@article {7144, title = {Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure.}, journal = {PLoS Genet}, volume = {12}, year = {2016}, month = {2016 May}, pages = {e1006034}, abstract = {

Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinants of mortality in patients with new-onset heart failure, we performed a meta-analysis of genome-wide association studies and follow-up genotyping in independent populations. We identified and replicated an association for a genetic variant on chromosome 5q22 with 36\% increased risk of death in subjects with heart failure (rs9885413, P = 2.7x10-9). We provide evidence from reporter gene assays, computational predictions and epigenomic marks that this polymorphism increases activity of an enhancer region active in multiple human tissues. The polymorphism was further reproducibly associated with a DNA methylation signature in whole blood (P = 4.5x10-40) that also associated with allergic sensitization and expression in blood of the cytokine TSLP (P = 1.1x10-4). Knockdown of the transcription factor predicted to bind the enhancer region (NHLH1) in a human cell line (HEK293) expressing NHLH1 resulted in lower TSLP expression. In addition, we observed evidence of recent positive selection acting on the risk allele in populations of African descent. Our findings provide novel genetic leads to factors that influence mortality in patients with heart failure.

}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1006034}, author = {Smith, J Gustav and Felix, Janine F and Morrison, Alanna C and Kalogeropoulos, Andreas and Trompet, Stella and Wilk, Jemma B and Gidl{\"o}f, Olof and Wang, Xinchen and Morley, Michael and Mendelson, Michael and Joehanes, Roby and Ligthart, Symen and Shan, Xiaoyin and Bis, Joshua C and Wang, Ying A and Sj{\"o}gren, Marketa and Ngwa, Julius and Brandimarto, Jeffrey and Stott, David J and Aguilar, David and Rice, Kenneth M and Sesso, Howard D and Demissie, Serkalem and Buckley, Brendan M and Taylor, Kent D and Ford, Ian and Yao, Chen and Liu, Chunyu and Sotoodehnia, Nona and van der Harst, Pim and Stricker, Bruno H Ch and Kritchevsky, Stephen B and Liu, Yongmei and Gaziano, J Michael and Hofman, Albert and Moravec, Christine S and Uitterlinden, Andr{\'e} G and Kellis, Manolis and van Meurs, Joyce B and Margulies, Kenneth B and Dehghan, Abbas and Levy, Daniel and Olde, Bj{\"o}rn and Psaty, Bruce M and Cupples, L Adrienne and Jukema, J Wouter and Djouss{\'e}, Luc and Franco, Oscar H and Boerwinkle, Eric and Boyer, Laurie A and Newton-Cheh, Christopher and Butler, Javed and Vasan, Ramachandran S and Cappola, Thomas P and Smith, Nicholas L} } @article {7349, title = {DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases.}, journal = {Genome Biol}, volume = {17}, year = {2016}, month = {2016 Dec 12}, pages = {255}, abstract = {

BACKGROUND: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation.

RESULTS: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 {\texttimes} 10(-7)) in the discovery panel of European ancestry and replicated (P < 2.29 {\texttimes} 10(-4)) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16\%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 {\texttimes} 10(-5)), ten (17\%) CpG sites were associated with a nearby genetic variant (P < 2.50 {\texttimes} 10(-3)), and 51 (88\%) were also associated with at least one related cardiometabolic entity (P < 9.58 {\texttimes} 10(-5)). An additive weighted score of replicated CpG sites accounted for up to 6\% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants.

CONCLUSION: We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.

}, issn = {1474-760X}, doi = {10.1186/s13059-016-1119-5}, author = {Ligthart, Symen and Marzi, Carola and Aslibekyan, Stella and Mendelson, Michael M and Conneely, Karen N and Tanaka, Toshiko and Colicino, Elena and Waite, Lindsay L and Joehanes, Roby and Guan, Weihua and Brody, Jennifer A and Elks, Cathy and Marioni, Riccardo and Jhun, Min A and Agha, Golareh and Bressler, Jan and Ward-Caviness, Cavin K and Chen, Brian H and Huan, Tianxiao and Bakulski, Kelly and Salfati, Elias L and Fiorito, Giovanni and Wahl, Simone and Schramm, Katharina and Sha, Jin and Hernandez, Dena G and Just, Allan C and Smith, Jennifer A and Sotoodehnia, Nona and Pilling, Luke C and Pankow, James S and Tsao, Phil S and Liu, Chunyu and Zhao, Wei and Guarrera, Simonetta and Michopoulos, Vasiliki J and Smith, Alicia K and Peters, Marjolein J and Melzer, David and Vokonas, Pantel and Fornage, Myriam and Prokisch, Holger and Bis, Joshua C and Chu, Audrey Y and Herder, Christian and Grallert, Harald and Yao, Chen and Shah, Sonia and McRae, Allan F and Lin, Honghuang and Horvath, Steve and Fallin, Daniele and Hofman, Albert and Wareham, Nicholas J and Wiggins, Kerri L and Feinberg, Andrew P and Starr, John M and Visscher, Peter M and Murabito, Joanne M and Kardia, Sharon L R and Absher, Devin M and Binder, Elisabeth B and Singleton, Andrew B and Bandinelli, Stefania and Peters, Annette and Waldenberger, Melanie and Matullo, Giuseppe and Schwartz, Joel D and Demerath, Ellen W and Uitterlinden, Andr{\'e} G and van Meurs, Joyce B J and Franco, Oscar H and Chen, Yii-Der Ida and Levy, Daniel and Turner, Stephen T and Deary, Ian J and Ressler, Kerry J and Dupuis, Jos{\'e}e and Ferrucci, Luigi and Ong, Ken K and Assimes, Themistocles L and Boerwinkle, Eric and Koenig, Wolfgang and Arnett, Donna K and Baccarelli, Andrea A and Benjamin, Emelia J and Dehghan, Abbas} } @article {7261, title = {Epigenetic Signatures of Cigarette Smoking.}, journal = {Circ Cardiovasc Genet}, volume = {9}, year = {2016}, month = {2016 Oct}, pages = {436-447}, abstract = {

BACKGROUND: DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders.

METHODS AND RESULTS: To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine-phosphate-guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1{\texttimes}10(-7) (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1{\texttimes}10(-7) (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs.

CONCLUSIONS: Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.116.001506}, author = {Joehanes, Roby and Just, Allan C and Marioni, Riccardo E and Pilling, Luke C and Reynolds, Lindsay M and Mandaviya, Pooja R and Guan, Weihua and Xu, Tao and Elks, Cathy E and Aslibekyan, Stella and Moreno-Macias, Hortensia and Smith, Jennifer A and Brody, Jennifer A and Dhingra, Radhika and Yousefi, Paul and Pankow, James S and Kunze, Sonja and Shah, Sonia H and McRae, Allan F and Lohman, Kurt and Sha, Jin and Absher, Devin M and Ferrucci, Luigi and Zhao, Wei and Demerath, Ellen W and Bressler, Jan and Grove, Megan L and Huan, Tianxiao and Liu, Chunyu and Mendelson, Michael M and Yao, Chen and Kiel, Douglas P and Peters, Annette and Wang-Sattler, Rui and Visscher, Peter M and Wray, Naomi R and Starr, John M and Ding, Jingzhong and Rodriguez, Carlos J and Wareham, Nicholas J and Irvin, Marguerite R and Zhi, Degui and Barrdahl, Myrto and Vineis, Paolo and Ambatipudi, Srikant and Uitterlinden, Andr{\'e} G and Hofman, Albert and Schwartz, Joel and Colicino, Elena and Hou, Lifang and Vokonas, Pantel S and Hernandez, Dena G and Singleton, Andrew B and Bandinelli, Stefania and Turner, Stephen T and Ware, Erin B and Smith, Alicia K and Klengel, Torsten and Binder, Elisabeth B and Psaty, Bruce M and Taylor, Kent D and Gharib, Sina A and Swenson, Brenton R and Liang, Liming and DeMeo, Dawn L and O{\textquoteright}Connor, George T and Herceg, Zdenko and Ressler, Kerry J and Conneely, Karen N and Sotoodehnia, Nona and Kardia, Sharon L R and Melzer, David and Baccarelli, Andrea A and van Meurs, Joyce B J and Romieu, Isabelle and Arnett, Donna K and Ong, Ken K and Liu, Yongmei and Waldenberger, Melanie and Deary, Ian J and Fornage, Myriam and Levy, Daniel and London, Stephanie J} } @article {7569, title = {New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475 000 Individuals.}, journal = {Circ Cardiovasc Genet}, volume = {10}, year = {2017}, month = {2017 Oct}, abstract = {

BACKGROUND: Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association.

