@article {1327, title = {Genetic association for renal traits among participants of African ancestry reveals new loci for renal function.}, journal = {PLoS Genet}, volume = {7}, year = {2011}, month = {2011 Sep}, pages = {e1002264}, abstract = {

Chronic kidney disease (CKD) is an increasing global public health concern, particularly among populations of African ancestry. We performed an interrogation of known renal loci, genome-wide association (GWA), and IBC candidate-gene SNP association analyses in African Americans from the CARe Renal Consortium. In up to 8,110 participants, we performed meta-analyses of GWA and IBC array data for estimated glomerular filtration rate (eGFR), CKD (eGFR <60 mL/min/1.73 m(2)), urinary albumin-to-creatinine ratio (UACR), and microalbuminuria (UACR >30 mg/g) and interrogated the 250 kb flanking region around 24 SNPs previously identified in European Ancestry renal GWAS analyses. Findings were replicated in up to 4,358 African Americans. To assess function, individually identified genes were knocked down in zebrafish embryos by morpholino antisense oligonucleotides. Expression of kidney-specific genes was assessed by in situ hybridization, and glomerular filtration was evaluated by dextran clearance. Overall, 23 of 24 previously identified SNPs had direction-consistent associations with eGFR in African Americans, 2 of which achieved nominal significance (UMOD, PIP5K1B). Interrogation of the flanking regions uncovered 24 new index SNPs in African Americans, 12 of which were replicated (UMOD, ANXA9, GCKR, TFDP2, DAB2, VEGFA, ATXN2, GATM, SLC22A2, TMEM60, SLC6A13, and BCAS3). In addition, we identified 3 suggestive loci at DOK6 (p-value = 5.3{\texttimes}10(-7)) and FNDC1 (p-value = 3.0{\texttimes}10(-7)) for UACR, and KCNQ1 with eGFR (p = 3.6{\texttimes}10(-6)). Morpholino knockdown of kcnq1 in the zebrafish resulted in abnormal kidney development and filtration capacity. We identified several SNPs in association with eGFR in African Ancestry individuals, as well as 3 suggestive loci for UACR and eGFR. Functional genetic studies support a role for kcnq1 in glomerular development in zebrafish.

}, keywords = {Adaptor Proteins, Vesicular Transport, Adult, African Continental Ancestry Group, Aged, Animals, Female, Gene Knockdown Techniques, Genetic Association Studies, Genetic Loci, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, KCNQ1 Potassium Channel, Kidney, Kidney Failure, Chronic, Male, Middle Aged, Neoplasm Proteins, Phenotype, Polymorphism, Single Nucleotide, Zebrafish}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002264}, author = {Liu, Ching-Ti and Garnaas, Maija K and Tin, Adrienne and K{\"o}ttgen, Anna and Franceschini, Nora and Peralta, Carmen A and de Boer, Ian H and Lu, Xiaoning and Atkinson, Elizabeth and Ding, Jingzhong and Nalls, Michael and Shriner, Daniel and Coresh, Josef and Kutlar, Abdullah and Bibbins-Domingo, Kirsten and Siscovick, David and Akylbekova, Ermeg and Wyatt, Sharon and Astor, Brad and Mychaleckjy, Josef and Li, Man and Reilly, Muredach P and Townsend, Raymond R and Adeyemo, Adebowale and Zonderman, Alan B and de Andrade, Mariza and Turner, Stephen T and Mosley, Thomas H and Harris, Tamara B and Rotimi, Charles N and Liu, Yongmei and Kardia, Sharon L R and Evans, Michele K and Shlipak, Michael G and Kramer, Holly and Flessner, Michael F and Dreisbach, Albert W and Goessling, Wolfram and Cupples, L Adrienne and Kao, W Linda and Fox, Caroline S} } @article {1355, title = {New gene functions in megakaryopoiesis and platelet formation.}, journal = {Nature}, volume = {480}, year = {2011}, month = {2011 Nov 30}, pages = {201-8}, abstract = {

Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.

