniel L and Peltonen, Leena and Cooper, Jason D and O{\textquoteright}Reilly, Paul F and Houston, Denise K and Glazer, Nicole L and Vandenput, Liesbeth and Peacock, Munro and Shi, Julia and Rivadeneira, Fernando and McCarthy, Mark I and Anneli, Pouta and de Boer, Ian H and Mangino, Massimo and Kato, Bernet and Smyth, Deborah J and Booth, Sarah L and Jacques, Paul F and Burke, Greg L and Goodarzi, Mark and Cheung, Ching-Lung and Wolf, Myles and Rice, Kenneth and Goltzman, David and Hidiroglou, Nick and Ladouceur, Martin and Wareham, Nicholas J and Hocking, Lynne J and Hart, Deborah and Arden, Nigel K and Cooper, Cyrus and Malik, Suneil and Fraser, William D and Hartikainen, Anna-Liisa and Zhai, Guangju and Macdonald, Helen M and Forouhi, Nita G and Loos, Ruth J F and Reid, David M and Hakim, Alan and Dennison, Elaine and Liu, Yongmei and Power, Chris and Stevens, Helen E and Jaana, Laitinen and Vasan, Ramachandran S and Soranzo, Nicole and Bojunga, J{\"o}rg and Psaty, Bruce M and Lorentzon, Mattias and Foroud, Tatiana and Harris, Tamara B and Hofman, Albert and Jansson, John-Olov and Cauley, Jane A and Uitterlinden, Andr{\'e} G and Gibson, Quince and Jarvelin, Marjo-Riitta and Karasik, David and Siscovick, David S and Econs, Michael J and Kritchevsky, Stephen B and Florez, Jose C and Todd, John A and Dupuis, Jos{\'e}e and Hypp{\"o}nen, Elina and Spector, Timothy D} } @article {1244, title = {Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Dec}, pages = {1068-76}, abstract = {

The QRS interval, from the beginning of the Q wave to the end of the S wave on an electrocardiogram, reflects ventricular depolarization and conduction time and is a risk factor for mortality, sudden death and heart failure. We performed a genome-wide association meta-analysis in 40,407 individuals of European descent from 14 studies, with further genotyping in 7,170 additional Europeans, and we identified 22 loci associated with QRS duration (P < 5 {\texttimes} 10(-8)). These loci map in or near genes in pathways with established roles in ventricular conduction such as sodium channels, transcription factors and calcium-handling proteins, but also point to previously unidentified biologic processes, such as kinase inhibitors and genes related to tumorigenesis. We demonstrate that SCN10A, a candidate gene at the most significantly associated locus in this study, is expressed in the mouse ventricular conduction system, and treatment with a selective SCN10A blocker prolongs QRS duration. These findings extend our current knowledge of ventricular depolarization and conduction.

}, keywords = {Animals, Animals, Newborn, Chromosomes, Human, Computational Biology, Electrocardiography, Genetic Loci, Genome-Wide Association Study, Heart Conduction System, Humans, Mice, Mice, Transgenic, Models, Animal, Myocytes, Cardiac, NAV1.8 Voltage-Gated Sodium Channel, Polymorphism, Single Nucleotide, Sodium Channels}, issn = {1546-1718}, doi = {10.1038/ng.716}, author = {Sotoodehnia, Nona and Isaacs, Aaron and de Bakker, Paul I W and D{\"o}rr, Marcus and Newton-Cheh, Christopher and Nolte, Ilja M and van der Harst, Pim and M{\"u}ller, Martina and Eijgelsheim, Mark and Alonso, Alvaro and Hicks, Andrew A and Padmanabhan, Sandosh and Hayward, Caroline and Smith, Albert Vernon and Polasek, Ozren and Giovannone, Steven and Fu, Jingyuan and Magnani, Jared W and Marciante, Kristin D and Pfeufer, Arne and Gharib, Sina A and Teumer, Alexander and Li, Man and Bis, Joshua C and Rivadeneira, Fernando and Aspelund, Thor and K{\"o}ttgen, Anna and Johnson, Toby and Rice, Kenneth and Sie, Mark P S and Wang, Ying A and Klopp, Norman and Fuchsberger, Christian and Wild, Sarah H and Mateo Leach, Irene and Estrada, Karol and V{\"o}lker, Uwe and Wright, Alan F and Asselbergs, Folkert W and Qu, Jiaxiang and Chakravarti, Aravinda and Sinner, Moritz F and Kors, Jan A and Petersmann, Astrid and Harris, Tamara B and Soliman, Elsayed Z and Munroe, Patricia B and Psaty, Bruce M and Oostra, Ben A and Cupples, L Adrienne and Perz, Siegfried and de Boer, Rudolf A and Uitterlinden, Andr{\'e} G and V{\"o}lzke, Henry and Spector, Timothy D and Liu, Fang-Yu and Boerwinkle, Eric and Dominiczak, Anna F and Rotter, Jerome I and van Herpen, G{\'e} and Levy, Daniel and Wichmann, H-Erich and van Gilst, Wiek H and Witteman, Jacqueline C M and Kroemer, Heyo K and Kao, W H Linda and Heckbert, Susan R and Meitinger, Thomas and Hofman, Albert and Campbell, Harry and Folsom, Aaron R and van Veldhuisen, Dirk J and Schwienbacher, Christine and O{\textquoteright}Donnell, Christopher J and Volpato, Claudia Beu and Caulfield, Mark J and Connell, John M and Launer, Lenore and Lu, Xiaowen and Franke, Lude and Fehrmann, Rudolf S N and te Meerman, Gerard and Groen, Harry J M and Weersma, Rinse K and van den Berg, Leonard H and Wijmenga, Cisca and Ophoff, Roel A and Navis, Gerjan and Rudan, Igor and Snieder, Harold and Wilson, James F and Pramstaller, Peter P and Siscovick, David S and Wang, Thomas J and Gudnason, Vilmundur and van Duijn, Cornelia M and Felix, Stephan B and Fishman, Glenn I and Jamshidi, Yalda and Stricker, Bruno H Ch and Samani, Nilesh J and K{\"a}{\"a}b, Stefan and Arking, Dan E} } @article {1170, title = {Common variants in KCNN3 are associated with lone atrial fibrillation.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Mar}, pages = {240-4}, abstract = {

Atrial fibrillation (AF) is the most common sustained arrhythmia. Previous studies have identified several genetic loci associated with typical AF. We sought to identify common genetic variants underlying lone AF. This condition affects a subset of individuals without overt heart disease and with an increased heritability of AF. We report a meta-analysis of genome-wide association studies conducted using 1,335 individuals with lone AF (cases) and 12,844 unaffected individuals (referents). Cases were obtained from the German AF Network, Heart and Vascular Health Study, the Atherosclerosis Risk in Communities Study, the Cleveland Clinic and Massachusetts General Hospital. We identified an association on chromosome 1q21 to lone AF (rs13376333, adjusted odds ratio = 1.56; P = 6.3 x 10(-12)), and we replicated this association in two independent cohorts with lone AF (overall combined odds ratio = 1.52, 95\% CI 1.40-1.64; P = 1.83 x 10(-21)). rs13376333 is intronic to KCNN3, which encodes a potassium channel protein involved in atrial repolarization.

}, keywords = {Adolescent, Adult, Aged, Atrial Fibrillation, Case-Control Studies, Cohort Studies, Female, Genome-Wide Association Study, Humans, Introns, Male, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide, Small-Conductance Calcium-Activated Potassium Channels, Young Adult}, issn = {1546-1718}, doi = {10.1038/ng.537}, author = {Ellinor, Patrick T and Lunetta, Kathryn L and Glazer, Nicole L and Pfeufer, Arne and Alonso, Alvaro and Chung, Mina K and Sinner, Moritz F and de Bakker, Paul I W and Mueller, Martina and Lubitz, Steven A and Fox, Ervin and Darbar, Dawood and Smith, Nicholas L and Smith, Jonathan D and Schnabel, Renate B and Soliman, Elsayed Z and Rice, Kenneth M and Van Wagoner, David R and Beckmann, Britt-M and van Noord, Charlotte and Wang, Ke and Ehret, Georg B and Rotter, Jerome I and Hazen, Stanley L and Steinbeck, Gerhard and Smith, Albert V and Launer, Lenore J and Harris, Tamara B and Makino, Seiko and Nelis, Mari and Milan, David J and Perz, Siegfried and Esko, T{\~o}nu and K{\"o}ttgen, Anna and Moebus, Susanne and Newton-Cheh, Christopher and Li, Man and M{\"o}hlenkamp, Stefan and Wang, Thomas J and Kao, W H Linda and Vasan, Ramachandran S and N{\"o}then, Markus M and MacRae, Calum A and Stricker, Bruno H Ch and Hofman, Albert and Uitterlinden, Andr{\'e} G and Levy, Daniel and Boerwinkle, Eric and Metspalu, Andres and Topol, Eric J and Chakravarti, Aravinda and Gudnason, Vilmundur and Psaty, Bruce M and Roden, Dan M and Meitinger, Thomas and Wichmann, H-Erich and Witteman, Jacqueline C M and Barnard, John and Arking, Dan E and Benjamin, Emelia J and Heckbert, Susan R and K{\"a}{\"a}b, Stefan} } @article {1159, title = {Genome-wide association study of PR interval.}, journal = {Nat Genet}, volume = {42}, year = {2010}, month = {2010 Feb}, pages = {153-9}, abstract = {

