@article {6991, title = {Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near HABP2.}, journal = {Stroke}, volume = {47}, year = {2016}, month = {2016 Feb}, pages = {307-16}, abstract = {

BACKGROUND AND PURPOSE: Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years.

METHODS: The discovery stage of our genome-wide association studies included 4505 cases and 21 968 controls of European, South-Asian, and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5{\texttimes}10(-6) and performed in silico association analyses in an independent sample of <=1003 cases and 7745 controls.

RESULTS: One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5{\texttimes}10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2.

CONCLUSIONS: HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke.

}, keywords = {Adult, African Continental Ancestry Group, Age of Onset, Aged, Asian Continental Ancestry Group, Brain Ischemia, Chromosomes, Human, Pair 10, Computer Simulation, DNA, Intergenic, European Continental Ancestry Group, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Middle Aged, Odds Ratio, Polymorphism, Single Nucleotide, Serine Endopeptidases, Stroke}, issn = {1524-4628}, doi = {10.1161/STROKEAHA.115.011328}, author = {Cheng, Yu-Ching and Stanne, Tara M and Giese, Anne-Katrin and Ho, Weang Kee and Traylor, Matthew and Amouyel, Philippe and Holliday, Elizabeth G and Malik, Rainer and Xu, Huichun and Kittner, Steven J and Cole, John W and O{\textquoteright}Connell, Jeffrey R and Danesh, John and Rasheed, Asif and Zhao, Wei and Engelter, Stefan and Grond-Ginsbach, Caspar and Kamatani, Yoichiro and Lathrop, Mark and Leys, Didier and Thijs, Vincent and Metso, Tiina M and Tatlisumak, Turgut and Pezzini, Alessandro and Parati, Eugenio A and Norrving, Bo and Bevan, Steve and Rothwell, Peter M and Sudlow, Cathie and Slowik, Agnieszka and Lindgren, Arne and Walters, Matthew R and Jannes, Jim and Shen, Jess and Crosslin, David and Doheny, Kimberly and Laurie, Cathy C and Kanse, Sandip M and Bis, Joshua C and Fornage, Myriam and Mosley, Thomas H and Hopewell, Jemma C and Strauch, Konstantin and M{\"u}ller-Nurasyid, Martina and Gieger, Christian and Waldenberger, Melanie and Peters, Annette and Meisinger, Christine and Ikram, M Arfan and Longstreth, W T and Meschia, James F and Seshadri, Sudha and Sharma, Pankaj and Worrall, Bradford and Jern, Christina and Levi, Christopher and Dichgans, Martin and Boncoraglio, Giorgio B and Markus, Hugh S and Debette, Stephanie and Rolfs, Arndt and Saleheen, Danish and Mitchell, Braxton D} } @article {7683, title = {Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Apr}, pages = {524-537}, abstract = {

Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and~using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0058-3}, author = {Malik, Rainer and Chauhan, Ganesh and Traylor, Matthew and Sargurupremraj, Muralidharan and Okada, Yukinori and Mishra, Aniket and Rutten-Jacobs, Loes and Giese, Anne-Katrin and van der Laan, Sander W and Gretarsdottir, Solveig and Anderson, Christopher D and Chong, Michael and Adams, Hieab H H and Ago, Tetsuro and Almgren, Peter and Amouyel, Philippe and Ay, Hakan and Bartz, Traci M and Benavente, Oscar R and Bevan, Steve and Boncoraglio, Giorgio B and Brown, Robert D and Butterworth, Adam S and Carrera, Caty and Carty, Cara L and Chasman, Daniel I and Chen, Wei-Min and Cole, John W and Correa, Adolfo and Cotlarciuc, Ioana and Cruchaga, Carlos and Danesh, John and de Bakker, Paul I W and DeStefano, Anita L and den Hoed, Marcel and Duan, Qing and Engelter, Stefan T and Falcone, Guido J and Gottesman, Rebecca F and Grewal, Raji P and Gudnason, Vilmundur and Gustafsson, Stefan and Haessler, Jeffrey and Harris, Tamara B and Hassan, Ahamad and Havulinna, Aki S and Heckbert, Susan R and Holliday, Elizabeth G and Howard, George and Hsu, Fang-Chi and Hyacinth, Hyacinth I and Ikram, M Arfan and Ingelsson, Erik and Irvin, Marguerite R and Jian, Xueqiu and Jimenez-Conde, Jordi and Johnson, Julie A and Jukema, J Wouter and Kanai, Masahiro and Keene, Keith L and Kissela, Brett M and Kleindorfer, Dawn O and Kooperberg, Charles and Kubo, Michiaki and Lange, Leslie A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lee, Jin-Moo and Lemmens, Robin and Leys, Didier and Lewis, Cathryn M and Lin, Wei-Yu and Lindgren, Arne G and Lorentzen, Erik and Magnusson, Patrik K and Maguire, Jane and Manichaikul, Ani and McArdle, Patrick F and Meschia, James F and Mitchell, Braxton D and Mosley, Thomas H and Nalls, Michael A and Ninomiya, Toshiharu and O{\textquoteright}Donnell, Martin J and Psaty, Bruce M and Pulit, Sara L and Rannikmae, Kristiina and Reiner, Alexander P and Rexrode, Kathryn M and Rice, Kenneth and Rich, Stephen S and Ridker, Paul M and Rost, Natalia S and Rothwell, Peter M and Rotter, Jerome I and Rundek, Tatjana and Sacco, Ralph L and Sakaue, Saori and Sale, Mich{\`e}le M and Salomaa, Veikko and Sapkota, Bishwa R and Schmidt, Reinhold and Schmidt, Carsten O and Schminke, Ulf and Sharma, Pankaj and Slowik, Agnieszka and Sudlow, Cathie L M and Tanislav, Christian and Tatlisumak, Turgut and Taylor, Kent D and Thijs, Vincent N S and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiedt, Steffen and Trompet, Stella and Tzourio, Christophe and van Duijn, Cornelia M and Walters, Matthew and Wareham, Nicholas J and Wassertheil-Smoller, Sylvia and Wilson, James G and Wiggins, Kerri L and Yang, Qiong and Yusuf, Salim and Bis, Joshua C and Pastinen, Tomi and Ruusalepp, Arno and Schadt, Eric E and Koplev, Simon and Bj{\"o}rkegren, Johan L M and Codoni, Veronica and Civelek, Mete and Smith, Nicholas L and Tr{\'e}gou{\"e}t, David A and Christophersen, Ingrid E and Roselli, Carolina and Lubitz, Steven A and Ellinor, Patrick T and Tai, E Shyong and Kooner, Jaspal S and Kato, Norihiro and He, Jiang and van der Harst, Pim and Elliott, Paul and Chambers, John C and Takeuchi, Fumihiko and Johnson, Andrew D and Sanghera, Dharambir K and Melander, Olle and Jern, Christina and Strbian, Daniel and Fernandez-Cadenas, Israel and Longstreth, W T and Rolfs, Arndt and Hata, Jun and Woo, Daniel and Rosand, Jonathan and Par{\'e}, Guillaume and Hopewell, Jemma C and Saleheen, Danish and Stefansson, Kari and Worrall, Bradford B and Kittner, Steven J and Seshadri, Sudha and Fornage, Myriam and Markus, Hugh S and Howson, Joanna M M and Kamatani, Yoichiro and Debette, Stephanie and Dichgans, Martin and Malik, Rainer and Chauhan, Ganesh and Traylor, Matthew and Sargurupremraj, Muralidharan and Okada, Yukinori and Mishra, Aniket and Rutten-Jacobs, Loes and Giese, Anne-Katrin and van der Laan, Sander W and Gretarsdottir, Solveig and Anderson, Christopher D and Chong, Michael and Adams, Hieab H H and Ago, Tetsuro and Almgren, Peter and Amouyel, Philippe and Ay, Hakan and Bartz, Traci M and Benavente, Oscar R and Bevan, Steve and Boncoraglio, Giorgio B and Brown, Robert D and Butterworth, Adam S and Carrera, Caty and Carty, Cara L and Chasman, Daniel I and Chen, Wei-Min and Cole, John W and Correa, Adolfo and Cotlarciuc, Ioana and Cruchaga, Carlos and Danesh, John and de Bakker, Paul I W and DeStefano, Anita L and Hoed, Marcel den and Duan, Qing and Engelter, Stefan T and Falcone, Guido J and Gottesman, Rebecca F and Grewal, Raji P and Gudnason, Vilmundur and Gustafsson, Stefan and Haessler, Jeffrey and Harris, Tamara B and Hassan, Ahamad