@article {6368, title = {Gene-centric meta-analyses for central adiposity traits in up to 57 412 individuals of European descent confirm known loci and reveal several novel associations.}, journal = {Hum Mol Genet}, volume = {23}, year = {2014}, month = {2014 May 01}, pages = {2498-510}, abstract = {

Waist circumference (WC) and waist-to-hip ratio (WHR) are surrogate measures of central adiposity that are associated with adverse cardiovascular events, type 2 diabetes and cancer independent of body mass index (BMI). WC and WHR are highly heritable with multiple susceptibility loci identified to date. We assessed the association between SNPs and BMI-adjusted WC and WHR and unadjusted WC in up to 57 412 individuals of European descent from 22 cohorts collaborating with the NHLBI{\textquoteright}s Candidate Gene Association Resource (CARe) project. The study population consisted of women and men aged 20-80 years. Study participants were genotyped using the ITMAT/Broad/CARE array, which includes \~{}50 000 cosmopolitan tagged SNPs across \~{}2100 cardiovascular-related genes. Each trait was modeled as a function of age, study site and principal components to control for population stratification, and we conducted a fixed-effects meta-analysis. No new loci for WC were observed. For WHR analyses, three novel loci were significantly associated (P < 2.4 {\texttimes} 10(-6)). Previously unreported rs2811337-G near TMCC1 was associated with increased WHR (β {\textpm} SE, 0.048 {\textpm} 0.008, P = 7.7 {\texttimes} 10(-9)) as was rs7302703-G in HOXC10 (β = 0.044 {\textpm} 0.008, P = 2.9 {\texttimes} 10(-7)) and rs936108-C in PEMT (β = 0.035 {\textpm} 0.007, P = 1.9 {\texttimes} 10(-6)). Sex-stratified analyses revealed two additional novel signals among females only, rs12076073-A in SHC1 (β = 0.10 {\textpm} 0.02, P = 1.9 {\texttimes} 10(-6)) and rs1037575-A in ATBDB4 (β = 0.046 {\textpm} 0.01, P = 2.2 {\texttimes} 10(-6)), supporting an already established sexual dimorphism of central adiposity-related genetic variants. Functional analysis using ENCODE and eQTL databases revealed that several of these loci are in regulatory regions or regions with differential expression in adipose tissue.

}, keywords = {Adiposity, Adult, Aged, Aged, 80 and over, Body Mass Index, European Continental Ancestry Group, Female, Genome-Wide Association Study, Humans, Male, Middle Aged, Waist Circumference, Waist-Hip Ratio, Young Adult}, issn = {1460-2083}, doi = {10.1093/hmg/ddt626}, author = {Yoneyama, Sachiko and Guo, Yiran and Lanktree, Matthew B and Barnes, Michael R and Elbers, Clara C and Karczewski, Konrad J and Padmanabhan, Sandosh and Bauer, Florianne and Baumert, Jens and Beitelshees, Amber and Berenson, Gerald S and Boer, Jolanda M A and Burke, Gregory and Cade, Brian and Chen, Wei and Cooper-Dehoff, Rhonda M and Gaunt, Tom R and Gieger, Christian and Gong, Yan and Gorski, Mathias and Heard-Costa, Nancy and Johnson, Toby and Lamonte, Michael J and McDonough, Caitrin and Monda, Keri L and Onland-Moret, N Charlotte and Nelson, Christopher P and O{\textquoteright}Connell, Jeffrey R and Ordovas, Jose and Peter, Inga and Peters, Annette and Shaffer, Jonathan and Shen, Haiqinq and Smith, Erin and Speilotes, Liz and Thomas, Fridtjof and Thorand, Barbara and Monique Verschuren, W M and Anand, Sonia S and Dominiczak, Anna and Davidson, Karina W and Hegele, Robert A and Heid, Iris and Hofker, Marten H and Huggins, Gordon S and Illig, Thomas and Johnson, Julie A and Kirkland, Susan and K{\"o}nig, Wolfgang and Langaee, Taimour Y and McCaffery, Jeanne and Melander, Olle and Mitchell, Braxton D and Munroe, Patricia and Murray, Sarah S and Papanicolaou, George and Redline, Susan and Reilly, Muredach and Samani, Nilesh J and Schork, Nicholas J and van der Schouw, Yvonne T and Shimbo, Daichi and Shuldiner, Alan R and Tobin, Martin D and Wijmenga, Cisca and Yusuf, Salim and Hakonarson, Hakon and Lange, Leslie A and Demerath, Ellen W and Fox, Caroline S and North, Kari E and Reiner, Alex P and Keating, Brendan and Taylor, Kira C} } @article {6591, title = {Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.}, journal = {Nat Commun}, volume = {5}, year = {2014}, month = {2014 Oct 28}, pages = {5068}, abstract = {

Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.

