@article {6632, title = {Genome-wide association study of cardiac structure and systolic function in African Americans: the Candidate Gene Association Resource (CARe) study.}, journal = {Circ Cardiovasc Genet}, volume = {6}, year = {2013}, month = {2013 Feb}, pages = {37-46}, abstract = {

BACKGROUND: Using data from 4 community-based cohorts of African Americans, we tested the association between genome-wide markers (single-nucleotide polymorphisms) and cardiac phenotypes in the Candidate-gene Association Resource study.

METHODS AND RESULTS: Among 6765 African Americans, we related age, sex, height, and weight-adjusted residuals for 9 cardiac phenotypes (assessed by echocardiogram or magnetic resonance imaging) to 2.5 million single-nucleotide polymorphisms genotyped using Genome-wide Affymetrix Human SNP Array 6.0 (Affy6.0) and the remainder imputed. Within the cohort, genome-wide association analysis was conducted, followed by meta-analysis across cohorts using inverse variance weights (genome-wide significance threshold=4.0 {\texttimes}10(-7)). Supplementary pathway analysis was performed. We attempted replication in 3 smaller cohorts of African ancestry and tested lookups in 1 consortium of European ancestry (EchoGEN). Across the 9 phenotypes, variants in 4 genetic loci reached genome-wide significance: rs4552931 in UBE2V2 (P=1.43{\texttimes}10(-7)) for left ventricular mass, rs7213314 in WIPI1 (P=1.68{\texttimes}10(-7)) for left ventricular internal diastolic diameter, rs1571099 in PPAPDC1A (P=2.57{\texttimes}10(-8)) for interventricular septal wall thickness, and rs9530176 in KLF5 (P=4.02{\texttimes}10(-7)) for ejection fraction. Associated variants were enriched in 3 signaling pathways involved in cardiac remodeling. None of the 4 loci replicated in cohorts of African ancestry was confirmed in lookups in EchoGEN.

CONCLUSIONS: In the largest genome-wide association study of cardiac structure and function to date in African Americans, we identified 4 genetic loci related to left ventricular mass, interventricular septal wall thickness, left ventricular internal diastolic diameter, and ejection fraction, which reached genome-wide significance. Replication results suggest that these loci may be unique to individuals of African ancestry. Additional large-scale studies are warranted for these complex phenotypes.

}, keywords = {African Americans, Aged, Cohort Studies, Diastole, Echocardiography, European Continental Ancestry Group, Female, Genome-Wide Association Study, Genotype, Heart, Humans, Male, Middle Aged, Phenotype, Polymorphism, Single Nucleotide, Systole}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.111.962365}, author = {Fox, Ervin R and Musani, Solomon K and Barbalic, Maja and Lin, Honghuang and Yu, Bing and Ogunyankin, Kofo O and Smith, Nicholas L and Kutlar, Abdullah and Glazer, Nicole L and Post, Wendy S and Paltoo, Dina N and Dries, Daniel L and Farlow, Deborah N and Duarte, Christine W and Kardia, Sharon L and Meyers, Kristin J and Sun, Yan V and Arnett, Donna K and Patki, Amit A and Sha, Jin and Cui, Xiangqui and Samdarshi, Tandaw E and Penman, Alan D and Bibbins-Domingo, Kirsten and B{\r u}zkov{\'a}, Petra and Benjamin, Emelia J and Bluemke, David A and Morrison, Alanna C and Heiss, Gerardo and Carr, J Jeffrey and Tracy, Russell P and Mosley, Thomas H and Taylor, Herman A and Psaty, Bruce M and Heckbert, Susan R and Cappola, Thomas P and Vasan, Ramachandran S} } @article {7349, title = {DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases.}, journal = {Genome Biol}, volume = {17}, year = {2016}, month = {2016 Dec 12}, pages = {255}, abstract = {

BACKGROUND: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation.

RESULTS: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 {\texttimes} 10(-7)) in the discovery panel of European ancestry and replicated (P < 2.29 {\texttimes} 10(-4)) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16\%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 {\texttimes} 10(-5)), ten (17\%) CpG sites were associated with a nearby genetic variant (P < 2.50 {\texttimes} 10(-3)), and 51 (88\%) were also associated with at least one related cardiometabolic entity (P < 9.58 {\texttimes} 10(-5)). An additive weighted score of replicated CpG sites accounted for up to 6\% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants.

CONCLUSION: We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.