}, keywords = {Animals, Blood Platelets, Cell Size, Drosophila melanogaster, Drosophila Proteins, Europe, Gene Expression Profiling, Gene Silencing, Genome, Human, Genome-Wide Association Study, Hematopoiesis, Humans, Megakaryocytes, Platelet Count, Protein Interaction Maps, Transcription, Genetic, Zebrafish, Zebrafish Proteins}, issn = {1476-4687}, doi = {10.1038/nature10659}, author = {Gieger, Christian and Radhakrishnan, Aparna and Cvejic, Ana and Tang, Weihong and Porcu, Eleonora and Pistis, Giorgio and Serbanovic-Canic, Jovana and Elling, Ulrich and Goodall, Alison H and Labrune, Yann and Lopez, Lorna M and M{\"a}gi, Reedik and Meacham, Stuart and Okada, Yukinori and Pirastu, Nicola and Sorice, Rossella and Teumer, Alexander and Voss, Katrin and Zhang, Weihua and Ramirez-Solis, Ramiro and Bis, Joshua C and Ellinghaus, David and G{\"o}gele, Martin and Hottenga, Jouke-Jan and Langenberg, Claudia and Kovacs, Peter and O{\textquoteright}Reilly, Paul F and Shin, So-Youn and Esko, T{\~o}nu and Hartiala, Jaana and Kanoni, Stavroula and Murgia, Federico and Parsa, Afshin and Stephens, Jonathan and van der Harst, Pim and Ellen van der Schoot, C and Allayee, Hooman and Attwood, Antony and Balkau, Beverley and Bastardot, Fran{\c c}ois and Basu, Saonli and Baumeister, Sebastian E and Biino, Ginevra and Bomba, Lorenzo and Bonnefond, Am{\'e}lie and Cambien, Francois and Chambers, John C and Cucca, Francesco and D{\textquoteright}Adamo, Pio and Davies, Gail and de Boer, Rudolf A and de Geus, Eco J C and D{\"o}ring, Angela and Elliott, Paul and Erdmann, Jeanette and Evans, David M and Falchi, Mario and Feng, Wei and Folsom, Aaron R and Frazer, Ian H and Gibson, Quince D and Glazer, Nicole L and Hammond, Chris and Hartikainen, Anna-Liisa and Heckbert, Susan R and Hengstenberg, Christian and Hersch, Micha and Illig, Thomas and Loos, Ruth J F and Jolley, Jennifer and Khaw, Kay Tee and Kuhnel, Brigitte and Kyrtsonis, Marie-Christine and Lagou, Vasiliki and Lloyd-Jones, Heather and Lumley, Thomas and Mangino, Massimo and Maschio, Andrea and Mateo Leach, Irene and McKnight, Barbara and Memari, Yasin and Mitchell, Braxton D and Montgomery, Grant W and Nakamura, Yusuke and Nauck, Matthias and Navis, Gerjan and N{\"o}thlings, Ute and Nolte, Ilja M and Porteous, David J and Pouta, Anneli and Pramstaller, Peter P and Pullat, Janne and Ring, Susan M and Rotter, Jerome I and Ruggiero, Daniela and Ruokonen, Aimo and Sala, Cinzia and Samani, Nilesh J and Sambrook, Jennifer and Schlessinger, David and Schreiber, Stefan and Schunkert, Heribert and Scott, James and Smith, Nicholas L and Snieder, Harold and Starr, John M and Stumvoll, Michael and Takahashi, Atsushi and Tang, W H Wilson and Taylor, Kent and Tenesa, Albert and Lay Thein, Swee and T{\"o}njes, Anke and Uda, Manuela and Ulivi, Sheila and van Veldhuisen, Dirk J and Visscher, Peter M and V{\"o}lker, Uwe and Wichmann, H-Erich and Wiggins, Kerri L and Willemsen, Gonneke and Yang, Tsun-Po and Hua Zhao, Jing and Zitting, Paavo and Bradley, John R and Dedoussis, George V and Gasparini, Paolo and Hazen, Stanley L and Metspalu, Andres and Pirastu, Mario and Shuldiner, Alan R and Joost van Pelt, L and Zwaginga, Jaap-Jan and Boomsma, Dorret I and Deary, Ian J and Franke, Andre and Froguel, Philippe and Ganesh, Santhi K and Jarvelin, Marjo-Riitta and Martin, Nicholas G and Meisinger, Christa and Psaty, Bruce M and Spector, Timothy D and Wareham, Nicholas J and Akkerman, Jan-Willem N and Ciullo, Marina and Deloukas, Panos and Greinacher, Andreas and Jupe, Steve and Kamatani, Naoyuki and Khadake, Jyoti and Kooner, Jaspal S and Penninger, Josef and Prokopenko, Inga and Stemple, Derek and Toniolo, Daniela and Wernisch, Lorenz and Sanna, Serena and Hicks, Andrew A and Rendon, Augusto and Ferreira, Manuel A and Ouwehand, Willem H and Soranzo, Nicole} } @article {1377, title = {Genome-wide association and functional follow-up reveals new loci for kidney function.}, journal = {PLoS Genet}, volume = {8}, year = {2012}, month = {2012}, pages = {e1002584}, abstract = {

Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

}, keywords = {African Americans, Aged, Animals, Caspase 9, Cyclin-Dependent Kinases, DEAD-box RNA Helicases, DNA Helicases, European Continental Ancestry Group, Female, Follow-Up Studies, Gene Knockdown Techniques, Genome-Wide Association Study, Glomerular Filtration Rate, Humans, Kidney, Kidney Failure, Chronic, Male, Middle Aged, Phosphoric Diester Hydrolases, Zebrafish}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1002584}, author = {Pattaro, Cristian and K{\"o}ttgen, Anna and Teumer, Alexander and Garnaas, Maija and B{\"o}ger, Carsten A and Fuchsberger, Christian and Olden, Matthias and Chen, Ming-Huei and Tin, Adrienne and Taliun, Daniel and Li, Man and Gao, Xiaoyi and Gorski, Mathias and Yang, Qiong and Hundertmark, Claudia and Foster, Meredith C and O{\textquoteright}Seaghdha, Conall M and Glazer, Nicole and Isaacs, Aaron and Liu, Ching-Ti and Smith, Albert V and O{\textquoteright}Connell, Jeffrey R and Struchalin, Maksim and Tanaka, Toshiko and Li, Guo and Johnson, Andrew D and Gierman, Hinco J and Feitosa, Mary and Hwang, Shih-Jen and Atkinson, Elizabeth J and Lohman, Kurt and Cornelis, Marilyn C and Johansson, Asa and T{\"o}njes, Anke and Dehghan, Abbas and Chouraki, Vincent and Holliday, Elizabeth G and Sorice, Rossella and Kutalik, Zolt{\'a}n and Lehtim{\"a}ki, Terho and Esko, T{\~o}nu and Deshmukh, Harshal and Ulivi, Sheila and Chu, Audrey Y and Murgia, Federico and Trompet, Stella and Imboden, Medea and Kollerits, Barbara and Pistis, Giorgio and Harris, Tamara B and Launer, Lenore J and Aspelund, Thor and Eiriksdottir, Gudny and Mitchell, Braxton D and Boerwinkle, Eric and Schmidt, Helena and Cavalieri, Margherita and Rao, Madhumathi and Hu, Frank B and Demirkan, Ayse and Oostra, Ben A and de Andrade, Mariza and Turner, Stephen T and Ding, Jingzhong and Andrews, Jeanette S and Freedman, Barry I and Koenig, Wolfgang and Illig, Thomas and D{\"o}ring, Angela and Wichmann, H-Erich and Kolcic, Ivana and Zemunik, Tatijana and Boban, Mladen and Minelli, Cosetta and Wheeler, Heather E and Igl, Wilmar and Zaboli, Ghazal and Wild, Sarah H and Wright, Alan F and Campbell, Harry and Ellinghaus, David and N{\"o}thlings, Ute and Jacobs, Gunnar and Biffar, Reiner and Endlich, Karlhans and Ernst, Florian and Homuth, Georg and Kroemer, Heyo K and Nauck, Matthias and Stracke, Sylvia and V{\"o}lker, Uwe and V{\"o}lzke, Henry and Kovacs, Peter and Stumvoll, Michael and M{\"a}gi, Reedik and Hofman, Albert and Uitterlinden, Andr{\'e} G and Rivadeneira, Fernando and Aulchenko, Yurii S and Polasek, Ozren and Hastie, Nick and Vitart, Veronique and Helmer, Catherine and Wang, Jie Jin and Ruggiero, Daniela and Bergmann, Sven and K{\"a}h{\"o}nen, Mika and Viikari, Jorma and Nikopensius, Tiit and Province, Michael and Ketkar, Shamika and Colhoun, Helen and Doney, Alex and Robino, Antonietta and Giulianini, Franco and Kr{\"a}mer, Bernhard K and Portas, Laura and Ford, Ian and Buckley, Brendan M and Adam, Martin and Thun, Gian-Andri and Paulweber, Bernhard and Haun, Margot and Sala, Cinzia and Metzger, Marie and Mitchell, Paul and Ciullo, Marina and Kim, Stuart K and Vollenweider, Peter and Raitakari, Olli and Metspalu, Andres and Palmer, Colin and Gasparini, Paolo and Pirastu, Mario and Jukema, J Wouter and Probst-Hensch, Nicole M and Kronenberg, Florian and Toniolo, Daniela and Gudnason, Vilmundur and Shuldiner, Alan R and Coresh, Josef and Schmidt, Reinhold and Ferrucci, Luigi and Siscovick, David S and van Duijn, Cornelia M and Borecki, Ingrid and Kardia, Sharon L R and Liu, Yongmei and Curhan, Gary C and Rudan, Igor and Gyllensten, Ulf and Wilson, James F and Franke, Andre and Pramstaller, Peter P and Rettig, Rainer and Prokopenko, Inga and Witteman, Jacqueline C M and Hayward, Caroline and Ridker, Paul and Parsa, Afshin and Bochud, Murielle and Heid, Iris M and Goessling, Wolfram and Chasman, Daniel I and Kao, W H Linda and Fox, Caroline S} } @article {6600, title = {Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation.}, journal = {Circulation}, volume = {130}, year = {2014}, month = {2014 Oct 7}, pages = {1225-35}, abstract = {

