@article {5877, title = {A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function.}, journal = {PLoS Genet}, volume = {9}, year = {2013}, month = {2013}, pages = {e1003266}, abstract = {

Thyroid hormone is essential for normal metabolism and development, and overt abnormalities in thyroid function lead to common endocrine disorders affecting approximately 10\% of individuals over their life span. In addition, even mild alterations in thyroid function are associated with weight changes, atrial fibrillation, osteoporosis, and psychiatric disorders. To identify novel variants underlying thyroid function, we performed a large meta-analysis of genome-wide association studies for serum levels of the highly heritable thyroid function markers TSH and FT4, in up to 26,420 and 17,520 euthyroid subjects, respectively. Here we report 26 independent associations, including several novel loci for TSH (PDE10A, VEGFA, IGFBP5, NFIA, SOX9, PRDM11, FGF7, INSR, ABO, MIR1179, NRG1, MBIP, ITPK1, SASH1, GLIS3) and FT4 (LHX3, FOXE1, AADAT, NETO1/FBXO15, LPCAT2/CAPNS2). Notably, only limited overlap was detected between TSH and FT4 associated signals, in spite of the feedback regulation of their circulating levels by the hypothalamic-pituitary-thyroid axis. Five of the reported loci (PDE8B, PDE10A, MAF/LOC440389, NETO1/FBXO15, and LPCAT2/CAPNS2) show strong gender-specific differences, which offer clues for the known sexual dimorphism in thyroid function and related pathologies. Importantly, the TSH-associated loci contribute not only to variation within the normal range, but also to TSH values outside the reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings explain, respectively, 5.64\% and 2.30\% of total TSH and FT4 trait variance, and they improve the current knowledge of the regulation of hypothalamic-pituitary-thyroid axis function and the consequences of genetic variation for hypo- or hyperthyroidism.

}, keywords = {Female, Genome-Wide Association Study, Humans, Hyperthyroidism, Hypothyroidism, Male, Phenotype, Polymorphism, Genetic, Polymorphism, Single Nucleotide, Sex Characteristics, Signal Transduction, Thyroid Gland, Thyrotropin, Thyroxine}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003266}, author = {Porcu, Eleonora and Medici, Marco and Pistis, Giorgio and Volpato, Claudia B and Wilson, Scott G and Cappola, Anne R and Bos, Steffan D and Deelen, Joris and den Heijer, Martin and Freathy, Rachel M and Lahti, Jari and Liu, Chunyu and Lopez, Lorna M and Nolte, Ilja M and O{\textquoteright}Connell, Jeffrey R and Tanaka, Toshiko and Trompet, Stella and Arnold, Alice and Bandinelli, Stefania and Beekman, Marian and B{\"o}hringer, Stefan and Brown, Suzanne J and Buckley, Brendan M and Camaschella, Clara and de Craen, Anton J M and Davies, Gail and de Visser, Marieke C H and Ford, Ian and Forsen, Tom and Frayling, Timothy M and Fugazzola, Laura and G{\"o}gele, Martin and Hattersley, Andrew T and Hermus, Ad R and Hofman, Albert and Houwing-Duistermaat, Jeanine J and Jensen, Richard A and Kajantie, Eero and Kloppenburg, Margreet and Lim, Ee M and Masciullo, Corrado and Mariotti, Stefano and Minelli, Cosetta and Mitchell, Braxton D and Nagaraja, Ramaiah and Netea-Maier, Romana T and Palotie, Aarno and Persani, Luca and Piras, Maria G and Psaty, Bruce M and R{\"a}ikk{\"o}nen, Katri and Richards, J Brent and Rivadeneira, Fernando and Sala, Cinzia and Sabra, Mona M and Sattar, Naveed and Shields, Beverley M and Soranzo, Nicole and Starr, John M and Stott, David J and Sweep, Fred C G J and Usala, Gianluca and van der Klauw, Melanie M and van Heemst, Diana and van Mullem, Alies and Vermeulen, Sita H and Visser, W Edward and Walsh, John P and Westendorp, Rudi G J and Widen, Elisabeth and Zhai, Guangju and Cucca, Francesco and Deary, Ian J and Eriksson, Johan G and Ferrucci, Luigi and Fox, Caroline S and Jukema, J Wouter and Kiemeney, Lambertus A and Pramstaller, Peter P and Schlessinger, David and Shuldiner, Alan R and Slagboom, Eline P and Uitterlinden, Andr{\'e} G and Vaidya, Bijay and Visser, Theo J and Wolffenbuttel, Bruce H R and Meulenbelt, Ingrid and Rotter, Jerome I and Spector, Tim D and Hicks, Andrew A and Toniolo, Daniela and Sanna, Serena and Peeters, Robin P and Naitza, Silvia} } @article {6294, title = {Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease.}, journal = {PLoS Genet}, volume = {10}, year = {2014}, month = {2014 Feb}, pages = {e1004123}, abstract = {

