@article {8005, title = {Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.}, journal = {Nat Genet}, volume = {51}, year = {2019}, month = {2019 Apr}, pages = {636-648}, abstract = {

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.

}, issn = {1546-1718}, doi = {10.1038/s41588-019-0378-y}, author = {Bentley, Amy R and Sung, Yun J and Brown, Michael R and Winkler, Thomas W and Kraja, Aldi T and Ntalla, Ioanna and Schwander, Karen and Chasman, Daniel I and Lim, Elise and Deng, Xuan and Guo, Xiuqing and Liu, Jingmin and Lu, Yingchang and Cheng, Ching-Yu and Sim, Xueling and Vojinovic, Dina and Huffman, Jennifer E and Musani, Solomon K and Li, Changwei and Feitosa, Mary F and Richard, Melissa A and Noordam, Raymond and Baker, Jenna and Chen, Guanjie and Aschard, Hugues and Bartz, Traci M and Ding, Jingzhong and Dorajoo, Rajkumar and Manning, Alisa K and Rankinen, Tuomo and Smith, Albert V and Tajuddin, Salman M and Zhao, Wei and Graff, Mariaelisa and Alver, Maris and Boissel, Mathilde and Chai, Jin Fang and Chen, Xu and Divers, Jasmin and Evangelou, Evangelos and Gao, Chuan and Goel, Anuj and Hagemeijer, Yanick and Harris, Sarah E and Hartwig, Fernando P and He, Meian and Horimoto, Andrea R V R and Hsu, Fang-Chi and Hung, Yi-Jen and Jackson, Anne U and Kasturiratne, Anuradhani and Komulainen, Pirjo and Kuhnel, Brigitte and Leander, Karin and Lin, Keng-Hung and Luan, Jian{\textquoteright}an and Lyytik{\"a}inen, Leo-Pekka and Matoba, Nana and Nolte, Ilja M and Pietzner, Maik and Prins, Bram and Riaz, Muhammad and Robino, Antonietta and Said, M Abdullah and Schupf, Nicole and Scott, Robert A and Sofer, Tamar and Stan{\v c}{\'a}kov{\'a}, Alena and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Varga, Tibor V and Wang, Tzung-Dau and Wang, Yajuan and Ware, Erin B and Wen, Wanqing and Xiang, Yong-Bing and Yanek, Lisa R and Zhang, Weihua and Zhao, Jing Hua and Adeyemo, Adebowale and Afaq, Saima and Amin, Najaf and Amini, Marzyeh and Arking, Dan E and Arzumanyan, Zorayr and Aung, Tin and Ballantyne, Christie and Barr, R Graham and Bielak, Lawrence F and Boerwinkle, Eric and Bottinger, Erwin P and Broeckel, Ulrich and Brown, Morris and Cade, Brian E and Campbell, Archie and Canouil, Micka{\"e}l and Charumathi, Sabanayagam and Chen, Yii-Der Ida and Christensen, Kaare and Concas, Maria Pina and Connell, John M and de Las Fuentes, Lisa and de Silva, H Janaka and de Vries, Paul S and Doumatey, Ayo and Duan, Qing and Eaton, Charles B and Eppinga, Ruben N and Faul, Jessica D and Floyd, James S and Forouhi, Nita G and Forrester, Terrence and Friedlander, Yechiel and Gandin, Ilaria and Gao, He and Ghanbari, Mohsen and Gharib, Sina A and Gigante, Bruna and Giulianini, Franco and Grabe, Hans J and Gu, C Charles and Harris, Tamara B and Heikkinen, Sami and Heng, Chew-Kiat and Hirata, Makoto and Hixson, James E and Ikram, M Arfan and Jia, Yucheng and Joehanes, Roby and Johnson, Craig and Jonas, Jost Bruno and Justice, Anne E and Katsuya, Tomohiro and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Kolcic, Ivana and Kooperberg, Charles and Krieger, Jose E and Kritchevsky, Stephen B and Kubo, Michiaki and Kuusisto, Johanna and Lakka, Timo A and Langefeld, Carl D and