and Havulinna, Aki S and Heckbert, Susan R and Holliday, Elizabeth G and Howard, George and Hsu, Fang-Chi and Hyacinth, Hyacinth I and Ikram, M Arfan and Ingelsson, Erik and Irvin, Marguerite R and Jian, Xueqiu and Jimenez-Conde, Jordi and Johnson, Julie A and Jukema, J Wouter and Kanai, Masahiro and Keene, Keith L and Kissela, Brett M and Kleindorfer, Dawn O and Kooperberg, Charles and Kubo, Michiaki and Lange, Leslie A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lee, Jin-Moo and Lemmens, Robin and Leys, Didier and Lewis, Cathryn M and Lin, Wei-Yu and Lindgren, Arne G and Lorentzen, Erik and Magnusson, Patrik K and Maguire, Jane and Manichaikul, Ani and McArdle, Patrick F and Meschia, James F and Mitchell, Braxton D and Mosley, Thomas H and Nalls, Michael A and Ninomiya, Toshiharu and O{\textquoteright}Donnell, Martin J and Psaty, Bruce M and Pulit, Sara L and Rannikmae, Kristiina and Reiner, Alexander P and Rexrode, Kathryn M and Rice, Kenneth and Rich, Stephen S and Ridker, Paul M and Rost, Natalia S and Rothwell, Peter M and Rotter, Jerome I and Rundek, Tatjana and Sacco, Ralph L and Sakaue, Saori and Sale, Mich{\`e}le M and Salomaa, Veikko and Sapkota, Bishwa R and Schmidt, Reinhold and Schmidt, Carsten O and Schminke, Ulf and Sharma, Pankaj and Slowik, Agnieszka and Sudlow, Cathie L M and Tanislav, Christian and Tatlisumak, Turgut and Taylor, Kent D and Thijs, Vincent N S and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Tiedt, Steffen and Trompet, Stella and Tzourio, Christophe and van Duijn, Cornelia M and Walters, Matthew and Wareham, Nicholas J and Wassertheil-Smoller, Sylvia and Wilson, James G and Wiggins, Kerri L and Yang, Qiong and Yusuf, Salim and Amin, Najaf and Aparicio, Hugo S and Arnett, Donna K and Attia, John and Beiser, Alexa S and Berr, Claudine and Buring, Julie E and Bustamante, Mariana and Caso, Valeria and Cheng, Yu-Ching and Choi, Seung Hoan and Chowhan, Ayesha and Cullell, Natalia and Dartigues, Jean-Fran{\c c}ois and Delavaran, Hossein and Delgado, Pilar and D{\"o}rr, Marcus and Engstr{\"o}m, Gunnar and Ford, Ian and Gurpreet, Wander S and Hamsten, Anders and Heitsch, Laura and Hozawa, Atsushi and Ibanez, Laura and Ilinca, Andreea and Ingelsson, Martin and Iwasaki, Motoki and Jackson, Rebecca D and Jood, Katarina and Jousilahti, Pekka and Kaffashian, Sara and Kalra, Lalit and Kamouchi, Masahiro and Kitazono, Takanari and Kjartansson, Olafur and Kloss, Manja and Koudstaal, Peter J and Krupinski, Jerzy and Labovitz, Daniel L and Laurie, Cathy C and Levi, Christopher R and Li, Linxin and Lind, Lars and Lindgren, Cecilia M and Lioutas, Vasileios and Liu, Yong Mei and Lopez, Oscar L and Makoto, Hirata and Martinez-Majander, Nicolas and Matsuda, Koichi and Minegishi, Naoko and Montaner, Joan and Morris, Andrew P and Mui{\~n}o, Elena and M{\"u}ller-Nurasyid, Martina and Norrving, Bo and Ogishima, Soichi and Parati, Eugenio A and Peddareddygari, Leema Reddy and Pedersen, Nancy L and Pera, Joanna and Perola, Markus and Pezzini, Alessandro and Pileggi, Silvana and Rabionet, Raquel and Riba-Llena, Iolanda and Ribas{\'e}s, Marta and Romero, Jose R and Roquer, Jaume and Rudd, Anthony G and Sarin, Antti-Pekka and Sarju, Ralhan and Sarnowski, Chloe and Sasaki, Makoto and Satizabal, Claudia L and Satoh, Mamoru and Sattar, Naveed and Sawada, Norie and Sibolt, Gerli and Sigurdsson, {\'A}sgeir and Smith, Albert and Sobue, Kenji and Soriano-T{\'a}rraga, Carolina and Stanne, Tara and Stine, O Colin and Stott, David J and Strauch, Konstantin and Takai, Takako and Tanaka, Hideo and Tanno, Kozo and Teumer, Alexander and Tomppo, Liisa and Torres-Aguila, Nuria P and Touze, Emmanuel and Tsugane, Shoichiro and Uitterlinden, Andr{\'e} G and Valdimarsson, Einar M and van der Lee, Sven J and V{\"o}lzke, Henry and Wakai, Kenji and Weir, David and Williams, Stephen R and Wolfe, Charles D A and Wong, Quenna and Xu, Huichun and Yamaji, Taiki and Sanghera, Dharambir K and Melander, Olle and Jern, Christina and Strbian, Daniel and Fernandez-Cadenas, Israel and Longstreth, W T and Rolfs, Arndt and Hata, Jun and Woo, Daniel and Rosand, Jonathan and Par{\'e}, Guillaume and Hopewell, Jemma C and Saleheen, Danish and Stefansson, Kari and Worrall, Bradford B and Kittner, Steven J and Seshadri, Sudha and Fornage, Myriam and Markus, Hugh S and Howson, Joanna M M and Kamatani, Yoichiro and Debette, Stephanie and Dichgans, Martin} } @article {8205, title = {Impact of Rare and Common Genetic Variants on Diabetes Diagnosis by Hemoglobin A1c in Multi-Ancestry Cohorts: The Trans-Omics for Precision Medicine Program.}, journal = {Am J Hum Genet}, volume = {105}, year = {2019}, month = {2019 Oct 03}, pages = {706-718}, abstract = {