}, keywords = {Cholesterol, LDL, Genome-Wide Association Study, Humans, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Pharmacogenetics, Polymorphism, Single Nucleotide}, issn = {2041-1723}, doi = {10.1038/ncomms6068}, author = {Postmus, Iris and Trompet, Stella and Deshmukh, Harshal A and Barnes, Michael R and Li, Xiaohui and Warren, Helen R and Chasman, Daniel I and Zhou, Kaixin and Arsenault, Benoit J and Donnelly, Louise A and Wiggins, Kerri L and Avery, Christy L and Griffin, Paula and Feng, QiPing and Taylor, Kent D and Li, Guo and Evans, Daniel S and Smith, Albert V and de Keyser, Catherine E and Johnson, Andrew D and de Craen, Anton J M and Stott, David J and Buckley, Brendan M and Ford, Ian and Westendorp, Rudi G J and Slagboom, P Eline and Sattar, Naveed and Munroe, Patricia B and Sever, Peter and Poulter, Neil and Stanton, Alice and Shields, Denis C and O{\textquoteright}Brien, Eoin and Shaw-Hawkins, Sue and Chen, Y-D Ida and Nickerson, Deborah A and Smith, Joshua D and Dub{\'e}, Marie Pierre and Boekholdt, S Matthijs and Hovingh, G Kees and Kastelein, John J P and McKeigue, Paul M and Betteridge, John and Neil, Andrew and Durrington, Paul N and Doney, Alex and Carr, Fiona and Morris, Andrew and McCarthy, Mark I and Groop, Leif and Ahlqvist, Emma and Bis, Joshua C and Rice, Kenneth and Smith, Nicholas L and Lumley, Thomas and Whitsel, Eric A and St{\"u}rmer, Til and Boerwinkle, Eric and Ngwa, Julius S and O{\textquoteright}Donnell, Christopher J and Vasan, Ramachandran S and Wei, Wei-Qi and Wilke, Russell A and Liu, Ching-Ti and Sun, Fangui and Guo, Xiuqing and Heckbert, Susan R and Post, Wendy and Sotoodehnia, Nona and Arnold, Alice M and Stafford, Jeanette M and Ding, Jingzhong and Herrington, David M and Kritchevsky, Stephen B and Eiriksdottir, Gudny and Launer, Leonore J and Harris, Tamara B and Chu, Audrey Y and Giulianini, Franco and MacFadyen, Jean G and Barratt, Bryan J and Nyberg, Fredrik and Stricker, Bruno H and Uitterlinden, Andr{\'e} G and Hofman, Albert and Rivadeneira, Fernando and Emilsson, Valur and Franco, Oscar H and Ridker, Paul M and Gudnason, Vilmundur and Liu, Yongmei and Denny, Joshua C and Ballantyne, Christie M and Rotter, Jerome I and Adrienne Cupples, L and Psaty, Bruce M and Palmer, Colin N A and Tardif, Jean-Claude and Colhoun, Helen M and Hitman, Graham and Krauss, Ronald M and Wouter Jukema, J and Caulfield, Mark J} } @article {7358, title = {Meta-analysis of genome-wide association studies of HDL cholesterol response to statins.}, journal = {J Med Genet}, volume = {53}, year = {2016}, month = {2016 Dec}, pages = {835-845}, abstract = {

BACKGROUND: In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation.

METHODS AND RESULTS: We performed a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced high density lipoprotein cholesterol (HDL-C) changes. The 123 most promising signals with p<1{\texttimes}10(-4) from the 16 769 statin-treated participants in the first analysis stage were followed up in an independent group of 10 951 statin-treated individuals, providing a total sample size of 27 720 individuals. The only associations of genome-wide significance (p<5{\texttimes}10(-8)) were between minor alleles at the CETP locus and greater HDL-C response to statin treatment.

CONCLUSIONS: Based on results from this study that included a relatively large sample size, we suggest that CETP may be the only detectable locus with common genetic variants that influence HDL-C response to statins substantially in individuals of European descent. Although CETP is known to be associated with HDL-C, we provide evidence that this pharmacogenetic effect is independent of its association with baseline HDL-C levels.