Langenberg, Claudia and Launer, Lenore J and Lehne, Benjamin and Lewis, Cora E and Li, Yize and Liang, Jingjing and Lin, Shiow and Liu, Ching-Ti and Liu, Jianjun and Liu, Kiang and Loh, Marie and Lohman, Kurt K and Louie, Tin and Luzzi, Anna and M{\"a}gi, Reedik and Mahajan, Anubha and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Milani, Lili and Mohlke, Karen L and Momozawa, Yukihide and Morris, Andrew P and Murray, Alison D and Nalls, Mike A and Nauck, Matthias and Nelson, Christopher P and North, Kari E and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Papanicolau, George J and Pedersen, Nancy L and Peters, Annette and Peyser, Patricia A and Polasek, Ozren and Poulter, Neil and Raitakari, Olli T and Reiner, Alex P and Renstrom, Frida and Rice, Treva K and Rich, Stephen S and Robinson, Jennifer G and Rose, Lynda M and Rosendaal, Frits R and Rudan, Igor and Schmidt, Carsten O and Schreiner, Pamela J and Scott, William R and Sever, Peter and Shi, Yuan and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Snieder, Harold and Starr, John M and Strauch, Konstantin and Stringham, Heather M and Tan, Nicholas Y Q and Tang, Hua and Taylor, Kent D and Teo, Yik Ying and Tham, Yih Chung and Tiemeier, Henning and Turner, Stephen T and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Waldenberger, Melanie and Wang, Heming and Wang, Lan and Wang, Lihua and Wei, Wen Bin and Williams, Christine A and Wilson, Gregory and Wojczynski, Mary K and Yao, Jie and Young, Kristin and Yu, Caizheng and Yuan, Jian-Min and Zhou, Jie and Zonderman, Alan B and Becker, Diane M and Boehnke, Michael and Bowden, Donald W and Chambers, John C and Cooper, Richard S and de Faire, Ulf and Deary, Ian J and Elliott, Paul and Esko, T{\~o}nu and Farrall, Martin and Franks, Paul W and Freedman, Barry I and Froguel, Philippe and Gasparini, Paolo and Gieger, Christian and Horta, Bernardo L and Juang, Jyh-Ming Jimmy and Kamatani, Yoichiro and Kammerer, Candace M and Kato, Norihiro and Kooner, Jaspal S and Laakso, Markku and Laurie, Cathy C and Lee, I-Te and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and Oldehinkel, Albertine J and Penninx, Brenda W J H and Pereira, Alexandre C and Rauramaa, Rainer and Redline, Susan and Samani, Nilesh J and Scott, James and Shu, Xiao-Ou and van der Harst, Pim and Wagenknecht, Lynne E and Wang, Jun-Sing and Wang, Ya Xing and Wareham, Nicholas J and Watkins, Hugh and Weir, David R and Wickremasinghe, Ananda R and Wu, Tangchun and Zeggini, Eleftheria and Zheng, Wei and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon L R and Liu, Yongmei and Psaty, Bruce M and Ridker, Paul M and van Dam, Rob M and Mook-Kanamori, Dennis O and Fornage, Myriam and Province, Michael A and Kelly, Tanika N and Fox, Ervin R and Hayward, Caroline and van Duijn, Cornelia M and Tai, E Shyong and Wong, Tien Yin and Loos, Ruth J F and Franceschini, Nora and Rotter, Jerome I and Zhu, Xiaofeng and Bierut, Laura J and Gauderman, W James and Rice, Kenneth and Munroe, Patricia B and Morrison, Alanna C and Rao, Dabeeru C and Rotimi, Charles N and Cupples, L Adrienne} } @article {8202, title = {Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 Nov 12}, pages = {5121}, abstract = {

Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25\% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.

}, issn = {2041-1723}, doi = {10.1038/s41467-019-12958-0}, author = {Noordam, Raymond and Bos, Maxime M and Wang, Heming and Winkler, Thomas W and Bentley, Amy R and Kilpel{\"a}inen, Tuomas O and de Vries, Paul S and Sung, Yun Ju and Schwander, Karen and Cade, Brian E and Manning, Alisa and Aschard, Hugues and Brown, Michael R and Chen, Han and Franceschini, Nora and Musani, Solomon K and Richard, Melissa and Vojinovic, Dina and Aslibekyan, Stella and Bartz, Traci M and de Las Fuentes, Lisa and Feitosa, Mary and Horimoto, Andrea R and Ilkov, Marjan and Kho, Minjung and Kraja, Aldi and Li, Changwei and Lim, Elise and Liu, Yongmei and Mook-Kanamori, Dennis O and Rankinen, Tuomo and Tajuddin, Salman M and van der Spek, Ashley and Wang, Zhe and Marten, Jonathan and Laville, Vincent and Alver, Maris and Evangelou, Evangelos and Graff, Maria E and He, Meian and Kuhnel, Brigitte and Lyytik{\"a}inen, Leo-Pekka and Marques-Vidal, Pedro and Nolte, Ilja M and Palmer, Nicholette D and Rauramaa, Rainer and Shu, Xiao-Ou and Snieder, Harold and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Adolfo, Correa and Ballantyne, Christie and Bielak, Larry and Biermasz, Nienke R and Boerwinkle, Eric and Dimou, Niki and Eiriksdottir, Gudny and Gao, Chuan and Gharib, Sina A and Gottlieb, Daniel J and Haba-Rubio, Jos{\'e} and Harris, Tamara B and Heikkinen, Sami and Heinzer, Raphael and Hixson, James E and Homuth, Georg and Ikram, M Arfan and Komulainen, Pirjo and Krieger, Jose E and Lee, Jiwon and Liu, Jingmin and Lohman, Kurt K and Luik, Annemarie I and M{\"a}gi, Reedik and Martin, Lisa W and Meitinger, Thomas and Metspalu, Andres and Milaneschi, Yuri and Nalls, Mike A and O{\textquoteright}Connell, Jeff and Peters, Annette and Peyser, Patricia and Raitakari, Olli T and Reiner, Alex P and Rensen, Patrick C N and Rice, Treva K and Rich, Stephen S and Roenneberg, Till and Rotter, Jerome I and Schreiner, Pamela J and Shikany, James and Sidney, Stephen S and Sims, Mario and Sitlani, Colleen M and Sofer, Tamar and Strauch, Konstantin and Swertz, Morris A and Taylor, Kent D and Uitterlinden, Andr{\'e} G and van Duijn, Cornelia M and V{\"o}lzke, Henry and Waldenberger, Melanie and Wallance, Robert B and van Dijk, Ko Willems and Yu, Caizheng and Zonderman, Alan B and Becker, Diane M and Elliott, Paul and Esko, T{\~o}nu and Gieger, Christian and Grabe, Hans J and Lakka, Timo A and Lehtim{\"a}ki, Terho and North, Kari E and Penninx, Brenda W J H and Vollenweider, Peter and Wagenknecht, Lynne E and Wu, Tangchun and Xiang, Yong-Bing and Zheng, Wei and Arnett, Donna K and Bouchard, Claude and Evans, Michele K and Gudnason, Vilmundur and Kardia, Sharon and Kelly, Tanika N and Kritchevsky, Stephen B and Loos, Ruth J F and Pereira, Alexandre C and Province, Mike and Psaty, Bruce M and Rotimi, Charles and Zhu, Xiaofeng and Amin, Najaf and Cupples, L Adrienne and Fornage, Myriam and Fox, Ervin F and Guo, Xiuqing and Gauderman, W James and Rice, Kenneth and Kooperberg, Charles and Munroe, Patricia B and Liu, Ching-Ti and Morrison, Alanna C and Rao, Dabeeru C and van Heemst, Diana and Redline, Susan} } @article {8407, title = {Role of Rare and Low-Frequency Variants in Gene-Alcohol Interactions on Plasma Lipid Levels.}, journal = {Circ Genom Precis Med}, volume = {13}, year = {2020}, month = {2020 Aug}, pages = {e002772}, abstract = {

BACKGROUND: Alcohol intake influences plasma lipid levels, and such effects may be moderated by genetic variants. We aimed to characterize the role of aggregated rare and low-frequency protein-coding variants in gene by alcohol consumption interactions associated with fasting plasma lipid levels.

METHODS: In the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, fasting plasma triglycerides and high- and low-density lipoprotein cholesterol were measured in 34 153 individuals with European ancestry from 5 discovery studies and 32 277 individuals from 6 replication studies. Rare and low-frequency functional protein-coding variants (minor allele frequency, <=5\%) measured by an exome array were aggregated by genes and evaluated by a gene-environment interaction test and a joint test of genetic main and gene-environment interaction effects. Two dichotomous self-reported alcohol consumption variables, current drinker, defined as any recurrent drinking behavior, and regular drinker, defined as the subset of current drinkers who consume at least 2 drinks per week, were considered.

