@article {6583, title = {Sequencing of SCN5A identifies rare and common variants associated with cardiac conduction: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.}, journal = {Circ Cardiovasc Genet}, volume = {7}, year = {2014}, month = {2014 Jun}, pages = {365-73}, abstract = {

BACKGROUND: The cardiac sodium channel SCN5A regulates atrioventricular and ventricular conduction. Genetic variants in this gene are associated with PR and QRS intervals. We sought to characterize further the contribution of rare and common coding variation in SCN5A to cardiac conduction.

METHODS AND RESULTS: In Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study, we performed targeted exonic sequencing of SCN5A (n=3699, European ancestry individuals) and identified 4 common (minor allele frequency >1\%) and 157 rare variants. Common and rare SCN5A coding variants were examined for association with PR and QRS intervals through meta-analysis of European ancestry participants from CHARGE, National Heart, Lung, and Blood Institute{\textquoteright}s Exome Sequencing Project (n=607), and the UK10K (n=1275) and by examining Exome Sequencing Project African ancestry participants (n=972). Rare coding SCN5A variants in aggregate were associated with PR interval in European and African ancestry participants (P=1.3{\texttimes}10(-3)). Three common variants were associated with PR and QRS interval duration among European ancestry participants and one among African ancestry participants. These included 2 well-known missense variants: rs1805124 (H558R) was associated with PR and QRS shortening in European ancestry participants (P=6.25{\texttimes}10(-4) and P=5.2{\texttimes}10(-3), respectively) and rs7626962 (S1102Y) was associated with PR shortening in those of African ancestry (P=2.82{\texttimes}10(-3)). Among European ancestry participants, 2 novel synonymous variants, rs1805126 and rs6599230, were associated with cardiac conduction. Our top signal, rs1805126 was associated with PR and QRS lengthening (P=3.35{\texttimes}10(-7) and P=2.69{\texttimes}10(-4), respectively) and rs6599230 was associated with PR shortening (P=2.67{\texttimes}10(-5)).

CONCLUSIONS: By sequencing SCN5A, we identified novel common and rare coding variants associated with cardiac conduction.

}, keywords = {Adult, Aged, Aged, 80 and over, Aging, Cohort Studies, Female, Genetic Variation, Genome-Wide Association Study, Genomics, Heart Conduction System, Heart Diseases, Humans, Male, Middle Aged, NAV1.5 Voltage-Gated Sodium Channel, Polymorphism, Single Nucleotide, Sequence Analysis, DNA}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.113.000098}, author = {Magnani, Jared W and Brody, Jennifer A and Prins, Bram P and Arking, Dan E and Lin, Honghuang and Yin, Xiaoyan and Liu, Ching-Ti and Morrison, Alanna C and Zhang, Feng and Spector, Tim D and Alonso, Alvaro and Bis, Joshua C and Heckbert, Susan R and Lumley, Thomas and Sitlani, Colleen M and Cupples, L Adrienne and Lubitz, Steven A and Soliman, Elsayed Z and Pulit, Sara L and Newton-Cheh, Christopher and O{\textquoteright}Donnell, Christopher J and Ellinor, Patrick T and Benjamin, Emelia J and Muzny, Donna M and Gibbs, Richard A and Santibanez, Jireh and Taylor, Herman A and Rotter, Jerome I and Lange, Leslie A and Psaty, Bruce M and Jackson, Rebecca and Rich, Stephen S and Boerwinkle, Eric and Jamshidi, Yalda and Sotoodehnia, Nona} } @article {7262, title = {52 Genetic Loci Influencing Myocardial~Mass.}, journal = {J Am Coll Cardiol}, volume = {68}, year = {2016}, month = {2016 Sep 27}, pages = {1435-48}, abstract = {

BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death.

OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass.

METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment.

RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p~< 1~{\texttimes} 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67~candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in~vitro and in~vivo.

CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets.