}, issn = {1468-6244}, doi = {10.1136/jmedgenet-2016-103966}, author = {Postmus, Iris and Warren, Helen R and Trompet, Stella and Arsenault, Benoit J and Avery, Christy L and Bis, Joshua C and Chasman, Daniel I and de Keyser, Catherine E and Deshmukh, Harshal A and Evans, Daniel S and Feng, QiPing and Li, Xiaohui and Smit, Roelof A J and Smith, Albert V and Sun, Fangui and Taylor, Kent D and Arnold, Alice M and Barnes, Michael R and Barratt, Bryan J and Betteridge, John and Boekholdt, S Matthijs and Boerwinkle, Eric and Buckley, Brendan M and Chen, Y-D Ida and de Craen, Anton J M and Cummings, Steven R and Denny, Joshua C and Dub{\'e}, Marie Pierre and Durrington, Paul N and Eiriksdottir, Gudny and Ford, Ian and Guo, Xiuqing and Harris, Tamara B and Heckbert, Susan R and Hofman, Albert and Hovingh, G Kees and Kastelein, John J P and Launer, Leonore J and Liu, Ching-Ti and Liu, Yongmei and Lumley, Thomas and McKeigue, Paul M and Munroe, Patricia B and Neil, Andrew and Nickerson, Deborah A and Nyberg, Fredrik and O{\textquoteright}Brien, Eoin and O{\textquoteright}Donnell, Christopher J and Post, Wendy and Poulter, Neil and Vasan, Ramachandran S and Rice, Kenneth and Rich, Stephen S and Rivadeneira, Fernando and Sattar, Naveed and Sever, Peter and Shaw-Hawkins, Sue and Shields, Denis C and Slagboom, P Eline and Smith, Nicholas L and Smith, Joshua D and Sotoodehnia, Nona and Stanton, Alice and Stott, David J and Stricker, Bruno H and St{\"u}rmer, Til and Uitterlinden, Andr{\'e} G and Wei, Wei-Qi and Westendorp, Rudi G J and Whitsel, Eric A and Wiggins, Kerri L and Wilke, Russell A and Ballantyne, Christie M and Colhoun, Helen M and Cupples, L Adrienne and Franco, Oscar H and Gudnason, Vilmundur and Hitman, Graham and Palmer, Colin N A and Psaty, Bruce M and Ridker, Paul M and Stafford, Jeanette M and Stein, Charles M and Tardif, Jean-Claude and Caulfield, Mark J and Jukema, J Wouter and Rotter, Jerome I and Krauss, Ronald M} } @article {8571, title = {Rooted in risk: genetic predisposition for low-density lipoprotein cholesterol level associates with diminished low-density lipoprotein cholesterol response to statin treatment.}, journal = {Pharmacogenomics}, volume = {17}, year = {2016}, month = {2016 10}, pages = {1621-1628}, abstract = {

AIMS: To utilize previously reported lead SNPs for low-density lipoprotein cholesterol (LDL-c) levels to find additional loci of importance to statin response, and examine whether genetic predisposition to LDL-c levels associates with differential statin response.

METHODS: We investigated effects on statin response of 59 LDL-c SNPs, by combining summary level statistics from the Global Lipids Genetics and Genomic Investigation of Statin Therapy consortia.

RESULTS: Lead SNPs for APOE, SORT1 and NPC1L1 were associated with a decreased LDL-c response to statin treatment, as was overall genetic predisposition for increased LDL-c levels as quantified with 59 SNPs, with a 5.4\% smaller statin response per standard deviation increase in genetically raised LDL-c levels.

CONCLUSION: Genetic predisposition for increased LDL-c level may decrease efficacy of statin therapy.

}, keywords = {Cholesterol, LDL, Genetic Predisposition to Disease, Humans, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Pharmacogenetics, Polymorphism, Single Nucleotide, Triglycerides}, issn = {1744-8042}, doi = {10.2217/pgs-2016-0091}, author = {Smit, Roelof Aj and Postmus, Iris and Trompet, Stella and Barnes, Michael R and Warren, Helen and Arsenault, Benoit J and Chasman, Daniel I and Cupples, L Adrienne and Hitman, Graham A and Krauss, Ronald M and Li, Xiaohui and Psaty, Bruce M and Stein, Charles M and Rotter, Jerome I and Jukema, J Wouter} } @article {7569, title = {New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475 000 Individuals.}, journal = {Circ Cardiovasc Genet}, volume = {10}, year = {2017}, month = {2017 Oct}, abstract = {

BACKGROUND: Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association.

METHODS AND RESULTS: Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (P<5{\texttimes}10-8) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant.