Autoimmune thyroid diseases (AITD) are common, affecting 2-5\% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto{\textquoteright}s thyroiditis), as well as autoimmune hyperthyroidism (Graves{\textquoteright} disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P<5{\texttimes}10(-8)) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95\% CI 1.68-2.81, P = 8.1{\texttimes}10(-8)), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95\% CI 1.26-1.82, P = 2.9{\texttimes}10(-6)), as well as a decreased risk of goiter (OR: 0.77, 95\% CI 0.66-0.89, P = 6.5{\texttimes}10(-4)). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves{\textquoteright} disease (OR: 1.37, 95\% CI 1.22-1.54, P = 1.2{\texttimes}10(-7) and OR: 1.25, 95\% CI 1.12-1.39, P = 6.2{\texttimes}10(-5)). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95\% CI 1.18-2.10, P = 1.9{\texttimes}10(-3)). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction.

}, keywords = {Autoantibodies, Genetic Loci, Genome-Wide Association Study, Graves Disease, Hashimoto Disease, Humans, Iodide Peroxidase, Risk Factors, Thyroiditis, Autoimmune, Thyrotropin}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1004123}, author = {Medici, Marco and Porcu, Eleonora and Pistis, Giorgio and Teumer, Alexander and Brown, Suzanne J and Jensen, Richard A and Rawal, Rajesh and Roef, Greet L and Plantinga, Theo S and Vermeulen, Sita H and Lahti, Jari and Simmonds, Matthew J and Husemoen, Lise Lotte N and Freathy, Rachel M and Shields, Beverley M and Pietzner, Diana and Nagy, Rebecca and Broer, Linda and Chaker, Layal and Korevaar, Tim I M and Plia, Maria Grazia and Sala, Cinzia and V{\"o}lker, Uwe and Richards, J Brent and Sweep, Fred C and Gieger, Christian and Corre, Tanguy and Kajantie, Eero and Thuesen, Betina and Taes, Youri E and Visser, W Edward and Hattersley, Andrew T and Kratzsch, J{\"u}rgen and Hamilton, Alexander and Li, Wei and Homuth, Georg and Lobina, Monia and Mariotti, Stefano and Soranzo, Nicole and Cocca, Massimiliano and Nauck, Matthias and Spielhagen, Christin and Ross, Alec and Arnold, Alice and van de Bunt, Martijn and Liyanarachchi, Sandya and Heier, Margit and Grabe, Hans J{\"o}rgen and Masciullo, Corrado and Galesloot, Tessel E and Lim, Ee M and Reischl, Eva and Leedman, Peter J and Lai, Sandra and Delitala, Alessandro and Bremner, Alexandra P and Philips, David I W and Beilby, John P and Mulas, Antonella and Vocale, Matteo and Abecasis, Goncalo and Forsen, Tom and James, Alan and Widen, Elisabeth and Hui, Jennie and Prokisch, Holger and Rietzschel, Ernst E and Palotie, Aarno and Feddema, Peter and Fletcher, Stephen J and Schramm, Katharina and Rotter, Jerome I and Kluttig, Alexander and Radke, D{\"o}rte and Traglia, Michela and Surdulescu, Gabriela L and He, Huiling and Franklyn, Jayne A and Tiller, Daniel and Vaidya, Bijay and De Meyer, Tim and J{\o}rgensen, Torben and Eriksson, Johan G and O{\textquoteright}Leary, Peter C and Wichmann, Eric and Hermus, Ad R and Psaty, Bruce M and Ittermann, Till and Hofman, Albert and Bosi, Emanuele and Schlessinger, David and Wallaschofski, Henri and Pirastu, Nicola and Aulchenko, Yurii S and de la Chapelle, Albert and Netea-Maier, Romana T and Gough, Stephen C L and Meyer Zu Schwabedissen, Henriette and Frayling, Timothy M and Kaufman, Jean-Marc and Linneberg, Allan and R{\"a}ikk{\"o}nen, Katri and Smit, Johannes W A and Kiemeney, Lambertus A and Rivadeneira, Fernando and Uitterlinden, Andr{\'e} G and Walsh, John P and Meisinger, Christa and den Heijer, Martin and Visser, Theo J and Spector, Timothy D and Wilson, Scott G and V{\"o}lzke, Henry and Cappola, Anne and Toniolo, Daniela and Sanna, Serena and Naitza, Silvia and Peeters, Robin P} } @article {7927, title = {Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 10 26}, pages = {4455}, abstract = {

