Maintaining and Promoting Cardiovascular Health Across the Lifespan

Coronary Artery Risk in Young Adults (CARDIA) Study

Norrina Allen, PhD
Assistant Professor
Northwestern University
CARDIA

• Recruited Black and White men and women 18-30 years at baseline
• Followed for 30 years
• Detailed assessments on a wide-range of risk factors, lifestyle, environment, subclinical measures, physiological measures
• Aimed to study early predictors of development/severity/progression of subclinical CVD and incidence of early clinical CVD events in a biracial population
Taking Advantage of 30 yrs of Data

• Utilizing longitudinally collected data for innovative research questions

• Develop novel statistical methodologies to understand the accumulation and patterns of cardiovascular risk and disease development
 – Time-varying coefficients
 – Thresholds/Point of No Return
 – Trajectories and Cumulative Exposure
 – Age vs Period Effects
Analyses of Long-Term CV Risk in CARDIA

Figure 3. Coronary Calcium Score Distribution in Middle Age with Increasing Exposure to Systolic Prehypertension Before Age 35

Adjusted Relationship (Spline Regression) Between LV Mass Index and 25-Year Cumulative SBP

Unpublished data. Presented by K. Liu AHA 2014

Odds Ratio of CAC>0 per BMI unit higher (exp(β1(t)) based on logit link function)

Trajectories in Mid-Blood Pressure in the Coronary Artery Risk Development in Young Adults (CARDIA) Study

Trajectory Groups (Percentage of the Population in the Group):
- Elevated-Increasing (5.0%, n=217)
- Elevated-Stable (19%, n=903)
- Moderate-Increasing (12%, n=489)
- Moderate-Stable (41%, n=2,065)
- Low-Stable (22%, n=987)
CV Health and its Impact on Outcomes

Risk Accumulation Subclinical Disease Events

Synthetic Cohort across the Lifespan

Risk Factors in Childhood (and prenatal period) are associated with the development of subclinical disease in early Adulthood
Risk Factors and the development of subclinical disease are associated with the occurrence of events later in life
Creation of a Synthetic Cohort

- Most often cohorts are simply pooled together with only minimal sensitivity analyses to account for inter-cohort differences
- We propose the creation of a synthetic cohort whereby the exposure information from younger cohorts could be linked to outcomes that have occurred among older cohort
- Sophisticated statistical techniques such as multilevel multiple imputation methods can be used and validated
 - Can take into account period and cohort effects, geographic differences, design and collection differences
Temporal Trends in CV Risk

SBP in 50 Year Olds in 1910 and 1940

BMI in Women 60-79 Years Old
Flegal et al. JAMA. 2002;288(14):1723-1727
Birth Year Range of Cohorts

<table>
<thead>
<tr>
<th>Cohorts</th>
<th>Birth Year Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARDIA (N= 5,115)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>SOL (N= 16,400)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>Gen III (N= 4,095)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>IRAS (N= 1,625)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>ARIC (N= 15,792)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>HABC (N= 291)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>REGARDS (N= 30,239)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>MESA (N= 6,814)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>SHS (N = 4,549)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>MrOS (N= 5,995)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>WHI (N= 93,673)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>AGES (N= 30,795)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>CHS (N= 5,887)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>JHS (N= 2,062)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>FOS (N= 5,124)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>SOF (N= 10,366)</td>
<td>1940-1980</td>
</tr>
<tr>
<td>FHS (N= 5,079)</td>
<td>1940-1980</td>
</tr>
</tbody>
</table>
Advantages of a Synthetic Cohort

• Efficient use of data
• Harnesses the power of large amounts of data
• Provides power to examine rare phenotypes
• Can examine how exposures vary in their impact on outcomes over the lifespan
• Can examine temporal changes (birth cohort effects) in risk and CVD
• With the addition of childhood cohorts, will provide a deeper understanding of the cumulative effects of exposure over the entire lifespan
Novel Study Questions to be Addressed

• Lifetime Risk Factor Trajectories and their Association with Events
• Cumulative Exposure to CV Risk
• Time-varying impact of CV Risk Factors Throughout the Lifetime on CVD incidence
• Ordering and Timing in the Development of CV Risk Factors
• Critical Periods in the Development of CV Risk
• Predictors of Healthy/Successful Aging
• Temporal Trends in the Development of CVD risk
• Just to name a few........................
Maintaining and Promoting Cardiovascular Health Across the Lifespan

Coronary Artery Risk in Young Adults (CARDIA) Study

Norrina Allen, PhD
Assistant Professor
Northwestern University