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12\% in African-Americans, MAF = 2\% in Hispanics) lowered HbA1c (-0.88\% in hemizygous males, -0.34\% in heterozygous females) and explained 23\% of HbA1c variance in African-Americans and 4\% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5\%; -0.98\% in hemizygous males, -0.46\% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2019.08.010}, author = {Sarnowski, Chloe and Leong, Aaron and Raffield, Laura M and Wu, Peitao and de Vries, Paul S and DiCorpo, Daniel and Guo, Xiuqing and Xu, Huichun and Liu, Yongmei and Zheng, Xiuwen and Hu, Yao and Brody, Jennifer A and Goodarzi, Mark O and Hidalgo, Bertha A and Highland, Heather M and Jain, Deepti and Liu, Ching-Ti and Naik, Rakhi P and O{\textquoteright}Connell, Jeffrey R and Perry, James A and Porneala, Bianca C and Selvin, Elizabeth and Wessel, Jennifer and Psaty, Bruce M and Curran, Joanne E and Peralta, Juan M and Blangero, John and Kooperberg, Charles and Mathias, Rasika and Johnson, Andrew D and Reiner, Alexander P and Mitchell, Braxton D and Cupples, L Adrienne and Vasan, Ramachandran S and Correa, Adolfo and Morrison, Alanna C and Boerwinkle, Eric and Rotter, Jerome I and Rich, Stephen S and Manning, Alisa K and Dupuis, Jos{\'e}e and Meigs, James B} } @article {9246, title = {Correlations between complex human phenotypes vary by genetic background, gender, and environment.}, journal = {Cell Rep Med}, volume = {3}, year = {2022}, month = {2022 Dec 20}, pages = {100844}, abstract = {