METHODS AND RESULTS: Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (P<5{\texttimes}10-8) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant.

CONCLUSIONS: We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.

}, issn = {1942-3268}, doi = {10.1161/CIRCGENETICS.117.001778}, author = {Kraja, Aldi T and Cook, James P and Warren, Helen R and Surendran, Praveen and Liu, Chunyu and Evangelou, Evangelos and Manning, Alisa K and Grarup, Niels and Drenos, Fotios and Sim, Xueling and Smith, Albert Vernon and Amin, Najaf and Blakemore, Alexandra I F and Bork-Jensen, Jette and Brandslund, Ivan and Farmaki, Aliki-Eleni and Fava, Cristiano and Ferreira, Teresa and Herzig, Karl-Heinz and Giri, Ayush and Giulianini, Franco and Grove, Megan L and Guo, Xiuqing and Harris, Sarah E and Have, Christian T and Havulinna, Aki S and Zhang, He and J{\o}rgensen, Marit E and K{\"a}r{\"a}j{\"a}m{\"a}ki, AnneMari and Kooperberg, Charles and Linneberg, Allan and Little, Louis and Liu, Yongmei and Bonnycastle, Lori L and Lu, Yingchang and M{\"a}gi, Reedik and Mahajan, Anubha and Malerba, Giovanni and Marioni, Riccardo E and Mei, Hao and Menni, Cristina and Morrison, Alanna C and Padmanabhan, Sandosh and Palmas, Walter and Poveda, Alaitz and Rauramaa, Rainer and Rayner, Nigel William and Riaz, Muhammad and Rice, Ken and Richard, Melissa A and Smith, Jennifer A and Southam, Lorraine and Stan{\v c}{\'a}kov{\'a}, Alena and Stirrups, Kathleen E and Tragante, Vinicius and Tuomi, Tiinamaija and Tzoulaki, Ioanna and Varga, Tibor V and Weiss, Stefan and Yiorkas, Andrianos M and Young, Robin and Zhang, Weihua and Barnes, Michael R and Cabrera, Claudia P and Gao, He and Boehnke, Michael and Boerwinkle, Eric and Chambers, John C and Connell, John M and Christensen, Cramer K and de Boer, Rudolf A and Deary, Ian J and Dedoussis, George and Deloukas, Panos and Dominiczak, Anna F and D{\"o}rr, Marcus and Joehanes, Roby and Edwards, Todd L and Esko, T{\~o}nu and Fornage, Myriam and Franceschini, Nora and Franks, Paul W and Gambaro, Giovanni and Groop, Leif and Hallmans, G{\"o}ran and Hansen, Torben and Hayward, Caroline and Heikki, Oksa and Ingelsson, Erik and Tuomilehto, Jaakko and Jarvelin, Marjo-Riitta and Kardia, Sharon L R and Karpe, Fredrik and Kooner, Jaspal S and Lakka, Timo A and Langenberg, Claudia and Lind, Lars and Loos, Ruth J F and Laakso, Markku and McCarthy, Mark I and Melander, Olle and Mohlke, Karen L and Morris, Andrew P and Palmer, Colin N A and Pedersen, Oluf and Polasek, Ozren and Poulter, Neil R and Province, Michael A and Psaty, Bruce M and Ridker, Paul M and Rotter, Jerome I and Rudan, Igor and Salomaa, Veikko and Samani, Nilesh J and Sever, Peter J and Skaaby, Tea and Stafford, Jeanette M and Starr, John M and van der Harst, Pim and van der Meer, Peter and van Duijn, Cornelia M and Vergnaud, Anne-Claire and Gudnason, Vilmundur and Wareham, Nicholas J and Wilson, James G and Willer, Cristen J and Witte, Daniel R and Zeggini, Eleftheria and Saleheen, Danish and Butterworth, Adam S and Danesh, John and Asselbergs, Folkert W and Wain, Louise V and Ehret, Georg B and Chasman, Daniel I and Caulfield, Mark J and Elliott, Paul and Lindgren, Cecilia M and Levy, Daniel and Newton-Cheh, Christopher and Munroe, Patricia B and Howson, Joanna M M} } @article {7492, title = {Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.}, journal = {Hypertension}, year = {2017}, month = {2017 Jul 24}, abstract = {

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.