}, issn = {1558-3597}, doi = {10.1016/j.jacc.2016.07.729}, author = {van der Harst, Pim and van Setten, Jessica and Verweij, Niek and Vogler, Georg and Franke, Lude and Maurano, Matthew T and Wang, Xinchen and Mateo Leach, Irene and Eijgelsheim, Mark and Sotoodehnia, Nona and Hayward, Caroline and Sorice, Rossella and Meirelles, Osorio and Lyytik{\"a}inen, Leo-Pekka and Polasek, Ozren and Tanaka, Toshiko and Arking, Dan E and Ulivi, Sheila and Trompet, Stella and M{\"u}ller-Nurasyid, Martina and Smith, Albert V and D{\"o}rr, Marcus and Kerr, Kathleen F and Magnani, Jared W and del Greco M, Fabiola and Zhang, Weihua and Nolte, Ilja M and Silva, Claudia T and Padmanabhan, Sandosh and Tragante, Vinicius and Esko, T{\~o}nu and Abecasis, Goncalo R and Adriaens, Michiel E and Andersen, Karl and Barnett, Phil and Bis, Joshua C and Bodmer, Rolf and Buckley, Brendan M and Campbell, Harry and Cannon, Megan V and Chakravarti, Aravinda and Chen, Lin Y and Delitala, Alessandro and Devereux, Richard B and Doevendans, Pieter A and Dominiczak, Anna F and Ferrucci, Luigi and Ford, Ian and Gieger, Christian and Harris, Tamara B and Haugen, Eric and Heinig, Matthias and Hernandez, Dena G and Hillege, Hans L and Hirschhorn, Joel N and Hofman, Albert and Hubner, Norbert and Hwang, Shih-Jen and Iorio, Annamaria and K{\"a}h{\"o}nen, Mika and Kellis, Manolis and Kolcic, Ivana and Kooner, Ishminder K and Kooner, Jaspal S and Kors, Jan A and Lakatta, Edward G and Lage, Kasper and Launer, Lenore J and Levy, Daniel and Lundby, Alicia and Macfarlane, Peter W and May, Dalit and Meitinger, Thomas and Metspalu, Andres and Nappo, Stefania and Naitza, Silvia and Neph, Shane and Nord, Alex S and Nutile, Teresa and Okin, Peter M and Olsen, Jesper V and Oostra, Ben A and Penninger, Josef M and Pennacchio, Len A and Pers, Tune H and Perz, Siegfried and Peters, Annette and Pinto, Yigal M and Pfeufer, Arne and Pilia, Maria Grazia and Pramstaller, Peter P and Prins, Bram P and Raitakari, Olli T and Raychaudhuri, Soumya and Rice, Ken M and Rossin, Elizabeth J and Rotter, Jerome I and Schafer, Sebastian and Schlessinger, David and Schmidt, Carsten O and Sehmi, Jobanpreet and Sillj{\'e}, Herman H W and Sinagra, Gianfranco and Sinner, Moritz F and Slowikowski, Kamil and Soliman, Elsayed Z and Spector, Timothy D and Spiering, Wilko and Stamatoyannopoulos, John A and Stolk, Ronald P and Strauch, Konstantin and Tan, Sian-Tsung and Tarasov, Kirill V and Trinh, Bosco and Uitterlinden, Andr{\'e} G and van den Boogaard, Malou and van Duijn, Cornelia M and van Gilst, Wiek H and Viikari, Jorma S and Visscher, Peter M and Vitart, Veronique and V{\"o}lker, Uwe and Waldenberger, Melanie and Weichenberger, Christian X and Westra, Harm-Jan and Wijmenga, Cisca and Wolffenbuttel, Bruce H and Yang, Jian and Bezzina, Connie R and Munroe, Patricia B and Snieder, Harold and Wright, Alan F and Rudan, Igor and Boyer, Laurie A and Asselbergs, Folkert W and van Veldhuisen, Dirk J and Stricker, Bruno H and Psaty, Bruce M and Ciullo, Marina and Sanna, Serena and Lehtim{\"a}ki, Terho and Wilson, James F and Bandinelli, Stefania and Alonso, Alvaro and Gasparini, Paolo and Jukema, J Wouter and K{\"a}{\"a}b, Stefan and Gudnason, Vilmundur and Felix, Stephan B and Heckbert, Susan R and de Boer, Rudolf A and Newton-Cheh, Christopher and Hicks, Andrew A and Chambers, John C and Jamshidi, Yalda and Visel, Axel and Christoffels, Vincent M and Isaacs, Aaron and Samani, Nilesh J and de Bakker, Paul I W} } @article {7363, title = {Discovery of novel heart rate-associated loci using the Exome Chip.}, journal = {Hum Mol Genet}, year = {2017}, month = {2017 Apr 03}, abstract = {

Background Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. GWAS analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9\% of the variation.Aim To discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Methods Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104,452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134,251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.Results We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2, SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long range regulatory chromatin interactions in heart tissue (SCD, SLF2, MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Conclusion Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddx113}, author = {van den Berg, Marten E and Warren, Helen R and Cabrera, Claudia P and Verweij, Niek and Mifsud, Borbala and Haessler, Jeffrey and Bihlmeyer, Nathan A and Fu, Yi-Ping and Weiss, Stefan and Lin, Henry J and Grarup, Niels and Li-Gao, Ruifang and Pistis, Giorgio and Shah, Nabi and Brody, Jennifer A and M{\"u}ller-Nurasyid, Martina and Lin, Honghuang and Mei, Hao and Smith, Albert V and Lyytik{\"a}inen, Leo-Pekka and Hall, Leanne M and van Setten, Jessica and Trompet, Stella and Prins, Bram P and Isaacs, Aaron and Radmanesh, Farid and Marten, Jonathan and Entwistle, Aiman and Kors, Jan A and Silva, Claudia T and Alonso, Alvaro and Bis, Joshua C and de Boer, Rudolf and de Haan, Hugoline G and de Mutsert, Ren{\'e}e and Dedoussis, George and Dominiczak, Anna F and Doney, Alex S F and Ellinor, Patrick T and Eppinga, Ruben N and Felix, Stephan B and Guo, Xiuqing and Hagemeijer, Yanick and Hansen, Torben and Harris, Tamara B and Heckbert, Susan R and Huang, Paul L and Hwang, Shih-Jen and K{\"a}h{\"o}nen, Mika and Kanters, J{\o}rgen K and Kolcic, Ivana and Launer, Lenore J and Li, Man and Yao, Jie and Linneberg, Allan and Liu, Simin and Macfarlane, Peter W and Mangino, Massimo and Morris, Andrew D and Mulas, Antonella and Murray, Alison D and Nelson, Christopher P and Orr{\`u}, Marco and Padmanabhan, Sandosh and Peters, Annette and Porteous, David J and Poulter, Neil and Psaty, Bruce M and Qi, Lihong and Raitakari, Olli T and Rivadeneira, Fernando and Roselli, Carolina and Rudan, Igor and Sattar, Naveed and Sever, Peter and Sinner, Moritz F and Soliman, Elsayed Z and Spector, Timothy D and Stanton, Alice V and Stirrups, Kathleen E and Taylor, Kent D and Tobin, Martin D and Uitterlinden, Andre and Vaartjes, Ilonca and Hoes, Arno W and van der Meer, Peter and V{\"o}lker, Uwe and Waldenberger, Melanie and Xie, Zhijun and Zoledziewska, Magdalena and Tinker, Andrew and Polasek, Ozren and Rosand, Jonathan and Jamshidi, Yalda and van Duijn, Cornelia M and Zeggini, Eleftheria and Wouter Jukema, J and Asselbergs, Folkert W and Samani, Nilesh J and Lehtim{\"a}ki, Terho and Gudnason, Vilmundur and Wilson, James and Lubitz, Steven A and K{\"a}{\"a}b, Stefan and Sotoodehnia, Nona and Caulfield, Mark J and Palmer, Colin N A and Sanna, Serena and Mook-Kanamori, Dennis O and Deloukas, Panos and Pedersen, Oluf and Rotter, Jerome I and D{\"o}rr, Marcus and O{\textquoteright}Donnell, Chris J and Hayward, Caroline and Arking, Dan E and Kooperberg, Charles and van der Harst, Pim and Eijgelsheim, Mark and Stricker, Bruno H and Munroe, Patricia B} } @article {7492, title = {Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.}, journal = {Hypertension}, year = {2017}, month = {2017 Jul 24}, abstract = {

