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IPD Meta-Analysis

* The gold standard in meta-analysis is “individual
participant data (IPD)” meta-analysis

- Advantages of IPD
 Correcting for confounders at individual level

« Testing interactions of covariates with exposure Is
more powerful at individual level

« Subgroup analysis to investigate heterogeneity or
consistency

* There are two analysis forms of IPD:
* Two-stage IPD
* One-stage IPD




IPD Meta-Analysis

Two-stage Analysis:

 Similar to an analysis of aggregate data (AD)
meta-analysis

- Same statistical model is fitted to each study

- Each study fits the same covariates

e Estimates can be corrected when not all covariates
are available (Fibrinogen Study, 2009)

- Parameter estimates are combined via regular
meta-analysis technigues

 Weighted averages (e.g. DerSimonian-Lajrd)
 Maximum likelihood estimates TU/je ...,




IPD Meta-Analysis

One-stage Analysis:

* |s one statistical analysis of all data addressing
random and fixed effects

* Studies are considered random

* Requires more sophisticated statistical tools and
may be numerically more challenging

« Analysis may require several hierarchical structures of
random effects (especially for longitudinal data)

* In some cases the analysis must be executed in a
federated or distributed way (data can not be pooled
into One Iocation) TU e TgchnischeUniversiteit
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IPD Meta-Analysis

Federated Meta-Analysis:

« Expectation-maximization algorithm
« Step 0: Choose starting values of all parameters

« Step 1: E-Step: use the estimates from the
previous step to estimate random effects

M-Step: Using the result from the E-step
determine fixed effects parameters

« Evaluate: how much the estimates has changed

— If the changes are small enough — convergence

— If the changes are still to large — conduct step 1
using the last available estimates TU /e st

University of Technology

* EM uses study summary statistics




IPD Meta-Analysis

Federated Meta-Analysis: Example

* Response: Systolic blood pressure

* Exposure: Noise
» Confounders: Age, Sex, PM10 (particulate matter)

* Two cohorts: HUNT and LifeLines

Bo BA(E BS_EX BPM;O BN(E T° c*
EM-0 1 1 1 1 1 1 1
EM-Final 111.59 0.4141 -7.255 | 0.04627 | -0.01351 | 1.8992 | 217.43
EM-0 1 1 1 1 1 0 1
EM-Final 114.68 0.4143 | -7.2473 | -0.16617 | -0.00300 0 217.45

 EM is dependent on starting value
and it makes a difference in estimatio

Technische Universiteit
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IPD Meta-Analysis

* One-stage IPD requires more effort since similar
variables can not just simply be pooled

 Variables from different studies may not contain
the exact same information

- Example on memory:

Study HUI RAVLT | Free BRCP | Cued BRCP
CCHS 5 15 - :
CSHA - 15 12 12
NuAge - - 16 16

 RAVLT=Rey auditory verbal learning test

« BRCP=Buschke cued recall proceduri\.u o
« HUI=Health utility score

Technische Universiteit
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IPD Meta-Analysis

Correct CCHS (n=7107) CSHA (n=1730) NuAge (n=432)
# words HUI Rey Rey Free B Cued B Free B Cued B
0 71.1 1.17 4.57 4.28 0.23 0.23 0
1 2.04 2.81 7.28 2.31 0.29 0 0
2 20.9 8.68 13.1 3.70 0.58 0.69 0
3 4.94 15.6 21.6 5.09 0.40 3.24 0
4 0.99 20.3 17.7 8.61 0.58 6.48 0.23
5 0.01 10.2 13.1 10.9 0.81 13.4 0
6 Na 15.3 5.32 14.0 1.27 14.1 0.69
7 Na 8.33 2.60 17.4 2.08 16.0 0.93
8 Na 4.54 1.05 14.3 2.66 14.8 0.93
9 Na 1.89 0.06 10.7 4.22 12.3 2.31
10 Na 0.79 0.17 6.42 7.11 8.80 1.16
11 Na 0.27 0 2.02 16.5 4.63 5.56
12 Na 0.11 0 0.29 63.2 3.24 7.64
13 Na 0.03 0 Na Na 1.85 10.6
14 Na 0 0 Na Na 0.23 18.8
15 Na 0 0 Na Na 0 19.4
16 Na Na Na Na Na 0 31.7




Harmonization Approaches

 Bridge variables are variables that make it
possible to connect studies

« RAVLT connects CCHS with CSHA
« BCRP connects CSHA with NuAge
 Thus all studies are connected