The electrocardiographic PR interval (or PQ interval) reflects atrial and atrioventricular nodal conduction, disturbances of which increase risk of atrial fibrillation. We report a meta-analysis of genome-wide association studies for PR interval from seven population-based European studies in the CHARGE Consortium: AGES, ARIC, CHS, FHS, KORA, Rotterdam Study, and SardiNIA (N = 28,517). We identified nine loci associated with PR interval at P < 5 x 10(-8). At the 3p22.2 locus, we observed two independent associations in voltage-gated sodium channel genes, SCN10A and SCN5A. Six of the loci were near cardiac developmental genes, including CAV1-CAV2, NKX2-5 (CSX1), SOX5, WNT11, MEIS1, and TBX5-TBX3, providing pathophysiologically interesting candidate genes. Five of the loci, SCN5A, SCN10A, NKX2-5, CAV1-CAV2, and SOX5, were also associated with atrial fibrillation (N = 5,741 cases, P < 0.0056). This suggests a role for common variation in ion channel and developmental genes in atrial and atrioventricular conduction as well as in susceptibility to atrial fibrillation.

}, keywords = {Aged, Atrial Fibrillation, Cohort Studies, Electrocardiography, Female, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Heart Conduction System, Humans, Male, Meta-Analysis as Topic}, issn = {1546-1718}, doi = {10.1038/ng.517}, author = {Pfeufer, Arne and van Noord, Charlotte and Marciante, Kristin D and Arking, Dan E and Larson, Martin G and Smith, Albert Vernon and Tarasov, Kirill V and M{\"u}ller, Martina and Sotoodehnia, Nona and Sinner, Moritz F and Verwoert, Germaine C and Li, Man and Kao, W H Linda and K{\"o}ttgen, Anna and Coresh, Josef and Bis, Joshua C and Psaty, Bruce M and Rice, Kenneth and Rotter, Jerome I and Rivadeneira, Fernando and Hofman, Albert and Kors, Jan A and Stricker, Bruno H C and Uitterlinden, Andr{\'e} G and van Duijn, Cornelia M and Beckmann, Britt M and Sauter, Wiebke and Gieger, Christian and Lubitz, Steven A and Newton-Cheh, Christopher and Wang, Thomas J and Magnani, Jared W and Schnabel, Renate B and Chung, Mina K and Barnard, John and Smith, Jonathan D and Van Wagoner, David R and Vasan, Ramachandran S and Aspelund, Thor and Eiriksdottir, Gudny and Harris, Tamara B and Launer, Lenore J and Najjar, Samer S and Lakatta, Edward and Schlessinger, David and Uda, Manuela and Abecasis, Goncalo R and M{\"u}ller-Myhsok, Bertram and Ehret, Georg B and Boerwinkle, Eric and Chakravarti, Aravinda and Soliman, Elsayed Z and Lunetta, Kathryn L and Perz, Siegfried and Wichmann, H-Erich and Meitinger, Thomas and Levy, Daniel and Gudnason, Vilmundur and Ellinor, Patrick T and Sanna, Serena and K{\"a}{\"a}b, Stefan and Witteman, Jacqueline C M and Alonso, Alvaro and Benjamin, Emelia J and Heckbert, Susan R} } @article {1187, title = {Genomic variation associated with mortality among adults of European and African ancestry with heart failure: the cohorts for heart and aging research in genomic epidemiology consortium.}, journal = {Circ Cardiovasc Genet}, volume = {3}, year = {2010}, month = {2010 Jun}, pages = {248-55}, abstract = {

BACKGROUND: Prognosis and survival are significant concerns for individuals with heart failure (HF). To better understand the pathophysiology of HF prognosis, the association between 2,366,858 single-nucleotide polymorphisms (SNPs) and all-cause mortality was evaluated among individuals with incident HF from 4 community-based prospective cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Rotterdam Study.

METHODS AND RESULTS: Participants were 2526 individuals of European ancestry and 466 individuals of African ancestry who experienced an incident HF event during follow-up in the respective cohorts. Within each study, the association between genetic variants and time to mortality among individuals with HF was assessed by Cox proportional hazards models that included adjustment for sex and age at the time of the HF event. Prospective fixed-effect meta-analyses were conducted for the 4 study populations of European ancestry (N=1645 deaths) and for the 2 populations of African ancestry (N=281 deaths). Genome-wide significance was set at P=5.0x10(-7). Meta-analytic findings among individuals of European ancestry revealed 1 genome-wide significant locus on chromosome 3p22 in an intron of CKLF-like MARVEL transmembrane domain containing 7 (CMTM7, P=3.2x10(-7)). Eight additional loci in individuals of European ancestry and 4 loci in individuals of African ancestry were identified by high-signal SNPs (P<1.0x10(-5)) but did not meet genome-wide significance.

CONCLUSIONS: This study identified a novel locus associated with all-cause mortality among individuals of European ancestry with HF. This finding warrants additional investigation, including replication, in other studies of HF.

}, keywords = {African Americans, Aged, Aged, 80 and over, Chemokines, Cohort Studies, European Continental Ancestry Group, Female, Genome-Wide Association Study, Genotype, Heart Failure, Humans, Introns, Male, MARVEL Domain-Containing Proteins, Membrane Proteins, Middle Aged, Polymorphism, Single Nucleotide, Risk Factors}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.109.895995}, author = {Morrison, Alanna C and Felix, Janine F and Cupples, L Adrienne and Glazer, Nicole L and Loehr, Laura R and Dehghan, Abbas and Demissie, Serkalem and Bis, Joshua C and Rosamond, Wayne D and Aulchenko, Yurii S and Wang, Ying A and Haritunians, Talin and Folsom, Aaron R and Rivadeneira, Fernando and Benjamin, Emelia J and Lumley, Thomas and Couper, David and Stricker, Bruno H and O{\textquoteright}Donnell, Christopher J and Rice, Kenneth M and Chang, Patricia P and Hofman, Albert and Levy, Daniel and Rotter, Jerome I and Fox, Ervin R and Uitterlinden, Andr{\'e} G and Wang, Thomas J and Psaty, Bruce M and Willerson, James T and van Duijn, Cornelia M and Boerwinkle, Eric and Witteman, Jacqueline C M and Vasan, Ramachandran S and Smith, Nicholas L} } @article {1247, title = {Validation of an atrial fibrillation risk algorithm in whites and African Americans.}, journal = {Arch Intern Med}, volume = {170}, year = {2010}, month = {2010 Nov 22}, pages = {1909-17}, abstract = {

BACKGROUND: We sought to validate a recently published risk algorithm for incident atrial fibrillation (AF) in independent cohorts and other racial groups.

METHODS: We evaluated the performance of a Framingham Heart Study (FHS)-derived risk algorithm modified for 5-year incidence of AF in the FHS (n = 4764 participants) and 2 geographically and racially diverse cohorts in the age range 45 to 95 years: AGES (the Age, Gene/Environment Susceptibility-Reykjavik Study) (n = 4238) and CHS (the Cardiovascular Health Study) (n = 5410, of whom 874 [16.2\%] were African Americans). The risk algorithm included age, sex, body mass index, systolic blood pressure, electrocardiographic PR interval, hypertension treatment, and heart failure.

RESULTS: We found 1359 incident AF events in 100 074 person-years of follow-up. Unadjusted 5-year event rates differed by cohort (AGES, 12.8 cases/1000 person-years; CHS whites, 22.7 cases/1000 person-years; and FHS, 4.5 cases/1000 person-years) and by race (CHS African Americans, 18.4 cases/1000 person-years). The strongest risk factors in all samples were age and heart failure. The relative risks for incident AF associated with risk factors were comparable across cohorts and race groups. After recalibration for baseline incidence and risk factor distribution, the Framingham algorithm, reported in C statistic, performed reasonably well in all samples: AGES, 0.67 (95\% confidence interval [CI], 0.64-0.71); CHS whites, 0.68 (95\% CI, 0.66-0.70); and CHS African Americans, 0.66 (95\% CI, 0.61-0.71). Risk factors combined in the algorithm explained between 47.0\% (AGES) and 63.6\% (FHS) of the population-attributable risk.