RESULTS: We discovered and replicated 21 gene-lipid associations at 13 known lipid loci through the joint test. Eight loci (, , , , , , , and ) remained significant after conditioning on the common index single-nucleotide polymorphism identified by previous genome-wide association studies, suggesting an independent role for rare and low-frequency variants at these loci. One significant gene-alcohol interaction on triglycerides in a novel locus was significantly discovered (=6.65{\texttimes}10 for the interaction test) and replicated at nominal significance level (=0.013) in .

CONCLUSIONS: In conclusion, this study applied new gene-based statistical approaches and suggested that rare and low-frequency genetic variants interacted with alcohol consumption on lipid levels.

}, issn = {2574-8300}, doi = {10.1161/CIRCGEN.119.002772}, author = {Wang, Zhe and Chen, Han and Bartz, Traci M and Bielak, Lawrence F and Chasman, Daniel I and Feitosa, Mary F and Franceschini, Nora and Guo, Xiuqing and Lim, Elise and Noordam, Raymond and Richard, Melissa A and Wang, Heming and Cade, Brian and Cupples, L Adrienne and de Vries, Paul S and Giulanini, Franco and Lee, Jiwon and Lemaitre, Rozenn N and Martin, Lisa W and Reiner, Alex P and Rich, Stephen S and Schreiner, Pamela J and Sidney, Stephen and Sitlani, Colleen M and Smith, Jennifer A and Willems van Dijk, Ko and Yao, Jie and Zhao, Wei and Fornage, Myriam and Kardia, Sharon L R and Kooperberg, Charles and Liu, Ching-Ti and Mook-Kanamori, Dennis O and Province, Michael A and Psaty, Bruce M and Redline, Susan and Ridker, Paul M and Rotter, Jerome I and Boerwinkle, Eric and Morrison, Alanna C} } @article {8705, title = {Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry.}, journal = {Am J Hum Genet}, volume = {108}, year = {2021}, month = {2021 Apr 01}, pages = {564-582}, abstract = {

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5\%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained <=20 variants in the credible sets that jointly account for 99\% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.

