Title | Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. |
Publication Type | Journal Article |
Year of Publication | 2013 |
Authors | Alonso, A, Krijthe, BP, Aspelund, T, Stepas, KA, Pencina, MJ, Moser, CB, Sinner, MF, Sotoodehnia, N, Fontes, JD, A Janssens, CJW, Kronmal, RA, Magnani, JW, Witteman, JC, Chamberlain, AM, Lubitz, SA, Schnabel, RB, Agarwal, SK, McManus, DD, Ellinor, PT, Larson, MG, Burke, GL, Launer, LJ, Hofman, A, Levy, D, Gottdiener, JS, Kääb, S, Couper, D, Harris, TB, Soliman, EZ, Stricker, BHC, Gudnason, V, Heckbert, SR, Benjamin, EJ |
Journal | J Am Heart Assoc |
Volume | 2 |
Issue | 2 |
Pagination | e000102 |
Date Published | 2013 Mar 18 |
ISSN | 2047-9980 |
Keywords | African Americans, Age Factors, Aged, Aged, 80 and over, Atrial Fibrillation, Cohort Studies, Diabetes Mellitus, European Continental Ancestry Group, Female, Heart Failure, Humans, Hypertension, Iceland, Incidence, Male, Middle Aged, Myocardial Infarction, Netherlands, Proportional Hazards Models, Risk Assessment, Smoking, United States |
Abstract | <p><b>BACKGROUND: </b>Tools for the prediction of atrial fibrillation (AF) may identify high-risk individuals more likely to benefit from preventive interventions and serve as a benchmark to test novel putative risk factors.</p><p><b>METHODS AND RESULTS: </b>Individual-level data from 3 large cohorts in the United States (Atherosclerosis Risk in Communities [ARIC] study, the Cardiovascular Health Study [CHS], and the Framingham Heart Study [FHS]), including 18 556 men and women aged 46 to 94 years (19% African Americans, 81% whites) were pooled to derive predictive models for AF using clinical variables. Validation of the derived models was performed in 7672 participants from the Age, Gene and Environment-Reykjavik study (AGES) and the Rotterdam Study (RS). The analysis included 1186 incident AF cases in the derivation cohorts and 585 in the validation cohorts. A simple 5-year predictive model including the variables age, race, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, diabetes, and history of myocardial infarction and heart failure had good discrimination (C-statistic, 0.765; 95% CI, 0.748 to 0.781). Addition of variables from the electrocardiogram did not improve the overall model discrimination (C-statistic, 0.767; 95% CI, 0.750 to 0.783; categorical net reclassification improvement, -0.0032; 95% CI, -0.0178 to 0.0113). In the validation cohorts, discrimination was acceptable (AGES C-statistic, 0.664; 95% CI, 0.632 to 0.697 and RS C-statistic, 0.705; 95% CI, 0.664 to 0.747) and calibration was adequate.</p><p><b>CONCLUSION: </b>A risk model including variables readily available in primary care settings adequately predicted AF in diverse populations from the United States and Europe.</p> |
DOI | 10.1161/JAHA.112.000102 |
Alternate Journal | J Am Heart Assoc |
PubMed ID | 23537808 |
PubMed Central ID | PMC3647274 |
Grant List | HHSN268201100012C / HL / NHLBI NIH HHS / United States HHSN268201100009I / HL / NHLBI NIH HHS / United States 1RC1HL101056 / HL / NHLBI NIH HHS / United States K24 HL105780 / HL / NHLBI NIH HHS / United States RC1HL099452 / HL / NHLBI NIH HHS / United States HHSN268201100010C / HL / NHLBI NIH HHS / United States HHSN268201100008C / HL / NHLBI NIH HHS / United States U01 HL080295 / HL / NHLBI NIH HHS / United States HHSN268201100005G / HL / NHLBI NIH HHS / United States HHSN268201100008I / HL / NHLBI NIH HHS / United States R01 HL092577 / HL / NHLBI NIH HHS / United States HHSN268201100007C / HL / NHLBI NIH HHS / United States R01HL088456 / HL / NHLBI NIH HHS / United States AG-15928 / AG / NIA NIH HHS / United States UL1 TR000161 / TR / NCATS NIH HHS / United States HHSN268201100011I / HL / NHLBI NIH HHS / United States HHSN268201100011C / HL / NHLBI NIH HHS / United States N01-HC 25195 / HC / NHLBI NIH HHS / United States RC1 HL099452 / HL / NHLBI NIH HHS / United States AG-20098 / AG / NIA NIH HHS / United States RC1 HL101056 / HL / NHLBI NIH HHS / United States R01 HL088456 / HL / NHLBI NIH HHS / United States R01 HL105756 / HL / NHLBI NIH HHS / United States RC1HL101056 / HL / NHLBI NIH HHS / United States AG-027058 / AG / NIA NIH HHS / United States HHSN268201100006C / HL / NHLBI NIH HHS / United States R01 HL102214 / HL / NHLBI NIH HHS / United States HHSN268201100005I / HL / NHLBI NIH HHS / United States R01 HL080295 / HL / NHLBI NIH HHS / United States KL2 TR000160 / TR / NCATS NIH HHS / United States 6R01-NS 17950 / NS / NINDS NIH HHS / United States HHSN268201100009C / HL / NHLBI NIH HHS / United States N01-AG-12100 / AG / NIA NIH HHS / United States HHSN268201100005C / HL / NHLBI NIH HHS / United States HHSN268201100007I / HL / NHLBI NIH HHS / United States HL080295 / HL / NHLBI NIH HHS / United States 1R01HL102214 / HL / NHLBI NIH HHS / United States 1R01AG028321 / AG / NIA NIH HHS / United States AG-023629 / AG / NIA NIH HHS / United States 1R01HL092577 / HL / NHLBI NIH HHS / United States R01 AG028321 / AG / NIA NIH HHS / United States 1R21HL106092 / HL / NHLBI NIH HHS / United States R21 HL106092 / HL / NHLBI NIH HHS / United States |