CONCLUSIONS: Risk of incident AF in community-dwelling whites and African Americans can be assessed reliably by routinely available and potentially modifiable clinical variables. Seven risk factors accounted for up to 64\% of risk.

}, keywords = {African Continental Ancestry Group, Age Factors, Aged, Aged, 80 and over, Algorithms, Atrial Fibrillation, Blood Pressure, Body Mass Index, Cohort Studies, Electrocardiography, Europe, European Continental Ancestry Group, Female, Follow-Up Studies, Heart Failure, Humans, Hypertension, Incidence, Kaplan-Meier Estimate, Male, Middle Aged, Proportional Hazards Models, Risk Factors, Sex Factors, Systole, United States}, issn = {1538-3679}, doi = {10.1001/archinternmed.2010.434}, author = {Schnabel, Renate B and Aspelund, Thor and Li, Guo and Sullivan, Lisa M and Suchy-Dicey, Astrid and Harris, Tamara B and Pencina, Michael J and D{\textquoteright}Agostino, Ralph B and Levy, Daniel and Kannel, William B and Wang, Thomas J and Kronmal, Richard A and Wolf, Philip A and Burke, Gregory L and Launer, Lenore J and Vasan, Ramachandran S and Psaty, Bruce M and Benjamin, Emelia J and Gudnason, Vilmundur and Heckbert, Susan R} } @article {1325, title = {Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.}, journal = {Nature}, volume = {478}, year = {2011}, month = {2011 Sep 11}, pages = {103-9}, abstract = {

Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>=140 mm Hg systolic blood pressure or >=90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.

}, keywords = {Africa, Asia, Blood Pressure, Cardiovascular Diseases, Coronary Artery Disease, Europe, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Hypertension, Kidney Diseases, Polymorphism, Single Nucleotide, Stroke}, issn = {1476-4687}, doi = {10.1038/nature10405}, author = {Ehret, Georg B and Munroe, Patricia B and Rice, Kenneth M and Bochud, Murielle and Johnson, Andrew D and Chasman, Daniel I and Smith, Albert V and Tobin, Martin D and Verwoert, Germaine C and Hwang, Shih-Jen and Pihur, Vasyl and Vollenweider, Peter and O{\textquoteright}Reilly, Paul F and Amin, Najaf and Bragg-Gresham, Jennifer L and Teumer, Alexander and Glazer, Nicole L and Launer, Lenore and Zhao, Jing Hua and Aulchenko, Yurii and Heath, Simon and S{\~o}ber, Siim and Parsa, Afshin and Luan, Jian{\textquoteright}an and Arora, Pankaj and Dehghan, Abbas and Zhang, Feng and Lucas, Gavin and Hicks, Andrew A and Jackson, Anne U and Peden, John F and Tanaka, Toshiko and Wild, Sarah H and Rudan, Igor and Igl, Wilmar and Milaneschi, Yuri and Parker, Alex N and Fava, Cristiano and Chambers, John C and Fox, Ervin R and Kumari, Meena and Go, Min Jin and van der Harst, Pim and Kao, Wen Hong Linda and Sj{\"o}gren, Marketa and Vinay, D G and Alexander, Myriam and Tabara, Yasuharu and Shaw-Hawkins, Sue and Whincup, Peter H and Liu, Yongmei and Shi, Gang and Kuusisto, Johanna and Tayo, Bamidele and Seielstad, Mark and Sim, Xueling and Nguyen, Khanh-Dung Hoang and Lehtim{\"a}ki, Terho and Matullo, Giuseppe and Wu, Ying and Gaunt, Tom R and Onland-Moret, N Charlotte and Cooper, Matthew N and Platou, Carl G P and Org, Elin and Hardy, Rebecca and Dahgam, Santosh and Palmen, Jutta and Vitart, Veronique and Braund, Peter S and Kuznetsova, Tatiana and Uiterwaal, Cuno S P M and Adeyemo, Adebowale and Palmas, Walter and Campbell, Harry and Ludwig, Barbara and Tomaszewski, Maciej and Tzoulaki, Ioanna and Palmer, Nicholette D and Aspelund, Thor and Garcia, Melissa and Chang, Yen-Pei C and O{\textquoteright}Connell, Jeffrey R and Steinle, Nanette I and Grobbee, Diederick E and Arking, Dan E and Kardia, Sharon L and Morrison, Alanna C and Hernandez, Dena and Najjar, Samer and McArdle, Wendy L and Hadley, David and Brown, Morris J and Connell, John M and Hingorani, Aroon D and Day, Ian N M and Lawlor, Debbie A and Beilby, John P and Lawrence, Robert W and Clarke, Robert and Hopewell, Jemma C and Ongen, Halit and Dreisbach, Albert W and Li, Yali and Young, J Hunter and Bis, Joshua C and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Adair, Linda S and Lee, Nanette R and Chen, Ming-Huei and Olden, Matthias and Pattaro, Cristian and Bolton, Judith A Hoffman and K{\"o}ttgen, Anna and Bergmann, Sven and Mooser, Vincent and Chaturvedi, Nish and Frayling, Timothy M and Islam, Muhammad and Jafar, Tazeen H and Erdmann, Jeanette and Kulkarni, Smita R and Bornstein, Stefan R and Gr{\"a}ssler, J{\"u}rgen and Groop, Leif and Voight, Benjamin F and Kettunen, Johannes and Howard, Philip and Taylor, Andrew and Guarrera, Simonetta and Ricceri, Fulvio and Emilsson, Valur and Plump, Andrew and Barroso, In{\^e}s and Khaw, Kay-Tee and Weder, Alan B and Hunt, Steven C and Sun, Yan V and Bergman, Richard N and Collins, Francis S and Bonnycastle, Lori L and Scott, Laura J and Stringham, Heather M and Peltonen, Leena and Perola, Markus and Vartiainen, Erkki and Brand, Stefan-Martin and Staessen, Jan A and Wang, Thomas J and Burton, Paul R and Soler Artigas, Maria and Dong, Yanbin and Snieder, Harold and Wang, Xiaoling and Zhu, Haidong and Lohman, Kurt K and Rudock, Megan E and Heckbert, Susan R and Smith, Nicholas L and Wiggins, Kerri L and Doumatey, Ayo and Shriner, Daniel and Veldre, Gudrun and Viigimaa, Margus and Kinra, Sanjay and Prabhakaran, Dorairaj and Tripathy, Vikal and Langefeld, Carl D and Rosengren, Annika and Thelle, Dag S and Corsi, Anna Maria and Singleton, Andrew and Forrester, Terrence and Hilton, Gina and McKenzie, Colin A and Salako, Tunde and Iwai, Naoharu and Kita, Yoshikuni and Ogihara, Toshio and Ohkubo, Takayoshi and Okamura, Tomonori and Ueshima, Hirotsugu and Umemura, Satoshi and Eyheramendy, Susana and Meitinger, Thomas and Wichmann, H-Erich and Cho, Yoon Shin and Kim, Hyung-Lae and Lee, Jong-Young and Scott, James and Sehmi, Joban S and Zhang, Weihua and Hedblad, Bo and Nilsson, Peter and Smith, George Davey and Wong, Andrew and Narisu, Narisu and Stan{\v c}{\'a}kov{\'a}, Alena and Raffel, Leslie J and Yao, Jie and Kathiresan, Sekar and O{\textquoteright}Donnell, Christopher J and Schwartz, Stephen M and Ikram, M Arfan and Longstreth, W T and Mosley, Thomas H and Seshadri, Sudha and Shrine, Nick R G and Wain, Louise V and Morken, Mario A and Swift, Amy J and Laitinen, Jaana and Prokopenko, Inga and Zitting, Paavo and Cooper, Jackie A and Humphries, Steve E and Danesh, John and Rasheed, Asif and Goel, Anuj and Hamsten, Anders and Watkins, Hugh and Bakker, Stephan J L and van Gilst, Wiek H and Janipalli, Charles S and Mani, K Radha and Yajnik, Chittaranjan S and Hofman, Albert and Mattace-Raso, Francesco U S and Oostra, Ben A and Demirkan, Ayse and Isaacs, Aaron and Rivadeneira, Fernando and Lakatta, Edward G and Orr{\`u}, Marco and Scuteri, Angelo and Ala-Korpela, Mika and Kangas, Antti J and Lyytik{\"a}inen, Leo-Pekka and Soininen, Pasi and Tukiainen, Taru and W{\"u}rtz, Peter and Ong, Rick Twee-Hee and D{\"o}rr, Marcus and Kroemer, Heyo K and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Galan, Pilar and Hercberg, Serge and Lathrop, Mark and Zelenika, Diana and Deloukas, Panos and Mangino, Massimo and Spector, Tim D and Zhai, Guangju and Meschia, James F and Nalls, Michael A and Sharma, Pankaj and Terzic, Janos and Kumar, M V Kranthi and Denniff, Matthew and Zukowska-Szczechowska, Ewa and Wagenknecht, Lynne E and Fowkes, F Gerald R and Charchar, Fadi J and Schwarz, Peter E H and Hayward, Caroline and Guo, Xiuqing and Rotimi, Charles and Bots, Michiel L and Brand, Eva and Samani, Nilesh J and Polasek, Ozren and Talmud, Philippa J and Nyberg, Fredrik and Kuh, Diana and Laan, Maris and Hveem, Kristian and Palmer, Lyle J and van der Schouw, Yvonne T and Casas, Juan P and Mohlke, Karen L and Vineis, Paolo and Raitakari, Olli and Ganesh, Santhi K and Wong, Tien Y and Tai, E Shyong and Cooper, Richard S and Laakso, Markku and Rao, Dabeeru C and Harris, Tamara B and Morris, Richard W and Dominiczak, Anna F and Kivimaki, Mika and Marmot, Michael G and Miki, Tetsuro and Saleheen, Danish and Chandak, Giriraj R and Coresh, Josef and Navis, Gerjan and Salomaa, Veikko and Han, Bok-Ghee and Zhu, Xiaofeng and Kooner, Jaspal S and Melander, Olle and Ridker, Paul M and Bandinelli, Stefania and Gyllensten, Ulf B and Wright, Alan F and Wilson, James F and Ferrucci, Luigi and Farrall, Martin and Tuomilehto, Jaakko and Pramstaller, Peter P and Elosua, Roberto and Soranzo, Nicole and Sijbrands, Eric J G and Altshuler, David and Loos, Ruth J F and Shuldiner, Alan R and Gieger, Christian and Meneton, Pierre and Uitterlinden, Andr{\'e} G and Wareham, Nicholas J and Gudnason, Vilmundur and Rotter, Jerome I and Rettig, Rainer and Uda, Manuela and Strachan, David P and Witteman, Jacqueline C M and Hartikainen, Anna-Liisa and Beckmann, Jacques S and Boerwinkle, Eric and Vasan, Ramachandran S and Boehnke, Michael and Larson, Martin G and Jarvelin, Marjo-Riitta and Psaty, Bruce M and Abecasis, Goncalo R and Chakravarti, Aravinda and Elliott, Paul and van Duijn, Cornelia M and Newton-Cheh, Christopher and Levy, Daniel and Caulfield, Mark J and Johnson, Toby} } @article {1324, title = {Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.}, journal = {Nat Genet}, volume = {43}, year = {2011}, month = {2011 Sep 11}, pages = {1005-11}, abstract = {

Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 {\texttimes} 10(-8) to P = 2.3 {\texttimes} 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.

}, keywords = {Arteries, Blood Pressure, Case-Control Studies, Follow-Up Studies, Genetic Loci, Genome-Wide Association Study, Humans, Hypertension, Linkage Disequilibrium, Polymorphism, Single Nucleotide}, issn = {1546-1718}, doi = {10.1038/ng.922}, author = {Wain, Louise V and Verwoert, Germaine C and O{\textquoteright}Reilly, Paul F and Shi, Gang and Johnson, Toby and Johnson, Andrew D and Bochud, Murielle and Rice, Kenneth M and Henneman, Peter and Smith, Albert V and Ehret, Georg B and Amin, Najaf and Larson, Martin G and Mooser, Vincent and Hadley, David and D{\"o}rr, Marcus and Bis, Joshua C and Aspelund, Thor and Esko, T{\~o}nu and Janssens, A Cecile J W and Zhao, Jing Hua and Heath, Simon and Laan, Maris and Fu, Jingyuan and Pistis, Giorgio and Luan, Jian{\textquoteright}an and Arora, Pankaj and Lucas, Gavin and Pirastu, Nicola and Pichler, Irene and Jackson, Anne U and Webster, Rebecca J and Zhang, Feng and Peden, John F and Schmidt, Helena and Tanaka, Toshiko and Campbell, Harry and Igl, Wilmar and Milaneschi, Yuri and Hottenga, Jouke-Jan and Vitart, Veronique and Chasman, Daniel I and Trompet, Stella and Bragg-Gresham, Jennifer L and Alizadeh, Behrooz Z and Chambers, John C and Guo, Xiuqing and Lehtim{\"a}ki, Terho and Kuhnel, Brigitte and Lopez, Lorna M and Polasek, Ozren and Boban, Mladen and Nelson, Christopher P and Morrison, Alanna C and Pihur, Vasyl and Ganesh, Santhi K and Hofman, Albert and Kundu, Suman and Mattace-Raso, Francesco U S and Rivadeneira, Fernando and Sijbrands, Eric J G and Uitterlinden, Andr{\'e} G and Hwang, Shih-Jen and Vasan, Ramachandran S and Wang, Thomas J and Bergmann, Sven and Vollenweider, Peter and Waeber, G{\'e}rard and Laitinen, Jaana and Pouta, Anneli and Zitting, Paavo and McArdle, Wendy L and Kroemer, Heyo K and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Glazer, Nicole L and Taylor, Kent D and Harris, Tamara B and Alavere, Helene and Haller, Toomas and Keis, Aime and Tammesoo, Mari-Liis and Aulchenko, Yurii and Barroso, In{\^e}s and Khaw, Kay-Tee and Galan, Pilar and Hercberg, Serge and Lathrop, Mark and Eyheramendy, Susana and Org, Elin and S{\~o}ber, Siim and Lu, Xiaowen and Nolte, Ilja M and Penninx, Brenda W and Corre, Tanguy and Masciullo, Corrado and Sala, Cinzia and Groop, Leif and Voight, Benjamin F and Melander, Olle and O{\textquoteright}Donnell, Christopher J and Salomaa, Veikko and d{\textquoteright}Adamo, Adamo Pio and Fabretto, Antonella and Faletra, Flavio and Ulivi, Sheila and Del Greco, Fabiola M and Facheris, Maurizio and Collins, Francis S and Bergman, Richard N and Beilby, John P and Hung, Joseph and Musk, A William and Mangino, Massimo and Shin, So-Youn and Soranzo, Nicole and Watkins, Hugh and Goel, Anuj and Hamsten, Anders and Gider, Pierre and Loitfelder, Marisa and Zeginigg, Marion and Hernandez, Dena and Najjar, Samer S and Navarro, Pau and Wild, Sarah H and Corsi, Anna Maria and Singleton, Andrew and de Geus, Eco J C and Willemsen, Gonneke and Parker, Alex N and Rose, Lynda M and Buckley, Brendan and Stott, David and Orr{\`u}, Marco and Uda, Manuela and van der Klauw, Melanie M and Zhang, Weihua and Li, Xinzhong and Scott, James and Chen, Yii-Der Ida and Burke, Gregory L and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and D{\"o}ring, Angela and Meitinger, Thomas and Davies, Gail and Starr, John M and Emilsson, Valur and Plump, Andrew and Lindeman, Jan H and Hoen, Peter A C {\textquoteright}t and K{\"o}nig, Inke R and Felix, Janine F and Clarke, Robert and Hopewell, Jemma C and Ongen, Halit and Breteler, Monique and Debette, Stephanie and DeStefano, Anita L and Fornage, Myriam and Mitchell, Gary F and Smith, Nicholas L and Holm, Hilma and Stefansson, Kari and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Samani, Nilesh J and Preuss, Michael and Rudan, Igor and Hayward, Caroline and Deary, Ian J and Wichmann, H-Erich and Raitakari, Olli T and Palmas, Walter and Kooner, Jaspal S and Stolk, Ronald P and Jukema, J Wouter and Wright, Alan F and Boomsma, Dorret I and Bandinelli, Stefania and Gyllensten, Ulf B and Wilson, James F and Ferrucci, Luigi and Schmidt, Reinhold and Farrall, Martin and Spector, Tim D and Palmer, Lyle J and Tuomilehto, Jaakko and Pfeufer, Arne and Gasparini, Paolo and Siscovick, David and Altshuler, David and Loos, Ruth J F and Toniolo, Daniela and Snieder, Harold and Gieger, Christian and Meneton, Pierre and Wareham, Nicholas J and Oostra, Ben A and Metspalu, Andres and Launer, Lenore and Rettig, Rainer and Strachan, David P and Beckmann, Jacques S and Witteman, Jacqueline C M and Erdmann, Jeanette and van Dijk, Ko Willems and Boerwinkle, Eric and Boehnke, Michael and Ridker, Paul M and Jarvelin, Marjo-Riitta and Chakravarti, Aravinda and Abecasis, Goncalo R and Gudnason, Vilmundur and Newton-Cheh, Christopher and Levy, Daniel and Munroe, Patricia B and Psaty, Bruce M and Caulfield, Mark J and Rao, Dabeeru C and Tobin, Martin D and Elliott, Paul and van Duijn, Cornelia M} } @article {6601, title = {B-type natriuretic peptide and C-reactive protein in the prediction of atrial fibrillation risk: the CHARGE-AF Consortium of community-based cohort studies.}, journal = {Europace}, volume = {16}, year = {2014}, month = {2014 Oct}, pages = {1426-33}, abstract = {