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.

}, issn = {1524-4563}, doi = {10.1161/HYPERTENSIONAHA.117.09438}, author = {Wain, Louise V and Vaez, Ahmad and Jansen, Rick and Joehanes, Roby and van der Most, Peter J and Erzurumluoglu, A Mesut and O{\textquoteright}Reilly, Paul F and Cabrera, Claudia P and Warren, Helen R and Rose, Lynda M and Verwoert, Germaine C and Hottenga, Jouke-Jan and Strawbridge, Rona J and Esko, T{\~o}nu and Arking, Dan E and Hwang, Shih-Jen and Guo, Xiuqing and Kutalik, Zolt{\'a}n and Trompet, Stella and Shrine, Nick and Teumer, Alexander and Ried, Janina S and Bis, Joshua C and Smith, Albert V and Amin, Najaf and Nolte, Ilja M and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Wareham, Nicholas J and Hofer, Edith and Joshi, Peter K and Kristiansson, Kati and Traglia, Michela and Havulinna, Aki S and Goel, Anuj and Nalls, Mike A and S{\~o}ber, Siim and Vuckovic, Dragana and Luan, Jian{\textquoteright}an and del Greco M, Fabiola and Ayers, Kristin L and Marrugat, Jaume and Ruggiero, Daniela and Lopez, Lorna M and Niiranen, Teemu and Enroth, Stefan and Jackson, Anne U and Nelson, Christopher P and Huffman, Jennifer E and Zhang, Weihua and Marten, Jonathan and Gandin, Ilaria and Harris, Sarah E and Zemunik, Tatijana and Lu, Yingchang and Evangelou, Evangelos and Shah, Nabi and de Borst, Martin H and Mangino, Massimo and Prins, Bram P and Campbell, Archie and Li-Gao, Ruifang and Chauhan, Ganesh and Oldmeadow, Christopher and Abecasis, Goncalo and Abedi, Maryam and Barbieri, Caterina M and Barnes, Michael R and Batini, Chiara and Beilby, John and Blake, Tineka and Boehnke, Michael and Bottinger, Erwin P and Braund, Peter S and Brown, Morris and Brumat, Marco and Campbell, Harry and Chambers, John C and Cocca, Massimiliano and Collins, Francis and Connell, John and Cordell, Heather J and Damman, Jeffrey J and Davies, Gail and de Geus, Eco J and de Mutsert, Ren{\'e}e and Deelen, Joris and Demirkale, Yusuf and Doney, Alex S F and D{\"o}rr, Marcus and Farrall, Martin and Ferreira, Teresa and Fr{\r a}nberg, Mattias and Gao, He and Giedraitis, Vilmantas and Gieger, Christian and Giulianini, Franco and Gow, Alan J and Hamsten, Anders and Harris, Tamara B and Hofman, Albert and Holliday, Elizabeth G and Hui, Jennie and Jarvelin, Marjo-Riitta and Johansson, Asa and Johnson, Andrew D and Jousilahti, Pekka and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Khaw, Kay-Tee and Kolcic, Ivana and Koskinen, Seppo and Langenberg, Claudia and Larson, Marty and Launer, Lenore J and Lehne, Benjamin and Liewald, David C M and Lin, Li and Lind, Lars and Mach, Fran{\c c}ois and Mamasoula, Chrysovalanto and Menni, Cristina and Mifsud, Borbala and Milaneschi, Yuri and Morgan, Anna and Morris, Andrew D and Morrison, Alanna C and Munson, Peter J and Nandakumar, Priyanka and Nguyen, Quang Tri and Nutile, Teresa and Oldehinkel, Albertine J and Oostra, Ben A and Org, Elin and Padmanabhan, Sandosh and Palotie, Aarno and Par{\'e}, Guillaume and Pattie, Alison and Penninx, Brenda W J H and Poulter, Neil and Pramstaller, Peter P and Raitakari, Olli T and Ren, Meixia and Rice, Kenneth and Ridker, Paul M and Riese, Harri{\"e}tte and Ripatti, Samuli and Robino, Antonietta and Rotter, Jerome I and Rudan, Igor and Saba, Yasaman and Saint Pierre, Aude and Sala, Cinzia F and Sarin, Antti-Pekka and Schmidt, Reinhold and Scott, Rodney and Seelen, Marc A and Shields, Denis C and Siscovick, David and Sorice, Rossella and Stanton, Alice and Stott, David J and Sundstr{\"o}m, Johan and Swertz, Morris and Taylor, Kent D and Thom, Simon and Tzoulaki, Ioanna and Tzourio, Christophe and Uitterlinden, Andr{\'e} G and V{\"o}lker, Uwe and Vollenweider, Peter and Wild, Sarah and Willemsen, Gonneke and Wright, Alan F and Yao, Jie and Th{\'e}riault, S{\'e}bastien and Conen, David and Attia, John and Sever, Peter and Debette, Stephanie and Mook-Kanamori, Dennis O and Zeggini, Eleftheria and Spector, Tim D and van der Harst, Pim and Palmer, Colin N A and Vergnaud, Anne-Claire and Loos, Ruth J F and Polasek, Ozren and Starr, John M and Girotto, Giorgia and Hayward, Caroline and Kooner, Jaspal S and Lindgren, Cecila M and Vitart, Veronique and Samani, Nilesh J and Tuomilehto, Jaakko and Gyllensten, Ulf and Knekt, Paul and Deary, Ian J and Ciullo, Marina and Elosua, Roberto and Keavney, Bernard D and Hicks, Andrew A and Scott, Robert A and Gasparini, Paolo and Laan, Maris and Liu, Yongmei and Watkins, Hugh and Hartman, Catharina A and Salomaa, Veikko and Toniolo, Daniela and Perola, Markus and Wilson, James F and Schmidt, Helena and Zhao, Jing Hua and Lehtim{\"a}ki, Terho and van Duijn, Cornelia M and Gudnason, Vilmundur and Psaty, Bruce M and Peters, Annette and Rettig, Rainer and James, Alan and Jukema, J Wouter and Strachan, David P and Palmas, Walter and Metspalu, Andres and Ingelsson, Erik and Boomsma, Dorret I and Franco, Oscar H and Bochud, Murielle and Newton-Cheh, Christopher and Munroe, Patricia B and Elliott, Paul and Chasman, Daniel I and Chakravarti, Aravinda and Knight, Joanne and Morris, Andrew P and Levy, Daniel and Tobin, Martin D and Snieder, Harold and Caulfield, Mark J and Ehret, Georg B} } @article {7801, title = {Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 May}, pages = {e002037}, abstract = {