BACKGROUND: Atrial fibrillation (AF) affects >30 million individuals worldwide and is associated with an increased risk of stroke, heart failure, and death. AF is highly heritable, yet the genetic basis for the arrhythmia remains incompletely understood.

METHODS AND RESULTS: To identify new AF-related genes, we used a multifaceted approach, combining large-scale genotyping in 2 ethnically distinct populations, cis-eQTL (expression quantitative trait loci) mapping, and functional validation. Four novel loci were identified in individuals of European descent near the genes NEURL (rs12415501; relative risk [RR]=1.18; 95\% confidence interval [CI], 1.13-1.23; P=6.5{\texttimes}10(-16)), GJA1 (rs13216675; RR=1.10; 95\% CI, 1.06-1.14; P=2.2{\texttimes}10(-8)), TBX5 (rs10507248; RR=1.12; 95\% CI, 1.08-1.16; P=5.7{\texttimes}10(-11)), and CAND2 (rs4642101; RR=1.10; 95\% CI, 1.06-1.14; P=9.8{\texttimes}10(-9)). In Japanese, novel loci were identified near NEURL (rs6584555; RR=1.32; 95\% CI, 1.26-1.39; P=2.0{\texttimes}10(-25)) and CUX2 (rs6490029; RR=1.12; 95\% CI, 1.08-1.16; P=3.9{\texttimes}10(-9)). The top single-nucleotide polymorphisms or their proxies were identified as cis-eQTLs for the genes CAND2 (P=2.6{\texttimes}10(-19)), GJA1 (P=2.66{\texttimes}10(-6)), and TBX5 (P=1.36{\texttimes}10(-5)). Knockdown of the zebrafish orthologs of NEURL and CAND2 resulted in prolongation of the atrial action potential duration (17\% and 45\%, respectively).

CONCLUSIONS: We have identified 5 novel loci for AF. Our results expand the diversity of genetic pathways implicated in AF and provide novel molecular targets for future biological and pharmacological investigation.

}, keywords = {Aged, Animals, Atrial Fibrillation, Chromosome Mapping, Connexin 43, Europe, Female, Gene Knockdown Techniques, Genetic Loci, Genetic Predisposition to Disease, Genotype, Homeodomain Proteins, Humans, Japan, Male, Middle Aged, Muscle Proteins, Nuclear Proteins, Quantitative Trait Loci, Repressor Proteins, T-Box Domain Proteins, Transcription Factors, Ubiquitin-Protein Ligases, Zebrafish, Zebrafish Proteins}, issn = {1524-4539}, doi = {10.1161/CIRCULATIONAHA.114.009892}, author = {Sinner, Moritz F and Tucker, Nathan R and Lunetta, Kathryn L and Ozaki, Kouichi and Smith, J Gustav and Trompet, Stella and Bis, Joshua C and Lin, Honghuang and Chung, Mina K and Nielsen, Jonas B and Lubitz, Steven A and Krijthe, Bouwe P and Magnani, Jared W and Ye, Jiangchuan and Gollob, Michael H and Tsunoda, Tatsuhiko and M{\"u}ller-Nurasyid, Martina and Lichtner, Peter and Peters, Annette and Dolmatova, Elena and Kubo, Michiaki and Smith, Jonathan D and Psaty, Bruce M and Smith, Nicholas L and Jukema, J Wouter and Chasman, Daniel I and Albert, Christine M and Ebana, Yusuke and Furukawa, Tetsushi and Macfarlane, Peter W and Harris, Tamara B and Darbar, Dawood and D{\"o}rr, Marcus and Holst, Anders G and Svendsen, Jesper H and Hofman, Albert and Uitterlinden, Andr{\'e} G and Gudnason, Vilmundur and Isobe, Mitsuaki and Malik, Rainer and Dichgans, Martin and Rosand, Jonathan and Van Wagoner, David R and Benjamin, Emelia J and Milan, David J and Melander, Olle and Heckbert, Susan R and Ford, Ian and Liu, Yongmei and Barnard, John and Olesen, Morten S and Stricker, Bruno H C and Tanaka, Toshihiro and K{\"a}{\"a}b, Stefan and Ellinor, Patrick T} }