}, issn = {1524-4563}, doi = {10.1161/HYPERTENSIONAHA.117.09438}, author = {Wain, Louise V and Vaez, Ahmad and Jansen, Rick and Joehanes, Roby and van der Most, Peter J and Erzurumluoglu, A Mesut and O{\textquoteright}Reilly, Paul F and Cabrera, Claudia P and Warren, Helen R and Rose, Lynda M and Verwoert, Germaine C and Hottenga, Jouke-Jan and Strawbridge, Rona J and Esko, T{\~o}nu and Arking, Dan E and Hwang, Shih-Jen and Guo, Xiuqing and Kutalik, Zolt{\'a}n and Trompet, Stella and Shrine, Nick and Teumer, Alexander and Ried, Janina S and Bis, Joshua C and Smith, Albert V and Amin, Najaf and Nolte, Ilja M and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Wareham, Nicholas J and Hofer, Edith and Joshi, Peter K and Kristiansson, Kati and Traglia, Michela and Havulinna, Aki S and Goel, Anuj and Nalls, Mike A and S{\~o}ber, Siim and Vuckovic, Dragana and Luan, Jian{\textquoteright}an and del Greco M, Fabiola and Ayers, Kristin L and Marrugat, Jaume and Ruggiero, Daniela and Lopez, Lorna M and Niiranen, Teemu and Enroth, Stefan and Jackson, Anne U and Nelson, Christopher P and Huffman, Jennifer E and Zhang, Weihua and Marten, Jonathan and Gandin, Ilaria and Harris, Sarah E and Zemunik, Tatijana and Lu, Yingchang and Evangelou, Evangelos and Shah, Nabi and de Borst, Martin H and Mangino, Massimo and Prins, Bram P and Campbell, Archie and Li-Gao, Ruifang and Chauhan, Ganesh and Oldmeadow, Christopher and Abecasis, Goncalo and Abedi, Maryam and Barbieri, Caterina M and Barnes, Michael R and Batini, Chiara and Beilby, John and Blake, Tineka and Boehnke, Michael and Bottinger, Erwin P and Braund, Peter S and Brown, Morris and Brumat, Marco and Campbell, Harry and Chambers, John C and Cocca, Massimiliano and Collins, Francis and Connell, John and Cordell, Heather J and Damman, Jeffrey J and Davies, Gail and de Geus, Eco J and de Mutsert, Ren{\'e}e and Deelen, Joris and Demirkale, Yusuf and Doney, Alex S F and D{\"o}rr, Marcus and Farrall, Martin and Ferreira, Teresa and Fr{\r a}nberg, Mattias and Gao, He and Giedraitis, Vilmantas and Gieger, Christian and Giulianini, Franco and Gow, Alan J and Hamsten, Anders and Harris, Tamara B and Hofman, Albert and Holliday, Elizabeth G and Hui, Jennie and Jarvelin, Marjo-Riitta and Johansson, Asa and Johnson, Andrew D and Jousilahti, Pekka and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Khaw, Kay-Tee and Kolcic, Ivana and Koskinen, Seppo and Langenberg, Claudia and Larson, Marty and Launer, Lenore J and Lehne, Benjamin and Liewald, David C M and Lin, Li and Lind, Lars and Mach, Fran{\c c}ois and Mamasoula, Chrysovalanto and Menni, Cristina and Mifsud, Borbala and Milaneschi, Yuri and Morgan, Anna and Morris, Andrew D and Morrison, Alanna C and Munson, Peter J and Nandakumar, Priyanka and Nguyen, Quang Tri and Nutile, Teresa and Oldehinkel, Albertine J and Oostra, Ben A and Org, Elin and Padmanabhan, Sandosh and Palotie, Aarno and Par{\'e}, Guillaume and Pattie, Alison and Penninx, Brenda W J H and Poulter, Neil and Pramstaller, Peter P and Raitakari, Olli T and Ren, Meixia and Rice, Kenneth and Ridker, Paul M and Riese, Harri{\"e}tte and Ripatti, Samuli and Robino, Antonietta and Rotter, Jerome I and Rudan, Igor and Saba, Yasaman and Saint Pierre, Aude and Sala, Cinzia F and Sarin, Antti-Pekka and Schmidt, Reinhold and Scott, Rodney and Seelen, Marc A and Shields, Denis C and Siscovick, David and Sorice, Rossella and Stanton, Alice and Stott, David J and Sundstr{\"o}m, Johan and Swertz, Morris and Taylor, Kent D and Thom, Simon and Tzoulaki, Ioanna and Tzourio, Christophe and Uitterlinden, Andr{\'e} G and V{\"o}lker, Uwe and Vollenweider, Peter and Wild, Sarah and Willemsen, Gonneke and Wright, Alan F and Yao, Jie and Th{\'e}riault, S{\'e}bastien and Conen, David and Attia, John and Sever, Peter and Debette, Stephanie and Mook-Kanamori, Dennis O and Zeggini, Eleftheria and Spector, Tim D and van der Harst, Pim and Palmer, Colin N A and Vergnaud, Anne-Claire and Loos, Ruth J F and Polasek, Ozren and Starr, John M and Girotto, Giorgia and Hayward, Caroline and Kooner, Jaspal S and Lindgren, Cecila M and Vitart, Veronique and Samani, Nilesh J and Tuomilehto, Jaakko and Gyllensten, Ulf and Knekt, Paul and Deary, Ian J and Ciullo, Marina and Elosua, Roberto and Keavney, Bernard D and Hicks, Andrew A and Scott, Robert A and Gasparini, Paolo and Laan, Maris and Liu, Yongmei and Watkins, Hugh and Hartman, Catharina A and Salomaa, Veikko and Toniolo, Daniela and Perola, Markus and Wilson, James F and Schmidt, Helena and Zhao, Jing Hua and Lehtim{\"a}ki, Terho and van Duijn, Cornelia M and Gudnason, Vilmundur and Psaty, Bruce M and Peters, Annette and Rettig, Rainer and James, Alan and Jukema, J Wouter and Strachan, David P and Palmas, Walter and Metspalu, Andres and Ingelsson, Erik and Boomsma, Dorret I and Franco, Oscar H and Bochud, Murielle and Newton-Cheh, Christopher and Munroe, Patricia B and Elliott, Paul and Chasman, Daniel I and Chakravarti, Aravinda and Knight, Joanne and Morris, Andrew P and Levy, Daniel and Tobin, Martin D and Snieder, Harold and Caulfield, Mark J and Ehret, Georg B} } @article {7845, title = {Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.}, journal = {Nat Genet}, volume = {50}, year = {2018}, month = {2018 Oct}, pages = {1412-1425}, abstract = {

High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.