We develop a closed-form Haseman-Elston estimator for genetic and environmental correlation coefficients between complex phenotypes, which we term HEc, that is as precise as GCTA yet \~{}20{\texttimes} faster. We estimate genetic and environmental correlations between over 7,000 phenotype pairs in subgroups from the Trans-Omics in Precision Medicine (TOPMed) program. We demonstrate substantial differences in both heritabilities and genetic correlations for multiple phenotypes and phenotype pairs between individuals of self-reported Black, Hispanic/Latino, and White backgrounds. We similarly observe differences in many of the genetic and environmental correlations between genders. To estimate the contribution of genetics to the observed phenotypic correlation, we introduce "fractional genetic correlation" as the fraction of phenotypic correlation explained by genetics. Finally, we quantify the enrichment of correlations between phenotypic domains, each of which is comprised of multiple phenotypes. Altogether, we demonstrate that the observed correlations between complex human phenotypes depend on the genetic background of the individuals, their gender, and their environment.

}, keywords = {Female, Genetic Background, Humans, Male, Phenotype}, issn = {2666-3791}, doi = {10.1016/j.xcrm.2022.100844}, author = {Elgart, Michael and Goodman, Matthew O and Isasi, Carmen and Chen, Han and Morrison, Alanna C and de Vries, Paul S and Xu, Huichun and Manichaikul, Ani W and Guo, Xiuqing and Franceschini, Nora and Psaty, Bruce M and Rich, Stephen S and Rotter, Jerome I and Lloyd-Jones, Donald M and Fornage, Myriam and Correa, Adolfo and Heard-Costa, Nancy L and Vasan, Ramachandran S and Hernandez, Ryan and Kaplan, Robert C and Redline, Susan and Sofer, Tamar} } @article {9172, title = {Stroke genetics informs drug discovery and risk prediction across ancestries.}, journal = {Nature}, year = {2022}, month = {2022 Sep 30}, abstract = {

Previous genome-wide association studies (GWASs) of stroke~-~the second leading cause of death worldwide~-~were conducted predominantly in populations of European ancestry. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33\% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30\% non-European) and 1,013,843 control individuals, 87\% of the primary stroke risk loci and 60\% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.