BACKGROUND: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability.

METHODS: We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval.

RESULTS: We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction (<1.2{\texttimes}10), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at (=5.9{\texttimes}10) and (=1.1{\texttimes}10) were associated with PR interval. locus also was implicated in the common variant analysis, whereas was a novel locus.

CONCLUSIONS: We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.117.002037}, author = {Lin, Honghuang and van Setten, Jessica and Smith, Albert V and Bihlmeyer, Nathan A and Warren, Helen R and Brody, Jennifer A and Radmanesh, Farid and Hall, Leanne and Grarup, Niels and M{\"u}ller-Nurasyid, Martina and Boutin, Thibaud and Verweij, Niek and Lin, Henry J and Li-Gao, Ruifang and van den Berg, Marten E and Marten, Jonathan and Weiss, Stefan and Prins, Bram P and Haessler, Jeffrey and Lyytik{\"a}inen, Leo-Pekka and Mei, Hao and Harris, Tamara B and Launer, Lenore J and Li, Man and Alonso, Alvaro and Soliman, Elsayed Z and Connell, John M and Huang, Paul L and Weng, Lu-Chen and Jameson, Heather S and Hucker, William and Hanley, Alan and Tucker, Nathan R and Chen, Yii-Der Ida and Bis, Joshua C and Rice, Kenneth M and Sitlani, Colleen M and Kors, Jan A and Xie, Zhijun and Wen, Chengping and Magnani, Jared W and Nelson, Christopher P and Kanters, J{\o}rgen K and Sinner, Moritz F and Strauch, Konstantin and Peters, Annette and Waldenberger, Melanie and Meitinger, Thomas and Bork-Jensen, Jette and Pedersen, Oluf and Linneberg, Allan and Rudan, Igor and de Boer, Rudolf A and van der Meer, Peter and Yao, Jie and Guo, Xiuqing and Taylor, Kent D and Sotoodehnia, Nona and Rotter, Jerome I and Mook-Kanamori, Dennis O and Trompet, Stella and Rivadeneira, Fernando and Uitterlinden, Andre and Eijgelsheim, Mark and Padmanabhan, Sandosh and Smith, Blair H and V{\"o}lzke, Henry and Felix, Stephan B and Homuth, Georg and V{\"o}lker, Uwe and Mangino, Massimo and Spector, Timothy D and Bots, Michiel L and Perez, Marco and K{\"a}h{\"o}nen, Mika and Raitakari, Olli T and Gudnason, Vilmundur and Arking, Dan E and Munroe, Patricia B and Psaty, Bruce M and van Duijn, Cornelia M and Benjamin, Emelia J and Rosand, Jonathan and Samani, Nilesh J and Hansen, Torben and K{\"a}{\"a}b, Stefan and Polasek, Ozren and van der Harst, Pim and Heckbert, Susan R and Jukema, J Wouter and Stricker, Bruno H and Hayward, Caroline and D{\"o}rr, Marcus and Jamshidi, Yalda and Asselbergs, Folkert W and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Wilson, James G and Ellinor, Patrick T and Lubitz, Steven A and Isaacs, Aaron} } @article {7809, title = {Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6.}, journal = {Genome Biol}, volume = {19}, year = {2018}, month = {2018 07 17}, pages = {87}, abstract = {

BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear.

RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874~individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction.

CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.

}, issn = {1474-760X}, doi = {10.1186/s13059-018-1457-6}, author = {Prins, Bram P and Mead, Timothy J and Brody, Jennifer A and Sveinbjornsson, Gardar and Ntalla, Ioanna and Bihlmeyer, Nathan A and van den Berg, Marten and Bork-Jensen, Jette and Cappellani, Stefania and Van Duijvenboden, Stefan and Klena, Nikolai T and Gabriel, George C and Liu, Xiaoqin and Gulec, Cagri and Grarup, Niels and Haessler, Jeffrey and Hall, Leanne M and Iorio, Annamaria and Isaacs, Aaron and Li-Gao, Ruifang and Lin, Honghuang and Liu, Ching-Ti and Lyytik{\"a}inen, Leo-Pekka and Marten, Jonathan and Mei, Hao and M{\"u}ller-Nurasyid, Martina and Orini, Michele and Padmanabhan, Sandosh and Radmanesh, Farid and Ramirez, Julia and Robino, Antonietta and Schwartz, Molly and van Setten, Jessica and Smith, Albert V and Verweij, Niek and Warren, Helen R and Weiss, Stefan and Alonso, Alvaro and Arnar, David O and Bots, Michiel L and de Boer, Rudolf A and Dominiczak, Anna F and Eijgelsheim, Mark and Ellinor, Patrick T and Guo, Xiuqing and Felix, Stephan B and Harris, Tamara B and Hayward, Caroline and Heckbert, Susan R and Huang, Paul L and Jukema, J W and K{\"a}h{\"o}nen, Mika and Kors, Jan A and Lambiase, Pier D and Launer, Lenore J and Li, Man and Linneberg, Allan and Nelson, Christopher P and Pedersen, Oluf and Perez, Marco and Peters, Annette and Polasek, Ozren and Psaty, Bruce M and Raitakari, Olli T and Rice, Kenneth M and Rotter, Jerome I and Sinner, Moritz F and Soliman, Elsayed Z and Spector, Tim D and Strauch, Konstantin and Thorsteinsdottir, Unnur and Tinker, Andrew and Trompet, Stella and Uitterlinden, Andre and Vaartjes, Ilonca and van der Meer, Peter and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Waldenberger, Melanie and Wilson, James G and Xie, Zhijun and Asselbergs, Folkert W and D{\"o}rr, Marcus and van Duijn, Cornelia M and Gasparini, Paolo and Gudbjartsson, Daniel F and Gudnason, Vilmundur and Hansen, Torben and K{\"a}{\"a}b, Stefan and Kanters, J{\o}rgen K and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Lin, Henry J and Lubitz, Steven A and Mook-Kanamori, Dennis O and Conti, Francesco J and Newton-Cheh, Christopher H and Rosand, Jonathan and Rudan, Igor and Samani, Nilesh J and Sinagra, Gianfranco and Smith, Blair H and Holm, Hilma and Stricker, Bruno H and Ulivi, Sheila and Sotoodehnia, Nona and Apte, Suneel S and van der Harst, Pim and Stefansson, Kari and Munroe, Patricia B and Arking, Dan E and Lo, Cecilia W and Jamshidi, Yalda} } @article {7784, title = {ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals.}, journal = {Circ Genom Precis Med}, volume = {11}, year = {2018}, month = {2018 Jan}, pages = {e001758}, abstract = {

BACKGROUND: QT interval, measured through a standard ECG, captures the time it takes for the cardiac ventricles to depolarize and repolarize. JT interval is the component of the QT interval that reflects ventricular repolarization alone. Prolonged QT interval has been linked to higher risk of sudden cardiac arrest.

METHODS AND RESULTS: We performed an ExomeChip-wide analysis for both QT and JT intervals, including 209 449 variants, both common and rare, in 17 341 genes from the Illumina Infinium HumanExome BeadChip. We identified 10 loci that modulate QT and JT interval duration that have not been previously reported in the literature using single-variant statistical models in a meta-analysis of 95 626 individuals from 23 cohorts (comprised 83 884 European ancestry individuals, 9610 blacks, 1382 Hispanics, and 750 Asians). This brings the total number of ventricular repolarization associated loci to 45. In addition, our approach of using coding variants has highlighted the role of 17 specific genes for involvement in ventricular repolarization, 7 of which are in novel loci.