}, issn = {1546-1718}, doi = {10.1038/s41588-018-0205-x}, author = {Evangelou, Evangelos and Warren, Helen R and Mosen-Ansorena, David and Mifsud, Borbala and Pazoki, Raha and Gao, He and Ntritsos, Georgios and Dimou, Niki and Cabrera, Claudia P and Karaman, Ibrahim and Ng, Fu Liang and Evangelou, Marina and Witkowska, Katarzyna and Tzanis, Evan and Hellwege, Jacklyn N and Giri, Ayush and Velez Edwards, Digna R and Sun, Yan V and Cho, Kelly and Gaziano, J Michael and Wilson, Peter W F and Tsao, Philip S and Kovesdy, Csaba P and Esko, T{\~o}nu and M{\"a}gi, Reedik and Milani, Lili and Almgren, Peter and Boutin, Thibaud and Debette, Stephanie and Ding, Jun and Giulianini, Franco and Holliday, Elizabeth G and Jackson, Anne U and Li-Gao, Ruifang and Lin, Wei-Yu and Luan, Jian{\textquoteright}an and Mangino, Massimo and Oldmeadow, Christopher and Prins, Bram Peter and Qian, Yong and Sargurupremraj, Muralidharan and Shah, Nabi and Surendran, Praveen and Th{\'e}riault, S{\'e}bastien and Verweij, Niek and Willems, Sara M and Zhao, Jing-Hua and Amouyel, Philippe and Connell, John and de Mutsert, Ren{\'e}e and Doney, Alex S F and Farrall, Martin and Menni, Cristina and Morris, Andrew D and Noordam, Raymond and Par{\'e}, Guillaume and Poulter, Neil R and Shields, Denis C and Stanton, Alice and Thom, Simon and Abecasis, Goncalo and Amin, Najaf and Arking, Dan E and Ayers, Kristin L and Barbieri, Caterina M and Batini, Chiara and Bis, Joshua C and Blake, Tineka and Bochud, Murielle and Boehnke, Michael and Boerwinkle, Eric and Boomsma, Dorret I and Bottinger, Erwin P and Braund, Peter S and Brumat, Marco and Campbell, Archie and Campbell, Harry and Chakravarti, Aravinda and Chambers, John C and Chauhan, Ganesh and Ciullo, Marina and Cocca, Massimiliano and Collins, Francis and Cordell, Heather J and Davies, Gail and Borst, Martin H de and Geus, Eco J de and Deary, Ian J and Deelen, Joris and del Greco M, Fabiola and Demirkale, Cumhur Yusuf and D{\"o}rr, Marcus and Ehret, Georg B and Elosua, Roberto and Enroth, Stefan and Erzurumluoglu, A Mesut and Ferreira, Teresa and Fr{\r a}nberg, Mattias and Franco, Oscar H and Gandin, Ilaria and Gasparini, Paolo and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Goel, Anuj and Gow, Alan J and Gudnason, Vilmundur and Guo, Xiuqing and Gyllensten, Ulf and Hamsten, Anders and Harris, Tamara B and Harris, Sarah E and Hartman, Catharina A and Havulinna, Aki S and Hicks, Andrew A and Hofer, Edith and Hofman, Albert and Hottenga, Jouke-Jan and Huffman, Jennifer E and Hwang, Shih-Jen and Ingelsson, Erik and James, Alan and Jansen, Rick and Jarvelin, Marjo-Riitta and Joehanes, Roby and Johansson, Asa and Johnson, Andrew D and Joshi, Peter K and Jousilahti, Pekka and Jukema, J Wouter and Jula, Antti and K{\"a}h{\"o}nen, Mika and Kathiresan, Sekar and Keavney, Bernard D and Khaw, Kay-Tee and Knekt, Paul and Knight, Joanne and Kolcic, Ivana and Kooner, Jaspal S and Koskinen, Seppo and Kristiansson, Kati and Kutalik, Zolt{\'a}n and Laan, Maris and Larson, Marty and Launer, Lenore J and Lehne, Benjamin and Lehtim{\"a}ki, Terho and Liewald, David C M and Lin, Li and Lind, Lars and Lindgren, Cecilia M and Liu, Yongmei and Loos, Ruth J F and Lopez, Lorna M and Lu, Yingchang and Lyytik{\"a}inen, Leo-Pekka and Mahajan, Anubha and Mamasoula, Chrysovalanto and Marrugat, Jaume and Marten, Jonathan and Milaneschi, Yuri and Morgan, Anna and Morris, Andrew P and Morrison, Alanna C and Munson, Peter J and Nalls, Mike A and Nandakumar, Priyanka and Nelson, Christopher P and Niiranen, Teemu and Nolte, Ilja M and Nutile, Teresa and Oldehinkel, Albertine J and Oostra, Ben A and O{\textquoteright}Reilly, Paul F and Org, Elin and Padmanabhan, Sandosh and Palmas, Walter and Palotie, Aarno and Pattie, Alison and Penninx, Brenda W J H and Perola, Markus and Peters, Annette and Polasek, Ozren and Pramstaller, Peter P and Nguyen, Quang Tri and Raitakari, Olli T and Ren, Meixia and Rettig, Rainer and Rice, Kenneth and Ridker, Paul M and Ried, Janina S and Riese, Harri{\"e}tte and Ripatti, Samuli and Robino, Antonietta and Rose, Lynda M and Rotter, Jerome I and Rudan, Igor and Ruggiero, Daniela and Saba, Yasaman and Sala, Cinzia F and Salomaa, Veikko and Samani, Nilesh J and Sarin, Antti-Pekka and Schmidt, Reinhold and Schmidt, Helena and Shrine, Nick and Siscovick, David and Smith, Albert V and Snieder, Harold and S{\~o}ber, Siim and Sorice, Rossella and Starr, John M and Stott, David J and Strachan, David P and Strawbridge, Rona J and Sundstr{\"o}m, Johan and Swertz, Morris A and Taylor, Kent D and Teumer, Alexander and Tobin, Martin D and Tomaszewski, Maciej and Toniolo, Daniela and Traglia, Michela and Trompet, Stella and Tuomilehto, Jaakko and Tzourio, Christophe and Uitterlinden, Andr{\'e} G and Vaez, Ahmad and van der Most, Peter J and van Duijn, Cornelia M and Vergnaud, Anne-Claire and Verwoert, Germaine C and Vitart, Veronique and V{\"o}lker, Uwe and Vollenweider, Peter and Vuckovic, Dragana and Watkins, Hugh and Wild, Sarah H and Willemsen, Gonneke and Wilson, James F and Wright, Alan F and Yao, Jie and Zemunik, Tatijana and Zhang, Weihua and Attia, John R and Butterworth, Adam S and Chasman, Daniel I and Conen, David and Cucca, Francesco and Danesh, John and Hayward, Caroline and Howson, Joanna M M and Laakso, Markku and Lakatta, Edward G and Langenberg, Claudia and Melander, Olle and Mook-Kanamori, Dennis O and Palmer, Colin N A and Risch, Lorenz and Scott, Robert A and Scott, Rodney J and Sever, Peter and Spector, Tim D and van der Harst, Pim and Wareham, Nicholas J and Zeggini, Eleftheria and Levy, Daniel and Munroe, Patricia B and Newton-Cheh, Christopher and Brown, Morris J and Metspalu, Andres and Hung, Adriana M and O{\textquoteright}Donnell, Christopher J and Edwards, Todd L and Psaty, Bruce M and Tzoulaki, Ioanna and Barnes, Michael R and Wain, Louise V and Elliott, Paul and Caulfield, Mark J} } @article {7686, title = {A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure.}, journal = {Am J Hum Genet}, volume = {102}, year = {2018}, month = {2018 Mar 01}, pages = {375-400}, abstract = {

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined \~{}18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5~{\texttimes} 10) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5~{\texttimes} 10). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2018.01.015}, author = {Sung, Yun J and Winkler, Thomas W and de Las Fuentes, Lisa and Bentley, Amy R and Brown, Michael R and Kraja, Aldi T and Schwander, Karen and Ntalla, Ioanna and Guo, Xiuqing and Franceschini, Nora and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Marten, Jonathan and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Kilpel{\"a}inen, Tuomas O and Richard, Melissa A and Noordam, Raymond and Aslibekyan, Stella and Aschard, Hugues and Bartz, Traci M and Dorajoo, Rajkumar and Liu, Yongmei and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert Vernon and Tajuddin, Salman M and Tayo, Bamidele O and Warren, Helen R and Zhao, Wei and Zhou, Yanhua and Matoba, Nana and Sofer, Tamar and Alver, Maris and Amini, Marzyeh and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Gandin, Ilaria and Gao, Chuan and Giulianini, Franco and Goel, Anuj and Harris, Sarah E and Hartwig, Fernando Pires and Horimoto, Andrea R V R and Hsu, Fang-Chi and Jackson, Anne U and K{\"a}h{\"o}nen, Mika and Kasturiratne, Anuradhani and Kuhnel, Brigitte and Leander, Karin and Lee, Wen-Jane and Lin, Keng-Hung and {\textquoteright}an Luan, Jian and McKenzie, Colin A and Meian, He and Nelson, Christopher P and Rauramaa, Rainer and Schupf, Nicole and Scott, Robert A and Sheu, Wayne H H and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and van der Most, Peter J and Varga, Tibor V and Wang, Heming and Wang, Yajuan and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Afaq, Saima and Alfred, Tamuno and Amin, Najaf and Arking, Dan and Aung, Tin and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Braund, Peter S and Brody, Jennifer A and Broeckel, Ulrich and Cabrera, Claudia P and Cade, Brian and Caizheng, Yu and Campbell, Archie and Canouil, Micka{\"e}l and Chakravarti, Aravinda and Chauhan, Ganesh and Christensen, Kaare and Cocca, Massimiliano and Collins, Francis S and Connell, John M and de Mutsert, Ren{\'e}e and de Silva, H Janaka and Debette, Stephanie and D{\"o}rr, Marcus and Duan, Qing and Eaton, Charles B and Ehret, Georg and Evangelou, Evangelos and Faul, Jessica D and Fisher, Virginia A and Forouhi, Nita G and Franco, Oscar H and Friedlander, Yechiel and Gao, He and Gigante, Bruna and Graff, Misa and Gu, C Charles and Gu, Dongfeng and Gupta, Preeti and Hagenaars, Saskia P and Harris, Tamara B and He, Jiang and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hofman, Albert and Howard, Barbara V and Hunt, Steven and Irvin, Marguerite R and Jia, Yucheng and Joehanes, Roby and Justice, Anne E and Katsuya, Tomohiro and Kaufman, Joel and Kerrison, Nicola D and Khor, Chiea Chuen and Koh, Woon-Puay and Koistinen, Heikki A and Komulainen, Pirjo and Kooperberg, Charles and Krieger, Jose E and Kubo, Michiaki and Kuusisto, Johanna and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Lim, Sing Hui and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Jingmin and Liu, Kiang and Liu, Yeheng and Loh, Marie and Lohman, Kurt K and Long, Jirong and Louie, Tin and M{\"a}gi, Reedik and Mahajan, Anubha and Meitinger, Thomas and Metspalu, Andres and Milani, Lili and Momozawa, Yukihide and Morris, Andrew P and Mosley, Thomas H and Munson, Peter and Murray, Alison D and Nalls, Mike A and Nasri, Ubaydah and Norris, Jill M and North, Kari and Ogunniyi, Adesola and Padmanabhan, Sandosh and Palmas, Walter R and Palmer, Nicholette D and Pankow, James S and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Raitakari, Olli T and Renstrom, Frida and Rice, Treva K and Ridker, Paul M and Robino, Antonietta and Robinson, Jennifer G and Rose, Lynda M and Rudan, Igor and Sabanayagam, Charumathi and Salako, Babatunde L and Sandow, Kevin and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Seshadri, Sudha and Sever, Peter and Sitlani, Colleen M and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Uitterlinden, Andr{\'e} G and Waldenberger, Melanie and Wang, Lihua and Wang, Ya X and Wei, Wen Bin and Williams, Christine and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Yuan, Jian-Min and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Chen, Yii-Der Ida and de Faire, Ulf and Deary, Ian J and Esko, T{\~o}nu and Farrall, Martin and Forrester, Terrence and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo Lessa and Hung, Yi-Jen and Jonas, Jost B and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Lehtim{\"a}ki, Terho and Liang, Kae-Woei and Magnusson, Patrik K E and Newman, Anne B and Oldehinkel, Albertine J and Pereira, Alexandre C and Redline, Susan and Rettig, Rainer and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zheng, Wei and Kamatani, Yoichiro and Laurie, Cathy C and Bouchard, Claude and Cooper, Richard S and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Kritchevsky, Stephen B and Levy, Daniel and O{\textquoteright}Connell, Jeff R and Psaty, Bruce M and van Dam, Rob M and Sims, Mario and Arnett, Donna K and Mook-Kanamori, Dennis O and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and Fornage, Myriam and Rotimi, Charles N and Province, Michael A and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Reiner, Alex P and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Caulfield, Mark J and Elliott, Paul and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Cupples, L Adrienne and Rao, Dabeeru C and Chasman, Daniel I} } @article {7819, title = {Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Jul 30}, pages = {2976}, abstract = {

Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of lung function and clinical relevance of implicated loci.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-05369-0}, author = {Wyss, Annah B and Sofer, Tamar and Lee, Mi Kyeong and Terzikhan, Natalie and Nguyen, Jennifer N and Lahousse, Lies and Latourelle, Jeanne C and Smith, Albert Vernon and Bartz, Traci M and Feitosa, Mary F and Gao, Wei and Ahluwalia, Tarunveer S and Tang, Wenbo and Oldmeadow, Christopher and Duan, Qing and de Jong, Kim and Wojczynski, Mary K and Wang, Xin-Qun and Noordam, Raymond and Hartwig, Fernando Pires and Jackson, Victoria E and Wang, Tianyuan and Obeidat, Ma{\textquoteright}en and Hobbs, Brian D and Huan, Tianxiao and Gui, Hongsheng and Parker, Margaret M and Hu, Donglei and Mogil, Lauren S and Kichaev, Gleb and Jin, Jianping and Graff, Mariaelisa and Harris, Tamara B and Kalhan, Ravi and Heckbert, Susan R and Paternoster, Lavinia and Burkart, Kristin M and Liu, Yongmei and Holliday, Elizabeth G and Wilson, James G and Vonk, Judith M and Sanders, Jason L and Barr, R Graham and de Mutsert, Ren{\'e}e and Menezes, Ana Maria Baptista and Adams, Hieab H H and van den Berge, Maarten and Joehanes, Roby and Levin, Albert M and Liberto, Jennifer and Launer, Lenore J and Morrison, Alanna C and Sitlani, Colleen M and Celed{\'o}n, Juan C and Kritchevsky, Stephen B and Scott, Rodney J and Christensen, Kaare and Rotter, Jerome I and Bonten, Tobias N and Wehrmeister, Fernando C{\'e}sar and Boss{\'e}, Yohan and Xiao, Shujie and Oh, Sam and Franceschini, Nora and Brody, Jennifer A and Kaplan, Robert C and Lohman, Kurt and McEvoy, Mark and Province, Michael A and Rosendaal, Frits R and Taylor, Kent D and Nickle, David C and Williams, L Keoki and Burchard, Esteban G and Wheeler, Heather E and Sin, Don D and Gudnason, Vilmundur and North, Kari E and Fornage, Myriam and Psaty, Bruce M and Myers, Richard H and O{\textquoteright}Connor, George and Hansen, Torben and Laurie, Cathy C and Cassano, Patricia A and Sung, Joohon and Kim, Woo Jin and Attia, John R and Lange, Leslie and Boezen, H Marike and Thyagarajan, Bharat and Rich, Stephen S and Mook-Kanamori, Dennis O and Horta, Bernardo Lessa and Uitterlinden, Andr{\'e} G and Im, Hae Kyung and Cho, Michael H and Brusselle, Guy G and Gharib, Sina A and Dupuis, Jos{\'e}e and Manichaikul, Ani and London, Stephanie J} } @article {8507, title = {Blood Leukocyte DNA Methylation Predicts Risk of Future Myocardial Infarction and Coronary Heart Disease.}, journal = {Circulation}, volume = {140}, year = {2019}, month = {2019 08 20}, pages = {645-657}, abstract = {

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts.

METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts.

RESULTS: Among 11 461 individuals (mean age 64 years, 67\% women, 35\% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts.

CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.

}, keywords = {Adult, Aged, Cohort Studies, Coronary Disease, CpG Islands, DNA Methylation, Europe, Female, Genome-Wide Association Study, Humans, Incidence, Leukocytes, Male, Middle Aged, Myocardial Infarction, Population Groups, Prognosis, Prospective Studies, Risk, United States}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.118.039357}, author = {Agha, Golareh and Mendelson, Michael M and Ward-Caviness, Cavin K and Joehanes, Roby and Huan, Tianxiao and Gondalia, Rahul and Salfati, Elias and Brody, Jennifer A and Fiorito, Giovanni and Bressler, Jan and Chen, Brian H and Ligthart, Symen and Guarrera, Simonetta and Colicino, Elena and Just, Allan C and Wahl, Simone and Gieger, Christian and Vandiver, Amy R and Tanaka, Toshiko and Hernandez, Dena G and Pilling, Luke C and Singleton, Andrew B and Sacerdote, Carlotta and Krogh, Vittorio and Panico, Salvatore and Tumino, Rosario and Li, Yun and Zhang, Guosheng and Stewart, James D and Floyd, James S and Wiggins, Kerri L and Rotter, Jerome I and Multhaup, Michael and Bakulski, Kelly and Horvath, Steven and Tsao, Philip S and Absher, Devin M and Vokonas, Pantel and Hirschhorn, Joel and Fallin, M Daniele and Liu, Chunyu and Bandinelli, Stefania and Boerwinkle, Eric and Dehghan, Abbas and Schwartz, Joel D and Psaty, Bruce M and Feinberg, Andrew P and Hou, Lifang and Ferrucci, Luigi and Sotoodehnia, Nona and Matullo, Giuseppe and Peters, Annette and Fornage, Myriam and Assimes, Themistocles L and Whitsel, Eric A and Levy, Daniel and Baccarelli, Andrea A} } @article {8005, title = {Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 Apr}, pages = {636-648}, abstract = {

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.