}, issn = {1537-6605}, doi = {10.1016/j.ajhg.2021.02.011}, author = {Graff, Mariaelisa and Justice, Anne E and Young, Kristin L and Marouli, Eirini and Zhang, Xinruo and Fine, Rebecca S and Lim, Elise and Buchanan, Victoria and Rand, Kristin and Feitosa, Mary F and Wojczynski, Mary K and Yanek, Lisa R and Shao, Yaming and Rohde, Rebecca and Adeyemo, Adebowale A and Aldrich, Melinda C and Allison, Matthew A and Ambrosone, Christine B and Ambs, Stefan and Amos, Christopher and Arnett, Donna K and Atwood, Larry and Bandera, Elisa V and Bartz, Traci and Becker, Diane M and Berndt, Sonja I and Bernstein, Leslie and Bielak, Lawrence F and Blot, William J and Bottinger, Erwin P and Bowden, Donald W and Bradfield, Jonathan P and Brody, Jennifer A and Broeckel, Ulrich and Burke, Gregory and Cade, Brian E and Cai, Qiuyin and Caporaso, Neil and Carlson, Chris and Carpten, John and Casey, Graham and Chanock, Stephen J and Chen, Guanjie and Chen, Minhui and Chen, Yii-der I and Chen, Wei-Min and Chesi, Alessandra and Chiang, Charleston W K and Chu, Lisa and Coetzee, Gerry A and Conti, David V and Cooper, Richard S and Cushman, Mary and Demerath, Ellen and Deming, Sandra L and Dimitrov, Latchezar and Ding, Jingzhong and Diver, W Ryan and Duan, Qing and Evans, Michele K and Falusi, Adeyinka G and Faul, Jessica D and Fornage, Myriam and Fox, Caroline and Freedman, Barry I and Garcia, Melissa and Gillanders, Elizabeth M and Goodman, Phyllis and Gottesman, Omri and Grant, Struan F A and Guo, Xiuqing and Hakonarson, Hakon and Haritunians, Talin and Harris, Tamara B and Harris, Curtis C and Henderson, Brian E and Hennis, Anselm and Hernandez, Dena G and Hirschhorn, Joel N and McNeill, Lorna Haughton and Howard, Timothy D and Howard, Barbara and Hsing, Ann W and Hsu, Yu-Han H and Hu, Jennifer J and Huff, Chad D and Huo, Dezheng and Ingles, Sue A and Irvin, Marguerite R and John, Esther M and Johnson, Karen C and Jordan, Joanne M and Kabagambe, Edmond K and Kang, Sun J and Kardia, Sharon L and Keating, Brendan J and Kittles, Rick A and Klein, Eric A and Kolb, Suzanne and Kolonel, Laurence N and Kooperberg, Charles and Kuller, Lewis and Kutlar, Abdullah and Lange, Leslie and Langefeld, Carl D and Le Marchand, Lo{\"\i}c and Leonard, Hampton and Lettre, Guillaume and Levin, Albert M and Li, Yun and Li, Jin and Liu, Yongmei and Liu, Youfang and Liu, Simin and Lohman, Kurt and Lotay, Vaneet and Lu, Yingchang and Maixner, William and Manson, JoAnn E and McKnight, Barbara and Meng, Yan and Monda, Keri L and Monroe, Kris and Moore, Jason H and Mosley, Thomas H and Mudgal, Poorva and Murphy, Adam B and Nadukuru, Rajiv and Nalls, Mike A and Nathanson, Katherine L and Nayak, Uma and N{\textquoteright}diaye, Amidou and Nemesure, Barbara and Neslund-Dudas, Christine and Neuhouser, Marian L and Nyante, Sarah and Ochs-Balcom, Heather and Ogundiran, Temidayo O and Ogunniyi, Adesola and Ojengbede, Oladosu and Okut, Hayrettin and Olopade, Olufunmilayo I and Olshan, Andrew and Padhukasahasram, Badri and Palmer, Julie and Palmer, Cameron D and Palmer, Nicholette D and Papanicolaou, George and Patel, Sanjay R and Pettaway, Curtis A and Peyser, Patricia A and Press, Michael F and Rao, D C and Rasmussen-Torvik, Laura J and Redline, Susan and Reiner, Alex P and Rhie, Suhn K and Rodriguez-Gil, Jorge L and Rotimi, Charles N and Rotter, Jerome I and Ruiz-Narvaez, Edward A and Rybicki, Benjamin A and Salako, Babatunde and Sale, Mich{\`e}le M and Sanderson, Maureen and Schadt, Eric and Schreiner, Pamela J and Schurmann, Claudia and Schwartz, Ann G and Shriner, Daniel A and Signorello, Lisa B and Singleton, Andrew B and Siscovick, David S and Smith, Jennifer A and Smith, Shad and Speliotes, Elizabeth and Spitz, Margaret and Stanford, Janet L and Stevens, Victoria L and Stram, Alex and Strom, Sara S and Sucheston, Lara and Sun, Yan V and Tajuddin, Salman M and Taylor, Herman and Taylor, Kira and Tayo, Bamidele O and Thun, Michael J and Tucker, Margaret A and Vaidya, Dhananjay and Van Den Berg, David J and Vedantam, Sailaja and Vitolins, Mara and Wang, Zhaoming and Ware, Erin B and Wassertheil-Smoller, Sylvia and Weir, David R and Wiencke, John K and Williams, Scott M and Williams, L Keoki and Wilson, James G and Witte, John S and Wrensch, Margaret and Wu, Xifeng and Yao, Jie and Zakai, Neil and Zanetti, Krista and Zemel, Babette S and Zhao, Wei and Zhao, Jing Hua and Zheng, Wei and Zhi, Degui and Zhou, Jie and Zhu, Xiaofeng and Ziegler, Regina G and Zmuda, Joe and Zonderman, Alan B and Psaty, Bruce M and Borecki, Ingrid B and Cupples, L Adrienne and Liu, Ching-Ti and Haiman, Christopher A and Loos, Ruth and Ng, Maggie C Y and North, Kari E} } @article {8714, title = {Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure.}, journal = {Mol Psychiatry}, year = {2021}, month = {2021 Apr 15}, abstract = {

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 P < 5 {\texttimes} 10), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (P < 5 {\texttimes} 10). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (P = 2 {\texttimes} 10). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (P < 10). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.