CONCLUSIONS: Our analyses show a role for myocyte internal structure and interconnections in modulating QT interval duration, adding to previous known roles of potassium, sodium, and calcium ion regulation, as well as autonomic control. We anticipate that these discoveries will open new paths to the goal of making novel remedies for the prevention of lethal ventricular arrhythmias and sudden cardiac arrest.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.117.001758}, author = {Bihlmeyer, Nathan A and Brody, Jennifer A and Smith, Albert Vernon and Warren, Helen R and Lin, Honghuang and Isaacs, Aaron and Liu, Ching-Ti and Marten, Jonathan and Radmanesh, Farid and Hall, Leanne M and Grarup, Niels and Mei, Hao and M{\"u}ller-Nurasyid, Martina and Huffman, Jennifer E and Verweij, Niek and Guo, Xiuqing and Yao, Jie and Li-Gao, Ruifang and van den Berg, Marten and Weiss, Stefan and Prins, Bram P and van Setten, Jessica and Haessler, Jeffrey and Lyytik{\"a}inen, Leo-Pekka and Li, Man and Alonso, Alvaro and Soliman, Elsayed Z and Bis, Joshua C and Austin, Tom and Chen, Yii-Der Ida and Psaty, Bruce M and Harrris, Tamara B and Launer, Lenore J and Padmanabhan, Sandosh and Dominiczak, Anna and Huang, Paul L and Xie, Zhijun and Ellinor, Patrick T and Kors, Jan A and Campbell, Archie and Murray, Alison D and Nelson, Christopher P and Tobin, Martin D and Bork-Jensen, Jette and Hansen, Torben and Pedersen, Oluf and Linneberg, Allan and Sinner, Moritz F and Peters, Annette and Waldenberger, Melanie and Meitinger, Thomas and Perz, Siegfried and Kolcic, Ivana and Rudan, Igor and de Boer, Rudolf A and van der Meer, Peter and Lin, Henry J and Taylor, Kent D and de Mutsert, Ren{\'e}e and Trompet, Stella and Jukema, J Wouter and Maan, Arie C and Stricker, Bruno H C and Rivadeneira, Fernando and Uitterlinden, Andre and V{\"o}lker, Uwe and Homuth, Georg and V{\"o}lzke, Henry and Felix, Stephan B and Mangino, Massimo and Spector, Timothy D and Bots, Michiel L and Perez, Marco and Raitakari, Olli T and K{\"a}h{\"o}nen, Mika and Mononen, Nina and Gudnason, Vilmundur and Munroe, Patricia B and Lubitz, Steven A and van Duijn, Cornelia M and Newton-Cheh, Christopher H and Hayward, Caroline and Rosand, Jonathan and Samani, Nilesh J and Kanters, J{\o}rgen K and Wilson, James G and K{\"a}{\"a}b, Stefan and Polasek, Ozren and van der Harst, Pim and Heckbert, Susan R and Rotter, Jerome I and Mook-Kanamori, Dennis O and Eijgelsheim, Mark and D{\"o}rr, Marcus and Jamshidi, Yalda and Asselbergs, Folkert W and Kooperberg, Charles and Lehtim{\"a}ki, Terho and Arking, Dan E and Sotoodehnia, Nona} } @article {7920, title = {Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders.}, journal = {Am J Hum Genet}, volume = {103}, year = {2018}, month = {2018 Nov 01}, pages = {691-706}, abstract = {