}, issn = {1476-4687}, doi = {10.1038/s41586-022-05165-3}, author = {Mishra, Aniket and Malik, Rainer and Hachiya, Tsuyoshi and J{\"u}rgenson, Tuuli and Namba, Shinichi and Posner, Daniel C and Kamanu, Frederick K and Koido, Masaru and Le Grand, Quentin and Shi, Mingyang and He, Yunye and Georgakis, Marios K and Caro, Ilana and Krebs, Kristi and Liaw, Yi-Ching and Vaura, Felix C and Lin, Kuang and Winsvold, Bendik Slagsvold and Srinivasasainagendra, Vinodh and Parodi, Livia and Bae, Hee-Joon and Chauhan, Ganesh and Chong, Michael R and Tomppo, Liisa and Akinyemi, Rufus and Roshchupkin, Gennady V and Habib, Naomi and Jee, Yon Ho and Thomassen, Jesper Qvist and Abedi, Vida and C{\'a}rcel-M{\'a}rquez, Jara and Nygaard, Marianne and Leonard, Hampton L and Yang, Chaojie and Yonova-Doing, Ekaterina and Knol, Maria J and Lewis, Adam J and Judy, Renae L and Ago, Tetsuro and Amouyel, Philippe and Armstrong, Nicole D and Bakker, Mark K and Bartz, Traci M and Bennett, David A and Bis, Joshua C and Bordes, Constance and B{\o}rte, Sigrid and Cain, Anael and Ridker, Paul M and Cho, Kelly and Chen, Zhengming and Cruchaga, Carlos and Cole, John W and De Jager, Phil L and de Cid, Rafael and Endres, Matthias and Ferreira, Leslie E and Geerlings, Mirjam I and Gasca, Natalie C and Gudnason, Vilmundur and Hata, Jun and He, Jing and Heath, Alicia K and Ho, Yuk-Lam and Havulinna, Aki S and Hopewell, Jemma C and Hyacinth, Hyacinth I and Inouye, Michael and Jacob, Mina A and Jeon, Christina E and Jern, Christina and Kamouchi, Masahiro and Keene, Keith L and Kitazono, Takanari and Kittner, Steven J and Konuma, Takahiro and Kumar, Amit and Lacaze, Paul and Launer, Lenore J and Lee, Keon-Joo and Lepik, Kaido and Li, Jiang and Li, Liming and Manichaikul, Ani and Markus, Hugh S and Marston, Nicholas A and Meitinger, Thomas and Mitchell, Braxton D and Montellano, Felipe A and Morisaki, Takayuki and Mosley, Thomas H and Nalls, Mike A and Nordestgaard, B{\o}rge G and O{\textquoteright}Donnell, Martin J and Okada, Yukinori and Onland-Moret, N Charlotte and Ovbiagele, Bruce and Peters, Annette and Psaty, Bruce M and Rich, Stephen S and Rosand, Jonathan and Sabatine, Marc S and Sacco, Ralph L and Saleheen, Danish and Sandset, Else Charlotte and Salomaa, Veikko and Sargurupremraj, Muralidharan and Sasaki, Makoto and Satizabal, Claudia L and Schmidt, Carsten O and Shimizu, Atsushi and Smith, Nicholas L and Sloane, Kelly L and Sutoh, Yoichi and Sun, Yan V and Tanno, Kozo and Tiedt, Steffen and Tatlisumak, Turgut and Torres-Aguila, Nuria P and Tiwari, Hemant K and Tr{\'e}gou{\"e}t, David-Alexandre and Trompet, Stella and Tuladhar, Anil Man and Tybj{\ae}rg-Hansen, Anne and van Vugt, Marion and Vibo, Riina and Verma, Shefali S and Wiggins, Kerri L and Wennberg, Patrik and Woo, Daniel and Wilson, Peter W F and Xu, Huichun and Yang, Qiong and Yoon, Kyungheon and Millwood, Iona Y and Gieger, Christian and Ninomiya, Toshiharu and Grabe, Hans J and Jukema, J Wouter and Rissanen, Ina L and Strbian, Daniel and Kim, Young Jin and Chen, Pei-Hsin and Mayerhofer, Ernst and Howson, Joanna M M and Irvin, Marguerite R and Adams, Hieab and Wassertheil-Smoller, Sylvia and Christensen, Kaare and Ikram, Mohammad A and Rundek, Tatjana and Worrall, Bradford B and Lathrop, G Mark and Riaz, Moeen and Simonsick, Eleanor M and K{\~o}rv, Janika and Fran{\c c}a, Paulo H C and Zand, Ramin and Prasad, Kameshwar and Frikke-Schmidt, Ruth and de Leeuw, Frank-Erik and Liman, Thomas and Haeusler, Karl Georg and Ruigrok, Ynte M and Heuschmann, Peter Ulrich and Longstreth, W T and Jung, Keum Ji and Bastarache, Lisa and Par{\'e}, Guillaume and Damrauer, Scott M and Chasman, Daniel I and Rotter, Jerome I and Anderson, Christopher D and Zwart, John-Anker and Niiranen, Teemu J and Fornage, Myriam and Liaw, Yung-Po and Seshadri, Sudha and Fernandez-Cadenas, Israel and Walters, Robin G and Ruff, Christian T and Owolabi, Mayowa O and Huffman, Jennifer E and Milani, Lili and Kamatani, Yoichiro and Dichgans, Martin and Debette, Stephanie} } @article {9158, title = {Whole genome sequence association analysis of fasting glucose and fasting insulin levels in diverse cohorts from the NHLBI TOPMed program.}, journal = {Commun Biol}, volume = {5}, year = {2022}, month = {2022 07 28}, pages = {756}, abstract = {