}, issn = {1476-5578}, doi = {10.1038/s41380-021-01087-0}, author = {Wang, Heming and Noordam, Raymond and Cade, Brian E and Schwander, Karen and Winkler, Thomas W and Lee, Jiwon and Sung, Yun Ju and Bentley, Amy R and Manning, Alisa K and Aschard, Hugues and Kilpel{\"a}inen, Tuomas O and Ilkov, Marjan and Brown, Michael R and Horimoto, Andrea R and Richard, Melissa and Bartz, Traci M and Vojinovic, Dina and Lim, Elise and Nierenberg, Jovia L and Liu, Yongmei and Chitrala, Kumaraswamynaidu and Rankinen, Tuomo and Musani, Solomon K and Franceschini, Nora and Rauramaa, Rainer and Alver, Maris and Zee, Phyllis C and Harris, Sarah E and van der Most, Peter J and Nolte, Ilja M and Munroe, Patricia B and Palmer, Nicholette D and Kuhnel, Brigitte and Weiss, Stefan and Wen, Wanqing and Hall, Kelly A and Lyytik{\"a}inen, Leo-Pekka and O{\textquoteright}Connell, Jeff and Eiriksdottir, Gudny and Launer, Lenore J and de Vries, Paul S and Arking, Dan E and Chen, Han and Boerwinkle, Eric and Krieger, Jose E and Schreiner, Pamela J and Sidney, Stephen and Shikany, James M and Rice, Kenneth and Chen, Yii-Der Ida and Gharib, Sina A and Bis, Joshua C and Luik, Annemarie I and Ikram, M Arfan and Uitterlinden, Andr{\'e} G and Amin, Najaf and Xu, Hanfei and Levy, Daniel and He, Jiang and Lohman, Kurt K and Zonderman, Alan B and Rice, Treva K and Sims, Mario and Wilson, Gregory and Sofer, Tamar and Rich, Stephen S and Palmas, Walter and Yao, Jie and Guo, Xiuqing and Rotter, Jerome I and Biermasz, Nienke R and Mook-Kanamori, Dennis O and Martin, Lisa W and Barac, Ana and Wallace, Robert B and Gottlieb, Daniel J and Komulainen, Pirjo and Heikkinen, Sami and M{\"a}gi, Reedik and Milani, Lili and Metspalu, Andres and Starr, John M and Milaneschi, Yuri and Waken, R J and Gao, Chuan and Waldenberger, Melanie and Peters, Annette and Strauch, Konstantin and Meitinger, Thomas and Roenneberg, Till and V{\"o}lker, Uwe and D{\"o}rr, Marcus and Shu, Xiao-Ou and Mukherjee, Sutapa and Hillman, David R and K{\"a}h{\"o}nen, Mika and Wagenknecht, Lynne E and Gieger, Christian and Grabe, Hans J and Zheng, Wei and Palmer, Lyle J and Lehtim{\"a}ki, Terho and Gudnason, Vilmundur and Morrison, Alanna C and Pereira, Alexandre C and Fornage, Myriam and Psaty, Bruce M and van Duijn, Cornelia M and Liu, Ching-Ti and Kelly, Tanika N and Evans, Michele K and Bouchard, Claude and Fox, Ervin R and Kooperberg, Charles and Zhu, Xiaofeng and Lakka, Timo A and Esko, T{\~o}nu and North, Kari E and Deary, Ian J and Snieder, Harold and Penninx, Brenda W J H and Gauderman, W James and Rao, Dabeeru C and Redline, Susan and van Heemst, Diana} } @article {9535, title = {Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci.}, journal = {Front Genet}, volume = {14}, year = {2023}, month = {2023}, pages = {1235337}, abstract = {

Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant ( < 5 {\texttimes} 10) and suggestive ( < 1 {\texttimes} 10) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (), brain (), and liver () biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

