You are here

Systematically missing confounders in individual participant data meta-analysis of observational cohort studies.

TitleSystematically missing confounders in individual participant data meta-analysis of observational cohort studies.
Publication TypeJournal Article
Year of Publication2009
AuthorsJackson, D, White, I, Kostis, JB, Wilson, AC, Folsom, AR, Wu, K, Chambless, L, Benderly, M, Goldbourt, U, Willeit, J, Kiechl, S, Yarnell, JWG, Sweetnam, PM, Elwood, PC, Cushman, M, Psaty, BM, Tracy, RP, Tybjaerg-Hansen, A, Haverkate, F, de Maat, MPM, Thompson, SG, Fowkes, FGR, Lee, AJ, Smith, FB, Salomaa, V, Harald, K, Rasi, V, Vahtera, E, Jousilahti, P, D'Agostino, R, Kannel, WB, Wilson, PWF, Tofler, G, Levy, D, Marchioli, R, Valagussa, F, Rosengren, A, Wilhelmsen, L, Lappas, G, Eriksson, H, Cremer, P, Nagel, D, Curb, JD, Rodriguez, B, Yano, K, Salonen, JT, Nyyssönen, K, Tuomainen, T-P, Hedblad, B, Engstrom, G, Berglund, G, Loewel, H, Koenig, W, Hense, HW, Meade, TW, Cooper, JA, De Stavola, B, Knottenbelt, C, Miller, GJ, Cooper, JA, Bauer, KA, Rosenberg, RD, Sato, S, Kitamura, A, Naito, Y, Iso, H, Salomaa, V, Harald, K, Rasi, V, Vahtera, E, Jousilahti, P, Palosuo, T, Ducimetiere, P, Amouyel, P, Arveiler, D, Evans, AE, Ferrieres, J, Juhan-Vague, I, Bingham, A, Schulte, H, Assmann, G, Cantin, B, Lamarche, B, Després, J-P, Dagenais, GR, Tunstall-Pedoe, H, Lowe, GDO, Woodward, M, Ben-Shlomo, Y, Davey Smith, G, Palmieri, V, Yeh, JL, Meade, TW, Rudnicka, A, Brennan, P, Knottenbelt, C, Cooper, JA, Ridker, P, Rodeghiero, F, Tosetto, A, Shepherd, J, Lowe, GDO, Ford, I, Robertson, M, Brunner, E, Shipley, M, Feskens, EJM, Di Angelantonio, E, Kaptoge, S, Lewington, S, Lowe, GDO, Sarwar, N, Thompson, SG, Walker, M, Watson, S, White, IR, Wood, AM, Danesh, J
Corporate/Institutional AuthorsFibrinogen Studies Collaboration,
JournalStat Med
Volume28
Issue8
Pagination1218-37
Date Published2009 Apr 15
ISSN0277-6715
KeywordsCohort Studies, Computer Simulation, Coronary Disease, Data Interpretation, Statistical, Female, Fibrinogen, Humans, Male, Meta-Analysis as Topic, Models, Statistical
Abstract<p>One difficulty in performing meta-analyses of observational cohort studies is that the availability of confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and disease either are restricted to cohorts with full confounder information, or use all cohorts but do not fully adjust for confounding. We propose using a bivariate random-effects meta-analysis model to use information from all available cohorts while still adjusting for all the potential confounders. Our method uses both the fully adjusted and the partially adjusted estimated effects in the cohorts with full confounder information, together with an estimate of their within-cohort correlation. The method is applied to estimate the association between fibrinogen level and coronary heart disease incidence using data from 154,012 participants in 31 cohorts</p>
DOI10.1002/sim.3540
Alternate JournalStat Med
PubMed ID19222087
PubMed Central IDPMC2922684
Grant ListU01 HL080295-04 / HL / NHLBI NIH HHS / United States
U01 HL080295 / HL / NHLBI NIH HHS / United States
RG/08/014/24067 / / British Heart Foundation / United Kingdom
U01 HL080295-01 / HL / NHLBI NIH HHS / United States
U01 HL080295-03 / HL / NHLBI NIH HHS / United States
U01 HL080295-02 / HL / NHLBI NIH HHS / United States
MC_U105260792 / / Medical Research Council / United Kingdom
G0700463 / / Medical Research Council / United Kingdom