CONCLUSIONS: We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.117.001778}, author = {Kraja, Aldi T and Cook, James P and Warren, Helen R and Surendran, Praveen and Liu, Chunyu and Evangelou, Evangelos and Manning, Alisa K and Grarup, Niels and Drenos, Fotios and Sim, Xueling and Smith, Albert Vernon and Amin, Najaf and Blakemore, Alexandra I F and Bork-Jensen, Jette and Brandslund, Ivan and Farmaki, Aliki-Eleni and Fava, Cristiano and Ferreira, Teresa and Herzig, Karl-Heinz and Giri, Ayush and Giulianini, Franco and Grove, Megan L and Guo, Xiuqing and Harris, Sarah E and Have, Christian T and Havulinna, Aki S and Zhang, He and J{\o}rgensen, Marit E and K{\"a}r{\"a}j{\"a}m{\"a}ki, AnneMari and Kooperberg, Charles and Linneberg, Allan and Little, Louis and Liu, Yongmei and Bonnycastle, Lori L and Lu, Yingchang and M{\"a}gi, Reedik and Mahajan, Anubha and Malerba, Giovanni and Marioni, Riccardo E and Mei, Hao and Menni, Cristina and Morrison, Alanna C and Padmanabhan, Sandosh and Palmas, Walter and Poveda, Alaitz and Rauramaa, Rainer and Rayner, Nigel William and Riaz, Muhammad and Rice, Ken and Richard, Melissa A and Smith, Jennifer A and Southam, Lorraine and Stan{\v c}{\'a}kov{\'a}, Alena and Stirrups, Kathleen E and Tragante, Vinicius and Tuomi, Tiinamaija and Tzoulaki, Ioanna and Varga, Tibor V and Weiss, Stefan and Yiorkas, Andrianos M and Young, Robin and Zhang, Weihua and Barnes, Michael R and Cabrera, Claudia P and Gao, He and Boehnke, Michael and Boerwinkle, Eric and Chambers, John C and Connell, John M and Christensen, Cramer K and de Boer, Rudolf A and Deary, Ian J and Dedoussis, George and Deloukas, Panos and Dominiczak, Anna F and D{\"o}rr, Marcus and Joehanes, Roby and Edwards, Todd L and Esko, T{\~o}nu and Fornage, Myriam and Franceschini, Nora and Franks, Paul W and Gambaro, Giovanni and Groop, Leif and Hallmans, G{\"o}ran and Hansen, Torben and Hayward, Caroline and Heikki, Oksa and Ingelsson, Erik and Tuomilehto, Jaakko and Jarvelin, Marjo-Riitta and Kardia, Sharon L R and Karpe, Fredrik and Kooner, Jaspal S and Lakka, Timo A and Langenberg, Claudia and Lind, Lars and Loos, Ruth J F and Laakso, Markku and McCarthy, Mark I and Melander, Olle and Mohlke, Karen L and Morris, Andrew P and Palmer, Colin N A and Pedersen, Oluf and Polasek, Ozren and Poulter, Neil R and Province, Michael A and Psaty, Bruce M and Ridker, Paul M and Rotter, Jerome I and Rudan, Igor and Salomaa, Veikko and Samani, Nilesh J and Sever, Peter J and Skaaby, Tea and Stafford, Jeanette M and Starr, John M and van der Harst, Pim and van der Meer, Peter and van Duijn, Cornelia M and Vergnaud, Anne-Claire and Gudnason, Vilmundur and Wareham, Nicholas J and Wilson, James G and Willer, Cristen J and Witte, Daniel R and Zeggini, Eleftheria and Saleheen, Danish and Butterworth, Adam S and Danesh, John and Asselbergs, Folkert W and Wain, Louise V and Ehret, Georg B and Chasman, Daniel I and Caulfield, Mark J and Elliott, Paul and Lindgren, Cecilia M and Levy, Daniel and Newton-Cheh, Christopher and Munroe, Patricia B and Howson, Joanna M M} } @article {7492, title = {Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.}, journal = {Hypertension}, year = {2017}, month = {2017 Jul 24}, abstract = {

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.