Thyroid dysfunction is an important public health problem, which affects 10\% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves{\textquoteright} disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-06356-1}, author = {Teumer, Alexander and Chaker, Layal and Groeneweg, Stefan and Li, Yong and Di Munno, Celia and Barbieri, Caterina and Schultheiss, Ulla T and Traglia, Michela and Ahluwalia, Tarunveer S and Akiyama, Masato and Appel, Emil Vincent R and Arking, Dan E and Arnold, Alice and Astrup, Arne and Beekman, Marian and Beilby, John P and Bekaert, Sofie and Boerwinkle, Eric and Brown, Suzanne J and De Buyzere, Marc and Campbell, Purdey J and Ceresini, Graziano and Cerqueira, Charlotte and Cucca, Francesco and Deary, Ian J and Deelen, Joris and Eckardt, Kai-Uwe and Ekici, Arif B and Eriksson, Johan G and Ferrrucci, Luigi and Fiers, Tom and Fiorillo, Edoardo and Ford, Ian and Fox, Caroline S and Fuchsberger, Christian and Galesloot, Tessel E and Gieger, Christian and G{\"o}gele, Martin and De Grandi, Alessandro and Grarup, Niels and Greiser, Karin Halina and Haljas, Kadri and Hansen, Torben and Harris, Sarah E and van Heemst, Diana and den Heijer, Martin and Hicks, Andrew A and den Hollander, Wouter and Homuth, Georg and Hui, Jennie and Ikram, M Arfan and Ittermann, Till and Jensen, Richard A and Jing, Jiaojiao and Jukema, J Wouter and Kajantie, Eero and Kamatani, Yoichiro and Kasbohm, Elisa and Kaufman, Jean-Marc and Kiemeney, Lambertus A and Kloppenburg, Margreet and Kronenberg, Florian and Kubo, Michiaki and Lahti, Jari and Lapauw, Bruno and Li, Shuo and Liewald, David C M and Lim, Ee Mun and Linneberg, Allan and Marina, Michela and Mascalzoni, Deborah and Matsuda, Koichi and Medenwald, Daniel and Meisinger, Christa and Meulenbelt, Ingrid and De Meyer, Tim and Meyer zu Schwabedissen, Henriette E and Mikolajczyk, Rafael and Moed, Matthijs and Netea-Maier, Romana T and Nolte, Ilja M and Okada, Yukinori and Pala, Mauro and Pattaro, Cristian and Pedersen, Oluf and Petersmann, Astrid and Porcu, Eleonora and Postmus, Iris and Pramstaller, Peter P and Psaty, Bruce M and Ramos, Yolande F M and Rawal, Rajesh and Redmond, Paul and Richards, J Brent and Rietzschel, Ernst R and Rivadeneira, Fernando and Roef, Greet and Rotter, Jerome I and Sala, Cinzia F and Schlessinger, David and Selvin, Elizabeth and Slagboom, P Eline and Soranzo, Nicole and S{\o}rensen, Thorkild I A and Spector, Timothy D and Starr, John M and Stott, David J and Taes, Youri and Taliun, Daniel and Tanaka, Toshiko and Thuesen, Betina and Tiller, Daniel and Toniolo, Daniela and Uitterlinden, Andr{\'e} G and Visser, W Edward and Walsh, John P and Wilson, Scott G and Wolffenbuttel, Bruce H R and Yang, Qiong and Zheng, Hou-Feng and Cappola, Anne and Peeters, Robin P and Naitza, Silvia and V{\"o}lzke, Henry and Sanna, Serena and K{\"o}ttgen, Anna and Visser, Theo J and Medici, Marco} }