}, issn = {1474-760X}, doi = {10.1186/s13059-016-1119-5}, author = {Ligthart, Symen and Marzi, Carola and Aslibekyan, Stella and Mendelson, Michael M and Conneely, Karen N and Tanaka, Toshiko and Colicino, Elena and Waite, Lindsay L and Joehanes, Roby and Guan, Weihua and Brody, Jennifer A and Elks, Cathy and Marioni, Riccardo and Jhun, Min A and Agha, Golareh and Bressler, Jan and Ward-Caviness, Cavin K and Chen, Brian H and Huan, Tianxiao and Bakulski, Kelly and Salfati, Elias L and Fiorito, Giovanni and Wahl, Simone and Schramm, Katharina and Sha, Jin and Hernandez, Dena G and Just, Allan C and Smith, Jennifer A and Sotoodehnia, Nona and Pilling, Luke C and Pankow, James S and Tsao, Phil S and Liu, Chunyu and Zhao, Wei and Guarrera, Simonetta and Michopoulos, Vasiliki J and Smith, Alicia K and Peters, Marjolein J and Melzer, David and Vokonas, Pantel and Fornage, Myriam and Prokisch, Holger and Bis, Joshua C and Chu, Audrey Y and Herder, Christian and Grallert, Harald and Yao, Chen and Shah, Sonia and McRae, Allan F and Lin, Honghuang and Horvath, Steve and Fallin, Daniele and Hofman, Albert and Wareham, Nicholas J and Wiggins, Kerri L and Feinberg, Andrew P and Starr, John M and Visscher, Peter M and Murabito, Joanne M and Kardia, Sharon L R and Absher, Devin M and Binder, Elisabeth B and Singleton, Andrew B and Bandinelli, Stefania and Peters, Annette and Waldenberger, Melanie and Matullo, Giuseppe and Schwartz, Joel D and Demerath, Ellen W and Uitterlinden, Andr{\'e} G and van Meurs, Joyce B J and Franco, Oscar H and Chen, Yii-Der Ida and Levy, Daniel and Turner, Stephen T and Deary, Ian J and Ressler, Kerry J and Dupuis, Jos{\'e}e and Ferrucci, Luigi and Ong, Ken K and Assimes, Themistocles L and Boerwinkle, Eric and Koenig, Wolfgang and Arnett, Donna K and Baccarelli, Andrea A and Benjamin, Emelia J and Dehghan, Abbas} } @article {7261, title = {Epigenetic Signatures of Cigarette Smoking.}, journal = {Circ Cardiovasc Genet}, volume = {9}, year = {2016}, month = {2016 Oct}, pages = {436-447}, abstract = {

BACKGROUND: DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders.

METHODS AND RESULTS: To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine-phosphate-guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1{\texttimes}10(-7) (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1{\texttimes}10(-7) (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs.

CONCLUSIONS: Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.116.001506}, author = {Joehanes, Roby and Just, Allan C and Marioni, Riccardo E and Pilling, Luke C and Reynolds, Lindsay M and Mandaviya, Pooja R and Guan, Weihua and Xu, Tao and Elks, Cathy E and Aslibekyan, Stella and Moreno-Macias, Hortensia and Smith, Jennifer A and Brody, Jennifer A and Dhingra, Radhika and Yousefi, Paul and Pankow, James S and Kunze, Sonja and Shah, Sonia H and McRae, Allan F and Lohman, Kurt and Sha, Jin and Absher, Devin M and Ferrucci, Luigi and Zhao, Wei and Demerath, Ellen W and Bressler, Jan and Grove, Megan L and Huan, Tianxiao and Liu, Chunyu and Mendelson, Michael M and Yao, Chen and Kiel, Douglas P and Peters, Annette and Wang-Sattler, Rui and Visscher, Peter M and Wray, Naomi R and Starr, John M and Ding, Jingzhong and Rodriguez, Carlos J and Wareham, Nicholas J and Irvin, Marguerite R and Zhi, Degui and Barrdahl, Myrto and Vineis, Paolo and Ambatipudi, Srikant and Uitterlinden, Andr{\'e} G and Hofman, Albert and Schwartz, Joel and Colicino, Elena and Hou, Lifang and Vokonas, Pantel S and Hernandez, Dena G and Singleton, Andrew B and Bandinelli, Stefania and Turner, Stephen T and Ware, Erin B and Smith, Alicia K and Klengel, Torsten and Binder, Elisabeth B and Psaty, Bruce M and Taylor, Kent D and Gharib, Sina A and Swenson, Brenton R and Liang, Liming and DeMeo, Dawn L and O{\textquoteright}Connor, George T and Herceg, Zdenko and Ressler, Kerry J and Conneely, Karen N and Sotoodehnia, Nona and Kardia, Sharon L R and Melzer, David and Baccarelli, Andrea A and van Meurs, Joyce B J and Romieu, Isabelle and Arnett, Donna K and Ong, Ken K and Liu, Yongmei and Waldenberger, Melanie and Deary, Ian J and Fornage, Myriam and Levy, Daniel and London, Stephanie J} } @article {6951, title = {Interaction of methylation-related genetic variants with circulating fatty acids on plasma lipids: a meta-analysis of 7 studies and methylation analysis of 3 studies in the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium.}, journal = {Am J Clin Nutr}, volume = {103}, year = {2016}, month = {2016 Feb}, pages = {567-78}, abstract = {