}, issn = {1524-4563}, doi = {10.1161/HYPERTENSIONAHA.117.09438}, author = {Wain, Louise V and Vaez, Ahmad and Jansen, Rick and Joehanes, Roby and van der Most, Peter J and Erzurumluoglu, A Mesut and O{\textquoteright}Reilly, Paul F and Cabrera, Claudia P and Warren, Helen R and Rose, Lynda M and Verwoert, Germaine C and Hottenga, Jouke-Jan and Strawbridge, Rona J and Esko, T{\~o}nu and Arking, Dan E and Hwang, Shih-Jen and Guo, Xiuqing and Kutalik, Zolt{\'a}n and Trompet, Stella and Shrine, Nick and Teumer, Alexander and Ried, Janina S and Bis, Joshua C and Smith, Albert V and Amin, Najaf and Nolte, Ilja M and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Wareham, Nicholas J and Hofer, Edith and Joshi, Peter K and Kristiansson, Kati and Traglia, Michela and Havulinna, Aki S and Goel, Anuj and Nalls, Mike A and S{\~o}ber, Siim and Vuckovic, Dragana and Luan, Jian{\textquoteright}an and del Greco M, Fabiola and Ayers, Kristin L and Marrugat, Jaume and Ruggiero, Daniela and Lopez, Lorna M and Niiranen, Teemu and Enroth, Stefan and Jackson, Anne U and Nelson, Christopher P and Huffman, Jennifer E and Zhang, Weihua and Marten, Jonathan and Gandin, Ilaria and Harris, Sarah E and Zemunik, Tatijana and Lu, Yingchang and Evangelou, Evangelos and Shah, Nabi and de Borst, Martin H and Mangino, Massimo and Prins, Bram P and Campbell, Archie and Li-Gao, Ruifang and Chauhan, Ganesh and Oldmeadow, Christopher and Abecasis, Goncalo and Abedi, Maryam and Barbieri, Caterina M and Barnes, Michael R and Batini, Chiara and Beilby, John and Blake, Tineka and Boehnke, Michael and Bottinger, Erwin P and Braund, Peter S and Brown, Morris and Brumat, Marco and Campbell, Harry and Chambers, John C and Cocca, Massimiliano and Collins, Francis and Connell, John and Cordell, Heather J and Damman, Jeffrey J and Davies, Gail and de Geus, Eco J and de Mutsert, Ren{\'e}e and Deelen, Joris and Demirkale, Yusuf and Doney, Alex S F and D{\"o}rr, Marcus and Farrall, Martin and Ferreira, Teresa and Fr{\r a}nberg, Mattias and Gao, He and Giedraitis, Vilmantas and Gieger, Christian and Giulianini, Franco and Gow, Alan J and Hamsten, Anders and Harris, Tamara B and Hofman, Albert and Holliday, Elizabeth G and Hui, Jennie and Jarvelin, Marjo-Riitta and Johansson, Asa and Johnson, Andrew D and Jousilahti, Pekka and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Khaw, Kay-Tee and Kolcic, Ivana and Koskinen, Seppo and Langenberg, Claudia and Larson, Marty and Launer, Lenore J and Lehne, Benjamin and Liewald, David C M and Lin, Li and Lind, Lars and Mach, Fran{\c c}ois and Mamasoula, Chrysovalanto and Menni, Cristina and Mifsud, Borbala and Milaneschi, Yuri and Morgan, Anna and Morris, Andrew D and Morrison, Alanna C and Munson, Peter J and Nandakumar, Priyanka and Nguyen, Quang Tri and Nutile, Teresa and Oldehinkel, Albertine J and Oostra, Ben A and Org, Elin and Padmanabhan, Sandosh and Palotie, Aarno and Par{\'e}, Guillaume and Pattie, Alison and Penninx, Brenda W J H and Poulter, Neil and Pramstaller, Peter P and Raitakari, Olli T and Ren, Meixia and Rice, Kenneth and Ridker, Paul M and Riese, Harri{\"e}tte and Ripatti, Samuli and Robino, Antonietta and Rotter, Jerome I and Rudan, Igor and Saba, Yasaman and Saint Pierre, Aude and Sala, Cinzia F and Sarin, Antti-Pekka and Schmidt, Reinhold and Scott, Rodney and Seelen, Marc A and Shields, Denis C and Siscovick, David and Sorice, Rossella and Stanton, Alice and Stott, David J and Sundstr{\"o}m, Johan and Swertz, Morris and Taylor, Kent D and Thom, Simon and Tzoulaki, Ioanna and Tzourio, Christophe and Uitterlinden, Andr{\'e} G and V{\"o}lker, Uwe and Vollenweider, Peter and Wild, Sarah and Willemsen, Gonneke and Wright, Alan F and Yao, Jie and Th{\'e}riault, S{\'e}bastien and Conen, David and Attia, John and Sever, Peter and Debette, Stephanie and Mook-Kanamori, Dennis O and Zeggini, Eleftheria and Spector, Tim D and van der Harst, Pim and Palmer, Colin N A and Vergnaud, Anne-Claire and Loos, Ruth J F and Polasek, Ozren and Starr, John M and Girotto, Giorgia and Hayward, Caroline and Kooner, Jaspal S and Lindgren, Cecila M and Vitart, Veronique and Samani, Nilesh J and Tuomilehto, Jaakko and Gyllensten, Ulf and Knekt, Paul and Deary, Ian J and Ciullo, Marina and Elosua, Roberto and Keavney, Bernard D and Hicks, Andrew A and Scott, Robert A and Gasparini, Paolo and Laan, Maris and Liu, Yongmei and Watkins, Hugh and Hartman, Catharina A and Salomaa, Veikko and Toniolo, Daniela and Perola, Markus and Wilson, James F and Schmidt, Helena and Zhao, Jing Hua and Lehtim{\"a}ki, Terho and van Duijn, Cornelia M and Gudnason, Vilmundur and Psaty, Bruce M and Peters, Annette and Rettig, Rainer and James, Alan and Jukema, J Wouter and Strachan, David P and Palmas, Walter and Metspalu, Andres and Ingelsson, Erik and Boomsma, Dorret I and Franco, Oscar H and Bochud, Murielle and Newton-Cheh, Christopher and Munroe, Patricia B and Elliott, Paul and Chasman, Daniel I and Chakravarti, Aravinda and Knight, Joanne and Morris, Andrew P and Levy, Daniel and Tobin, Martin D and Snieder, Harold and Caulfield, Mark J and Ehret, Georg B} } @article {7845, title = {Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Oct}, pages = {1412-1425}, abstract = {