» Different Harmonization methods

With bridge variables Without bridge variables
» Seqguential calibration * Algorithmic methods
« Latent variable models ¢ Standardization or

- Imputation methods normalization
* Imputation methods




Harmonization Approaches

- Algorithmic harmonization:
« Transform y into categories (low, medium, high)
* Thresholds are test and demographic specific
- Standardization or normalization:
« Change the scores to a common scale:
* Min-max scaling: (y o Ymin)/(Ymax o :Vmin)
Z-scores: (y —y)/s
T-scores: (y — y)/s corrected for covariates

C-scores: (y — y-)/sc corrected for covariates, with
yc an average of a well-defined control group

« Quantile normalization: F~1(y) TU/e siwe 00
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Harmonization Approaches

- Calibration on responses
« Sequential relations are formed: y, = ¥ (y;)
* Requires “bridge variables” to connect studies
- Latent variable models:
« Factor analysis or item response theory models
* The latent variable is the harmonized variable
* Requires “bridge variables” to connect studies
* Multiple imputation methods:
* Must deal with sporadic and systematic missingness
- Makes all variables available in all studies
* Requires other bridge variables TUje ==,
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Harmonization Approaches

Latent variable models
 Let Z; be the ability or latent variable on subject i
* Let Y;; be the score for test h on subject i
- We assume that Y;; given Z; is binomial
YhilZi~Bin(Ny, pr(Z;))
* The different tests are harmonizable when there
exist a function y such that
p1(Z;) = po.(Y(Zy)) or p2(Z) = p1(Y(Z)))
» Calibration model on latent variable similar to inches
and centimeters: 1 inch = 2.54 cm
* We choose y(z) = a + bz TUfe




Harmonization Approaches

Latent variable models

 The distribution of Z; is considered normal
« Mean: Bo+ 2P i BmXm.i
. Variance: Yo+ X i YmXm.i

- The probability py, is logit(pr(2)) = up + npz

, CCHS CSHA NuAge
Variable Level P-value
(n=7107) | (n=1730) (n=432)
Age [mean(sd)] | Numeric | 73.2(5.85) | 79.7 (6.96) | 73.7 (3.95) | <0.001
Male 42.3% 37.3% 46.3%
Sex [%] <0.001
Female 57.7% 62.7% 53.7%
, Low 19.0% 48.6% 15.3%
Education :
(%1% Medium 37.7% 35.8% 39.6% <0.001
0o|/0
High 43.3% 15.6% 45.1%




Harmonization Approaches

L atent variable models:

Mean Variance

Parameters

CCHS | CSHA | NuAge | CCHS | CSHA | NuAge
Intercept 0.955 | 2.653 | 1.009 |-3.124|-2.161|-2.263
HUI 2.813 NA NA

Zero (due to weak

RAVLT NA -1, A _ ,
Cued Buschke | NA (2693 | 2200 )  nvariance)
Med. Education | 0.201 | 0.049 | 0.160 |-0.063 | 0.106 | 0.207
High education | 0.356 | 0.176 | 0.357 |-0.010| 0.144 | 0.184
Sex 0.210 | -0004 | 0.449 | 0.148 | 0.286 | 0.018
Age -0.029 | -0033 | -0.022 | 0.023 | 0.021 | 0.020

- Model fit:y?/df = 1.114




Harmonization Approaches

- Without bridge variables there is no way to check
“content equivalence”

« BMI and 1Q can be standardized, normalized or
categorized, but they do not become exchangeable

- Bridge variables could check calibration or latent
variable invariance principles

« Consistency of the relation between free and cued
BCRP can be verified for CSHA and NuAge

« Sparsity restricts the verification of all invariances

e Harmonization invariance iIs unequal to factorial
measurement invariance but it is TU /e s
similar to differential item functioning

University of Technology
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Standardization Methods

- Compare standardization methods
« T-score (corrected for confounders)
« C-score (corrected for confounders)
» Harmonization setting
* Response: Memory construct
« EXxposure: physical activity (low, medium, high)
* Confounders: Age, gender, and education
- Two stage IPD meta-analysis

* Pooled effect size: Hedges g (adjusted and
unadjusted for confounders)

- Measure of heterogeneity: 12 TU/e iion, .