AIMS: B-type natriuretic peptide (BNP) and C-reactive protein (CRP) predict atrial fibrillation (AF) risk. However, their risk stratification abilities in the broad community remain uncertain. We sought to improve risk stratification for AF using biomarker information.

METHODS AND RESULTS: We ascertained AF incidence in 18 556 Whites and African Americans from the Atherosclerosis Risk in Communities Study (ARIC, n=10 675), Cardiovascular Health Study (CHS, n = 5043), and Framingham Heart Study (FHS, n = 2838), followed for 5 years (prediction horizon). We added BNP (ARIC/CHS: N-terminal pro-B-type natriuretic peptide; FHS: BNP), CRP, or both to a previously reported AF risk score, and assessed model calibration and predictive ability [C-statistic, integrated discrimination improvement (IDI), and net reclassification improvement (NRI)]. We replicated models in two independent European cohorts: Age, Gene/Environment Susceptibility Reykjavik Study (AGES), n = 4467; Rotterdam Study (RS), n = 3203. B-type natriuretic peptide and CRP were significantly associated with AF incidence (n = 1186): hazard ratio per 1-SD ln-transformed biomarker 1.66 [95\% confidence interval (CI), 1.56-1.76], P < 0.0001 and 1.18 (95\% CI, 1.11-1.25), P < 0.0001, respectively. Model calibration was sufficient (BNP, χ(2) = 17.0; CRP, χ(2) = 10.5; BNP and CRP, χ(2) = 13.1). B-type natriuretic peptide improved the C-statistic from 0.765 to 0.790, yielded an IDI of 0.027 (95\% CI, 0.022-0.032), a relative IDI of 41.5\%, and a continuous NRI of 0.389 (95\% CI, 0.322-0.455). The predictive ability of CRP was limited (C-statistic increment 0.003). B-type natriuretic peptide consistently improved prediction in AGES and RS.

CONCLUSION: B-type natriuretic peptide, not CRP, substantially improved AF risk prediction beyond clinical factors in an independently replicated, heterogeneous population. B-type natriuretic peptide may serve as a benchmark to evaluate novel putative AF risk biomarkers.

}, keywords = {Aged, Atrial Fibrillation, Biomarkers, C-Reactive Protein, Europe, Female, Humans, Incidence, Male, Natriuretic Peptide, Brain, Peptide Fragments, Predictive Value of Tests, Risk Assessment, Risk Factors, United States}, issn = {1532-2092}, doi = {10.1093/europace/euu175}, author = {Sinner, Moritz F and Stepas, Katherine A and Moser, Carlee B and Krijthe, Bouwe P and Aspelund, Thor and Sotoodehnia, Nona and Fontes, Jo{\~a}o D and Janssens, A Cecile J W and Kronmal, Richard A and Magnani, Jared W and Witteman, Jacqueline C and Chamberlain, Alanna M and Lubitz, Steven A and Schnabel, Renate B and Vasan, Ramachandran S and Wang, Thomas J and Agarwal, Sunil K and McManus, David D and Franco, Oscar H and Yin, Xiaoyan and Larson, Martin G and Burke, Gregory L and Launer, Lenore J and Hofman, Albert and Levy, Daniel and Gottdiener, John S and K{\"a}{\"a}b, Stefan and Couper, David and Harris, Tamara B and Astor, Brad C and Ballantyne, Christie M and Hoogeveen, Ron C and Arai, Andrew E and Soliman, Elsayed Z and Ellinor, Patrick T and Stricker, Bruno H C and Gudnason, Vilmundur and Heckbert, Susan R and Pencina, Michael J and Benjamin, Emelia J and Alonso, Alvaro} } @article {6819, title = {Genome-wide association study of L-arginine and dimethylarginines reveals novel metabolic pathway for symmetric dimethylarginine.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Dec}, pages = {864-72}, abstract = {

BACKGROUND: Dimethylarginines (DMA) interfere with nitric oxide formation by inhibiting nitric oxide synthase (asymmetrical DMA [ADMA]) and l-arginine uptake into the cell (ADMA and symmetrical DMA [SDMA]). In prospective clinical studies, ADMA has been characterized as a cardiovascular risk marker, whereas SDMA is a novel marker for renal function and associated with all-cause mortality after ischemic stroke. The aim of the current study was to characterize the environmental and genetic contributions to interindividual variability of these biomarkers.

METHODS AND RESULTS: This study comprised a genome-wide association analysis of 3 well-characterized population-based cohorts (Framingham Heart Study [FHS; n=2992], Gutenberg Health Study [GHS; n=4354], and Multinational Monitoring of Trends and Determinants in Cardiovascular Disease Study [MONICA]/Cooperative Health Research in the Augsburg Area, Augsburg, Bavaria, Germany [KORA] F3 [n=581]) and identified replicated loci (DDAH1, MED23, Arg1, and AGXT2) associated with the interindividual variability in ADMA, l-arginine, and SDMA. Experimental in silico and in vitro studies confirmed functional significance of the identified AGXT2 variants. Clinical outcome analysis in 384 patients of the Leeds stroke study demonstrated an association between increased plasma levels of SDMA, AGXT2 variants, and various cardiometabolic risk factors. AGXT2 variants were not associated with poststroke survival in the Leeds study or were they associated with incident stroke in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium.

CONCLUSIONS: These genome-wide association study support the importance of DDAH1 and MED23/Arg1 in regulating ADMA and l-arginine metabolism, respectively, and identify a novel regulatory renal pathway for SDMA by AGXT2. AGXT2 variants might explain part of the pathogenic link between SDMA, renal function, and outcome. An association between AGXT2 variants and stroke is unclear and warrants further investigation.

}, keywords = {Adult, Aged, Amidohydrolases, Arginine, Binding Sites, Cohort Studies, Female, Genetic Loci, Genome-Wide Association Study, Genotype, HEK293 Cells, Humans, Male, Mediator Complex, Middle Aged, Polymorphism, Single Nucleotide, Protein Structure, Tertiary, Risk Factors, Stroke, Substrate Specificity, Transaminases}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000264}, author = {L{\"u}neburg, Nicole and Lieb, Wolfgang and Zeller, Tanja and Chen, Ming-Huei and Maas, Renke and Carter, Angela M and Xanthakis, Vanessa and Glazer, Nicole L and Schwedhelm, Edzard and Seshadri, Sudha and Ikram, Mohammad Arfan and Longstreth, William T and Fornage, Myriam and K{\"o}nig, Inke R and Loley, Christina and Ojeda, Francisco M and Schillert, Arne and Wang, Thomas J and Sticht, Heinrich and Kittel, Anja and K{\"o}nig, J{\"o}rg and Benjamin, Emelia J and Sullivan, Lisa M and Bernges, Isabel and Anderssohn, Maike and Ziegler, Andreas and Gieger, Christian and Illig, Thomas and Meisinger, Christa and Wichmann, H-Erich and Wild, Philipp S and Schunkert, Heribert and Psaty, Bruce M and Wiggins, Kerri L and Heckbert, Susan R and Smith, Nicholas and Lackner, Karl and Lunetta, Kathryn L and Blankenberg, Stefan and Erdmann, Jeanette and M{\"u}nzel, Thomas and Grant, Peter J and Vasan, Ramachandran S and B{\"o}ger, Rainer H} } @article {7487, title = {Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis.}, journal = {Am J Hum Genet}, volume = {101}, year = {2017}, month = {2017 Aug 03}, pages = {227-238}, abstract = {

Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5\%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (-0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5~{\texttimes} 10(-88)). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95\% confidence interval [CI] = 1.78-2.78, p = 1.26~{\texttimes} 10(-12)). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95\% CI = 1.19-1.64, p = 2.63~{\texttimes} 10(-5)) in a sample of 5,927 case and 5,599 control subjects. In~conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis.