High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0205-x}, author = {Evangelou, Evangelos and Warren, Helen R and Mosen-Ansorena, David and Mifsud, Borbala and Pazoki, Raha and Gao, He and Ntritsos, Georgios and Dimou, Niki and Cabrera, Claudia P and Karaman, Ibrahim and Ng, Fu Liang and Evangelou, Marina and Witkowska, Katarzyna and Tzanis, Evan and Hellwege, Jacklyn N and Giri, Ayush and Velez Edwards, Digna R and Sun, Yan V and Cho, Kelly and Gaziano, J Michael and Wilson, Peter W F and Tsao, Philip S and Kovesdy, Csaba P and Esko, T{\~o}nu and M{\"a}gi, Reedik and Milani, Lili and Almgren, Peter and Boutin, Thibaud and Debette, Stephanie and Ding, Jun and Giulianini, Franco and Holliday, Elizabeth G and Jackson, Anne U and Li-Gao, Ruifang and Lin, Wei-Yu and Luan, Jian{\textquoteright}an and Mangino, Massimo and Oldmeadow, Christopher and Prins, Bram Peter and Qian, Yong and Sargurupremraj, Muralidharan and Shah, Nabi and Surendran, Praveen and Th{\'e}riault, S{\'e}bastien and Verweij, Niek and Willems, Sara M and Zhao, Jing-Hua and Amouyel, Philippe and Connell, John and de Mutsert, Ren{\'e}e and Doney, Alex S F and Farrall, Martin and Menni, Cristina and Morris, Andrew D and Noordam, Raymond and Par{\'e}, Guillaume and Poulter, Neil R and Shields, Denis C and Stanton, Alice and Thom, Simon and Abecasis, Goncalo and Amin, Najaf and Arking, Dan E and Ayers, Kristin L and Barbieri, Caterina M and Batini, Chiara and Bis, Joshua C and Blake, Tineka and Bochud, Murielle and Boehnke, Michael and Boerwinkle, Eric and Boomsma, Dorret I and Bottinger, Erwin P and Braund, Peter S and Brumat, Marco and Campbell, Archie and Campbell, Harry and Chakravarti, Aravinda and Chambers, John C and Chauhan, Ganesh and Ciullo, Marina and Cocca, Massimiliano and Collins, Francis and Cordell, Heather J and Davies, Gail and Borst, Martin H de and Geus, Eco J de and Deary, Ian J and Deelen, Joris and del Greco M, Fabiola and Demirkale, Cumhur Yusuf and D{\"o}rr, Marcus and Ehret, Georg B and Elosua, Roberto and Enroth, Stefan and Erzurumluoglu, A Mesut and Ferreira, Teresa and Fr{\r a}nberg, Mattias and Franco, Oscar H and Gandin, Ilaria and Gasparini, Paolo and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Goel, Anuj and Gow, Alan J and Gudnason, Vilmundur and Guo, Xiuqing and Gyllensten, Ulf and Hamsten, Anders and Harris, Tamara B and Harris, Sarah E and Hartman, Catharina A and Havulinna, Aki S and Hicks, Andrew A and Hofer, Edith and Hofman, Albert and Hottenga, Jouke-Jan and Huffman, Jennifer E and Hwang, Shih-Jen and Ingelsson, Erik and James, Alan and Jansen, Rick and Jarvelin, Marjo-Riitta and Joehanes, Roby and Johansson, Asa and Johnson, Andrew D and Joshi, Peter K and Jousilahti, Pekka and Jukema, J Wouter and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Keavney, Bernard D and Khaw, Kay-Tee and Knekt, Paul and Knight, Joanne and Kolcic, Ivana and Kooner, Jaspal S and Koskinen, Seppo and Kristiansson, Kati and Kutalik, Zolt{\'a}n and Laan, Maris and Larson, Marty and Launer, Lenore J and Lehne, Benjamin and Lehtim{\"a}ki, Terho and Liewald, David C M and Lin, Li and Lind, Lars and Lindgren, Cecilia M and Liu, Yongmei and Loos, Ruth J F and Lopez, Lorna M and Lu, Yingchang and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Mamasoula, Chrysovalanto and Marrugat, Jaume and Marten, Jonathan and Milaneschi, Yuri and Morgan, Anna and Morris, Andrew P and Morrison, Alanna C and Munson, Peter J and Nalls, Mike A and Nandakumar, Priyanka and Nelson, Christopher P and Niiranen, Teemu and Nolte, Ilja M and Nutile, Teresa and Oldehinkel, Albertine J and Oostra, Ben A and O{\textquoteright}Reilly, Paul F and Org, Elin and Padmanabhan, Sandosh and Palmas, Walter and Palotie, Aarno and Pattie, Alison and Penninx, Brenda W J H and Perola, Markus and Peters, Annette and Polasek, Ozren and Pramstaller, Peter P and Nguyen, Quang Tri and Raitakari, Olli T and Ren, Meixia and Rettig, Rainer and Rice, Kenneth and Ridker, Paul M and Ried, Janina S and Riese, Harri{\"e}tte and Ripatti, Samuli and Robino, Antonietta and Rose, Lynda M and Rotter, Jerome I and Rudan, Igor and Ruggiero, Daniela and Saba, Yasaman and Sala, Cinzia F and Salomaa, Veikko and Samani, Nilesh J and Sarin, Antti-Pekka and Schmidt, Reinhold and Schmidt, Helena and Shrine, Nick and Siscovick, David and Smith, Albert V and Snieder, Harold and S{\~o}ber, Siim and Sorice, Rossella and Starr, John M and Stott, David J and Strachan, David P and Strawbridge, Rona J and Sundstr{\"o}m, Johan and Swertz, Morris A and Taylor, Kent D and Teumer, Alexander and Tobin, Martin D and Tomaszewski, Maciej and Toniolo, Daniela and Traglia, Michela and Trompet, Stella and Tuomilehto, Jaakko and Tzourio, Christophe and Uitterlinden, Andr{\'e} G and Vaez, Ahmad and van der Most, Peter J and van Duijn, Cornelia M and Vergnaud, Anne-Claire and Verwoert, Germaine C and Vitart, Veronique and V{\"o}lker, Uwe and Vollenweider, Peter and Vuckovic, Dragana and Watkins, Hugh and Wild, Sarah H and Willemsen, Gonneke and Wilson, James F and Wright, Alan F and Yao, Jie and Zemunik, Tatijana and Zhang, Weihua and Attia, John R and Butterworth, Adam S and Chasman, Daniel I and Conen, David and Cucca, Francesco and Danesh, John and Hayward, Caroline and Howson, Joanna M M and Laakso, Markku and Lakatta, Edward G and Langenberg, Claudia and Melander, Olle and Mook-Kanamori, Dennis O and Palmer, Colin N A and Risch, Lorenz and Scott, Robert A and Scott, Rodney J and Sever, Peter and Spector, Tim D and van der Harst, Pim and Wareham, Nicholas J and Zeggini, Eleftheria and Levy, Daniel and Munroe, Patricia B and Newton-Cheh, Christopher and Brown, Morris J and Metspalu, Andres and Hung, Adriana M and O{\textquoteright}Donnell, Christopher J and Edwards, Todd L and Psaty, Bruce M and Tzoulaki, Ioanna and Barnes, Michael R and Wain, Louise V and Elliott, Paul and Caulfield, Mark J} } @article {8292, title = {Statin-induced LDL cholesterol response and type 2 diabetes: a bidirectional two-sample Mendelian randomization study.}, journal = {Pharmacogenomics J}, year = {2019}, month = {2019 Dec 05}, abstract = {