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5~{\texttimes} 10). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0\% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2018.09.009}, author = {Ligthart, Symen and Vaez, Ahmad and V{\~o}sa, Urmo and Stathopoulou, Maria G and de Vries, Paul S and Prins, Bram P and van der Most, Peter J and Tanaka, Toshiko and Naderi, Elnaz and Rose, Lynda M and Wu, Ying and Karlsson, Robert and Barbalic, Maja and Lin, Honghuang and Pool, Rene and Zhu, Gu and Mace, Aurelien and Sidore, Carlo and Trompet, Stella and Mangino, Massimo and Sabater-Lleal, Maria and Kemp, John P and Abbasi, Ali and Kacprowski, Tim and Verweij, Niek and Smith, Albert V and Huang, Tao and Marzi, Carola and Feitosa, Mary F and Lohman, Kurt K and Kleber, Marcus E and Milaneschi, Yuri and Mueller, Christian and Huq, Mahmudul and Vlachopoulou, Efthymia and Lyytik{\"a}inen, Leo-Pekka and Oldmeadow, Christopher and Deelen, Joris and Perola, Markus and Zhao, Jing Hua and Feenstra, Bjarke and Amini, Marzyeh and Lahti, Jari and Schraut, Katharina E and Fornage, Myriam and Suktitipat, Bhoom and Chen, Wei-Min and Li, Xiaohui and Nutile, Teresa and Malerba, Giovanni and Luan, Jian{\textquoteright}an and Bak, Tom and Schork, Nicholas and del Greco M, Fabiola and Thiering, Elisabeth and Mahajan, Anubha and Marioni, Riccardo E and Mihailov, Evelin and Eriksson, Joel and Ozel, Ayse Bilge and Zhang, Weihua and Nethander, Maria and Cheng, Yu-Ching and Aslibekyan, Stella and Ang, Wei and Gandin, Ilaria and Yengo, Loic and Portas, Laura and Kooperberg, Charles and Hofer, Edith and Rajan, Kumar B and Schurmann, Claudia and den Hollander, Wouter and Ahluwalia, Tarunveer S and Zhao, Jing and Draisma, Harmen H M and Ford, Ian and Timpson, Nicholas and Teumer, Alexander and Huang, Hongyan and Wahl, Simone and Liu, Yongmei and Huang, Jie and Uh, Hae-Won and Geller, Frank and Joshi, Peter K and Yanek, Lisa R and Trabetti, Elisabetta and Lehne, Benjamin and Vozzi, Diego and Verbanck, Marie and Biino, Ginevra and Saba, Yasaman and Meulenbelt, Ingrid and O{\textquoteright}Connell, Jeff R and Laakso, Markku and Giulianini, Franco and Magnusson, Patrik K E and Ballantyne, Christie M and Hottenga, Jouke Jan and Montgomery, Grant W and Rivadineira, Fernando and Rueedi, Rico and Steri, Maristella and Herzig, Karl-Heinz and Stott, David J and Menni, Cristina and Fr{\r a}nberg, Mattias and St Pourcain, Beate and Felix, Stephan B and Pers, Tune H and Bakker, Stephan J L and Kraft, Peter and Peters, Annette and Vaidya, Dhananjay and Delgado, Graciela and Smit, Johannes H and Gro{\ss}mann, Vera and Sinisalo, Juha and Sepp{\"a}l{\"a}, Ilkka and Williams, Stephen R and Holliday, Elizabeth G and Moed, Matthijs and Langenberg, Claudia and R{\"a}ikk{\"o}nen, Katri and Ding, Jingzhong and Campbell, Harry and Sale, Mich{\`e}le M and Chen, Yii-der I and James, Alan L and Ruggiero, Daniela and Soranzo, Nicole and Hartman, Catharina A and Smith, Erin N and Berenson, Gerald S and Fuchsberger, Christian and Hernandez, Dena and Tiesler, Carla M T and Giedraitis, Vilmantas and Liewald, David and Fischer, Krista and Mellstr{\"o}m, Dan and Larsson, Anders and Wang, Yunmei and Scott, William R and Lorentzon, Matthias and Beilby, John and Ryan, Kathleen A and Pennell, Craig E and Vuckovic, Dragana and Balkau, Beverly and Concas, Maria Pina and Schmidt, Reinhold and Mendes de Leon, Carlos F and Bottinger, Erwin P and Kloppenburg, Margreet and Paternoster, Lavinia and Boehnke, Michael and Musk, A W and Willemsen, Gonneke and Evans, David M and Madden, Pamela A F and K{\"a}h{\"o}nen, Mika and Kutalik, Zolt{\'a}n and Zoledziewska, Magdalena and Karhunen, Ville and Kritchevsky, Stephen B and Sattar, Naveed and Lachance, Genevieve and Clarke, Robert and Harris, Tamara B and Raitakari, Olli T and Attia, John R and van Heemst, Diana and Kajantie, Eero and Sorice, Rossella and Gambaro, Giovanni and Scott, Robert A and Hicks, Andrew A and Ferrucci, Luigi and Standl, Marie and Lindgren, Cecilia M and Starr, John M and Karlsson, Magnus and Lind, Lars and Li, Jun Z and Chambers, John C and Mori, Trevor A and de Geus, Eco J C N and Heath, Andrew C and Martin, Nicholas G and Auvinen, Juha and Buckley, Brendan M and de Craen, Anton J M and Waldenberger, Melanie and Strauch, Konstantin and Meitinger, Thomas and Scott, Rodney J and McEvoy, Mark and Beekman, Marian and Bombieri, Cristina and Ridker, Paul M and Mohlke, Karen L and Pedersen, Nancy L and Morrison, Alanna C and Boomsma, Dorret I and Whitfield, John B and Strachan, David P and Hofman, Albert and Vollenweider, Peter and Cucca, Francesco and Jarvelin, Marjo-Riitta and Jukema, J Wouter and Spector, Tim D and Hamsten, Anders and Zeller, Tanja and Uitterlinden, Andr{\'e} G and Nauck, Matthias and Gudnason, Vilmundur and Qi, Lu and Grallert, Harald and Borecki, Ingrid B and Rotter, Jerome I and M{\"a}rz, Winfried and Wild, Philipp S and Lokki, Marja-Liisa and Boyle, Michael and Salomaa, Veikko and Melbye, Mads and Eriksson, Johan G and Wilson, James F and Penninx, Brenda W J H and Becker, Diane M and Worrall, Bradford B and Gibson, Greg and Krauss, Ronald M and Ciullo, Marina and Zaza, Gianluigi and Wareham, Nicholas J and Oldehinkel, Albertine J and Palmer, Lyle J and Murray, Sarah S and Pramstaller, Peter P and Bandinelli, Stefania and Heinrich, Joachim and Ingelsson, Erik and Deary, Ian J and M{\"a}gi, Reedik and Vandenput, Liesbeth and van der Harst, Pim and Desch, Karl C and Kooner, Jaspal S and Ohlsson, Claes and Hayward, Caroline and Lehtim{\"a}ki, Terho and Shuldiner, Alan R and Arnett, Donna K and Beilin, Lawrence J and Robino, Antonietta and Froguel, Philippe and Pirastu, Mario and Jess, Tine and Koenig, Wolfgang and Loos, Ruth J F and Evans, Denis A and Schmidt, Helena and Smith, George Davey and Slagboom, P Eline and Eiriksdottir, Gudny and Morris, Andrew P and Psaty, Bruce M and Tracy, Russell P and Nolte, Ilja M and Boerwinkle, Eric and Visvikis-Siest, Sophie and Reiner, Alex P and Gross, Myron and Bis, Joshua C and Franke, Lude and Franco, Oscar H and Benjamin, Emelia J and Chasman, Daniel I and Dupuis, Jos{\'e}e and Snieder, Harold and Dehghan, Abbas and Alizadeh, Behrooz Z} } @article {8109, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 06}, pages = {957-972}, abstract = {

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.