Standardization Methods

Calculations of T- and C-score
Let Y; be memory scale for participant i in one study
* T-score
Z; =10+ 3(Y; —Y)/S
Zi =g+ Yo QXix + e, €;~N(0,02)
T; =50+ 10(Z; — Z;) /6.
s With ¥ = 37, Y;, § = S, (% — V)?/(n — 1), Z; the
predicted Z;, and 4, an estimate of o,
« C-score: C; = (Y; = Y.) /S,
« With Y, and S, the average and standard deviation
of 70 to 74 years old and high TU/e &z,
educated females




Standardization Methods

Calculations of hedges g
* Unadjusted effect size of PA on memory per study
* Three levels: Low-Medium, Low-High, Medium-High

* Let (wy, T, N ) be the mean, standard deviation,
and sample size for T- or C-score at PA level k

« Effect size for PA level k versus [:
« Mean difference: dy; = wy, — wy

(np-Dth+(n—1)17f

- Pooled standard deviation: sf;, =

Ne+n;—2
3 d
» Hedges g: gy, = (1 — ) i
4(ng+ny)—9/ sgi N
nk + nl gIZCZ T U e Sir:}?l:?s‘?te;of Technology

Variance: vg; = ngn; - 2(ng+ny)



Standardization Methods

Calculations of hedges g
» Analysis of T- or C-score corrected for age, sex,
education uses linear regression per study

« Residual variance changes with PA levels and
replaces 77 and 77

* Least square means of PA in regression analysis
are used as substitutes for difference dy;

« Samples sizes n; and n; remain the same
* DerSimonian & Laird to combine hedges g's
- Heterogeneity: I, = (Q); — m + 1)/Qy,

-5 2 Technische Universiteit
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Simulation Study

Data generation

* Age, gender, and education were independently
drawn from normal and Bernoulli distribution

* Physical activity was simulated from logistic
distribution with mean dependent on confounders
* Then physical activity was set to three categories

- Latent memory followed a normal distribution
 mean depend on physical activity and confounders
 Variance depend on confounders

- Memory score given latent variable followed a
binomial distribution with logistic link function

Technische Universiteit
Eindhoven

- Date generation was done per studyTU € bistornas




Simulation Study

Data generation

* Age A~N(u, 0°)
» Gender S~B(ms)
« Education E~U(0,1)

* Low education: E, =1: 0<U<m

 Medium education: E, = 1: m, < U< my

« High education: E,; = 1: Ty <U<1

p . Homogeneous populations Heterogeneous populations

arameters Study 1 Study 2 Study 3 Study 1 Study 2 Study 3

.y 75 75 75 70 80 75
0y 6 6 6 6 7 4
s 0.40 0.40 0.40 0.40 0.35 0.45
My 0.30 0.30 0.30 0.20 0.50 0.15
T 0.70 0.70 0.70 0.60 0.85 0.55

TU/e
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Simulation Study

Data generation

 Physical Activity X~Logistic(upa, 1)
ups = —0.034 — 0.55 — 0.6E; — 0.3E,

* The influence of confounder on physical activity
was the same in each study

* Physical activity was categorized into three
categories:
* Low PA: P, = 1. X<1.0
 Medium PA: Py, = 1: 1.0<X <35
* High PA: Py = 1: 3.5<X




Simulation Study

Data generation

- Latent Memory Z~N (i, o)
Uy = Bo + BaA + BsS + BLEL + pfuEwm
+p1P, + 2Py
logoy =vyo +VaA +VsS +VLEL + YuEM
- Memory scale Y~Bin(N,p(Z))
 Number of words tested N

- Study 1: N = 15
- Study 2: N =12
- Study 3: N = 16

* Logistic function for probability

p(Z) = exp(Z)/(1 + exp(Z)) TU
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Simulation Study

Data generation

- Parameters of confounders for memory
: Homogeneous effects Heterogeneous effects
Parameters

Study 1 Study 2 Study 3 Study 1 Study 2 Study 3
Bo 2.5 2.5 2.5 1.5 2.5 3.5
B -0.025 -0.025 -0.025 -0.025 -0.035 -0.020
B 0.20 0.20 0.20 0.20 0 0.45
Br -0.25 -0.25 -0.25 -0.35 -0.15 -0.35
B -0.15 -0.15 -0.15 -0.15 -0.10 -0.20
Yo -2.0 -2.0 -2.0 -3.0 -2.0 -2.0
¥a 0.02 0.02 0.02 0.02 0.02 0.02
Ve 0.15 0.15 0.15 0.15 0.25 0
14 -0.15 -0.15 -0.15 0 -0.15 -0.20
YV -0.05 -0.05 -0.05 0 -0.05 0