}, keywords = {Cholestanetriol 26-Monooxygenase, Cytochrome P450 Family 2, Gene Frequency, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Humans, Multiple Sclerosis, Polymorphism, Single Nucleotide, Risk Factors, Vitamin D, Vitamin D Deficiency}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2017.06.014}, author = {Manousaki, Despoina and Dudding, Tom and Haworth, Simon and Hsu, Yi-Hsiang and Liu, Ching-Ti and Medina-G{\'o}mez, Carolina and Voortman, Trudy and van der Velde, Nathalie and Melhus, H{\r a}kan and Robinson-Cohen, Cassianne and Cousminer, Diana L and Nethander, Maria and Vandenput, Liesbeth and Noordam, Raymond and Forgetta, Vincenzo and Greenwood, Celia M T and Biggs, Mary L and Psaty, Bruce M and Rotter, Jerome I and Zemel, Babette S and Mitchell, Jonathan A and Taylor, Bruce and Lorentzon, Mattias and Karlsson, Magnus and Jaddoe, Vincent V W and Tiemeier, Henning and Campos-Obando, Natalia and Franco, Oscar H and Utterlinden, Andre G and Broer, Linda and van Schoor, Natasja M and Ham, Annelies C and Ikram, M Arfan and Karasik, David and de Mutsert, Ren{\'e}e and Rosendaal, Frits R and den Heijer, Martin and Wang, Thomas J and Lind, Lars and Orwoll, Eric S and Mook-Kanamori, Dennis O and Micha{\"e}lsson, Karl and Kestenbaum, Bryan and Ohlsson, Claes and Mellstr{\"o}m, Dan and de Groot, Lisette C P G M and Grant, Struan F A and Kiel, Douglas P and Zillikens, M Carola and Rivadeneira, Fernando and Sawcer, Stephen and Timpson, Nicholas J and Richards, J Brent} } @article {7549, title = {Predictors and outcomes of heart failure with mid-range ejection fraction.}, journal = {Eur J Heart Fail}, year = {2017}, month = {2017 Dec 11}, abstract = {

AIMS: While heart failure with preserved (HFpEF) and reduced ejection fraction (HFrEF) are well described, determinants and outcomes of heart failure with mid-range ejection fraction (HFmrEF) remain unclear. We sought to examine clinical and biochemical predictors of incident HFmrEF in the community.

METHODS AND RESULTS: We pooled data from four community-based longitudinal cohorts, with ascertainment of new heart failure (HF) classified into HFmrEF [ejection fraction (EF) 41-49\%], HFpEF (EF >=50\%), and HFrEF (EF <=40\%). Predictors of incident HF subtypes were assessed using multivariable Cox models. Among 28 820 participants free of HF followed for a median of 12 years, there were 200 new HFmrEF cases, compared with 811 HFpEF and 1048 HFrEF. Clinical predictors of HFmrEF included age, male sex, systolic blood pressure, diabetes mellitus, and prior myocardial infarction (multivariable adjusted P~<= 0.003 for all). Biomarkers that predicted HFmrEF included natriuretic peptides, cystatin-C, and high-sensitivity troponin (P~<= 0.0004 for all). Natriuretic peptides were stronger predictors of HFrEF [hazard ratio (HR) 2.00 per 1 standard deviation increase, 95\% confidence interval (CI) 1.81-2.20] than of HFmrEF (HR 1.51, 95\% CI 1.20-1.90, P~= 0.01 for difference), and did not differ in their association with incident HFmrEF and HFpEF (HR 1.56, 95\% CI 1.41-1.73, P~= 0.68 for difference). All-cause mortality following the onset of HFmrEF was worse than that of HFpEF (50 vs. 39 events per 1000 person-years, P~= 0.02), but comparable to that of HFrEF (46 events per 1000 person-years, P~= 0.78).

CONCLUSIONS: We found overlap in predictors of incident HFmrEF with other HF subtypes. In contrast, mortality risk after HFmrEF was worse than HFpEF, and similar to HFrEF.

}, issn = {1879-0844}, doi = {10.1002/ejhf.1091}, author = {Bhambhani, Vijeta and Kizer, Jorge R and Lima, Jo{\~a}o A C and van der Harst, Pim and Bahrami, Hossein and Nayor, Matthew and de Filippi, Christopher R and Enserro, Danielle and Blaha, Michael J and Cushman, Mary and Wang, Thomas J and Gansevoort, Ron T and Fox, Caroline S and Gaggin, Hanna K and Kop, Willem J and Liu, Kiang and Vasan, Ramachandran S and Psaty, Bruce M and Lee, Douglas S and Brouwers, Frank P and Hillege, Hans L and Bartz, Traci M and Benjamin, Emelia J and Chan, Cheeling and Allison, Matthew and Gardin, Julius M and Januzzi, James L and Levy, Daniel and Herrington, David M and van Gilst, Wiek H and Bertoni, Alain G and Larson, Martin G and de Boer, Rudolf A and Gottdiener, John S and Shah, Sanjiv J and Ho, Jennifer E} } @article {7603, title = {Association of Cardiovascular Biomarkers With Incident Heart Failure With Preserved and Reduced Ejection Fraction.}, journal = {JAMA Cardiol}, year = {2018}, month = {2018 Jan 10}, abstract = {

Importance: Nearly half of all patients with heart failure have preserved ejection fraction (HFpEF) as opposed to reduced ejection fraction (HFrEF), yet associations of biomarkers with future heart failure subtype are incompletely understood.

Objective: To evaluate the associations of 12 cardiovascular biomarkers with incident HFpEF vs HFrEF among adults from the general population.

Design, Setting, and Participants: This study included 4 longitudinal community-based cohorts: the Cardiovascular Health Study (1989-1990; 1992-1993 for supplemental African-American cohort), the Framingham Heart Study (1995-1998), the Multi-Ethnic Study of Atherosclerosis (2000-2002), and the Prevention of Renal and Vascular End-stage Disease study (1997-1998). Each cohort had prospective ascertainment of incident HFpEF and HFrEF. Data analysis was performed from June 25, 2015, to November 9, 2017.

Exposures: The following biomarkers were examined: N-terminal pro B-type natriuretic peptide or brain natriuretic peptide, high-sensitivity troponin T or I, C-reactive protein (CRP), urinary albumin to creatinine ratio (UACR), renin to aldosterone ratio, D-dimer, fibrinogen, soluble suppressor of tumorigenicity, galectin-3, cystatin C, plasminogen activator inhibitor 1, and interleukin 6.

Main Outcomes and Measures: Development of incident HFpEF and incident HFrEF.

Results: Among the 22 756 participants in these 4 cohorts (12 087 women and 10 669 men; mean [SD] age, 60 [13] years) in the study, during a median follow-up of 12 years, 633 participants developed incident HFpEF, and 841 developed HFrEF. In models adjusted for clinical risk factors of heart failure, 2 biomarkers were significantly associated with incident HFpEF: UACR (hazard ratio [HR], 1.33; 95\% CI, 1.20-1.48; P < .001) and natriuretic peptides (HR, 1.27; 95\% CI, 1.16-1.40; P < .001), with suggestive associations for high-sensitivity troponin (HR, 1.11; 95\% CI, 1.03-1.19; P = .008), plasminogen activator inhibitor 1 (HR, 1.22; 95\% CI, 1.03-1.45; P = .02), and fibrinogen (HR, 1.12; 95\% CI, 1.03-1.22; P = .01). By contrast, 6 biomarkers were associated with incident HFrEF: natriuretic peptides (HR, 1.54; 95\% CI, 1.41-1.68; P < .001), UACR (HR, 1.21; 95\% CI, 1.11-1.32; P < .001), high-sensitivity troponin (HR, 1.37; 95\% CI, 1.29-1.46; P < .001), cystatin C (HR, 1.19; 95\% CI, 1.11-1.27; P < .001), D-dimer (HR, 1.22; 95\% CI, 1.11-1.35; P < .001), and CRP (HR, 1.19; 95\% CI, 1.11-1.28; P < .001). When directly compared, natriuretic peptides, high-sensitivity troponin, and CRP were more strongly associated with HFrEF compared with HFpEF.