}, keywords = {Chromosome Mapping, European Continental Ancestry Group, Genetic Association Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Inheritance Patterns, Kidney Function Tests, Phenotype, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Quantitative Trait, Heritable, Renal Insufficiency, Chronic, Uromodulin}, issn = {1546-1718}, doi = {10.1038/s41588-019-0407-x}, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B and Feitosa, Mary F and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and van der Most, Peter J and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer S and Almgren, Peter and Amin, Najaf and Arnl{\"o}v, Johan and Bakker, Stephan J L and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and Bottinger, Erwin P and Boutin, Thibaud S and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Micka{\"e}l and Carroll, Robert J and Catamo, Eulalia and Chambers, John C and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E Warwick and de Borst, Martin H and De Grandi, Alessandro and de Mutsert, Ren{\'e}e and de Vries, Aiko P J and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K and Felix, Janine F and Foo, Valencia Hui Xian and Franco, Oscar H and Franke, Andre and Freedman, Barry I and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T and Gao, He and Gasparini, Paolo and Gaziano, J Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and G{\"o}gele, Martin and Gordon, Scott D and Gudbjartsson, Daniel F and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B and Hartman, Catharina A and Hayward, Caroline and Hellwege, Jacklyn N and Heng, Chew-Kiat and Hicks, Andrew A and Hofer, Edith and Huang, Wei and Hutri-K{\"a}h{\"o}nen, Nina and Hwang, Shih-Jen and Ikram, M Arfan and Indridason, Olafur S and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W V and Jakobsdottir, Johanna and Jonas, Jost B and Joshi, Peter K and Josyula, Navya Shilpa and Jung, Bettina and K{\"a}h{\"o}nen, Mika and Kamatani, Yoichiro and Kammerer, Candace M and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E and Koenig, Wolfgang and Kooner, Jaspal S and K{\"o}rner, Antje and Kovacs, Peter and Kraja, Aldi T and Krajcoviechova, Alena and Kramer, Holly and Kr{\"a}mer, Bernhard K and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A and Langefeld, Carl D and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtim{\"a}ki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J F and Lucae, Susanne and Lukas, Mary Ann and Lyytik{\"a}inen, Leo-Pekka and M{\"a}gi, Reedik and Magnusson, Patrik K E and Mahajan, Anubha and Martin, Nicholas G and Martins, Jade and M{\"a}rz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P and Mohlke, Karen L and Mononen, Nina and Montgomery, Grant W and Mook-Kanamori, Dennis O and Mychaleckyj, Josyf C and Nadkarni, Girish N and Nalls, Mike A and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M and Noordam, Raymond and O{\textquoteright}Connell, Jeffrey and O{\textquoteright}Donoghue, Michelle L and Olafsson, Isleifur and Oldehinkel, Albertine J and Orho-Melander, Marju and Ouwehand, Willem H and Padmanabhan, Sandosh and Palmer, Nicholette D and Palsson, Runolfur and Penninx, Brenda W J H and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I and Polasek, Ozren and Ponte, Belen and Porteous, David J and Poulain, Tanja and Pramstaller, Peter P and Preuss, Michael H and Prins, Bram P and Province, Michael A and Rabelink, Ton J and Raffield, Laura M and Raitakari, Olli T and Reilly, Dermot F and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M and Ridker, Paul M and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Sch{\"o}ttker, Ben and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M and Shi, Yuan and Smith, Albert V and Smith, Blair H and Soranzo, Nicole and Spracklen, Cassandra N and Strauch, Konstantin and Stringham, Heather M and Stumvoll, Michael and Svensson, Per O and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M and Tan, Nicholas Y Q and Taylor, Kent D and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H L and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and T{\"o}njes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andr{\'e} G and Vaccargiu, Simona and van Dam, Rob M and van der Harst, Pim and van Duijn, Cornelia M and Velez Edward, Digna R and Verweij, Niek and Vogelezang, Suzanne and V{\"o}lker, Uwe and Vollenweider, Peter and Waeber, G{\'e}rard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M and Bin Wei, Wen and White, Harvey and Whitfield, John B and Wild, Sarah H and Wilson, James F and Wojczynski, Mary K and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M and Zhang, Weihua and Zonderman, Alan B and Rotter, Jerome I and Bochud, Murielle and Psaty, Bruce M and Vitart, Veronique and Wilson, James G and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I and Ho, Kevin and Morris, Andrew P and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A and Sim, Xueling and B{\"o}ger, Carsten A and Okada, Yukinori and Edwards, Todd L and Snieder, Harold and Stefansson, Kari and Hung, Adriana M and Heid, Iris M and Scholz, Markus and Teumer, Alexander and K{\"o}ttgen, Anna and Pattaro, Cristian} }