BACKGROUND: DNA methylation is influenced by diet and single nucleotide polymorphisms (SNPs), and methylation modulates gene expression.

OBJECTIVE: We aimed to explore whether the gene-by-diet interactions on blood lipids act through DNA methylation.

DESIGN: We selected 7 SNPs on the basis of predicted relations in fatty acids, methylation, and lipids. We conducted a meta-analysis and a methylation and mediation analysis with the use of data from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) consortium and the ENCODE (Encyclopedia of DNA Elements) consortium.

RESULTS: On the basis of the meta-analysis of 7 cohorts in the CHARGE consortium, higher plasma HDL cholesterol was associated with fewer C alleles at ATP-binding cassette subfamily A member 1 (ABCA1) rs2246293 (β = -0.6 mg/dL, P = 0.015) and higher circulating eicosapentaenoic acid (EPA) (β = 3.87 mg/dL, P = 5.62 {\texttimes} 10(21)). The difference in HDL cholesterol associated with higher circulating EPA was dependent on genotypes at rs2246293, and it was greater for each additional C allele (β = 1.69 mg/dL, P = 0.006). In the GOLDN (Genetics of Lipid Lowering Drugs and Diet Network) study, higher ABCA1 promoter cg14019050 methylation was associated with more C alleles at rs2246293 (β = 8.84\%, P = 3.51 {\texttimes} 10(18)) and lower circulating EPA (β = -1.46\%, P = 0.009), and the mean difference in methylation of cg14019050 that was associated with higher EPA was smaller with each additional C allele of rs2246293 (β = -2.83\%, P = 0.007). Higher ABCA1 cg14019050 methylation was correlated with lower ABCA1 expression (r = -0.61, P = 0.009) in the ENCODE consortium and lower plasma HDL cholesterol in the GOLDN study (r = -0.12, P = 0.0002). An additional mediation analysis was meta-analyzed across the GOLDN study, Cardiovascular Health Study, and the Multi-Ethnic Study of Atherosclerosis. Compared with the model without the adjustment of cg14019050 methylation, the model with such adjustment provided smaller estimates of the mean plasma HDL cholesterol concentration in association with both the rs2246293 C allele and EPA and a smaller difference by rs2246293 genotypes in the EPA-associated HDL cholesterol. However, the differences between 2 nested models were NS (P > 0.05).

CONCLUSION: We obtained little evidence that the gene-by-fatty acid interactions on blood lipids act through DNA methylation.

}, keywords = {Apolipoproteins E, ATP Binding Cassette Transporter 1, Cholesterol, HDL, Cohort Studies, Diet, DNA Methylation, Eicosapentaenoic Acid, Epigenesis, Genetic, Fatty Acids, Gene Expression Regulation, Humans, Lipids, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, Triglycerides}, issn = {1938-3207}, doi = {10.3945/ajcn.115.112987}, author = {Ma, Yiyi and Follis, Jack L and Smith, Caren E and Tanaka, Toshiko and Manichaikul, Ani W and Chu, Audrey Y and Samieri, Cecilia and Zhou, Xia and Guan, Weihua and Wang, Lu and Biggs, Mary L and Chen, Yii-der I and Hernandez, Dena G and Borecki, Ingrid and Chasman, Daniel I and Rich, Stephen S and Ferrucci, Luigi and Irvin, Marguerite Ryan and Aslibekyan, Stella and Zhi, Degui and Tiwari, Hemant K and Claas, Steven A and Sha, Jin and Kabagambe, Edmond K and Lai, Chao-Qiang and Parnell, Laurence D and Lee, Yu-Chi and Amouyel, Philippe and Lambert, Jean-Charles and Psaty, Bruce M and King, Irena B and Mozaffarian, Dariush and McKnight, Barbara and Bandinelli, Stefania and Tsai, Michael Y and Ridker, Paul M and Ding, Jingzhong and Mstat, Kurt Lohmant and Liu, Yongmei and Sotoodehnia, Nona and Barberger-Gateau, Pascale and Steffen, Lyn M and Siscovick, David S and Absher, Devin and Arnett, Donna K and Ordovas, Jose M and Lemaitre, Rozenn N} } @article {9035, title = {New insights into the genetic etiology of Alzheimer{\textquoteright}s disease and related dementias.}, journal = {Nat Genet}, volume = {54}, year = {2022}, month = {2022 Apr}, pages = {412-436}, abstract = {