}, issn = {1546-1718}, doi = {10.1038/s41588-019-0378-y}, author = {Bentley, Amy R and Sung, Yun J and Brown, Michael R and Winkler, Thomas W and Kraja, Aldi T and Ntalla, Ioanna and Schwander, Karen and Chasman, Daniel I and Lim, Elise and Deng, Xuan and Guo, Xiuqing and Liu, Jingmin and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Huffman, Jennifer E and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Richard, Melissa A and Noordam, Raymond and Baker, Jenna and Chen, Guanjie and Aschard, Hugues and Bartz, Traci M and Ding, Jingzhong and Dorajoo, Rajkumar and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Zhao, Wei and Graff, Mariaelisa and Alver, Maris and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and Hartwig, Fernando P and He, Meian and Horimoto, Andrea R V R and Hsu, Fang-Chi and Hung, Yi-Jen and Jackson, Anne U and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Leander, Karin and Lin, Keng-Hung and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Matoba, Nana and Nolte, Ilja M and Pietzner, Maik and Prins, Bram and Riaz, Muhammad and Robino, Antonietta and Said, M Abdullah and Schupf, Nicole and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Wang, Tzung-Dau and Wang, Yajuan and Ware, Erin B and Wen, Wanqing and Xiang, Yong-Bing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Adeyemo, Adebowale and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Arzumanyan, Zorayr and Aung, Tin and Ballantyne, Christie and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Broeckel, Ulrich and Brown, Morris and Cade, Brian E and Campbell, Archie and Canouil, Micka{\"e}l and Charumathi, Sabanayagam and Chen, Yii-Der Ida and Christensen, Kaare and Concas, Maria Pina and Connell, John M and de Las Fuentes, Lisa and de Silva, H Janaka and de Vries, Paul S and Doumatey, Ayo and Duan, Qing and Eaton, Charles B and Eppinga, Ruben N and Faul, Jessica D and Floyd, James S and Forouhi, Nita G and Forrester, Terrence and Friedlander, Yechiel and Gandin, Ilaria and Gao, He and Ghanbari, Mohsen and Gharib, Sina A and Gigante, Bruna and Giulianini, Franco and Grabe, Hans J and Gu, C Charles and Harris, Tamara B and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hixson, James E and Ikram, M Arfan and Jia, Yucheng and Joehanes, Roby and Johnson, Craig and Jonas, Jost Bruno and Justice, Anne E and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Kolcic, Ivana and Kooperberg, Charles and Krieger, Jose E and Kritchevsky, Stephen B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Liang, Jingjing and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Kiang and Loh, Marie and Lohman, Kurt K and Louie, Tin and Luzzi, Anna and M{\"a}gi, Reedik and Mahajan, Anubha and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Momozawa, Yukihide and Morris, Andrew P and Murray, Alison D and Nalls, Mike A and Nauck, Matthias and Nelson, Christopher P and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Papanicolau, George J and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Poulter, Neil and Raitakari, Olli T and Reiner, Alex P and Renstrom, Frida and Rice, Treva K and Rich, Stephen S and Robinson, Jennifer G and Rose, Lynda M and Rosendaal, Frits R and Rudan, Igor and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Sever, Peter and Shi, Yuan and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Stringham, Heather M and Tan, Nicholas Y Q and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Tiemeier, Henning and Turner, Stephen T and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Waldenberger, Melanie and Wang, Heming and Wang, Lan and Wang, Lihua and Wei, Wen Bin and Williams, Christine A and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Young, Kristin and Yu, Caizheng and Yuan, Jian-Min and Zhou, Jie and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Cooper, Richard S and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo L and Juang, Jyh-Ming Jimmy and Kamatani, Yoichiro and Kammerer, Candace M and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Laurie, Cathy C and Lee, I-Te and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Pereira, Alexandre C and Rauramaa, Rainer and Redline, Susan and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wang, Jun-Sing and Wang, Ya Xing and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zeggini, Eleftheria and Zheng, Wei and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Mook-Kanamori, Dennis O and Fornage, Myriam and Province, Michael A and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Franceschini, Nora and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Rao, Dabeeru C and Rotimi, Charles N and Cupples, L Adrienne} } @article {8446, title = {Whole Blood DNA Methylation Signatures of Diet Are Associated With Cardiovascular Disease Risk Factors and All-Cause Mortality.}, journal = {Circ Genom Precis Med}, volume = {13}, year = {2020}, month = {2020 Aug}, pages = {e002766}, abstract = {

BACKGROUND: DNA methylation patterns associated with habitual diet have not been well studied.

METHODS: Diet quality was characterized using a Mediterranean-style diet score and the Alternative Healthy Eating Index score. We conducted ethnicity-specific and trans-ethnic epigenome-wide association analyses for diet quality and leukocyte-derived DNA methylation at over 400 000 CpGs (cytosine-guanine dinucleotides) in 5 population-based cohorts including 6662 European ancestry, 2702 African ancestry, and 360 Hispanic ancestry participants. For diet-associated CpGs identified in epigenome-wide analyses, we conducted Mendelian randomization (MR) analysis to examine their relations to cardiovascular disease risk factors and examined their longitudinal associations with all-cause mortality.

RESULTS: We identified 30 CpGs associated with either Mediterranean-style diet score or Alternative Healthy Eating Index, or both, in European ancestry participants. Among these CpGs, 12 CpGs were significantly associated with all-cause mortality (Bonferroni corrected <1.6{\texttimes}10). Hypermethylation of cg18181703 () was associated with higher scores of both Mediterranean-style diet score and Alternative Healthy Eating Index and lower risk for all-cause mortality (=5.7{\texttimes}10). Ten additional diet-associated CpGs were nominally associated with all-cause mortality (<0.05). MR analysis revealed 8 putatively causal associations for 6 CpGs with 4 cardiovascular disease risk factors (body mass index, triglycerides, high-density lipoprotein cholesterol concentrations, and type 2 diabetes mellitus; Bonferroni corrected MR <4.5{\texttimes}10). For example, hypermethylation of cg11250194 () was associated with lower triglyceride concentrations (MR, =1.5{\texttimes}10).and hypermethylation of cg02079413 (; ) was associated with body mass index (corrected MR, =1{\texttimes}10).

CONCLUSIONS: Habitual diet quality was associated with differential peripheral leukocyte DNA methylation levels of 30 CpGs, most of which were also associated with multiple health outcomes, in European ancestry individuals. These findings demonstrate that integrative genomic analysis of dietary information may reveal molecular targets for disease prevention and treatment.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.119.002766}, author = {Ma, Jiantao and Rebholz, Casey M and Braun, Kim V E and Reynolds, Lindsay M and Aslibekyan, Stella and Xia, Rui and Biligowda, Niranjan G and Huan, Tianxiao and Liu, Chunyu and Mendelson, Michael M and Joehanes, Roby and Hu, Emily A and Vitolins, Mara Z and Wood, Alexis C and Lohman, Kurt and Ochoa-Rosales, Carolina and van Meurs, Joyce and Uitterlinden, Andre and Liu, Yongmei and Elhadad, Mohamed A and Heier, Margit and Waldenberger, Melanie and Peters, Annette and Colicino, Elena and Whitsel, Eric A and Baldassari, Antoine and Gharib, Sina A and Sotoodehnia, Nona and Brody, Jennifer A and Sitlani, Colleen M and Tanaka, Toshiko and Hill, W David and Corley, Janie and Deary, Ian J and Zhang, Yan and Sch{\"o}ttker, Ben and Brenner, Hermann and Walker, Maura E and Ye, Shumao and Nguyen, Steve and Pankow, Jim and Demerath, Ellen W and Zheng, Yinan and Hou, Lifang and Liang, Liming and Lichtenstein, Alice H and Hu, Frank B and Fornage, Myriam and Voortman, Trudy and Levy, Daniel} } @article {9006, title = {Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus.}, journal = {Nat Commun}, volume = {12}, year = {2021}, month = {2021 12 09}, pages = {7173}, abstract = {

Elevated serum urate levels, a complex trait and major risk factor for incident gout, are~correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E-7) CpGs explain 11.6\% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits.