Parameters of physical activity on memory

Parameters

Homogeneous effects

Heterogeneous effects

Study 1 Study 2 Study 3 Study 1 Study 2 Study 3
,‘31 -0.50 -0.50 -0.50 -0.60 -0.30 -0.10
182 -0.25 -0.25 -0.25 -0.30 0 -0.10
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Simulation Study

RERES

Unadjusted effect sizes

Effect of Population Confounder Type of Effect Power 2
PA Effect on Memory | Outcome size
Homo Homo Homo T-score 0.57 100 16.6
Homo Homo Homo C-score 0.53 100 17.1
Homo Homo Hetero T-score 0.62 100 87.6
Homo Homo Hetero C-score 0.57 100 82.7
Homo Hetero Homo T-score 0.58 100 27.7
Homo Hetero Homo C-score 0.54 100 30.0
Homo Hetero Hetero T-score 0.62 100 91.9
Homo Hetero Hetero C-score 0.57 100 89.8
Hetero Homo Homo T-score 0.39 73.2 95.4
Hetero Homo Homo C-score 0.36 56.2 95.6
Hetero Homo Hetero T-score 0.46 19.9 98.2
Hetero Homo Hetero C-score 0.41 13.5 98.0
Hetero Hetero Homo T-score 0.40 62.8 96.0
Hetero Hetero Homo C-score 0.37 46.9 96.0
Hetero Hetero Hetero T-score 0.47 10.2 98.4
Hetero Hetero Hetero C-score 0.42 7.0 98.3




Simulation Study

RERES

Ad|usted effect sizes

Effect of Population Confounder Type of Effect Power 2
PA Effect on Memory | Outcome Size
Homo Homo Homo T-score 0.59 100 18.4
Homo Homo Homo C-score 0.59 100 18.4
Homo Homo Hetero T-score 0.65 100 88.5
Homo Homo Hetero C-score 0.65 100 88.5
Homo Hetero Homo T-score 0.60 100 29.9
Homo Hetero Homo C-score 0.60 100 29.9
Homo Hetero Hetero T-score 0.64 100 92.5
Homo Hetero Hetero C-score 0.64 100 92.5
Hetero Homo Homo T-score 0.41 12.7 95.8
Hetero Homo Homo C-score 0.41 12.7 95.8
Hetero Homo Hetero T-score 0.48 19.4 99.4
Hetero Homo Hetero C-score 0.48 19.4 99.4
Hetero Hetero Homo T-score 0.41 61.5 96.4
Hetero Hetero Homo C-score 0.41 61.5 96.4
Hetero Hetero Hetero T-score 0.48 9.2 98.6
Hetero Hetero Hetero C-score 0.48 9.2 98.6




Simulation Study

Conclusions

* Pooled effects of PA on memory for T and C are
 Different when scores are unadjusted
« Almost identical for adjusted effect sizes
A bit affected by heterogeneity in confounders

- Unadjusted effect sizes show less study
heterogeneity for C-scores than for T-scores

- Heterogeneity in homogeneous effect sizes of PA
on memory with T- and C-scores

* |s disturbed by heterogeneous effect sizes of the
confounders on memory (adjusted and unadjusted)

Techn |sche Universiteit

* Is only little affected by heterogeneityTU /e s 0,
In confounders across studies




Simulation Study

Conclusions
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Editorial

Meta-analysis has a long history within the medical scienc-
es and epidemiology [1-3]. The main goal of a meta-analysis is
to improve the precision of a specific effect size of a treatment
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or an exposure on a clinical or disease outcome by pooling or E R van den Heuvel* and Griffith LE?

combining multiple studies. It is frequently conducted within a \Department of Stochastics, Eindhoven University of
systematic review of the scientific literature to guarantee that Technology, Netherlands

studies with appropriate information are not ignored or over- ‘Department of Clinical Epidemiology & Biostatistics,
looked and to make sure that the pooled estimate represents an McMaster University, Canada

unbiased and precise estimate of the true effect size. Moreover, *Corresponding author: E R van den Heuvel,

the pooled effect estimate is evaluated in the context of study Department of Stochastics Biostatistics, Faculty of

. . o . Mathemati dcC ter Sci . Eindh
heterogeneity. In case substantial heterogeneity in the effect siz- ATHEmaAtics ane motputer scetce, Hmdnoven

es across studies is present, the pooled estimate is considered
less reliable or even questionable. Thus not only the pooled
estimate must be unbiased, also the estimate of the measure
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