}, issn = {1664-8021}, doi = {10.3389/fgene.2023.1235337}, author = {de Las Fuentes, Lisa and Schwander, Karen L and Brown, Michael R and Bentley, Amy R and Winkler, Thomas W and Sung, Yun Ju and Munroe, Patricia B and Miller, Clint L and Aschard, Hugo and Aslibekyan, Stella and Bartz, Traci M and Bielak, Lawrence F and Chai, Jin Fang and Cheng, Ching-Yu and Dorajoo, Rajkumar and Feitosa, Mary F and Guo, Xiuqing and Hartwig, Fernando P and Horimoto, Andrea and Kolcic, Ivana and Lim, Elise and Liu, Yongmei and Manning, Alisa K and Marten, Jonathan and Musani, Solomon K and Noordam, Raymond and Padmanabhan, Sandosh and Rankinen, Tuomo and Richard, Melissa A and Ridker, Paul M and Smith, Albert V and Vojinovic, Dina and Zonderman, Alan B and Alver, Maris and Boissel, Mathilde and Christensen, Kaare and Freedman, Barry I and Gao, Chuan and Giulianini, Franco and Harris, Sarah E and He, Meian and Hsu, Fang-Chi and Kuhnel, Brigitte and Laguzzi, Federica and Li, Xiaoyin and Lyytik{\"a}inen, Leo-Pekka and Nolte, Ilja M and Poveda, Alaitz and Rauramaa, Rainer and Riaz, Muhammad and Robino, Antonietta and Sofer, Tamar and Takeuchi, Fumihiko and Tayo, Bamidele O and van der Most, Peter J and Verweij, Niek and Ware, Erin B and Weiss, Stefan and Wen, Wanqing and Yanek, Lisa R and Zhan, Yiqiang and Amin, Najaf and Arking, Dan E and Ballantyne, Christie and Boerwinkle, Eric and Brody, Jennifer A and Broeckel, Ulrich and Campbell, Archie and Canouil, Micka{\"e}l and Chai, Xiaoran and Chen, Yii-Der Ida and Chen, Xu and Chitrala, Kumaraswamy Naidu and Concas, Maria Pina and de Faire, Ulf and de Mutsert, Ren{\'e}e and de Silva, H Janaka and de Vries, Paul S and Do, Ahn and Faul, Jessica D and Fisher, Virginia and Floyd, James S and Forrester, Terrence and Friedlander, Yechiel and Girotto, Giorgia and Gu, C Charles and Hallmans, G{\"o}ran and Heikkinen, Sami and Heng, Chew-Kiat and Homuth, Georg and Hunt, Steven and Ikram, M Arfan and Jacobs, David R and Kavousi, Maryam and Khor, Chiea Chuen and Kilpel{\"a}inen, Tuomas O and Koh, Woon-Puay and Komulainen, Pirjo and Langefeld, Carl D and Liang, Jingjing and Liu, Kiang and Liu, Jianjun and Lohman, Kurt and M{\"a}gi, Reedik and Manichaikul, Ani W and McKenzie, Colin A and Meitinger, Thomas and Milaneschi, Yuri and Nauck, Matthias and Nelson, Christopher P and O{\textquoteright}Connell, Jeffrey R and Palmer, Nicholette D and Pereira, Alexandre C and Perls, Thomas and Peters, Annette and Polasek, Ozren and Raitakari, Olli T and Rice, Kenneth and Rice, Treva K and Rich, Stephen S and Sabanayagam, Charumathi and Schreiner, Pamela J and Shu, Xiao-Ou and Sidney, Stephen and Sims, Mario and Smith, Jennifer A and Starr, John M and Strauch, Konstantin and Tai, E Shyong and Taylor, Kent D and Tsai, Michael Y and Uitterlinden, Andr{\'e} G and van Heemst, Diana and Waldenberger, Melanie and Wang, Ya-Xing and Wei, Wen-Bin and Wilson, Gregory and Xuan, Deng and Yao, Jie and Yu, Caizheng and Yuan, Jian-Min and Zhao, Wei and Becker, Diane M and Bonnefond, Am{\'e}lie and Bowden, Donald W and Cooper, Richard S and Deary, Ian J and Divers, Jasmin and Esko, T{\~o}nu and Franks, Paul W and Froguel, Philippe and Gieger, Christian and Jonas, Jost B and Kato, Norihiro and Lakka, Timo A and Leander, Karin and Lehtim{\"a}ki, Terho and Magnusson, Patrik K E and North, Kari E and Ntalla, Ioanna and Penninx, Brenda and Samani, Nilesh J and Snieder, Harold and Spedicati, Beatrice and van der Harst, Pim and V{\"o}lzke, Henry and Wagenknecht, Lynne E and Weir, David R and Wojczynski, Mary K and Wu, Tangchun and Zheng, Wei and Zhu, Xiaofeng and Bouchard, Claude and Chasman, Daniel I and Evans, Michele K and Fox, Ervin R and Gudnason, Vilmundur and Hayward, Caroline and Horta, Bernardo L and Kardia, Sharon L R and Krieger, Jose Eduardo and Mook-Kanamori, Dennis O and Peyser, Patricia A and Province, Michael M and Psaty, Bruce M and Rudan, Igor and Sim, Xueling and Smith, Blair H and van Dam, Rob M and van Duijn, Cornelia M and Wong, Tien Yin and Arnett, Donna K and Rao, Dabeeru C and Gauderman, James and Liu, Ching-Ti and Morrison, Alanna C and Rotter, Jerome I and Fornage, Myriam} }