Characterization of the genetic landscape of Alzheimer{\textquoteright}s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/{\textquoteright}proxy{\textquoteright} AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.

}, keywords = {Alzheimer Disease, Cognitive Dysfunction, Genome-Wide Association Study, Humans, tau Proteins}, issn = {1546-1718}, doi = {10.1038/s41588-022-01024-z}, author = {Bellenguez, C{\'e}line and K{\"u}{\c c}{\"u}kali, Fahri and Jansen, Iris E and Kleineidam, Luca and Moreno-Grau, Sonia and Amin, Najaf and Naj, Adam C and Campos-Martin, Rafael and Grenier-Boley, Benjamin and Andrade, Victor and Holmans, Peter A and Boland, Anne and Damotte, Vincent and van der Lee, Sven J and Costa, Marcos R and Kuulasmaa, Teemu and Yang, Qiong and de Rojas, Itziar and Bis, Joshua C and Yaqub, Amber and Prokic, Ivana and Chapuis, Julien and Ahmad, Shahzad and Giedraitis, Vilmantas and Aarsland, Dag and Garcia-Gonzalez, Pablo and Abdelnour, Carla and Alarc{\'o}n-Mart{\'\i}n, Emilio and Alcolea, Daniel and Alegret, Montserrat and Alvarez, Ignacio and Alvarez, Victoria and Armstrong, Nicola J and Tsolaki, Anthoula and Antunez, Carmen and Appollonio, Ildebrando and Arcaro, Marina and Archetti, Silvana and Pastor, Alfonso Arias and Arosio, Beatrice and Athanasiu, Lavinia and Bailly, Henri and Banaj, Nerisa and Baquero, Miquel and Barral, Sandra and Beiser, Alexa and Pastor, Ana Bel{\'e}n and Below, Jennifer E and Benchek, Penelope and Benussi, Luisa and Berr, Claudine and Besse, C{\'e}line and Bessi, Valentina and Binetti, Giuliano and Bizarro, Alessandra and Blesa, Rafael and Boada, Merce and Boerwinkle, Eric and Borroni, Barbara and Boschi, Silvia and Boss{\`u}, Paola and Br{\r a}then, Geir and Bressler, Jan and Bresner, Catherine and Brodaty, Henry and Brookes, Keeley J and Brusco, Luis Ignacio and Buiza-Rueda, Dolores and B{\^u}rger, Katharina and Burholt, Vanessa and Bush, William S and Calero, Miguel and Cantwell, Laura B and Chene, Genevi{\`e}ve and Chung, Jaeyoon and Cuccaro, Michael L and Carracedo, Angel and Cecchetti, Roberta and Cervera-Carles, Laura and Charbonnier, Camille and Chen, Hung-Hsin and Chillotti, Caterina and Ciccone, Simona and Claassen, Jurgen A H R and Clark, Christopher and Conti, Elisa and Corma-G{\'o}mez, Ana{\"\i}s and Costantini, Emanuele and Custodero, Carlo and Daian, Delphine and Dalmasso, Maria Carolina and Daniele, Antonio and Dardiotis, Efthimios and Dartigues, Jean-Fran{\c c}ois and de Deyn, Peter Paul and de Paiva Lopes, Katia and de Witte, Lot D and Debette, Stephanie and Deckert, J{\"u}rgen and Del Ser, Teodoro and Denning, Nicola and DeStefano, Anita and Dichgans, Martin and Diehl-Schmid, Janine and Diez-Fairen, Monica and Rossi, Paolo Dionigi and Djurovic, Srdjan and Duron, Emmanuelle and D{\"u}zel, Emrah and Dufouil, Carole and Eiriksdottir, Gudny and Engelborghs, Sebastiaan and Escott-Price, Valentina and Espinosa, Ana and Ewers, Michael and Faber, Kelley M and Fabrizio, Tagliavini and Nielsen, Sune Fallgaard and Fardo, David W and Farotti, Lucia and Fenoglio, Chiara and