}, keywords = {Amino Acid Transport System y+, Cohort Studies, CpG Islands, DNA Methylation, Epigenome, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Glucose Transport Proteins, Facilitative, Gout, Humans, Male, Uric Acid}, issn = {2041-1723}, doi = {10.1038/s41467-021-27198-4}, author = {Tin, Adrienne and Schlosser, Pascal and Matias-Garcia, Pamela R and Thio, Chris H L and Joehanes, Roby and Liu, Hongbo and Yu, Zhi and Weihs, Antoine and Hoppmann, Anselm and Grundner-Culemann, Franziska and Min, Josine L and Kuhns, Victoria L Halperin and Adeyemo, Adebowale A and Agyemang, Charles and Arnl{\"o}v, Johan and Aziz, Nasir A and Baccarelli, Andrea and Bochud, Murielle and Brenner, Hermann and Bressler, Jan and Breteler, Monique M B and Carmeli, Cristian and Chaker, Layal and Coresh, Josef and Corre, Tanguy and Correa, Adolfo and Cox, Simon R and Delgado, Graciela E and Eckardt, Kai-Uwe and Ekici, Arif B and Endlich, Karlhans and Floyd, James S and Fraszczyk, Eliza and Gao, Xu and G{\`a}o, Xin and Gelber, Allan C and Ghanbari, Mohsen and Ghasemi, Sahar and Gieger, Christian and Greenland, Philip and Grove, Megan L and Harris, Sarah E and Hemani, Gibran and Henneman, Peter and Herder, Christian and Horvath, Steve and Hou, Lifang and Hurme, Mikko A and Hwang, Shih-Jen and Kardia, Sharon L R and Kasela, Silva and Kleber, Marcus E and Koenig, Wolfgang and Kooner, Jaspal S and Kronenberg, Florian and Kuhnel, Brigitte and Ladd-Acosta, Christine and Lehtim{\"a}ki, Terho and Lind, Lars and Liu, Dan and Lloyd-Jones, Donald M and Lorkowski, Stefan and Lu, Ake T and Marioni, Riccardo E and M{\"a}rz, Winfried and McCartney, Daniel L and Meeks, Karlijn A C and Milani, Lili and Mishra, Pashupati P and Nauck, Matthias and Nowak, Christoph and Peters, Annette and Prokisch, Holger and Psaty, Bruce M and Raitakari, Olli T and Ratliff, Scott M and Reiner, Alex P and Sch{\"o}ttker, Ben and Schwartz, Joel and Sedaghat, Sanaz and Smith, Jennifer A and Sotoodehnia, Nona and Stocker, Hannah R and Stringhini, Silvia and Sundstr{\"o}m, Johan and Swenson, Brenton R and van Meurs, Joyce B J and van Vliet-Ostaptchouk, Jana V and Venema, Andrea and V{\"o}lker, Uwe and Winkelmann, Juliane and Wolffenbuttel, Bruce H R and Zhao, Wei and Zheng, Yinan and Loh, Marie and Snieder, Harold and Waldenberger, Melanie and Levy, Daniel and Akilesh, Shreeram and Woodward, Owen M and Susztak, Katalin and Teumer, Alexander and K{\"o}ttgen, Anna} } @article {9002, title = {Meta-analyses identify DNA methylation associated with kidney function and damage.}, journal = {Nat Commun}, volume = {12}, year = {2021}, month = {2021 12 09}, pages = {7174}, abstract = {

Chronic kidney disease is a major public health burden. Elevated urinary albumin-to-creatinine ratio is a measure of kidney damage, and used to diagnose and stage chronic kidney disease. To extend the knowledge on regulatory mechanisms related to kidney function and disease, we conducted a blood-based epigenome-wide association study for estimated glomerular filtration rate (n = 33,605) and urinary albumin-to-creatinine ratio (n = 15,068) and detected 69 and seven CpG sites where DNA methylation was associated with the respective trait. The majority of these findings showed directionally consistent associations with the respective clinical outcomes chronic kidney disease and moderately increased albuminuria. Associations of DNA methylation with kidney function, such as CpGs at JAZF1, PELI1 and CHD2 were validated in kidney tissue. Methylation at PHRF1, LDB2, CSRNP1 and IRF5 indicated causal effects on kidney function. Enrichment analyses revealed pathways related to hemostasis and blood cell migration for estimated glomerular filtration rate, and immune cell activation and response for urinary albumin-to-creatinineratio-associated CpGs.

}, keywords = {Adult, Aged, CpG Islands, DNA Methylation, Female, Glomerular Filtration Rate, Humans, Interferon Regulatory Factors, Kidney, Kidney Function Tests, LIM Domain Proteins, Male, Membrane Proteins, Middle Aged, Renal Insufficiency, Chronic, Transcription Factors}, issn = {2041-1723}, doi = {10.1038/s41467-021-27234-3}, author = {Schlosser, Pascal and Tin, Adrienne and Matias-Garcia, Pamela R and Thio, Chris H L and Joehanes, Roby and Liu, Hongbo and Weihs, Antoine and Yu, Zhi and Hoppmann, Anselm and Grundner-Culemann, Franziska and Min, Josine L and Adeyemo, Adebowale A and Agyemang, Charles and Arnl{\"o}v, Johan and Aziz, Nasir A and Baccarelli, Andrea and Bochud, Murielle and Brenner, Hermann and Breteler, Monique M B and Carmeli, Cristian and Chaker, Layal and Chambers, John C and Cole, Shelley A and Coresh, Josef and Corre, Tanguy and Correa, Adolfo and Cox, Simon R and de Klein, Niek and Delgado, Graciela E and Domingo-Relloso, Arce and Eckardt, Kai-Uwe and Ekici, Arif B and Endlich, Karlhans and Evans, Kathryn L and Floyd, James S and Fornage, Myriam and Franke, Lude and Fraszczyk, Eliza and Gao, Xu and G{\`a}o, Xin and Ghanbari, Mohsen and Ghasemi, Sahar and Gieger, Christian and Greenland, Philip and Grove, Megan L and Harris, Sarah E and Hemani, Gibran and Henneman, Peter and Herder, Christian and Horvath, Steve and Hou, Lifang and Hurme, Mikko A and Hwang, Shih-Jen and Jarvelin, Marjo-Riitta and Kardia, Sharon L R and Kasela, Silva and Kleber, Marcus E and Koenig, Wolfgang and Kooner, Jaspal S and Kramer, Holly and Kronenberg, Florian and Kuhnel, Brigitte and Lehtim{\"a}ki, Terho and Lind, Lars and Liu, Dan and Liu, Yongmei and Lloyd-Jones, Donald M and Lohman, Kurt and Lorkowski, Stefan and Lu, Ake T and Marioni, Riccardo E and M{\"a}rz, Winfried and McCartney, Daniel L and Meeks, Karlijn A C and Milani, Lili and Mishra, Pashupati P and Nauck, Matthias and Navas-Acien, Ana and Nowak, Christoph and Peters, Annette and Prokisch, Holger and Psaty, Bruce M and Raitakari, Olli T and Ratliff, Scott M and Reiner, Alex P and Rosas, Sylvia E and Sch{\"o}ttker, Ben and Schwartz, Joel and Sedaghat, Sanaz and Smith, Jennifer A and Sotoodehnia, Nona and Stocker, Hannah R and Stringhini, Silvia and Sundstr{\"o}m, Johan and Swenson, Brenton R and Tellez-Plaza, Maria and van Meurs, Joyce B J and van Vliet-Ostaptchouk, Jana V and Venema, Andrea and Verweij, Niek and Walker, Rosie M and Wielscher, Matthias and Winkelmann, Juliane and Wolffenbuttel, Bruce H R and Zhao, Wei and Zheng, Yinan and Loh, Marie and Snieder, Harold and Levy, Daniel and Waldenberger, Melanie and Susztak, Katalin and K{\"o}ttgen, Anna and Teumer, Alexander} } @article {8789, title = {Meta-analysis of epigenome-wide association studies of carotid intima-media thickness.}, journal = {Eur J Epidemiol}, year = {2021}, month = {2021 Jun 06}, abstract = {