Conclusions and Relevance: Biomarkers of renal dysfunction, endothelial dysfunction, and inflammation were associated with incident HFrEF. By contrast, only natriuretic peptides and UACR were associated with HFpEF. These findings highlight the need for future studies focused on identifying novel biomarkers of the risk of HFpEF.

}, issn = {2380-6591}, doi = {10.1001/jamacardio.2017.4987}, author = {de Boer, Rudolf A and Nayor, Matthew and deFilippi, Christopher R and Enserro, Danielle and Bhambhani, Vijeta and Kizer, Jorge R and Blaha, Michael J and Brouwers, Frank P and Cushman, Mary and Lima, Jo{\~a}o A C and Bahrami, Hossein and van der Harst, Pim and Wang, Thomas J and Gansevoort, Ron T and Fox, Caroline S and Gaggin, Hanna K and Kop, Willem J and Liu, Kiang and Vasan, Ramachandran S and Psaty, Bruce M and Lee, Douglas S and Hillege, Hans L and Bartz, Traci M and Benjamin, Emelia J and Chan, Cheeling and Allison, Matthew and Gardin, Julius M and Januzzi, James L and Shah, Sanjiv J and Levy, Daniel and Herrington, David M and Larson, Martin G and van Gilst, Wiek H and Gottdiener, John S and Bertoni, Alain G and Ho, Jennifer E} } @article {7812, title = {The Association of Obesity and Cardiometabolic Traits With Incident~HFpEF and HFrEF.}, journal = {JACC Heart Fail}, volume = {6}, year = {2018}, month = {2018 Aug}, pages = {701-709}, abstract = {

OBJECTIVES: This study evaluated the associations of obesity and cardiometabolic traits with incident heart failure with preserved versus reduced ejection fraction (HFpEF vs. HFrEF). Given known sex differences in HF subtype, we examined men and women separately.

BACKGROUND: Recent studies suggest that obesity confers greater risk of HFpEF versus HFrEF. Contributions of associated metabolic traits to HFpEF are less clear.

METHODS: We studied 22,681 participants from 4 community-based cohorts followed for incident HFpEF versus HFrEF (ejection fraction >=50\% vs.~<50\%). We evaluated the association of body mass index (BMI) and cardiometabolic traits with incident HF subtype using Cox models.

RESULTS: The mean age was 60 {\textpm} 13 years, and 53\% were women. Over a median follow-up of 12 years, 628 developed incident HFpEF and 835 HFrEF. Greater BMI portended higher risk of HFpEF compared with HFrEF (hazard ratio [HR]: 1.34 per 1-SD increase in BMI; 95\% confidence interval [CI]: 1.24 to 1.45 vs. HR: 1.18; 95\% CI: 1.10 to 1.27). Similarly, insulin resistance (homeostatic model assessment of insulin resistance) was associated with HFpEF (HR: 1.20 per 1-SD; 95\% CI: 1.05 to 1.37), but not HFrEF (HR: 0.99; 95\% CI: 0.88 to 1.11; p~< 0.05 for difference HFpEF vs. HFrEF). We found that the differential association of BMI with HFpEF versus HFrEF was more pronounced among women (p for difference HFpEF vs. HFrEF~= 0.01) when compared with men (p~= 0.34).

CONCLUSIONS: Obesity and related cardiometabolic traits including insulin resistance are more strongly associated with risk of future HFpEF versus HFrEF. The differential risk of HFpEF with obesity seems particularly pronounced among~women and may underlie sex differences in HF subtypes.

}, issn = {2213-1787}, doi = {10.1016/j.jchf.2018.05.018}, author = {Savji, Nazir and Meijers, Wouter C and Bartz, Traci M and Bhambhani, Vijeta and Cushman, Mary and Nayor, Matthew and Kizer, Jorge R and Sarma, Amy and Blaha, Michael J and Gansevoort, Ron T and Gardin, Julius M and Hillege, Hans L and Ji, Fei and Kop, Willem J and Lau, Emily S and Lee, Douglas S and Sadreyev, Ruslan and van Gilst, Wiek H and Wang, Thomas J and Zanni, Markella V and Vasan, Ramachandran S and Allen, Norrina B and Psaty, Bruce M and van der Harst, Pim and Levy, Daniel and Larson, Martin and Shah, Sanjiv J and de Boer, Rudolf A and Gottdiener, John S and Ho, Jennifer E} } @article {7667, title = {Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Jan 17}, pages = {260}, abstract = {

Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7{\texttimes}10 at rs8018720 in SEC23A, and P = 1.9{\texttimes}10 at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5\%, with statistically significant loci explaining 38\% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.

}, issn = {2041-1723}, doi = {10.1038/s41467-017-02662-2}, author = {Jiang, Xia and O{\textquoteright}Reilly, Paul F and Aschard, Hugues and Hsu, Yi-Hsiang and Richards, J Brent and Dupuis, Jos{\'e}e and Ingelsson, Erik and Karasik, David and Pilz, Stefan and Berry, Diane and Kestenbaum, Bryan and Zheng, Jusheng and Luan, Jianan and Sofianopoulou, Eleni and Streeten, Elizabeth A and Albanes, Demetrius and Lutsey, Pamela L and Yao, Lu and Tang, Weihong and Econs, Michael J and Wallaschofski, Henri and V{\"o}lzke, Henry and Zhou, Ang and Power, Chris and McCarthy, Mark I and Michos, Erin D and Boerwinkle, Eric and Weinstein, Stephanie J and Freedman, Neal D and Huang, Wen-Yi and van Schoor, Natasja M and van der Velde, Nathalie and Groot, Lisette C P G M de and Enneman, Anke and Cupples, L Adrienne and Booth, Sarah L and Vasan, Ramachandran S and Liu, Ching-Ti and Zhou, Yanhua and Ripatti, Samuli and Ohlsson, Claes and Vandenput, Liesbeth and Lorentzon, Mattias and Eriksson, Johan G and Shea, M Kyla and Houston, Denise K and Kritchevsky, Stephen B and Liu, Yongmei and Lohman, Kurt K and Ferrucci, Luigi and Peacock, Munro and Gieger, Christian and Beekman, Marian and Slagboom, Eline and Deelen, Joris and Heemst, Diana van and Kleber, Marcus E and M{\"a}rz, Winfried and de Boer, Ian H and Wood, Alexis C and Rotter, Jerome I and Rich, Stephen S and Robinson-Cohen, Cassianne and den Heijer, Martin and Jarvelin, Marjo-Riitta and Cavadino, Alana and Joshi, Peter K and Wilson, James F and Hayward, Caroline and Lind, Lars and Micha{\"e}lsson, Karl and Trompet, Stella and Zillikens, M Carola and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Broer, Linda and Zgaga, Lina and Campbell, Harry and Theodoratou, Evropi and Farrington, Susan M and Timofeeva, Maria and Dunlop, Malcolm G and Valdes, Ana M and Tikkanen, Emmi and Lehtim{\"a}ki, Terho and Lyytik{\"a}inen, Leo-Pekka and K{\"a}h{\"o}nen, Mika and Raitakari, Olli T and Mikkil{\"a}, Vera and Ikram, M Arfan and Sattar, Naveed and Jukema, J Wouter and Wareham, Nicholas J and Langenberg, Claudia and Forouhi, Nita G and Gundersen, Thomas E and Khaw, Kay-Tee and Butterworth, Adam S and Danesh, John and Spector, Timothy and Wang, Thomas J and Hypp{\"o}nen, Elina and Kraft, Peter and Kiel, Douglas P} } @article {7775, title = {Meta-analysis across Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium provides evidence for an association of serum vitamin D with pulmonary function.}, journal = {Br J Nutr}, year = {2018}, month = {2018 Sep 12}, pages = {1-12}, abstract = {