Fern{\'a}ndez-Fuertes, Marta and Ferrari, Raffaele and Ferreira, Catarina B and Ferri, Evelyn and Fin, Bertrand and Fischer, Peter and Fladby, Tormod and Flie{\ss}bach, Klaus and Fongang, Bernard and Fornage, Myriam and Fortea, Juan and Foroud, Tatiana M and Fostinelli, Silvia and Fox, Nick C and Franco-Mac{\'\i}as, Emlio and Bullido, Mar{\'\i}a J and Frank-Garc{\'\i}a, Ana and Froelich, Lutz and Fulton-Howard, Brian and Galimberti, Daniela and Garc{\'\i}a-Alberca, Jose Maria and Garcia-Gonzalez, Pablo and Garcia-Madrona, Sebastian and Garcia-Ribas, Guillermo and Ghidoni, Roberta and Giegling, Ina and Giorgio, Giaccone and Goate, Alison M and Goldhardt, Oliver and Gomez-Fonseca, Duber and Gonz{\'a}lez-Perez, Antonio and Graff, Caroline and Grande, Giulia and Green, Emma and Grimmer, Timo and Gr{\"u}nblatt, Edna and Grunin, Michelle and Gudnason, Vilmundur and Guetta-Baranes, Tamar and Haapasalo, Annakaisa and Hadjigeorgiou, Georgios and Haines, Jonathan L and Hamilton-Nelson, Kara L and Hampel, Harald and Hanon, Olivier and Hardy, John and Hartmann, Annette M and Hausner, Lucrezia and Harwood, Janet and Heilmann-Heimbach, Stefanie and Helisalmi, Seppo and Heneka, Michael T and Hernandez, Isabel and Herrmann, Martin J and Hoffmann, Per and Holmes, Clive and Holstege, Henne and Vilas, Raquel Huerto and Hulsman, Marc and Humphrey, Jack and Biessels, Geert Jan and Jian, Xueqiu and Johansson, Charlotte and Jun, Gyungah R and Kastumata, Yuriko and Kauwe, John and Kehoe, Patrick G and Kilander, Lena and St{\r a}hlbom, Anne Kinhult and Kivipelto, Miia and Koivisto, Anne and Kornhuber, Johannes and Kosmidis, Mary H and Kukull, Walter A and Kuksa, Pavel P and Kunkle, Brian W and Kuzma, Amanda B and Lage, Carmen and Laukka, Erika J and Launer, Lenore and Lauria, Alessandra and Lee, Chien-Yueh and Lehtisalo, Jenni and Lerch, Ondrej and Lleo, Alberto and Longstreth, William and Lopez, Oscar and de Munain, Adolfo Lopez and Love, Seth and L{\"o}wemark, Malin and Luckcuck, Lauren and Lunetta, Kathryn L and Ma, Yiyi and Mac{\'\i}as, Juan and MacLeod, Catherine A and Maier, Wolfgang and Mangialasche, Francesca and Spallazzi, Marco and Marqui{\'e}, Marta and Marshall, Rachel and Martin, Eden R and Montes, Angel Mart{\'\i}n and Rodr{\'\i}guez, Carmen Mart{\'\i}nez and Masullo, Carlo and Mayeux, Richard and Mead, Simon and Mecocci, Patrizia and Medina, Miguel and Meggy, Alun and Mehrabian, Shima and Mendoza, Silvia and Men{\'e}ndez-Gonz{\'a}lez, Manuel and Mir, Pablo and Moebus, Susanne and Mol, Merel and Molina-Porcel, Laura and Montrreal, Laura and Morelli, Laura and Moreno, Fermin and Morgan, Kevin and Mosley, Thomas and N{\"o}then, Markus M and Muchnik, Carolina and Mukherjee, Shubhabrata and Nacmias, Benedetta and Ngandu, Tiia and Nicolas, Ga{\"e}l and Nordestgaard, B{\o}rge G and Olaso, Robert and Orellana, Adelina and Orsini, Michela and Ortega, Gemma and Padovani, Alessandro and Paolo, Caffarra and Papenberg, Goran and Parnetti, Lucilla and Pasquier, Florence and Pastor, Pau and Peloso, Gina and P{\'e}rez-Cord{\'o}n, Alba and P{\'e}rez-Tur, Jordi