Common carotid intima-media thickness (cIMT) is an index of subclinical atherosclerosis that is associated with ischemic stroke and coronary artery disease (CAD). We undertook a cross-sectional epigenome-wide association study (EWAS) of measures of cIMT in 6400 individuals. Mendelian randomization analysis was applied to investigate the potential causal role of DNA methylation in the link between atherosclerotic cardiovascular risk factors and cIMT or clinical cardiovascular disease. The CpG site cg05575921 was associated with cIMT (beta = -0.0264, p value = 3.5 {\texttimes} 10) in the discovery panel and was replicated in replication panel (beta = -0.07, p value = 0.005). This CpG is located at chr5:81649347 in the intron 3 of the aryl hydrocarbon receptor repressor gene (AHRR). Our results indicate that DNA methylation at cg05575921 might be in the pathway between smoking, cIMT and stroke. Moreover, in a region-based analysis, 34 differentially methylated regions (DMRs) were identified of which a DMR upstream of ALOX12 showed the strongest association with cIMT (p value = 1.4 {\texttimes} 10). In conclusion, our study suggests that DNA methylation may play a role in the link between cardiovascular risk factors, cIMT and clinical cardiovascular disease.

}, issn = {1573-7284}, doi = {10.1007/s10654-021-00759-z}, author = {Portilla-Fern{\'a}ndez, Eliana and Hwang, Shih-Jen and Wilson, Rory and Maddock, Jane and Hill, W David and Teumer, Alexander and Mishra, Pashupati P and Brody, Jennifer A and Joehanes, Roby and Ligthart, Symen and Ghanbari, Mohsen and Kavousi, Maryam and Roks, Anton J M and Danser, A H Jan and Levy, Daniel and Peters, Annette and Ghasemi, Sahar and Schminke, Ulf and D{\"o}rr, Marcus and Grabe, Hans J and Lehtim{\"a}ki, Terho and K{\"a}h{\"o}nen, Mika and Hurme, Mikko A and Bartz, Traci M and Sotoodehnia, Nona and Bis, Joshua C and Thiery, Joachim and Koenig, Wolfgang and Ong, Ken K and Bell, Jordana T and Meisinger, Christine and Wardlaw, Joanna M and Starr, John M and Seissler, Jochen and Then, Cornelia and Rathmann, Wolfgang and Ikram, M Arfan and Psaty, Bruce M and Raitakari, Olli T and V{\"o}lzke, Henry and Deary, Ian J and Wong, Andrew and Waldenberger, Melanie and O{\textquoteright}Donnell, Christopher J and Dehghan, Abbas} } @article {9094, title = {Integrative analysis of clinical and epigenetic biomarkers of mortality.}, journal = {Aging Cell}, volume = {21}, year = {2022}, month = {2022 Jun}, pages = {e13608}, abstract = {

DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome-wide association study of whole blood DNAm in relation to mortality in 15 cohorts (n~=~15,013). During a mean follow-up of 10~years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry-stratified meta-analysis of all-cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at p~<~1~{\texttimes}~10 , of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm-based prediction models for all-cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5\% increase in the C-index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta~=~1.2, P ~=~4.1~{\texttimes}~10 ) and negatively associated with longevity (Beta~=~-1.9, P ~=~0.02). Pathway analysis revealed that genes associated with mortality-related CpGs are enriched for immune- and cancer-related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.

}, keywords = {Biomarkers, Cardiovascular Diseases, DNA Methylation, Epigenesis, Genetic, Epigenomics, Humans, Male, Neoplasms}, issn = {1474-9726}, doi = {10.1111/acel.13608}, author = {Huan, Tianxiao and Nguyen, Steve and Colicino, Elena and Ochoa-Rosales, Carolina and Hill, W David and Brody, Jennifer A and Soerensen, Mette and Zhang, Yan and Baldassari, Antoine and Elhadad, Mohamed Ahmed and Toshiko, Tanaka and Zheng, Yinan and Domingo-Relloso, Arce and Lee, Dong Heon and Ma, Jiantao and Yao, Chen and Liu, Chunyu and Hwang, Shih-Jen and Joehanes, Roby and Fornage, Myriam and Bressler, Jan and van Meurs, Joyce B J and Debrabant, Birgit and Mengel-From, Jonas and Hjelmborg, Jacob and Christensen, Kaare and Vokonas, Pantel and Schwartz, Joel and Gahrib, Sina A and Sotoodehnia, Nona and Sitlani, Colleen M and Kunze, Sonja and Gieger, Christian and Peters, Annette and Waldenberger, Melanie and Deary, Ian J and Ferrucci, Luigi and Qu, Yishu and Greenland, Philip and Lloyd-Jones, Donald M and Hou, Lifang and Bandinelli, Stefania and Voortman, Trudy and Hermann, Brenner and Baccarelli, Andrea and Whitsel, Eric and Pankow, James S and Levy, Daniel} } @article {9418, title = {Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed Whole Genome Sequencing Study.}, journal = {medRxiv}, year = {2023}, month = {2023 Jun 29}, abstract = {

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess the associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant aggregate association tests using the STAAR (variant-Set Test for Association using Annotation infoRmation) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a {\textpm}500 kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73\%) were conditionally independent of common regulatory variations and rare protein coding variations at the same loci. We replicated 34 out of 61 (56\%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNA, implicating new therapeutic opportunities.

}, doi = {10.1101/2023.06.28.23291966}, author = {Wang, Yuxuan and Selvaraj, Margaret Sunitha and Li, Xihao and Li, Zilin and Holdcraft, Jacob A and Arnett, Donna K and Bis, Joshua C and Blangero, John and Boerwinkle, Eric and Bowden, Donald W and Cade, Brian E and Carlson, Jenna C and Carson, April P and Chen, Yii-Der Ida and Curran, Joanne E and de Vries, Paul S and Dutcher, Susan K and Ellinor, Patrick T and Floyd, James S and Fornage, Myriam and Freedman, Barry I and Gabriel, Stacey and Germer, Soren and Gibbs, Richard A and Guo, Xiuqing and He, Jiang and Heard-Costa, Nancy and Hildalgo, Bertha and Hou, Lifang and Irvin, Marguerite R and Joehanes, Roby and Kaplan, Robert C and Kardia, Sharon Lr and Kelly, Tanika N and Kim, Ryan and Kooperberg, Charles and Kral, Brian G and Levy, Daniel and Li, Changwei and Liu, Chunyu and Lloyd-Jone, Don and Loos, Ruth Jf and Mahaney, Michael C and Martin, Lisa W and Mathias, Rasika A and Minster, Ryan L and Mitchell, Braxton D and Montasser, May E and Morrison, Alanna C and Murabito, Joanne M and Naseri, Take and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Preuss, Michael H and Psaty, Bruce M and Raffield, Laura M and Rao, Dabeeru C and Redline, Susan and Reiner, Alexander P and Rich, Stephen S and Ruepena, Muagututi{\textquoteright}a Sefuiva and Sheu, Wayne H-H and Smith, Jennifer A and Smith, Albert and Tiwari, Hemant K and Tsai, Michael Y and Viaud-Martinez, Karine A and Wang, Zhe and Yanek, Lisa R and Zhao, Wei and Rotter, Jerome I and Lin, Xihong and Natarajan, Pradeep and Peloso, Gina M} }