The role that vitamin D plays in pulmonary function remains uncertain. Epidemiological studies reported mixed findings for serum 25-hydroxyvitamin D (25(OH)D)-pulmonary function association. We conducted the largest cross-sectional meta-analysis of the 25(OH)D-pulmonary function association to date, based on nine European ancestry (EA) cohorts (n 22 838) and five African ancestry (AA) cohorts (n 4290) in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Data were analysed using linear models by cohort and ancestry. Effect modification by smoking status (current/former/never) was tested. Results were combined using fixed-effects meta-analysis. Mean serum 25(OH)D was 68 (sd 29) nmol/l for EA and 49 (sd 21) nmol/l for AA. For each 1 nmol/l higher 25(OH)D, forced expiratory volume in the 1st second (FEV1) was higher by 1{\textperiodcentered}1 ml in EA (95 \% CI 0{\textperiodcentered}9, 1{\textperiodcentered}3; P<0{\textperiodcentered}0001) and 1{\textperiodcentered}8 ml (95 \% CI 1{\textperiodcentered}1, 2{\textperiodcentered}5; P<0{\textperiodcentered}0001) in AA (P race difference=0{\textperiodcentered}06), and forced vital capacity (FVC) was higher by 1{\textperiodcentered}3 ml in EA (95 \% CI 1{\textperiodcentered}0, 1{\textperiodcentered}6; P<0{\textperiodcentered}0001) and 1{\textperiodcentered}5 ml (95 \% CI 0{\textperiodcentered}8, 2{\textperiodcentered}3; P=0{\textperiodcentered}0001) in AA (P race difference=0{\textperiodcentered}56). Among EA, the 25(OH)D-FVC association was stronger in smokers: per 1 nmol/l higher 25(OH)D, FVC was higher by 1{\textperiodcentered}7 ml (95 \% CI 1{\textperiodcentered}1, 2{\textperiodcentered}3) for current smokers and 1{\textperiodcentered}7 ml (95 \% CI 1{\textperiodcentered}2, 2{\textperiodcentered}1) for former smokers, compared with 0{\textperiodcentered}8 ml (95 \% CI 0{\textperiodcentered}4, 1{\textperiodcentered}2) for never smokers. In summary, the 25(OH)D associations with FEV1 and FVC were positive in both ancestries. In EA, a stronger association was observed for smokers compared with never smokers, which supports the importance of vitamin D in vulnerable populations.

}, issn = {1475-2662}, doi = {10.1017/S0007114518002180}, author = {Xu, Jiayi and Bartz, Traci M and Chittoor, Geetha and Eiriksdottir, Gudny and Manichaikul, Ani W and Sun, Fangui and Terzikhan, Natalie and Zhou, Xia and Booth, Sarah L and Brusselle, Guy G and de Boer, Ian H and Fornage, Myriam and Frazier-Wood, Alexis C and Graff, Mariaelisa and Gudnason, Vilmundur and Harris, Tamara B and Hofman, Albert and Hou, Ruixue and Houston, Denise K and Jacobs, David R and Kritchevsky, Stephen B and Latourelle, Jeanne and Lemaitre, Rozenn N and Lutsey, Pamela L and O{\textquoteright}Connor, George and Oelsner, Elizabeth C and Pankow, James S and Psaty, Bruce M and Rohde, Rebecca R and Rich, Stephen S and Rotter, Jerome I and Smith, Lewis J and Stricker, Bruno H and Voruganti, V Saroja and Wang, Thomas J and Zillikens, M Carola and Barr, R Graham and Dupuis, Jos{\'e}e and Gharib, Sina A and Lahousse, Lies and London, Stephanie J and North, Kari E and Smith, Albert V and Steffen, Lyn M and Hancock, Dana B and Cassano, Patricia A} } @article {8488, title = {Sex-Specific Associations of Cardiovascular Risk Factors and Biomarkers With Incident Heart~Failure.}, journal = {J Am Coll Cardiol}, volume = {76}, year = {2020}, month = {2020 Sep 22}, pages = {1455-1465}, abstract = {

BACKGROUND: Whether cardiovascular (CV) disease risk factors and biomarkers associate differentially with heart failure (HF) risk in men and women is unclear.

OBJECTIVES: The purpose of this study was to evaluate sex-specific associations of CV risk factors and biomarkers with incident HF.

METHODS: The analysis was performed using data from 4 community-based cohorts with 12.5 years of follow-up. Participants (recruited between 1989 and 2002) were free of HF at baseline. Biomarker measurements included natriuretic peptides, cardiac troponins, plasminogen activator inhibitor-1, D-dimer, fibrinogen, C-reactive protein, sST2, galectin-3, cystatin-C, and urinary albumin-to-creatinine ratio.

RESULTS: Among 22,756 participants (mean age 60 {\textpm} 13 years, 53\% women), HF occurred in 2,095 participants (47\% women). Age, smoking, type 2 diabetes mellitus, hypertension, body mass index, atrial fibrillation, myocardial infarction, left ventricular hypertrophy, and left bundle branch block were strongly associated with HF in both sexes (p~<~0.001), and the combined clinical model had good discrimination in men (C-statistic~=~0.80) and in women (C-statistic~=~0.83). The majority of biomarkers were strongly and similarly associated with HF in both sexes. The clinical model improved modestly after adding natriuretic peptides in men (ΔC-statistic~=~0.006; likelihood ratio chi-square~=~146; p~<~0.001), and after adding cardiac troponins in women (ΔC-statistic~=~0.003; likelihood ratio chi-square~=~73; p~<~0.001).

CONCLUSIONS: CV risk factors are strongly and similarly associated with incident HF in both sexes, highlighting the similar importance of risk factor control in reducing HF risk in the community. There are subtle sex-related differences in the predictive value of individual biomarkers, but the overall improvement in HF risk estimation when included in~a~clinical HF risk prediction model is limited in both sexes.

}, issn = {1558-3597}, doi = {10.1016/j.jacc.2020.07.044}, author = {Suthahar, Navin and Lau, Emily S and Blaha, Michael J and Paniagua, Samantha M and Larson, Martin G and Psaty, Bruce M and Benjamin, Emelia J and Allison, Matthew A and Bartz, Traci M and Januzzi, James L and Levy, Daniel and Meems, Laura M G and Bakker, Stephan J L and Lima, Jo{\~a}o A C and Cushman, Mary and Lee, Douglas S and Wang, Thomas J and deFilippi, Christopher R and Herrington, David M and Nayor, Matthew and Vasan, Ramachandran S and Gardin, Julius M and Kizer, Jorge R and Bertoni, Alain G and Allen, Norrina B and Gansevoort, Ron T and Shah, Sanjiv J and Gottdiener, John S and Ho, Jennifer E and de Boer, Rudolf A} } @article {9382, title = {Effect of 2022 ACC/AHA/HFSA Criteria on Stages of Heart~Failure in a Pooled Community Cohort.}, journal = {J Am Coll Cardiol}, volume = {81}, year = {2023}, month = {2023 Jun 13}, pages = {2231-2242}, abstract = {

BACKGROUND: The 2022 American College of Cardiology (ACC)/American Heart Association (AHA)/Heart~Failure Society of America (HFSA) clinical practice guideline proposed an updated definition for heart failure (HF) stages.

OBJECTIVES: This study aimed to compare prevalence and prognosis of HF stages according to classification/definition originally described in 2013 and 2022 ACC/AHA/HFSA definitions.

METHODS: Study participants from 3 longitudinal cohorts (the MESA [Multi-Ethnic Study of Atherosclerosis], CHS [Cardiovascular Health Study], and the FHS [Framingham Heart Study]), were categorized into 4 HF stages according to the 2013 and 2022 criteria. Cox proportional hazards regression was used to assess predictors of progression to symptomatic HF and adverse clinical outcomes associated with each HF stage.

RESULTS: Among 11,618 study participants, according to the 2022 staging, 1,943 (16.7\%) were healthy, 4,348 (37.4\%) were in stage A (at risk), 5,019 (43.2\%) were in stage B (pre-HF), and 308 (2.7\%) were in stage C/D (symptomatic HF). Compared to the classification/definition originally described in 2013, the 2022 ACC/AHA/HFSA approach resulted in a higher proportion of individuals with stage B HF (increase from 15.9\% to 43.2\%); this shift disproportionately involved women as well as Hispanic and Black individuals. Despite the 2022 criteria designating a greater proportion of individuals as stage B, the relative risk of progression to symptomatic HF remained similar (HR: 10.61; 95\%~CI: 9.00-12.51; P~< 0.001).

CONCLUSIONS: New standards for HF staging resulted in a substantial shift of community-based individuals from stage A to stage B. Those with stage B HF in the new system were at high risk for progression to symptomatic HF.

}, keywords = {American Heart Association, Atherosclerosis, Cardiology, Female, Heart Failure, Humans, Longitudinal Studies, Prognosis, United States}, issn = {1558-3597}, doi = {10.1016/j.jacc.2023.04.007}, author = {Mohebi, Reza and Wang, Dongyu and Lau, Emily S and Parekh, Juhi K and Allen, Norrina and Psaty, Bruce M and Benjamin, Emelia J and Levy, Daniel and Wang, Thomas J and Shah, Sanjiv J and Gottdiener, John S and Januzzi, James L and Ho, Jennifer E} }