

Studying Rare Phenotypes

Opportunities Presented by the Cross Cohort Collaboration

Multi-cohort collaborations for uncommon conditions

Assumptions:

- Low prevalence/incidence conditions are difficult to study, primarily because of identification and recruitment challenges.
- Identification of affected participants from community representative cohorts avoids some selection biases that may accompany targeted recruitment.
- Hypothesis-driven multi-cohort consortia may allow for the power necessary to draw conclusions about uncommon conditions.

Advantages of Multicohort collaborations

<u>Assumptions</u>:

- Established cohorts offer distinct advantages for both the investigator and funder
 - Participants are
 - already enrolled
 - phenotyped (at least to some extent).
 - may have relevant biospecimens
 - may have longitudinal data/specimens
 - the above are particular advantages over cohort assembly from EMRs.
 - Coordinating center functions are established
 - Track record of productivity and prior ancillary funding

Rare Diseases vs. Rare Phenotypes

- Very hard to study <u>diseases</u> of low prevalence/incidence in traditional cohorts
 - Other methods more suited for this
 - Rare disease networks (i.e. CF)
 - Linked, EMR-based methods

 However, excellent opportunity to study uncommon <u>phenotypes</u> placing individual at risk for - or protection from - a <u>common</u>, well-described, easier-to-adjudicate disease (i.e., CVD)

Importance of Disease Hereterogeneity

One of the central findings of MESA

Distribution of CAC by RF Burden

Hard CHD Event Rates (per 1,000 person-years) by CAC score according to Risk Factor Burden

Extremes of unexplained variation as a phenotype

- The extremes design permits a focus on patients who are of interest with respect to identifying new disease pathways and therapeutic targets.
- To obtain similar statistical power, the number needed to phenotype is 4 times greater when using a population-based approach compared with an approach based on targeted phenotyping of individuals at the extremes

Zhang et al Genetic Implication of a Novel Thiamine Transporter in Human Hypertension, Journal of the American College of Cardiology 2014

Lanktree et al Extremes of Unexplained Variation as a Phenotype: An Efficient Approach for Genome-Wide Association Studies of Cardiovascular Disease, Circulation 2010

Rana et al Population-Based Sample Reveals Gene-Gender Interactions in Blood Pressure in White Americans. Hypertension 2006

Lipids and Atherosclerotic CVD

Importance of Disease Heterogeneity

LDL Cholesterol and CAC

Martin, Blaha, et al. *Circulation*. 2014.

LDL Cholesterol Rare Phenotypes

- Lifetime exposure to low LDL and high risk
 - What is optimum LDL?
 - <70 mg/dL or <50 mg/dL (N=345 and N=67 in MESA)
- Exposure to very high LDL and very low risk
 - What is familial hypercholesterolemia (FH)?
- Opportunity for deep phenotyping
 - Genetic factors
 - Inflammatory factors
 - Lipoprotein size and function

Age and Atherosclerotic CVD

Importance of Disease Heterogeneity

The prevalence of coronary artery calcium in asymptomatic patients across age groups

Tota-Maharaj, Blaha, et al. *European Heart Journal*. 2014.

All-cause Mortality in Different Age Groups Stratified by Increasing CAC

Rare Phenotypes in Aging

- Advanced disease in young patients
 - Apparent "malignant" form of the disease
- "Healthy Agers" free of subclinical CVD >75 years old
 - Insights toward aging, interaction of age and risk factors
- Opportunity for deep phenotyping
 - Genetic factors
 - Other aging markers, like telomere length
 - Inflammatory factors
 - Other imaging markers of vascular compliance and function

Brief, Incomplete List of Other Rare Phenotypes

- Questionable importance of isolated low HDL
 - N=158 in MESA (N=781 with "optimal" lipid profiles)
- Long-term subclinical disease non-progressors
- CHD events in the absence of overt or subclinical disease
 - Increasing interest in MINOCA ("MI with no [obstructive] coronary artery disease")
- Unexpected very low/high bone density
- Accelerated/protection from sarcopenia

Practical Considerations

- Volunteer recruitments skew prevalence or identity of rare phenotypes?
- Rare phenotypes would have to be exquisitely defined
- Requisite data may not be available in all cohorts
- Data analysis would likely need to be done at a single, central location
- Funding would be necessary to gain mechanistic insights from "deep phenotyping"
 - Preliminary data accumulation prior to a funding request may be attractive and feasible with existing resources
- An effective prime mover/PI for each project would be essential

Thank you!

Michael J. Blaha (Johns Hopkins) Eric Orwoll (OHSU)