It remains unclear whether the increased risk of new-onset type 2 diabetes (T2D) seen in statin users is due to low LDL-C concentrations, or due to the statin-induced proportional change in LDL-C. In addition, genetic instruments have not been proposed before to examine whether liability to T2D might cause greater proportional statin-induced LDL-C lowering. Using summary-level statistics from the Genomic Investigation of Statin Therapy (GIST, n = 40,914) and DIAGRAM (n = 159,208) consortia, we found a positive genetic correlation between LDL-C statin response and T2D using LD score regression (r = 0.36, s.e. = 0.13). However, mendelian randomization analyses did not provide support for statin response having a causal effect on T2D risk (OR 1.00 (95\% CI: 0.97, 1.03) per 10\% increase in statin response), nor that liability to T2D has a causal effect on statin-induced LDL-C response (0.20\% increase in response (95\% CI: -0.40, 0.80) per doubling of odds of liability to T2D). Although we found no evidence to suggest that proportional statin response influences T2D risk, a definitive assessment should be made in populations comprised exclusively of statin users, as the presence of nonstatin users in the DIAGRAM dataset may have substantially diluted our effect estimate.

}, issn = {1473-1150}, doi = {10.1038/s41397-019-0125-x}, author = {Smit, Roelof A J and Trompet, Stella and Leong, Aaron and Goodarzi, Mark O and Postmus, Iris and Warren, Helen and Theusch, Elizabeth and Barnes, Michael R and Arsenault, Benoit J and Li, Xiaohui and Feng, QiPing and Chasman, Daniel I and Cupples, L Adrienne and Hitman, Graham A and Krauss, Ronald M and Psaty, Bruce M and Rotter, Jerome I and Cessie, Saskia le and Stein, C Michael and Jukema, J Wouter} } @article {8368, title = {Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction.}, journal = {Nat Commun}, volume = {11}, year = {2020}, month = {2020 May 21}, pages = {2542}, abstract = {

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5\% to 62.6\%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.