and Pericard, Pierre and Peters, Oliver and Pijnenburg, Yolande A L and Pineda, Juan A and Pi{\~n}ol-Ripoll, Gerard and Pisanu, Claudia and Polak, Thomas and Popp, Julius and Posthuma, Danielle and Priller, Josef and Puerta, Raquel and Quenez, Olivier and Quintela, In{\'e}s and Thomassen, Jesper Qvist and R{\'a}bano, Alberto and Rainero, Innocenzo and Rajabli, Farid and Ramakers, Inez and Real, Luis M and Reinders, Marcel J T and Reitz, Christiane and Reyes-Dumeyer, Dolly and Ridge, Perry and Riedel-Heller, Steffi and Riederer, Peter and Roberto, Natalia and Rodriguez-Rodriguez, Eloy and Rongve, Arvid and Allende, Irene Rosas and Rosende-Roca, Mait{\'e}e and Royo, Jose Luis and Rubino, Elisa and Rujescu, Dan and S{\'a}ez, Mar{\'\i}a Eugenia and Sakka, Paraskevi and Saltvedt, Ingvild and Sanabria, {\'A}ngela and S{\'a}nchez-Arjona, Mar{\'\i}a Bernal and Sanchez-Garcia, Florentino and Juan, Pascual S{\'a}nchez and S{\'a}nchez-Valle, Raquel and Sando, Sigrid B and Sarnowski, Chloe and Satizabal, Claudia L and Scamosci, Michela and Scarmeas, Nikolaos and Scarpini, Elio and Scheltens, Philip and Scherbaum, Norbert and Scherer, Martin and Schmid, Matthias and Schneider, Anja and Schott, Jonathan M and Selb{\ae}k, Geir and Seripa, Davide and Serrano, Manuel and Sha, Jin and Shadrin, Alexey A and Skrobot, Olivia and Slifer, Susan and Snijders, Gijsje J L and Soininen, Hilkka and Solfrizzi, Vincenzo and Solomon, Alina and Song, Yeunjoo and Sorbi, Sandro and Sotolongo-Grau, Oscar and Spalletta, Gianfranco and Spottke, Annika and Squassina, Alessio and Stordal, Eystein and Tartan, Juan Pablo and Tarraga, Lluis and Tes{\'\i}, Niccolo and Thalamuthu, Anbupalam and Thomas, Tegos and Tosto, Giuseppe and Traykov, Latchezar and Tremolizzo, Lucio and Tybj{\ae}rg-Hansen, Anne and Uitterlinden, Andre and Ullgren, Abbe and Ulstein, Ingun and Valero, Sergi and Valladares, Otto and Broeckhoven, Christine Van and Vance, Jeffery and Vardarajan, Badri N and van der Lugt, Aad and Dongen, Jasper Van and van Rooij, Jeroen and van Swieten, John and Vandenberghe, Rik and Verhey, Frans and Vidal, Jean-S{\'e}bastien and Vogelgsang, Jonathan and Vyhnalek, Martin and Wagner, Michael and Wallon, David and Wang, Li-San and Wang, Ruiqi and Weinhold, Leonie and Wiltfang, Jens and Windle, Gill and Woods, Bob and Yannakoulia, Mary and Zare, Habil and Zhao, Yi and Zhang, Xiaoling and Zhu, Congcong and Zulaica, Miren and Farrer, Lindsay A and Psaty, Bruce M and Ghanbari, Mohsen and Raj, Towfique and Sachdev, Perminder and Mather, Karen and Jessen, Frank and Ikram, M Arfan and de Mendon{\c c}a, Alexandre and Hort, Jakub and Tsolaki, Magda and Pericak-Vance, Margaret A and Amouyel, Philippe and Williams, Julie and Frikke-Schmidt, Ruth and Clarimon, Jordi and Deleuze, Jean-Francois and Rossi, Giacomina and Seshadri, Sudha and Andreassen, Ole A and Ingelsson, Martin and Hiltunen, Mikko and Sleegers, Kristel and Schellenberg, Gerard D and van Duijn, Cornelia M and Sims, Rebecca and van der Flier, Wiesje M and Ruiz, Agustin and Ramirez, Alfredo and Lambert, Jean-Charles} }