The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI{\textquoteright}s Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.

}, keywords = {Diabetes Mellitus, Type 2, Fasting, Glucose, Humans, Insulin, National Heart, Lung, and Blood Institute (U.S.), Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Precision Medicine, Receptors, Immunologic, United States}, issn = {2399-3642}, doi = {10.1038/s42003-022-03702-4}, author = {DiCorpo, Daniel and Gaynor, Sheila M and Russell, Emily M and Westerman, Kenneth E and Raffield, Laura M and Majarian, Timothy D and Wu, Peitao and Sarnowski, Chloe and Highland, Heather M and Jackson, Anne and Hasbani, Natalie R and de Vries, Paul S and Brody, Jennifer A and Hidalgo, Bertha and Guo, Xiuqing and Perry, James A and O{\textquoteright}Connell, Jeffrey R and Lent, Samantha and Montasser, May E and Cade, Brian E and Jain, Deepti and Wang, Heming and D{\textquoteright}Oliveira Albanus, Ricardo and Varshney, Arushi and Yanek, Lisa R and Lange, Leslie and Palmer, Nicholette D and Almeida, Marcio and Peralta, Juan M and Aslibekyan, Stella and Baldridge, Abigail S and Bertoni, Alain G and Bielak, Lawrence F and Chen, Chung-Shiuan and Chen, Yii-Der Ida and Choi, Won Jung and Goodarzi, Mark O and Floyd, James S and Irvin, Marguerite R and Kalyani, Rita R and Kelly, Tanika N and Lee, Seonwook and Liu, Ching-Ti and Loesch, Douglas and Manson, JoAnn E and Minster, Ryan L and Naseri, Take and Pankow, James S and Rasmussen-Torvik, Laura J and Reiner, Alexander P and Reupena, Muagututi{\textquoteright}a Sefuiva and Selvin, Elizabeth and Smith, Jennifer A and Weeks, Daniel E and Xu, Huichun and Yao, Jie and Zhao, Wei and Parker, Stephen and Alonso, Alvaro and Arnett, Donna K and Blangero, John and Boerwinkle, Eric and Correa, Adolfo and Cupples, L Adrienne and Curran, Joanne E and Duggirala, Ravindranath and He, Jiang and Heckbert, Susan R and Kardia, Sharon L R and Kim, Ryan W and Kooperberg, Charles and Liu, Simin and Mathias, Rasika A and McGarvey, Stephen T and Mitchell, Braxton D and Morrison, Alanna C and Peyser, Patricia A and Psaty, Bruce M and Redline, Susan and Shuldiner, Alan R and Taylor, Kent D and Vasan, Ramachandran S and Viaud-Martinez, Karine A and Florez, Jose C and Wilson, James G and Sladek, Robert and Rich, Stephen S and Rotter, Jerome I and Lin, Xihong and Dupuis, Jos{\'e}e and Meigs, James B and Wessel, Jennifer and Manning, Alisa K} } @article {9479, title = {Carriers of rare damaging genetic variants are at lower risk of atherosclerotic disease.}, journal = {medRxiv}, year = {2023}, month = {2023 Aug 16}, abstract = {

BACKGROUND: The CCL2/CCR2 axis governs monocyte trafficking and recruitment to atherosclerotic lesions. Human genetic analyses and population-based studies support an association between circulating CCL2 levels and atherosclerosis. Still, it remains unknown whether pharmacological targeting of CCR2, the main CCL2 receptor, would provide protection against human atherosclerotic disease.