}, issn = {2041-1723}, doi = {10.1038/s41467-020-15706-x}, author = {Ntalla, Ioanna and Weng, Lu-Chen and Cartwright, James H and Hall, Amelia Weber and Sveinbjornsson, Gardar and Tucker, Nathan R and Choi, Seung Hoan and Chaffin, Mark D and Roselli, Carolina and Barnes, Michael R and Mifsud, Borbala and Warren, Helen R and Hayward, Caroline and Marten, Jonathan and Cranley, James J and Concas, Maria Pina and Gasparini, Paolo and Boutin, Thibaud and Kolcic, Ivana and Polasek, Ozren and Rudan, Igor and Araujo, Nathalia M and Lima-Costa, Maria Fernanda and Ribeiro, Antonio Luiz P and Souza, Renan P and Tarazona-Santos, Eduardo and Giedraitis, Vilmantas and Ingelsson, Erik and Mahajan, Anubha and Morris, Andrew P and del Greco M, Fabiola and Foco, Luisa and G{\"o}gele, Martin and Hicks, Andrew A and Cook, James P and Lind, Lars and Lindgren, Cecilia M and Sundstr{\"o}m, Johan and Nelson, Christopher P and Riaz, Muhammad B and Samani, Nilesh J and Sinagra, Gianfranco and Ulivi, Sheila and K{\"a}h{\"o}nen, Mika and Mishra, Pashupati P and Mononen, Nina and Nikus, Kjell and Caulfield, Mark J and Dominiczak, Anna and Padmanabhan, Sandosh and Montasser, May E and O{\textquoteright}Connell, Jeff R and Ryan, Kathleen and Shuldiner, Alan R and Aeschbacher, Stefanie and Conen, David and Risch, Lorenz and Th{\'e}riault, S{\'e}bastien and Hutri-K{\"a}h{\"o}nen, Nina and Lehtim{\"a}ki, Terho and Lyytik{\"a}inen, Leo-Pekka and Raitakari, Olli T and Barnes, Catriona L K and Campbell, Harry and Joshi, Peter K and Wilson, James F and Isaacs, Aaron and Kors, Jan A and van Duijn, Cornelia M and Huang, Paul L and Gudnason, Vilmundur and Harris, Tamara B and Launer, Lenore J and Smith, Albert V and Bottinger, Erwin P and Loos, Ruth J F and Nadkarni, Girish N and Preuss, Michael H and Correa, Adolfo and Mei, Hao and Wilson, James and Meitinger, Thomas and M{\"u}ller-Nurasyid, Martina and Peters, Annette and Waldenberger, Melanie and Mangino, Massimo and Spector, Timothy D and Rienstra, Michiel and van de Vegte, Yordi J and van der Harst, Pim and Verweij, Niek and K{\"a}{\"a}b, Stefan and Schramm, Katharina and Sinner, Moritz F and Strauch, Konstantin and Cutler, Michael J and Fatkin, Diane and London, Barry and Olesen, Morten and Roden, Dan M and Benjamin Shoemaker, M and Gustav Smith, J and Biggs, Mary L and Bis, Joshua C and Brody, Jennifer A and Psaty, Bruce M and Rice, Kenneth and Sotoodehnia, Nona and De Grandi, Alessandro and Fuchsberger, Christian and Pattaro, Cristian and Pramstaller, Peter P and Ford, Ian and Wouter Jukema, J and Macfarlane, Peter W and Trompet, Stella and D{\"o}rr, Marcus and Felix, Stephan B and V{\"o}lker, Uwe and Weiss, Stefan and Havulinna, Aki S and Jula, Antti and S{\"a}{\"a}ksj{\"a}rvi, Katri and Salomaa, Veikko and Guo, Xiuqing and Heckbert, Susan R and Lin, Henry J and Rotter, Jerome I and Taylor, Kent D and Yao, Jie and de Mutsert, Ren{\'e}e and Maan, Arie C and Mook-Kanamori, Dennis O and Noordam, Raymond and Cucca, Francesco and Ding, Jun and Lakatta, Edward G and Qian, Yong and Tarasov, Kirill V and Levy, Daniel and Lin, Honghuang and Newton-Cheh, Christopher H and Lunetta, Kathryn L and Murray, Alison D and Porteous, David J and Smith, Blair H and Stricker, Bruno H and Uitterlinden, Andre and van den Berg, Marten E and Haessler, Jeffrey and Jackson, Rebecca D and Kooperberg, Charles and Peters, Ulrike and Reiner, Alexander P and Whitsel, Eric A and Alonso, Alvaro and Arking, Dan E and Boerwinkle, Eric and Ehret, Georg B and Soliman, Elsayed Z and Avery, Christy L and Gogarten, Stephanie M and Kerr, Kathleen F and Laurie, Cathy C and Seyerle, Amanda A and Stilp, Adrienne and Assa, Solmaz and Abdullah Said, M and Yldau van der Ende, M and Lambiase, Pier D and Orini, Michele and Ramirez, Julia and Van Duijvenboden, Stefan and Arnar, David O and Gudbjartsson, Daniel F and Holm, Hilma and Sulem, Patrick and Thorleifsson, Gudmar and Thorolfsdottir, Rosa B and Thorsteinsdottir, Unnur and Benjamin, Emelia J and Tinker, Andrew and Stefansson, Kari and Ellinor, Patrick T and Jamshidi, Yalda and Lubitz, Steven A and Munroe, Patricia B} }