METHODS: In whole-exome sequencing data from 454,775 UK Biobank participants (40-69 years), we identified predicted loss-of-function (LoF) or damaging missense (REVEL score >0.5) variants within the gene. We prioritized variants associated with lower monocyte count (p<0.05) and tested associations with vascular risk factors and risk of atherosclerotic disease over a mean follow-up of 14 years. The results were replicated in a pooled cohort of three independent datasets (TOPMed, deCODE and Penn Medicine BioBank; total n=441,445) and the effect of the most frequent damaging variant was experimentally validated.

RESULTS: A total of 45 predicted LoF or damaging missense variants were identified in the gene, 4 of which were also significantly associated with lower monocyte count, but not with other white blood cell counts. Heterozygous carriers of these variants were at a lower risk of a combined atherosclerosis outcome, showed a lower burden of atherosclerosis across four vascular beds, and were at a lower lifetime risk of coronary artery disease and myocardial infarction. There was no evidence of association with vascular risk factors including LDL-cholesterol, blood pressure, glycemic status, or C-reactive protein. Using a cAMP assay, we found that cells transfected with the most frequent damaging variant (3:46358273:T:A, M249K, 547 carriers, frequency: 0.14\%) show a decrease in signaling in response to CCL2. The associations of the M249K variant with myocardial infarction were consistent across cohorts (OR : 0.62 95\%CI: 0.39-0.96; OR : 0.64 95\%CI: 0.34-1.19; OR : 0.64 95\%CI: 0.45-0.90). In a phenome-wide association study, we found no evidence for higher risk of common infections or mortality among carriers of damaging variants.

CONCLUSIONS: Heterozygous carriers of damaging variants have a lower burden of atherosclerosis and lower lifetime risk of myocardial infarction. In conjunction with previous evidence from experimental and epidemiological studies, our findings highlight the translational potential of CCR2-targeting as an atheroprotective approach.

}, doi = {10.1101/2023.08.14.23294063}, author = {Georgakis, Marios K and Malik, Rainer and Hasbani, Natalie R and Shakt, Gabrielle and Morrison, Alanna C and Tsao, Noah L and Judy, Renae and Mitchell, Braxton D and Xu, Huichun and Montasser, May E and Do, Ron and Kenny, Eimear E and Loos, Ruth J F and Terry, James G and Carr, John Jeffrey and Bis, Joshua C and Psaty, Bruce M and Longstreth, W T and Young, Kendra A and Lutz, Sharon M and Cho, Michael H and Broome, Jai and Khan, Alyna T and Wang, Fei Fei and Heard-Costa, Nancy and Seshadri, Sudha and Vasan, Ramachandran S and Palmer, Nicholette D and Freedman, Barry I and Bowden, Donald W and Yanek, Lisa R and Kral, Brian G and Becker, Lewis C and Peyser, Patricia A and Bielak, Lawrence F and Ammous, Farah and Carson, April P and Hall, Michael E and Raffield, Laura M and Rich, Stephen S and Post, Wendy S and Tracy, Russel P and Taylor, Kent D and Guo, Xiuqing and Mahaney, Michael C and Curran, Joanne E and Blangero, John and Clarke, Shoa L and Haessler, Jeffrey W and Hu, Yao and Assimes, Themistocles L and Kooperberg, Charles and Damrauer, Scott M and Rotter, Jerome I and de Vries, Paul S and Dichgans, Martin} }